For PPC64/ELFv1: Introduce mst_data_gnu_ifunc
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint
121 (const std::vector<value_ref_ptr> &vals);
122
123 static void mention (struct breakpoint *);
124
125 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
126 enum bptype,
127 const struct breakpoint_ops *);
128 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
129 const struct symtab_and_line *);
130
131 /* This function is used in gdbtk sources and thus can not be made
132 static. */
133 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
134 struct symtab_and_line,
135 enum bptype,
136 const struct breakpoint_ops *);
137
138 static struct breakpoint *
139 momentary_breakpoint_from_master (struct breakpoint *orig,
140 enum bptype type,
141 const struct breakpoint_ops *ops,
142 int loc_enabled);
143
144 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
145
146 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
147 CORE_ADDR bpaddr,
148 enum bptype bptype);
149
150 static void describe_other_breakpoints (struct gdbarch *,
151 struct program_space *, CORE_ADDR,
152 struct obj_section *, int);
153
154 static int watchpoint_locations_match (struct bp_location *loc1,
155 struct bp_location *loc2);
156
157 static int breakpoint_location_address_match (struct bp_location *bl,
158 const struct address_space *aspace,
159 CORE_ADDR addr);
160
161 static int breakpoint_location_address_range_overlap (struct bp_location *,
162 const address_space *,
163 CORE_ADDR, int);
164
165 static int remove_breakpoint (struct bp_location *);
166 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
167
168 static enum print_stop_action print_bp_stop_message (bpstat bs);
169
170 static int hw_breakpoint_used_count (void);
171
172 static int hw_watchpoint_use_count (struct breakpoint *);
173
174 static int hw_watchpoint_used_count_others (struct breakpoint *except,
175 enum bptype type,
176 int *other_type_used);
177
178 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
179 int count);
180
181 static void free_bp_location (struct bp_location *loc);
182 static void incref_bp_location (struct bp_location *loc);
183 static void decref_bp_location (struct bp_location **loc);
184
185 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
186
187 /* update_global_location_list's modes of operation wrt to whether to
188 insert locations now. */
189 enum ugll_insert_mode
190 {
191 /* Don't insert any breakpoint locations into the inferior, only
192 remove already-inserted locations that no longer should be
193 inserted. Functions that delete a breakpoint or breakpoints
194 should specify this mode, so that deleting a breakpoint doesn't
195 have the side effect of inserting the locations of other
196 breakpoints that are marked not-inserted, but should_be_inserted
197 returns true on them.
198
199 This behavior is useful is situations close to tear-down -- e.g.,
200 after an exec, while the target still has execution, but
201 breakpoint shadows of the previous executable image should *NOT*
202 be restored to the new image; or before detaching, where the
203 target still has execution and wants to delete breakpoints from
204 GDB's lists, and all breakpoints had already been removed from
205 the inferior. */
206 UGLL_DONT_INSERT,
207
208 /* May insert breakpoints iff breakpoints_should_be_inserted_now
209 claims breakpoints should be inserted now. */
210 UGLL_MAY_INSERT,
211
212 /* Insert locations now, irrespective of
213 breakpoints_should_be_inserted_now. E.g., say all threads are
214 stopped right now, and the user did "continue". We need to
215 insert breakpoints _before_ resuming the target, but
216 UGLL_MAY_INSERT wouldn't insert them, because
217 breakpoints_should_be_inserted_now returns false at that point,
218 as no thread is running yet. */
219 UGLL_INSERT
220 };
221
222 static void update_global_location_list (enum ugll_insert_mode);
223
224 static void update_global_location_list_nothrow (enum ugll_insert_mode);
225
226 static int is_hardware_watchpoint (const struct breakpoint *bpt);
227
228 static void insert_breakpoint_locations (void);
229
230 static void trace_pass_command (const char *, int);
231
232 static void set_tracepoint_count (int num);
233
234 static int is_masked_watchpoint (const struct breakpoint *b);
235
236 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
237
238 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
239 otherwise. */
240
241 static int strace_marker_p (struct breakpoint *b);
242
243 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
244 that are implemented on top of software or hardware breakpoints
245 (user breakpoints, internal and momentary breakpoints, etc.). */
246 static struct breakpoint_ops bkpt_base_breakpoint_ops;
247
248 /* Internal breakpoints class type. */
249 static struct breakpoint_ops internal_breakpoint_ops;
250
251 /* Momentary breakpoints class type. */
252 static struct breakpoint_ops momentary_breakpoint_ops;
253
254 /* The breakpoint_ops structure to be used in regular user created
255 breakpoints. */
256 struct breakpoint_ops bkpt_breakpoint_ops;
257
258 /* Breakpoints set on probes. */
259 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
260
261 /* Dynamic printf class type. */
262 struct breakpoint_ops dprintf_breakpoint_ops;
263
264 /* The style in which to perform a dynamic printf. This is a user
265 option because different output options have different tradeoffs;
266 if GDB does the printing, there is better error handling if there
267 is a problem with any of the arguments, but using an inferior
268 function lets you have special-purpose printers and sending of
269 output to the same place as compiled-in print functions. */
270
271 static const char dprintf_style_gdb[] = "gdb";
272 static const char dprintf_style_call[] = "call";
273 static const char dprintf_style_agent[] = "agent";
274 static const char *const dprintf_style_enums[] = {
275 dprintf_style_gdb,
276 dprintf_style_call,
277 dprintf_style_agent,
278 NULL
279 };
280 static const char *dprintf_style = dprintf_style_gdb;
281
282 /* The function to use for dynamic printf if the preferred style is to
283 call into the inferior. The value is simply a string that is
284 copied into the command, so it can be anything that GDB can
285 evaluate to a callable address, not necessarily a function name. */
286
287 static char *dprintf_function;
288
289 /* The channel to use for dynamic printf if the preferred style is to
290 call into the inferior; if a nonempty string, it will be passed to
291 the call as the first argument, with the format string as the
292 second. As with the dprintf function, this can be anything that
293 GDB knows how to evaluate, so in addition to common choices like
294 "stderr", this could be an app-specific expression like
295 "mystreams[curlogger]". */
296
297 static char *dprintf_channel;
298
299 /* True if dprintf commands should continue to operate even if GDB
300 has disconnected. */
301 static int disconnected_dprintf = 1;
302
303 struct command_line *
304 breakpoint_commands (struct breakpoint *b)
305 {
306 return b->commands ? b->commands.get () : NULL;
307 }
308
309 /* Flag indicating that a command has proceeded the inferior past the
310 current breakpoint. */
311
312 static int breakpoint_proceeded;
313
314 const char *
315 bpdisp_text (enum bpdisp disp)
316 {
317 /* NOTE: the following values are a part of MI protocol and
318 represent values of 'disp' field returned when inferior stops at
319 a breakpoint. */
320 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
321
322 return bpdisps[(int) disp];
323 }
324
325 /* Prototypes for exported functions. */
326 /* If FALSE, gdb will not use hardware support for watchpoints, even
327 if such is available. */
328 static int can_use_hw_watchpoints;
329
330 static void
331 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
332 struct cmd_list_element *c,
333 const char *value)
334 {
335 fprintf_filtered (file,
336 _("Debugger's willingness to use "
337 "watchpoint hardware is %s.\n"),
338 value);
339 }
340
341 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
342 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
343 for unrecognized breakpoint locations.
344 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
345 static enum auto_boolean pending_break_support;
346 static void
347 show_pending_break_support (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c,
349 const char *value)
350 {
351 fprintf_filtered (file,
352 _("Debugger's behavior regarding "
353 "pending breakpoints is %s.\n"),
354 value);
355 }
356
357 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
358 set with "break" but falling in read-only memory.
359 If 0, gdb will warn about such breakpoints, but won't automatically
360 use hardware breakpoints. */
361 static int automatic_hardware_breakpoints;
362 static void
363 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
364 struct cmd_list_element *c,
365 const char *value)
366 {
367 fprintf_filtered (file,
368 _("Automatic usage of hardware breakpoints is %s.\n"),
369 value);
370 }
371
372 /* If on, GDB keeps breakpoints inserted even if the inferior is
373 stopped, and immediately inserts any new breakpoints as soon as
374 they're created. If off (default), GDB keeps breakpoints off of
375 the target as long as possible. That is, it delays inserting
376 breakpoints until the next resume, and removes them again when the
377 target fully stops. This is a bit safer in case GDB crashes while
378 processing user input. */
379 static int always_inserted_mode = 0;
380
381 static void
382 show_always_inserted_mode (struct ui_file *file, int from_tty,
383 struct cmd_list_element *c, const char *value)
384 {
385 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
386 value);
387 }
388
389 /* See breakpoint.h. */
390
391 int
392 breakpoints_should_be_inserted_now (void)
393 {
394 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
395 {
396 /* If breakpoints are global, they should be inserted even if no
397 thread under gdb's control is running, or even if there are
398 no threads under GDB's control yet. */
399 return 1;
400 }
401 else if (target_has_execution)
402 {
403 struct thread_info *tp;
404
405 if (always_inserted_mode)
406 {
407 /* The user wants breakpoints inserted even if all threads
408 are stopped. */
409 return 1;
410 }
411
412 if (threads_are_executing ())
413 return 1;
414
415 /* Don't remove breakpoints yet if, even though all threads are
416 stopped, we still have events to process. */
417 ALL_NON_EXITED_THREADS (tp)
418 if (tp->resumed
419 && tp->suspend.waitstatus_pending_p)
420 return 1;
421 }
422 return 0;
423 }
424
425 static const char condition_evaluation_both[] = "host or target";
426
427 /* Modes for breakpoint condition evaluation. */
428 static const char condition_evaluation_auto[] = "auto";
429 static const char condition_evaluation_host[] = "host";
430 static const char condition_evaluation_target[] = "target";
431 static const char *const condition_evaluation_enums[] = {
432 condition_evaluation_auto,
433 condition_evaluation_host,
434 condition_evaluation_target,
435 NULL
436 };
437
438 /* Global that holds the current mode for breakpoint condition evaluation. */
439 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
440
441 /* Global that we use to display information to the user (gets its value from
442 condition_evaluation_mode_1. */
443 static const char *condition_evaluation_mode = condition_evaluation_auto;
444
445 /* Translate a condition evaluation mode MODE into either "host"
446 or "target". This is used mostly to translate from "auto" to the
447 real setting that is being used. It returns the translated
448 evaluation mode. */
449
450 static const char *
451 translate_condition_evaluation_mode (const char *mode)
452 {
453 if (mode == condition_evaluation_auto)
454 {
455 if (target_supports_evaluation_of_breakpoint_conditions ())
456 return condition_evaluation_target;
457 else
458 return condition_evaluation_host;
459 }
460 else
461 return mode;
462 }
463
464 /* Discovers what condition_evaluation_auto translates to. */
465
466 static const char *
467 breakpoint_condition_evaluation_mode (void)
468 {
469 return translate_condition_evaluation_mode (condition_evaluation_mode);
470 }
471
472 /* Return true if GDB should evaluate breakpoint conditions or false
473 otherwise. */
474
475 static int
476 gdb_evaluates_breakpoint_condition_p (void)
477 {
478 const char *mode = breakpoint_condition_evaluation_mode ();
479
480 return (mode == condition_evaluation_host);
481 }
482
483 /* Are we executing breakpoint commands? */
484 static int executing_breakpoint_commands;
485
486 /* Are overlay event breakpoints enabled? */
487 static int overlay_events_enabled;
488
489 /* See description in breakpoint.h. */
490 int target_exact_watchpoints = 0;
491
492 /* Walk the following statement or block through all breakpoints.
493 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
494 current breakpoint. */
495
496 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
497
498 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
499 for (B = breakpoint_chain; \
500 B ? (TMP=B->next, 1): 0; \
501 B = TMP)
502
503 /* Similar iterator for the low-level breakpoints. SAFE variant is
504 not provided so update_global_location_list must not be called
505 while executing the block of ALL_BP_LOCATIONS. */
506
507 #define ALL_BP_LOCATIONS(B,BP_TMP) \
508 for (BP_TMP = bp_locations; \
509 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
510 BP_TMP++)
511
512 /* Iterates through locations with address ADDRESS for the currently selected
513 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
514 to where the loop should start from.
515 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
516 appropriate location to start with. */
517
518 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
519 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
520 BP_LOCP_TMP = BP_LOCP_START; \
521 BP_LOCP_START \
522 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
523 && (*BP_LOCP_TMP)->address == ADDRESS); \
524 BP_LOCP_TMP++)
525
526 /* Iterator for tracepoints only. */
527
528 #define ALL_TRACEPOINTS(B) \
529 for (B = breakpoint_chain; B; B = B->next) \
530 if (is_tracepoint (B))
531
532 /* Chains of all breakpoints defined. */
533
534 struct breakpoint *breakpoint_chain;
535
536 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
537
538 static struct bp_location **bp_locations;
539
540 /* Number of elements of BP_LOCATIONS. */
541
542 static unsigned bp_locations_count;
543
544 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
545 ADDRESS for the current elements of BP_LOCATIONS which get a valid
546 result from bp_location_has_shadow. You can use it for roughly
547 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
548 an address you need to read. */
549
550 static CORE_ADDR bp_locations_placed_address_before_address_max;
551
552 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
553 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
554 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
555 You can use it for roughly limiting the subrange of BP_LOCATIONS to
556 scan for shadow bytes for an address you need to read. */
557
558 static CORE_ADDR bp_locations_shadow_len_after_address_max;
559
560 /* The locations that no longer correspond to any breakpoint, unlinked
561 from the bp_locations array, but for which a hit may still be
562 reported by a target. */
563 VEC(bp_location_p) *moribund_locations = NULL;
564
565 /* Number of last breakpoint made. */
566
567 static int breakpoint_count;
568
569 /* The value of `breakpoint_count' before the last command that
570 created breakpoints. If the last (break-like) command created more
571 than one breakpoint, then the difference between BREAKPOINT_COUNT
572 and PREV_BREAKPOINT_COUNT is more than one. */
573 static int prev_breakpoint_count;
574
575 /* Number of last tracepoint made. */
576
577 static int tracepoint_count;
578
579 static struct cmd_list_element *breakpoint_set_cmdlist;
580 static struct cmd_list_element *breakpoint_show_cmdlist;
581 struct cmd_list_element *save_cmdlist;
582
583 /* See declaration at breakpoint.h. */
584
585 struct breakpoint *
586 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
587 void *user_data)
588 {
589 struct breakpoint *b = NULL;
590
591 ALL_BREAKPOINTS (b)
592 {
593 if (func (b, user_data) != 0)
594 break;
595 }
596
597 return b;
598 }
599
600 /* Return whether a breakpoint is an active enabled breakpoint. */
601 static int
602 breakpoint_enabled (struct breakpoint *b)
603 {
604 return (b->enable_state == bp_enabled);
605 }
606
607 /* Set breakpoint count to NUM. */
608
609 static void
610 set_breakpoint_count (int num)
611 {
612 prev_breakpoint_count = breakpoint_count;
613 breakpoint_count = num;
614 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
615 }
616
617 /* Used by `start_rbreak_breakpoints' below, to record the current
618 breakpoint count before "rbreak" creates any breakpoint. */
619 static int rbreak_start_breakpoint_count;
620
621 /* Called at the start an "rbreak" command to record the first
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
625 {
626 rbreak_start_breakpoint_count = breakpoint_count;
627 }
628
629 /* Called at the end of an "rbreak" command to record the last
630 breakpoint made. */
631
632 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
633 {
634 prev_breakpoint_count = rbreak_start_breakpoint_count;
635 }
636
637 /* Used in run_command to zero the hit count when a new run starts. */
638
639 void
640 clear_breakpoint_hit_counts (void)
641 {
642 struct breakpoint *b;
643
644 ALL_BREAKPOINTS (b)
645 b->hit_count = 0;
646 }
647
648 \f
649 /* Return the breakpoint with the specified number, or NULL
650 if the number does not refer to an existing breakpoint. */
651
652 struct breakpoint *
653 get_breakpoint (int num)
654 {
655 struct breakpoint *b;
656
657 ALL_BREAKPOINTS (b)
658 if (b->number == num)
659 return b;
660
661 return NULL;
662 }
663
664 \f
665
666 /* Mark locations as "conditions have changed" in case the target supports
667 evaluating conditions on its side. */
668
669 static void
670 mark_breakpoint_modified (struct breakpoint *b)
671 {
672 struct bp_location *loc;
673
674 /* This is only meaningful if the target is
675 evaluating conditions and if the user has
676 opted for condition evaluation on the target's
677 side. */
678 if (gdb_evaluates_breakpoint_condition_p ()
679 || !target_supports_evaluation_of_breakpoint_conditions ())
680 return;
681
682 if (!is_breakpoint (b))
683 return;
684
685 for (loc = b->loc; loc; loc = loc->next)
686 loc->condition_changed = condition_modified;
687 }
688
689 /* Mark location as "conditions have changed" in case the target supports
690 evaluating conditions on its side. */
691
692 static void
693 mark_breakpoint_location_modified (struct bp_location *loc)
694 {
695 /* This is only meaningful if the target is
696 evaluating conditions and if the user has
697 opted for condition evaluation on the target's
698 side. */
699 if (gdb_evaluates_breakpoint_condition_p ()
700 || !target_supports_evaluation_of_breakpoint_conditions ())
701
702 return;
703
704 if (!is_breakpoint (loc->owner))
705 return;
706
707 loc->condition_changed = condition_modified;
708 }
709
710 /* Sets the condition-evaluation mode using the static global
711 condition_evaluation_mode. */
712
713 static void
714 set_condition_evaluation_mode (const char *args, int from_tty,
715 struct cmd_list_element *c)
716 {
717 const char *old_mode, *new_mode;
718
719 if ((condition_evaluation_mode_1 == condition_evaluation_target)
720 && !target_supports_evaluation_of_breakpoint_conditions ())
721 {
722 condition_evaluation_mode_1 = condition_evaluation_mode;
723 warning (_("Target does not support breakpoint condition evaluation.\n"
724 "Using host evaluation mode instead."));
725 return;
726 }
727
728 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
729 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
730
731 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
732 settings was "auto". */
733 condition_evaluation_mode = condition_evaluation_mode_1;
734
735 /* Only update the mode if the user picked a different one. */
736 if (new_mode != old_mode)
737 {
738 struct bp_location *loc, **loc_tmp;
739 /* If the user switched to a different evaluation mode, we
740 need to synch the changes with the target as follows:
741
742 "host" -> "target": Send all (valid) conditions to the target.
743 "target" -> "host": Remove all the conditions from the target.
744 */
745
746 if (new_mode == condition_evaluation_target)
747 {
748 /* Mark everything modified and synch conditions with the
749 target. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 mark_breakpoint_location_modified (loc);
752 }
753 else
754 {
755 /* Manually mark non-duplicate locations to synch conditions
756 with the target. We do this to remove all the conditions the
757 target knows about. */
758 ALL_BP_LOCATIONS (loc, loc_tmp)
759 if (is_breakpoint (loc->owner) && loc->inserted)
760 loc->needs_update = 1;
761 }
762
763 /* Do the update. */
764 update_global_location_list (UGLL_MAY_INSERT);
765 }
766
767 return;
768 }
769
770 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
771 what "auto" is translating to. */
772
773 static void
774 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
775 struct cmd_list_element *c, const char *value)
776 {
777 if (condition_evaluation_mode == condition_evaluation_auto)
778 fprintf_filtered (file,
779 _("Breakpoint condition evaluation "
780 "mode is %s (currently %s).\n"),
781 value,
782 breakpoint_condition_evaluation_mode ());
783 else
784 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
785 value);
786 }
787
788 /* A comparison function for bp_location AP and BP that is used by
789 bsearch. This comparison function only cares about addresses, unlike
790 the more general bp_locations_compare function. */
791
792 static int
793 bp_locations_compare_addrs (const void *ap, const void *bp)
794 {
795 const struct bp_location *a = *(const struct bp_location **) ap;
796 const struct bp_location *b = *(const struct bp_location **) bp;
797
798 if (a->address == b->address)
799 return 0;
800 else
801 return ((a->address > b->address) - (a->address < b->address));
802 }
803
804 /* Helper function to skip all bp_locations with addresses
805 less than ADDRESS. It returns the first bp_location that
806 is greater than or equal to ADDRESS. If none is found, just
807 return NULL. */
808
809 static struct bp_location **
810 get_first_locp_gte_addr (CORE_ADDR address)
811 {
812 struct bp_location dummy_loc;
813 struct bp_location *dummy_locp = &dummy_loc;
814 struct bp_location **locp_found = NULL;
815
816 /* Initialize the dummy location's address field. */
817 dummy_loc.address = address;
818
819 /* Find a close match to the first location at ADDRESS. */
820 locp_found = ((struct bp_location **)
821 bsearch (&dummy_locp, bp_locations, bp_locations_count,
822 sizeof (struct bp_location **),
823 bp_locations_compare_addrs));
824
825 /* Nothing was found, nothing left to do. */
826 if (locp_found == NULL)
827 return NULL;
828
829 /* We may have found a location that is at ADDRESS but is not the first in the
830 location's list. Go backwards (if possible) and locate the first one. */
831 while ((locp_found - 1) >= bp_locations
832 && (*(locp_found - 1))->address == address)
833 locp_found--;
834
835 return locp_found;
836 }
837
838 void
839 set_breakpoint_condition (struct breakpoint *b, const char *exp,
840 int from_tty)
841 {
842 xfree (b->cond_string);
843 b->cond_string = NULL;
844
845 if (is_watchpoint (b))
846 {
847 struct watchpoint *w = (struct watchpoint *) b;
848
849 w->cond_exp.reset ();
850 }
851 else
852 {
853 struct bp_location *loc;
854
855 for (loc = b->loc; loc; loc = loc->next)
856 {
857 loc->cond.reset ();
858
859 /* No need to free the condition agent expression
860 bytecode (if we have one). We will handle this
861 when we go through update_global_location_list. */
862 }
863 }
864
865 if (*exp == 0)
866 {
867 if (from_tty)
868 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
869 }
870 else
871 {
872 const char *arg = exp;
873
874 /* I don't know if it matters whether this is the string the user
875 typed in or the decompiled expression. */
876 b->cond_string = xstrdup (arg);
877 b->condition_not_parsed = 0;
878
879 if (is_watchpoint (b))
880 {
881 struct watchpoint *w = (struct watchpoint *) b;
882
883 innermost_block.reset ();
884 arg = exp;
885 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
886 if (*arg)
887 error (_("Junk at end of expression"));
888 w->cond_exp_valid_block = innermost_block.block ();
889 }
890 else
891 {
892 struct bp_location *loc;
893
894 for (loc = b->loc; loc; loc = loc->next)
895 {
896 arg = exp;
897 loc->cond =
898 parse_exp_1 (&arg, loc->address,
899 block_for_pc (loc->address), 0);
900 if (*arg)
901 error (_("Junk at end of expression"));
902 }
903 }
904 }
905 mark_breakpoint_modified (b);
906
907 gdb::observers::breakpoint_modified.notify (b);
908 }
909
910 /* Completion for the "condition" command. */
911
912 static void
913 condition_completer (struct cmd_list_element *cmd,
914 completion_tracker &tracker,
915 const char *text, const char *word)
916 {
917 const char *space;
918
919 text = skip_spaces (text);
920 space = skip_to_space (text);
921 if (*space == '\0')
922 {
923 int len;
924 struct breakpoint *b;
925
926 if (text[0] == '$')
927 {
928 /* We don't support completion of history indices. */
929 if (!isdigit (text[1]))
930 complete_internalvar (tracker, &text[1]);
931 return;
932 }
933
934 /* We're completing the breakpoint number. */
935 len = strlen (text);
936
937 ALL_BREAKPOINTS (b)
938 {
939 char number[50];
940
941 xsnprintf (number, sizeof (number), "%d", b->number);
942
943 if (strncmp (number, text, len) == 0)
944 {
945 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
946 tracker.add_completion (std::move (copy));
947 }
948 }
949
950 return;
951 }
952
953 /* We're completing the expression part. */
954 text = skip_spaces (space);
955 expression_completer (cmd, tracker, text, word);
956 }
957
958 /* condition N EXP -- set break condition of breakpoint N to EXP. */
959
960 static void
961 condition_command (const char *arg, int from_tty)
962 {
963 struct breakpoint *b;
964 const char *p;
965 int bnum;
966
967 if (arg == 0)
968 error_no_arg (_("breakpoint number"));
969
970 p = arg;
971 bnum = get_number (&p);
972 if (bnum == 0)
973 error (_("Bad breakpoint argument: '%s'"), arg);
974
975 ALL_BREAKPOINTS (b)
976 if (b->number == bnum)
977 {
978 /* Check if this breakpoint has a "stop" method implemented in an
979 extension language. This method and conditions entered into GDB
980 from the CLI are mutually exclusive. */
981 const struct extension_language_defn *extlang
982 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
983
984 if (extlang != NULL)
985 {
986 error (_("Only one stop condition allowed. There is currently"
987 " a %s stop condition defined for this breakpoint."),
988 ext_lang_capitalized_name (extlang));
989 }
990 set_breakpoint_condition (b, p, from_tty);
991
992 if (is_breakpoint (b))
993 update_global_location_list (UGLL_MAY_INSERT);
994
995 return;
996 }
997
998 error (_("No breakpoint number %d."), bnum);
999 }
1000
1001 /* Check that COMMAND do not contain commands that are suitable
1002 only for tracepoints and not suitable for ordinary breakpoints.
1003 Throw if any such commands is found. */
1004
1005 static void
1006 check_no_tracepoint_commands (struct command_line *commands)
1007 {
1008 struct command_line *c;
1009
1010 for (c = commands; c; c = c->next)
1011 {
1012 int i;
1013
1014 if (c->control_type == while_stepping_control)
1015 error (_("The 'while-stepping' command can "
1016 "only be used for tracepoints"));
1017
1018 for (i = 0; i < c->body_count; ++i)
1019 check_no_tracepoint_commands ((c->body_list)[i]);
1020
1021 /* Not that command parsing removes leading whitespace and comment
1022 lines and also empty lines. So, we only need to check for
1023 command directly. */
1024 if (strstr (c->line, "collect ") == c->line)
1025 error (_("The 'collect' command can only be used for tracepoints"));
1026
1027 if (strstr (c->line, "teval ") == c->line)
1028 error (_("The 'teval' command can only be used for tracepoints"));
1029 }
1030 }
1031
1032 struct longjmp_breakpoint : public breakpoint
1033 {
1034 ~longjmp_breakpoint () override;
1035 };
1036
1037 /* Encapsulate tests for different types of tracepoints. */
1038
1039 static bool
1040 is_tracepoint_type (bptype type)
1041 {
1042 return (type == bp_tracepoint
1043 || type == bp_fast_tracepoint
1044 || type == bp_static_tracepoint);
1045 }
1046
1047 static bool
1048 is_longjmp_type (bptype type)
1049 {
1050 return type == bp_longjmp || type == bp_exception;
1051 }
1052
1053 int
1054 is_tracepoint (const struct breakpoint *b)
1055 {
1056 return is_tracepoint_type (b->type);
1057 }
1058
1059 /* Factory function to create an appropriate instance of breakpoint given
1060 TYPE. */
1061
1062 static std::unique_ptr<breakpoint>
1063 new_breakpoint_from_type (bptype type)
1064 {
1065 breakpoint *b;
1066
1067 if (is_tracepoint_type (type))
1068 b = new tracepoint ();
1069 else if (is_longjmp_type (type))
1070 b = new longjmp_breakpoint ();
1071 else
1072 b = new breakpoint ();
1073
1074 return std::unique_ptr<breakpoint> (b);
1075 }
1076
1077 /* A helper function that validates that COMMANDS are valid for a
1078 breakpoint. This function will throw an exception if a problem is
1079 found. */
1080
1081 static void
1082 validate_commands_for_breakpoint (struct breakpoint *b,
1083 struct command_line *commands)
1084 {
1085 if (is_tracepoint (b))
1086 {
1087 struct tracepoint *t = (struct tracepoint *) b;
1088 struct command_line *c;
1089 struct command_line *while_stepping = 0;
1090
1091 /* Reset the while-stepping step count. The previous commands
1092 might have included a while-stepping action, while the new
1093 ones might not. */
1094 t->step_count = 0;
1095
1096 /* We need to verify that each top-level element of commands is
1097 valid for tracepoints, that there's at most one
1098 while-stepping element, and that the while-stepping's body
1099 has valid tracing commands excluding nested while-stepping.
1100 We also need to validate the tracepoint action line in the
1101 context of the tracepoint --- validate_actionline actually
1102 has side effects, like setting the tracepoint's
1103 while-stepping STEP_COUNT, in addition to checking if the
1104 collect/teval actions parse and make sense in the
1105 tracepoint's context. */
1106 for (c = commands; c; c = c->next)
1107 {
1108 if (c->control_type == while_stepping_control)
1109 {
1110 if (b->type == bp_fast_tracepoint)
1111 error (_("The 'while-stepping' command "
1112 "cannot be used for fast tracepoint"));
1113 else if (b->type == bp_static_tracepoint)
1114 error (_("The 'while-stepping' command "
1115 "cannot be used for static tracepoint"));
1116
1117 if (while_stepping)
1118 error (_("The 'while-stepping' command "
1119 "can be used only once"));
1120 else
1121 while_stepping = c;
1122 }
1123
1124 validate_actionline (c->line, b);
1125 }
1126 if (while_stepping)
1127 {
1128 struct command_line *c2;
1129
1130 gdb_assert (while_stepping->body_count == 1);
1131 c2 = while_stepping->body_list[0];
1132 for (; c2; c2 = c2->next)
1133 {
1134 if (c2->control_type == while_stepping_control)
1135 error (_("The 'while-stepping' command cannot be nested"));
1136 }
1137 }
1138 }
1139 else
1140 {
1141 check_no_tracepoint_commands (commands);
1142 }
1143 }
1144
1145 /* Return a vector of all the static tracepoints set at ADDR. The
1146 caller is responsible for releasing the vector. */
1147
1148 VEC(breakpoint_p) *
1149 static_tracepoints_here (CORE_ADDR addr)
1150 {
1151 struct breakpoint *b;
1152 VEC(breakpoint_p) *found = 0;
1153 struct bp_location *loc;
1154
1155 ALL_BREAKPOINTS (b)
1156 if (b->type == bp_static_tracepoint)
1157 {
1158 for (loc = b->loc; loc; loc = loc->next)
1159 if (loc->address == addr)
1160 VEC_safe_push(breakpoint_p, found, b);
1161 }
1162
1163 return found;
1164 }
1165
1166 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1167 validate that only allowed commands are included. */
1168
1169 void
1170 breakpoint_set_commands (struct breakpoint *b,
1171 command_line_up &&commands)
1172 {
1173 validate_commands_for_breakpoint (b, commands.get ());
1174
1175 b->commands = std::move (commands);
1176 gdb::observers::breakpoint_modified.notify (b);
1177 }
1178
1179 /* Set the internal `silent' flag on the breakpoint. Note that this
1180 is not the same as the "silent" that may appear in the breakpoint's
1181 commands. */
1182
1183 void
1184 breakpoint_set_silent (struct breakpoint *b, int silent)
1185 {
1186 int old_silent = b->silent;
1187
1188 b->silent = silent;
1189 if (old_silent != silent)
1190 gdb::observers::breakpoint_modified.notify (b);
1191 }
1192
1193 /* Set the thread for this breakpoint. If THREAD is -1, make the
1194 breakpoint work for any thread. */
1195
1196 void
1197 breakpoint_set_thread (struct breakpoint *b, int thread)
1198 {
1199 int old_thread = b->thread;
1200
1201 b->thread = thread;
1202 if (old_thread != thread)
1203 gdb::observers::breakpoint_modified.notify (b);
1204 }
1205
1206 /* Set the task for this breakpoint. If TASK is 0, make the
1207 breakpoint work for any task. */
1208
1209 void
1210 breakpoint_set_task (struct breakpoint *b, int task)
1211 {
1212 int old_task = b->task;
1213
1214 b->task = task;
1215 if (old_task != task)
1216 gdb::observers::breakpoint_modified.notify (b);
1217 }
1218
1219 void
1220 check_tracepoint_command (char *line, void *closure)
1221 {
1222 struct breakpoint *b = (struct breakpoint *) closure;
1223
1224 validate_actionline (line, b);
1225 }
1226
1227 static void
1228 commands_command_1 (const char *arg, int from_tty,
1229 struct command_line *control)
1230 {
1231 counted_command_line cmd;
1232
1233 std::string new_arg;
1234
1235 if (arg == NULL || !*arg)
1236 {
1237 if (breakpoint_count - prev_breakpoint_count > 1)
1238 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1239 breakpoint_count);
1240 else if (breakpoint_count > 0)
1241 new_arg = string_printf ("%d", breakpoint_count);
1242 arg = new_arg.c_str ();
1243 }
1244
1245 map_breakpoint_numbers
1246 (arg, [&] (breakpoint *b)
1247 {
1248 if (cmd == NULL)
1249 {
1250 if (control != NULL)
1251 cmd = copy_command_lines (control->body_list[0]);
1252 else
1253 {
1254 std::string str
1255 = string_printf (_("Type commands for breakpoint(s) "
1256 "%s, one per line."),
1257 arg);
1258
1259 cmd = read_command_lines (&str[0],
1260 from_tty, 1,
1261 (is_tracepoint (b)
1262 ? check_tracepoint_command : 0),
1263 b);
1264 }
1265 }
1266
1267 /* If a breakpoint was on the list more than once, we don't need to
1268 do anything. */
1269 if (b->commands != cmd)
1270 {
1271 validate_commands_for_breakpoint (b, cmd.get ());
1272 b->commands = cmd;
1273 gdb::observers::breakpoint_modified.notify (b);
1274 }
1275 });
1276 }
1277
1278 static void
1279 commands_command (const char *arg, int from_tty)
1280 {
1281 commands_command_1 (arg, from_tty, NULL);
1282 }
1283
1284 /* Like commands_command, but instead of reading the commands from
1285 input stream, takes them from an already parsed command structure.
1286
1287 This is used by cli-script.c to DTRT with breakpoint commands
1288 that are part of if and while bodies. */
1289 enum command_control_type
1290 commands_from_control_command (const char *arg, struct command_line *cmd)
1291 {
1292 commands_command_1 (arg, 0, cmd);
1293 return simple_control;
1294 }
1295
1296 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1297
1298 static int
1299 bp_location_has_shadow (struct bp_location *bl)
1300 {
1301 if (bl->loc_type != bp_loc_software_breakpoint)
1302 return 0;
1303 if (!bl->inserted)
1304 return 0;
1305 if (bl->target_info.shadow_len == 0)
1306 /* BL isn't valid, or doesn't shadow memory. */
1307 return 0;
1308 return 1;
1309 }
1310
1311 /* Update BUF, which is LEN bytes read from the target address
1312 MEMADDR, by replacing a memory breakpoint with its shadowed
1313 contents.
1314
1315 If READBUF is not NULL, this buffer must not overlap with the of
1316 the breakpoint location's shadow_contents buffer. Otherwise, a
1317 failed assertion internal error will be raised. */
1318
1319 static void
1320 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1321 const gdb_byte *writebuf_org,
1322 ULONGEST memaddr, LONGEST len,
1323 struct bp_target_info *target_info,
1324 struct gdbarch *gdbarch)
1325 {
1326 /* Now do full processing of the found relevant range of elements. */
1327 CORE_ADDR bp_addr = 0;
1328 int bp_size = 0;
1329 int bptoffset = 0;
1330
1331 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1332 current_program_space->aspace, 0))
1333 {
1334 /* The breakpoint is inserted in a different address space. */
1335 return;
1336 }
1337
1338 /* Addresses and length of the part of the breakpoint that
1339 we need to copy. */
1340 bp_addr = target_info->placed_address;
1341 bp_size = target_info->shadow_len;
1342
1343 if (bp_addr + bp_size <= memaddr)
1344 {
1345 /* The breakpoint is entirely before the chunk of memory we are
1346 reading. */
1347 return;
1348 }
1349
1350 if (bp_addr >= memaddr + len)
1351 {
1352 /* The breakpoint is entirely after the chunk of memory we are
1353 reading. */
1354 return;
1355 }
1356
1357 /* Offset within shadow_contents. */
1358 if (bp_addr < memaddr)
1359 {
1360 /* Only copy the second part of the breakpoint. */
1361 bp_size -= memaddr - bp_addr;
1362 bptoffset = memaddr - bp_addr;
1363 bp_addr = memaddr;
1364 }
1365
1366 if (bp_addr + bp_size > memaddr + len)
1367 {
1368 /* Only copy the first part of the breakpoint. */
1369 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1370 }
1371
1372 if (readbuf != NULL)
1373 {
1374 /* Verify that the readbuf buffer does not overlap with the
1375 shadow_contents buffer. */
1376 gdb_assert (target_info->shadow_contents >= readbuf + len
1377 || readbuf >= (target_info->shadow_contents
1378 + target_info->shadow_len));
1379
1380 /* Update the read buffer with this inserted breakpoint's
1381 shadow. */
1382 memcpy (readbuf + bp_addr - memaddr,
1383 target_info->shadow_contents + bptoffset, bp_size);
1384 }
1385 else
1386 {
1387 const unsigned char *bp;
1388 CORE_ADDR addr = target_info->reqstd_address;
1389 int placed_size;
1390
1391 /* Update the shadow with what we want to write to memory. */
1392 memcpy (target_info->shadow_contents + bptoffset,
1393 writebuf_org + bp_addr - memaddr, bp_size);
1394
1395 /* Determine appropriate breakpoint contents and size for this
1396 address. */
1397 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1398
1399 /* Update the final write buffer with this inserted
1400 breakpoint's INSN. */
1401 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1402 }
1403 }
1404
1405 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1406 by replacing any memory breakpoints with their shadowed contents.
1407
1408 If READBUF is not NULL, this buffer must not overlap with any of
1409 the breakpoint location's shadow_contents buffers. Otherwise,
1410 a failed assertion internal error will be raised.
1411
1412 The range of shadowed area by each bp_location is:
1413 bl->address - bp_locations_placed_address_before_address_max
1414 up to bl->address + bp_locations_shadow_len_after_address_max
1415 The range we were requested to resolve shadows for is:
1416 memaddr ... memaddr + len
1417 Thus the safe cutoff boundaries for performance optimization are
1418 memaddr + len <= (bl->address
1419 - bp_locations_placed_address_before_address_max)
1420 and:
1421 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1422
1423 void
1424 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1425 const gdb_byte *writebuf_org,
1426 ULONGEST memaddr, LONGEST len)
1427 {
1428 /* Left boundary, right boundary and median element of our binary
1429 search. */
1430 unsigned bc_l, bc_r, bc;
1431
1432 /* Find BC_L which is a leftmost element which may affect BUF
1433 content. It is safe to report lower value but a failure to
1434 report higher one. */
1435
1436 bc_l = 0;
1437 bc_r = bp_locations_count;
1438 while (bc_l + 1 < bc_r)
1439 {
1440 struct bp_location *bl;
1441
1442 bc = (bc_l + bc_r) / 2;
1443 bl = bp_locations[bc];
1444
1445 /* Check first BL->ADDRESS will not overflow due to the added
1446 constant. Then advance the left boundary only if we are sure
1447 the BC element can in no way affect the BUF content (MEMADDR
1448 to MEMADDR + LEN range).
1449
1450 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1451 offset so that we cannot miss a breakpoint with its shadow
1452 range tail still reaching MEMADDR. */
1453
1454 if ((bl->address + bp_locations_shadow_len_after_address_max
1455 >= bl->address)
1456 && (bl->address + bp_locations_shadow_len_after_address_max
1457 <= memaddr))
1458 bc_l = bc;
1459 else
1460 bc_r = bc;
1461 }
1462
1463 /* Due to the binary search above, we need to make sure we pick the
1464 first location that's at BC_L's address. E.g., if there are
1465 multiple locations at the same address, BC_L may end up pointing
1466 at a duplicate location, and miss the "master"/"inserted"
1467 location. Say, given locations L1, L2 and L3 at addresses A and
1468 B:
1469
1470 L1@A, L2@A, L3@B, ...
1471
1472 BC_L could end up pointing at location L2, while the "master"
1473 location could be L1. Since the `loc->inserted' flag is only set
1474 on "master" locations, we'd forget to restore the shadow of L1
1475 and L2. */
1476 while (bc_l > 0
1477 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1478 bc_l--;
1479
1480 /* Now do full processing of the found relevant range of elements. */
1481
1482 for (bc = bc_l; bc < bp_locations_count; bc++)
1483 {
1484 struct bp_location *bl = bp_locations[bc];
1485
1486 /* bp_location array has BL->OWNER always non-NULL. */
1487 if (bl->owner->type == bp_none)
1488 warning (_("reading through apparently deleted breakpoint #%d?"),
1489 bl->owner->number);
1490
1491 /* Performance optimization: any further element can no longer affect BUF
1492 content. */
1493
1494 if (bl->address >= bp_locations_placed_address_before_address_max
1495 && memaddr + len <= (bl->address
1496 - bp_locations_placed_address_before_address_max))
1497 break;
1498
1499 if (!bp_location_has_shadow (bl))
1500 continue;
1501
1502 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1503 memaddr, len, &bl->target_info, bl->gdbarch);
1504 }
1505 }
1506
1507 \f
1508
1509 /* Return true if BPT is either a software breakpoint or a hardware
1510 breakpoint. */
1511
1512 int
1513 is_breakpoint (const struct breakpoint *bpt)
1514 {
1515 return (bpt->type == bp_breakpoint
1516 || bpt->type == bp_hardware_breakpoint
1517 || bpt->type == bp_dprintf);
1518 }
1519
1520 /* Return true if BPT is of any hardware watchpoint kind. */
1521
1522 static int
1523 is_hardware_watchpoint (const struct breakpoint *bpt)
1524 {
1525 return (bpt->type == bp_hardware_watchpoint
1526 || bpt->type == bp_read_watchpoint
1527 || bpt->type == bp_access_watchpoint);
1528 }
1529
1530 /* Return true if BPT is of any watchpoint kind, hardware or
1531 software. */
1532
1533 int
1534 is_watchpoint (const struct breakpoint *bpt)
1535 {
1536 return (is_hardware_watchpoint (bpt)
1537 || bpt->type == bp_watchpoint);
1538 }
1539
1540 /* Returns true if the current thread and its running state are safe
1541 to evaluate or update watchpoint B. Watchpoints on local
1542 expressions need to be evaluated in the context of the thread that
1543 was current when the watchpoint was created, and, that thread needs
1544 to be stopped to be able to select the correct frame context.
1545 Watchpoints on global expressions can be evaluated on any thread,
1546 and in any state. It is presently left to the target allowing
1547 memory accesses when threads are running. */
1548
1549 static int
1550 watchpoint_in_thread_scope (struct watchpoint *b)
1551 {
1552 return (b->pspace == current_program_space
1553 && (ptid_equal (b->watchpoint_thread, null_ptid)
1554 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1555 && !is_executing (inferior_ptid))));
1556 }
1557
1558 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1559 associated bp_watchpoint_scope breakpoint. */
1560
1561 static void
1562 watchpoint_del_at_next_stop (struct watchpoint *w)
1563 {
1564 if (w->related_breakpoint != w)
1565 {
1566 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1567 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1568 w->related_breakpoint->disposition = disp_del_at_next_stop;
1569 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1570 w->related_breakpoint = w;
1571 }
1572 w->disposition = disp_del_at_next_stop;
1573 }
1574
1575 /* Extract a bitfield value from value VAL using the bit parameters contained in
1576 watchpoint W. */
1577
1578 static struct value *
1579 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1580 {
1581 struct value *bit_val;
1582
1583 if (val == NULL)
1584 return NULL;
1585
1586 bit_val = allocate_value (value_type (val));
1587
1588 unpack_value_bitfield (bit_val,
1589 w->val_bitpos,
1590 w->val_bitsize,
1591 value_contents_for_printing (val),
1592 value_offset (val),
1593 val);
1594
1595 return bit_val;
1596 }
1597
1598 /* Allocate a dummy location and add it to B, which must be a software
1599 watchpoint. This is required because even if a software watchpoint
1600 is not watching any memory, bpstat_stop_status requires a location
1601 to be able to report stops. */
1602
1603 static void
1604 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1605 struct program_space *pspace)
1606 {
1607 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1608
1609 b->loc = allocate_bp_location (b);
1610 b->loc->pspace = pspace;
1611 b->loc->address = -1;
1612 b->loc->length = -1;
1613 }
1614
1615 /* Returns true if B is a software watchpoint that is not watching any
1616 memory (e.g., "watch $pc"). */
1617
1618 static int
1619 is_no_memory_software_watchpoint (struct breakpoint *b)
1620 {
1621 return (b->type == bp_watchpoint
1622 && b->loc != NULL
1623 && b->loc->next == NULL
1624 && b->loc->address == -1
1625 && b->loc->length == -1);
1626 }
1627
1628 /* Assuming that B is a watchpoint:
1629 - Reparse watchpoint expression, if REPARSE is non-zero
1630 - Evaluate expression and store the result in B->val
1631 - Evaluate the condition if there is one, and store the result
1632 in b->loc->cond.
1633 - Update the list of values that must be watched in B->loc.
1634
1635 If the watchpoint disposition is disp_del_at_next_stop, then do
1636 nothing. If this is local watchpoint that is out of scope, delete
1637 it.
1638
1639 Even with `set breakpoint always-inserted on' the watchpoints are
1640 removed + inserted on each stop here. Normal breakpoints must
1641 never be removed because they might be missed by a running thread
1642 when debugging in non-stop mode. On the other hand, hardware
1643 watchpoints (is_hardware_watchpoint; processed here) are specific
1644 to each LWP since they are stored in each LWP's hardware debug
1645 registers. Therefore, such LWP must be stopped first in order to
1646 be able to modify its hardware watchpoints.
1647
1648 Hardware watchpoints must be reset exactly once after being
1649 presented to the user. It cannot be done sooner, because it would
1650 reset the data used to present the watchpoint hit to the user. And
1651 it must not be done later because it could display the same single
1652 watchpoint hit during multiple GDB stops. Note that the latter is
1653 relevant only to the hardware watchpoint types bp_read_watchpoint
1654 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1655 not user-visible - its hit is suppressed if the memory content has
1656 not changed.
1657
1658 The following constraints influence the location where we can reset
1659 hardware watchpoints:
1660
1661 * target_stopped_by_watchpoint and target_stopped_data_address are
1662 called several times when GDB stops.
1663
1664 [linux]
1665 * Multiple hardware watchpoints can be hit at the same time,
1666 causing GDB to stop. GDB only presents one hardware watchpoint
1667 hit at a time as the reason for stopping, and all the other hits
1668 are presented later, one after the other, each time the user
1669 requests the execution to be resumed. Execution is not resumed
1670 for the threads still having pending hit event stored in
1671 LWP_INFO->STATUS. While the watchpoint is already removed from
1672 the inferior on the first stop the thread hit event is kept being
1673 reported from its cached value by linux_nat_stopped_data_address
1674 until the real thread resume happens after the watchpoint gets
1675 presented and thus its LWP_INFO->STATUS gets reset.
1676
1677 Therefore the hardware watchpoint hit can get safely reset on the
1678 watchpoint removal from inferior. */
1679
1680 static void
1681 update_watchpoint (struct watchpoint *b, int reparse)
1682 {
1683 int within_current_scope;
1684 struct frame_id saved_frame_id;
1685 int frame_saved;
1686
1687 /* If this is a local watchpoint, we only want to check if the
1688 watchpoint frame is in scope if the current thread is the thread
1689 that was used to create the watchpoint. */
1690 if (!watchpoint_in_thread_scope (b))
1691 return;
1692
1693 if (b->disposition == disp_del_at_next_stop)
1694 return;
1695
1696 frame_saved = 0;
1697
1698 /* Determine if the watchpoint is within scope. */
1699 if (b->exp_valid_block == NULL)
1700 within_current_scope = 1;
1701 else
1702 {
1703 struct frame_info *fi = get_current_frame ();
1704 struct gdbarch *frame_arch = get_frame_arch (fi);
1705 CORE_ADDR frame_pc = get_frame_pc (fi);
1706
1707 /* If we're at a point where the stack has been destroyed
1708 (e.g. in a function epilogue), unwinding may not work
1709 properly. Do not attempt to recreate locations at this
1710 point. See similar comments in watchpoint_check. */
1711 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1712 return;
1713
1714 /* Save the current frame's ID so we can restore it after
1715 evaluating the watchpoint expression on its own frame. */
1716 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1717 took a frame parameter, so that we didn't have to change the
1718 selected frame. */
1719 frame_saved = 1;
1720 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1721
1722 fi = frame_find_by_id (b->watchpoint_frame);
1723 within_current_scope = (fi != NULL);
1724 if (within_current_scope)
1725 select_frame (fi);
1726 }
1727
1728 /* We don't free locations. They are stored in the bp_location array
1729 and update_global_location_list will eventually delete them and
1730 remove breakpoints if needed. */
1731 b->loc = NULL;
1732
1733 if (within_current_scope && reparse)
1734 {
1735 const char *s;
1736
1737 b->exp.reset ();
1738 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1739 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1740 /* If the meaning of expression itself changed, the old value is
1741 no longer relevant. We don't want to report a watchpoint hit
1742 to the user when the old value and the new value may actually
1743 be completely different objects. */
1744 b->val = NULL;
1745 b->val_valid = 0;
1746
1747 /* Note that unlike with breakpoints, the watchpoint's condition
1748 expression is stored in the breakpoint object, not in the
1749 locations (re)created below. */
1750 if (b->cond_string != NULL)
1751 {
1752 b->cond_exp.reset ();
1753
1754 s = b->cond_string;
1755 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1756 }
1757 }
1758
1759 /* If we failed to parse the expression, for example because
1760 it refers to a global variable in a not-yet-loaded shared library,
1761 don't try to insert watchpoint. We don't automatically delete
1762 such watchpoint, though, since failure to parse expression
1763 is different from out-of-scope watchpoint. */
1764 if (!target_has_execution)
1765 {
1766 /* Without execution, memory can't change. No use to try and
1767 set watchpoint locations. The watchpoint will be reset when
1768 the target gains execution, through breakpoint_re_set. */
1769 if (!can_use_hw_watchpoints)
1770 {
1771 if (b->ops->works_in_software_mode (b))
1772 b->type = bp_watchpoint;
1773 else
1774 error (_("Can't set read/access watchpoint when "
1775 "hardware watchpoints are disabled."));
1776 }
1777 }
1778 else if (within_current_scope && b->exp)
1779 {
1780 int pc = 0;
1781 std::vector<value_ref_ptr> val_chain;
1782 struct value *v, *result, *next;
1783 struct program_space *frame_pspace;
1784
1785 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1786
1787 /* Avoid setting b->val if it's already set. The meaning of
1788 b->val is 'the last value' user saw, and we should update
1789 it only if we reported that last value to user. As it
1790 happens, the code that reports it updates b->val directly.
1791 We don't keep track of the memory value for masked
1792 watchpoints. */
1793 if (!b->val_valid && !is_masked_watchpoint (b))
1794 {
1795 if (b->val_bitsize != 0)
1796 v = extract_bitfield_from_watchpoint_value (b, v);
1797 b->val = release_value (v);
1798 b->val_valid = 1;
1799 }
1800
1801 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1802
1803 /* Look at each value on the value chain. */
1804 gdb_assert (!val_chain.empty ());
1805 for (const value_ref_ptr &iter : val_chain)
1806 {
1807 v = iter.get ();
1808
1809 /* If it's a memory location, and GDB actually needed
1810 its contents to evaluate the expression, then we
1811 must watch it. If the first value returned is
1812 still lazy, that means an error occurred reading it;
1813 watch it anyway in case it becomes readable. */
1814 if (VALUE_LVAL (v) == lval_memory
1815 && (v == val_chain[0] || ! value_lazy (v)))
1816 {
1817 struct type *vtype = check_typedef (value_type (v));
1818
1819 /* We only watch structs and arrays if user asked
1820 for it explicitly, never if they just happen to
1821 appear in the middle of some value chain. */
1822 if (v == result
1823 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1824 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1825 {
1826 CORE_ADDR addr;
1827 enum target_hw_bp_type type;
1828 struct bp_location *loc, **tmp;
1829 int bitpos = 0, bitsize = 0;
1830
1831 if (value_bitsize (v) != 0)
1832 {
1833 /* Extract the bit parameters out from the bitfield
1834 sub-expression. */
1835 bitpos = value_bitpos (v);
1836 bitsize = value_bitsize (v);
1837 }
1838 else if (v == result && b->val_bitsize != 0)
1839 {
1840 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1841 lvalue whose bit parameters are saved in the fields
1842 VAL_BITPOS and VAL_BITSIZE. */
1843 bitpos = b->val_bitpos;
1844 bitsize = b->val_bitsize;
1845 }
1846
1847 addr = value_address (v);
1848 if (bitsize != 0)
1849 {
1850 /* Skip the bytes that don't contain the bitfield. */
1851 addr += bitpos / 8;
1852 }
1853
1854 type = hw_write;
1855 if (b->type == bp_read_watchpoint)
1856 type = hw_read;
1857 else if (b->type == bp_access_watchpoint)
1858 type = hw_access;
1859
1860 loc = allocate_bp_location (b);
1861 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1862 ;
1863 *tmp = loc;
1864 loc->gdbarch = get_type_arch (value_type (v));
1865
1866 loc->pspace = frame_pspace;
1867 loc->address = address_significant (loc->gdbarch, addr);
1868
1869 if (bitsize != 0)
1870 {
1871 /* Just cover the bytes that make up the bitfield. */
1872 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1873 }
1874 else
1875 loc->length = TYPE_LENGTH (value_type (v));
1876
1877 loc->watchpoint_type = type;
1878 }
1879 }
1880 }
1881
1882 /* Change the type of breakpoint between hardware assisted or
1883 an ordinary watchpoint depending on the hardware support
1884 and free hardware slots. REPARSE is set when the inferior
1885 is started. */
1886 if (reparse)
1887 {
1888 int reg_cnt;
1889 enum bp_loc_type loc_type;
1890 struct bp_location *bl;
1891
1892 reg_cnt = can_use_hardware_watchpoint (val_chain);
1893
1894 if (reg_cnt)
1895 {
1896 int i, target_resources_ok, other_type_used;
1897 enum bptype type;
1898
1899 /* Use an exact watchpoint when there's only one memory region to be
1900 watched, and only one debug register is needed to watch it. */
1901 b->exact = target_exact_watchpoints && reg_cnt == 1;
1902
1903 /* We need to determine how many resources are already
1904 used for all other hardware watchpoints plus this one
1905 to see if we still have enough resources to also fit
1906 this watchpoint in as well. */
1907
1908 /* If this is a software watchpoint, we try to turn it
1909 to a hardware one -- count resources as if B was of
1910 hardware watchpoint type. */
1911 type = b->type;
1912 if (type == bp_watchpoint)
1913 type = bp_hardware_watchpoint;
1914
1915 /* This watchpoint may or may not have been placed on
1916 the list yet at this point (it won't be in the list
1917 if we're trying to create it for the first time,
1918 through watch_command), so always account for it
1919 manually. */
1920
1921 /* Count resources used by all watchpoints except B. */
1922 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1923
1924 /* Add in the resources needed for B. */
1925 i += hw_watchpoint_use_count (b);
1926
1927 target_resources_ok
1928 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1929 if (target_resources_ok <= 0)
1930 {
1931 int sw_mode = b->ops->works_in_software_mode (b);
1932
1933 if (target_resources_ok == 0 && !sw_mode)
1934 error (_("Target does not support this type of "
1935 "hardware watchpoint."));
1936 else if (target_resources_ok < 0 && !sw_mode)
1937 error (_("There are not enough available hardware "
1938 "resources for this watchpoint."));
1939
1940 /* Downgrade to software watchpoint. */
1941 b->type = bp_watchpoint;
1942 }
1943 else
1944 {
1945 /* If this was a software watchpoint, we've just
1946 found we have enough resources to turn it to a
1947 hardware watchpoint. Otherwise, this is a
1948 nop. */
1949 b->type = type;
1950 }
1951 }
1952 else if (!b->ops->works_in_software_mode (b))
1953 {
1954 if (!can_use_hw_watchpoints)
1955 error (_("Can't set read/access watchpoint when "
1956 "hardware watchpoints are disabled."));
1957 else
1958 error (_("Expression cannot be implemented with "
1959 "read/access watchpoint."));
1960 }
1961 else
1962 b->type = bp_watchpoint;
1963
1964 loc_type = (b->type == bp_watchpoint? bp_loc_other
1965 : bp_loc_hardware_watchpoint);
1966 for (bl = b->loc; bl; bl = bl->next)
1967 bl->loc_type = loc_type;
1968 }
1969
1970 /* If a software watchpoint is not watching any memory, then the
1971 above left it without any location set up. But,
1972 bpstat_stop_status requires a location to be able to report
1973 stops, so make sure there's at least a dummy one. */
1974 if (b->type == bp_watchpoint && b->loc == NULL)
1975 software_watchpoint_add_no_memory_location (b, frame_pspace);
1976 }
1977 else if (!within_current_scope)
1978 {
1979 printf_filtered (_("\
1980 Watchpoint %d deleted because the program has left the block\n\
1981 in which its expression is valid.\n"),
1982 b->number);
1983 watchpoint_del_at_next_stop (b);
1984 }
1985
1986 /* Restore the selected frame. */
1987 if (frame_saved)
1988 select_frame (frame_find_by_id (saved_frame_id));
1989 }
1990
1991
1992 /* Returns 1 iff breakpoint location should be
1993 inserted in the inferior. We don't differentiate the type of BL's owner
1994 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1995 breakpoint_ops is not defined, because in insert_bp_location,
1996 tracepoint's insert_location will not be called. */
1997 static int
1998 should_be_inserted (struct bp_location *bl)
1999 {
2000 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2001 return 0;
2002
2003 if (bl->owner->disposition == disp_del_at_next_stop)
2004 return 0;
2005
2006 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2007 return 0;
2008
2009 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2010 return 0;
2011
2012 /* This is set for example, when we're attached to the parent of a
2013 vfork, and have detached from the child. The child is running
2014 free, and we expect it to do an exec or exit, at which point the
2015 OS makes the parent schedulable again (and the target reports
2016 that the vfork is done). Until the child is done with the shared
2017 memory region, do not insert breakpoints in the parent, otherwise
2018 the child could still trip on the parent's breakpoints. Since
2019 the parent is blocked anyway, it won't miss any breakpoint. */
2020 if (bl->pspace->breakpoints_not_allowed)
2021 return 0;
2022
2023 /* Don't insert a breakpoint if we're trying to step past its
2024 location, except if the breakpoint is a single-step breakpoint,
2025 and the breakpoint's thread is the thread which is stepping past
2026 a breakpoint. */
2027 if ((bl->loc_type == bp_loc_software_breakpoint
2028 || bl->loc_type == bp_loc_hardware_breakpoint)
2029 && stepping_past_instruction_at (bl->pspace->aspace,
2030 bl->address)
2031 /* The single-step breakpoint may be inserted at the location
2032 we're trying to step if the instruction branches to itself.
2033 However, the instruction won't be executed at all and it may
2034 break the semantics of the instruction, for example, the
2035 instruction is a conditional branch or updates some flags.
2036 We can't fix it unless GDB is able to emulate the instruction
2037 or switch to displaced stepping. */
2038 && !(bl->owner->type == bp_single_step
2039 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2040 {
2041 if (debug_infrun)
2042 {
2043 fprintf_unfiltered (gdb_stdlog,
2044 "infrun: skipping breakpoint: "
2045 "stepping past insn at: %s\n",
2046 paddress (bl->gdbarch, bl->address));
2047 }
2048 return 0;
2049 }
2050
2051 /* Don't insert watchpoints if we're trying to step past the
2052 instruction that triggered one. */
2053 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2054 && stepping_past_nonsteppable_watchpoint ())
2055 {
2056 if (debug_infrun)
2057 {
2058 fprintf_unfiltered (gdb_stdlog,
2059 "infrun: stepping past non-steppable watchpoint. "
2060 "skipping watchpoint at %s:%d\n",
2061 paddress (bl->gdbarch, bl->address),
2062 bl->length);
2063 }
2064 return 0;
2065 }
2066
2067 return 1;
2068 }
2069
2070 /* Same as should_be_inserted but does the check assuming
2071 that the location is not duplicated. */
2072
2073 static int
2074 unduplicated_should_be_inserted (struct bp_location *bl)
2075 {
2076 int result;
2077 const int save_duplicate = bl->duplicate;
2078
2079 bl->duplicate = 0;
2080 result = should_be_inserted (bl);
2081 bl->duplicate = save_duplicate;
2082 return result;
2083 }
2084
2085 /* Parses a conditional described by an expression COND into an
2086 agent expression bytecode suitable for evaluation
2087 by the bytecode interpreter. Return NULL if there was
2088 any error during parsing. */
2089
2090 static agent_expr_up
2091 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2092 {
2093 if (cond == NULL)
2094 return NULL;
2095
2096 agent_expr_up aexpr;
2097
2098 /* We don't want to stop processing, so catch any errors
2099 that may show up. */
2100 TRY
2101 {
2102 aexpr = gen_eval_for_expr (scope, cond);
2103 }
2104
2105 CATCH (ex, RETURN_MASK_ERROR)
2106 {
2107 /* If we got here, it means the condition could not be parsed to a valid
2108 bytecode expression and thus can't be evaluated on the target's side.
2109 It's no use iterating through the conditions. */
2110 }
2111 END_CATCH
2112
2113 /* We have a valid agent expression. */
2114 return aexpr;
2115 }
2116
2117 /* Based on location BL, create a list of breakpoint conditions to be
2118 passed on to the target. If we have duplicated locations with different
2119 conditions, we will add such conditions to the list. The idea is that the
2120 target will evaluate the list of conditions and will only notify GDB when
2121 one of them is true. */
2122
2123 static void
2124 build_target_condition_list (struct bp_location *bl)
2125 {
2126 struct bp_location **locp = NULL, **loc2p;
2127 int null_condition_or_parse_error = 0;
2128 int modified = bl->needs_update;
2129 struct bp_location *loc;
2130
2131 /* Release conditions left over from a previous insert. */
2132 bl->target_info.conditions.clear ();
2133
2134 /* This is only meaningful if the target is
2135 evaluating conditions and if the user has
2136 opted for condition evaluation on the target's
2137 side. */
2138 if (gdb_evaluates_breakpoint_condition_p ()
2139 || !target_supports_evaluation_of_breakpoint_conditions ())
2140 return;
2141
2142 /* Do a first pass to check for locations with no assigned
2143 conditions or conditions that fail to parse to a valid agent expression
2144 bytecode. If any of these happen, then it's no use to send conditions
2145 to the target since this location will always trigger and generate a
2146 response back to GDB. */
2147 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2148 {
2149 loc = (*loc2p);
2150 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2151 {
2152 if (modified)
2153 {
2154 /* Re-parse the conditions since something changed. In that
2155 case we already freed the condition bytecodes (see
2156 force_breakpoint_reinsertion). We just
2157 need to parse the condition to bytecodes again. */
2158 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2159 loc->cond.get ());
2160 }
2161
2162 /* If we have a NULL bytecode expression, it means something
2163 went wrong or we have a null condition expression. */
2164 if (!loc->cond_bytecode)
2165 {
2166 null_condition_or_parse_error = 1;
2167 break;
2168 }
2169 }
2170 }
2171
2172 /* If any of these happened, it means we will have to evaluate the conditions
2173 for the location's address on gdb's side. It is no use keeping bytecodes
2174 for all the other duplicate locations, thus we free all of them here.
2175
2176 This is so we have a finer control over which locations' conditions are
2177 being evaluated by GDB or the remote stub. */
2178 if (null_condition_or_parse_error)
2179 {
2180 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2181 {
2182 loc = (*loc2p);
2183 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2184 {
2185 /* Only go as far as the first NULL bytecode is
2186 located. */
2187 if (!loc->cond_bytecode)
2188 return;
2189
2190 loc->cond_bytecode.reset ();
2191 }
2192 }
2193 }
2194
2195 /* No NULL conditions or failed bytecode generation. Build a condition list
2196 for this location's address. */
2197 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2198 {
2199 loc = (*loc2p);
2200 if (loc->cond
2201 && is_breakpoint (loc->owner)
2202 && loc->pspace->num == bl->pspace->num
2203 && loc->owner->enable_state == bp_enabled
2204 && loc->enabled)
2205 {
2206 /* Add the condition to the vector. This will be used later
2207 to send the conditions to the target. */
2208 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2209 }
2210 }
2211
2212 return;
2213 }
2214
2215 /* Parses a command described by string CMD into an agent expression
2216 bytecode suitable for evaluation by the bytecode interpreter.
2217 Return NULL if there was any error during parsing. */
2218
2219 static agent_expr_up
2220 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2221 {
2222 const char *cmdrest;
2223 const char *format_start, *format_end;
2224 struct gdbarch *gdbarch = get_current_arch ();
2225
2226 if (cmd == NULL)
2227 return NULL;
2228
2229 cmdrest = cmd;
2230
2231 if (*cmdrest == ',')
2232 ++cmdrest;
2233 cmdrest = skip_spaces (cmdrest);
2234
2235 if (*cmdrest++ != '"')
2236 error (_("No format string following the location"));
2237
2238 format_start = cmdrest;
2239
2240 format_pieces fpieces (&cmdrest);
2241
2242 format_end = cmdrest;
2243
2244 if (*cmdrest++ != '"')
2245 error (_("Bad format string, non-terminated '\"'."));
2246
2247 cmdrest = skip_spaces (cmdrest);
2248
2249 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2250 error (_("Invalid argument syntax"));
2251
2252 if (*cmdrest == ',')
2253 cmdrest++;
2254 cmdrest = skip_spaces (cmdrest);
2255
2256 /* For each argument, make an expression. */
2257
2258 std::vector<struct expression *> argvec;
2259 while (*cmdrest != '\0')
2260 {
2261 const char *cmd1;
2262
2263 cmd1 = cmdrest;
2264 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2265 argvec.push_back (expr.release ());
2266 cmdrest = cmd1;
2267 if (*cmdrest == ',')
2268 ++cmdrest;
2269 }
2270
2271 agent_expr_up aexpr;
2272
2273 /* We don't want to stop processing, so catch any errors
2274 that may show up. */
2275 TRY
2276 {
2277 aexpr = gen_printf (scope, gdbarch, 0, 0,
2278 format_start, format_end - format_start,
2279 argvec.size (), argvec.data ());
2280 }
2281 CATCH (ex, RETURN_MASK_ERROR)
2282 {
2283 /* If we got here, it means the command could not be parsed to a valid
2284 bytecode expression and thus can't be evaluated on the target's side.
2285 It's no use iterating through the other commands. */
2286 }
2287 END_CATCH
2288
2289 /* We have a valid agent expression, return it. */
2290 return aexpr;
2291 }
2292
2293 /* Based on location BL, create a list of breakpoint commands to be
2294 passed on to the target. If we have duplicated locations with
2295 different commands, we will add any such to the list. */
2296
2297 static void
2298 build_target_command_list (struct bp_location *bl)
2299 {
2300 struct bp_location **locp = NULL, **loc2p;
2301 int null_command_or_parse_error = 0;
2302 int modified = bl->needs_update;
2303 struct bp_location *loc;
2304
2305 /* Clear commands left over from a previous insert. */
2306 bl->target_info.tcommands.clear ();
2307
2308 if (!target_can_run_breakpoint_commands ())
2309 return;
2310
2311 /* For now, limit to agent-style dprintf breakpoints. */
2312 if (dprintf_style != dprintf_style_agent)
2313 return;
2314
2315 /* For now, if we have any duplicate location that isn't a dprintf,
2316 don't install the target-side commands, as that would make the
2317 breakpoint not be reported to the core, and we'd lose
2318 control. */
2319 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2320 {
2321 loc = (*loc2p);
2322 if (is_breakpoint (loc->owner)
2323 && loc->pspace->num == bl->pspace->num
2324 && loc->owner->type != bp_dprintf)
2325 return;
2326 }
2327
2328 /* Do a first pass to check for locations with no assigned
2329 conditions or conditions that fail to parse to a valid agent expression
2330 bytecode. If any of these happen, then it's no use to send conditions
2331 to the target since this location will always trigger and generate a
2332 response back to GDB. */
2333 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2334 {
2335 loc = (*loc2p);
2336 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2337 {
2338 if (modified)
2339 {
2340 /* Re-parse the commands since something changed. In that
2341 case we already freed the command bytecodes (see
2342 force_breakpoint_reinsertion). We just
2343 need to parse the command to bytecodes again. */
2344 loc->cmd_bytecode
2345 = parse_cmd_to_aexpr (bl->address,
2346 loc->owner->extra_string);
2347 }
2348
2349 /* If we have a NULL bytecode expression, it means something
2350 went wrong or we have a null command expression. */
2351 if (!loc->cmd_bytecode)
2352 {
2353 null_command_or_parse_error = 1;
2354 break;
2355 }
2356 }
2357 }
2358
2359 /* If anything failed, then we're not doing target-side commands,
2360 and so clean up. */
2361 if (null_command_or_parse_error)
2362 {
2363 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2364 {
2365 loc = (*loc2p);
2366 if (is_breakpoint (loc->owner)
2367 && loc->pspace->num == bl->pspace->num)
2368 {
2369 /* Only go as far as the first NULL bytecode is
2370 located. */
2371 if (loc->cmd_bytecode == NULL)
2372 return;
2373
2374 loc->cmd_bytecode.reset ();
2375 }
2376 }
2377 }
2378
2379 /* No NULL commands or failed bytecode generation. Build a command list
2380 for this location's address. */
2381 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2382 {
2383 loc = (*loc2p);
2384 if (loc->owner->extra_string
2385 && is_breakpoint (loc->owner)
2386 && loc->pspace->num == bl->pspace->num
2387 && loc->owner->enable_state == bp_enabled
2388 && loc->enabled)
2389 {
2390 /* Add the command to the vector. This will be used later
2391 to send the commands to the target. */
2392 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2393 }
2394 }
2395
2396 bl->target_info.persist = 0;
2397 /* Maybe flag this location as persistent. */
2398 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2399 bl->target_info.persist = 1;
2400 }
2401
2402 /* Return the kind of breakpoint on address *ADDR. Get the kind
2403 of breakpoint according to ADDR except single-step breakpoint.
2404 Get the kind of single-step breakpoint according to the current
2405 registers state. */
2406
2407 static int
2408 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2409 {
2410 if (bl->owner->type == bp_single_step)
2411 {
2412 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2413 struct regcache *regcache;
2414
2415 regcache = get_thread_regcache (thr->ptid);
2416
2417 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2418 regcache, addr);
2419 }
2420 else
2421 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2422 }
2423
2424 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2425 location. Any error messages are printed to TMP_ERROR_STREAM; and
2426 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2427 Returns 0 for success, 1 if the bp_location type is not supported or
2428 -1 for failure.
2429
2430 NOTE drow/2003-09-09: This routine could be broken down to an
2431 object-style method for each breakpoint or catchpoint type. */
2432 static int
2433 insert_bp_location (struct bp_location *bl,
2434 struct ui_file *tmp_error_stream,
2435 int *disabled_breaks,
2436 int *hw_breakpoint_error,
2437 int *hw_bp_error_explained_already)
2438 {
2439 gdb_exception bp_excpt = exception_none;
2440
2441 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2442 return 0;
2443
2444 /* Note we don't initialize bl->target_info, as that wipes out
2445 the breakpoint location's shadow_contents if the breakpoint
2446 is still inserted at that location. This in turn breaks
2447 target_read_memory which depends on these buffers when
2448 a memory read is requested at the breakpoint location:
2449 Once the target_info has been wiped, we fail to see that
2450 we have a breakpoint inserted at that address and thus
2451 read the breakpoint instead of returning the data saved in
2452 the breakpoint location's shadow contents. */
2453 bl->target_info.reqstd_address = bl->address;
2454 bl->target_info.placed_address_space = bl->pspace->aspace;
2455 bl->target_info.length = bl->length;
2456
2457 /* When working with target-side conditions, we must pass all the conditions
2458 for the same breakpoint address down to the target since GDB will not
2459 insert those locations. With a list of breakpoint conditions, the target
2460 can decide when to stop and notify GDB. */
2461
2462 if (is_breakpoint (bl->owner))
2463 {
2464 build_target_condition_list (bl);
2465 build_target_command_list (bl);
2466 /* Reset the modification marker. */
2467 bl->needs_update = 0;
2468 }
2469
2470 if (bl->loc_type == bp_loc_software_breakpoint
2471 || bl->loc_type == bp_loc_hardware_breakpoint)
2472 {
2473 if (bl->owner->type != bp_hardware_breakpoint)
2474 {
2475 /* If the explicitly specified breakpoint type
2476 is not hardware breakpoint, check the memory map to see
2477 if the breakpoint address is in read only memory or not.
2478
2479 Two important cases are:
2480 - location type is not hardware breakpoint, memory
2481 is readonly. We change the type of the location to
2482 hardware breakpoint.
2483 - location type is hardware breakpoint, memory is
2484 read-write. This means we've previously made the
2485 location hardware one, but then the memory map changed,
2486 so we undo.
2487
2488 When breakpoints are removed, remove_breakpoints will use
2489 location types we've just set here, the only possible
2490 problem is that memory map has changed during running
2491 program, but it's not going to work anyway with current
2492 gdb. */
2493 struct mem_region *mr
2494 = lookup_mem_region (bl->target_info.reqstd_address);
2495
2496 if (mr)
2497 {
2498 if (automatic_hardware_breakpoints)
2499 {
2500 enum bp_loc_type new_type;
2501
2502 if (mr->attrib.mode != MEM_RW)
2503 new_type = bp_loc_hardware_breakpoint;
2504 else
2505 new_type = bp_loc_software_breakpoint;
2506
2507 if (new_type != bl->loc_type)
2508 {
2509 static int said = 0;
2510
2511 bl->loc_type = new_type;
2512 if (!said)
2513 {
2514 fprintf_filtered (gdb_stdout,
2515 _("Note: automatically using "
2516 "hardware breakpoints for "
2517 "read-only addresses.\n"));
2518 said = 1;
2519 }
2520 }
2521 }
2522 else if (bl->loc_type == bp_loc_software_breakpoint
2523 && mr->attrib.mode != MEM_RW)
2524 {
2525 fprintf_unfiltered (tmp_error_stream,
2526 _("Cannot insert breakpoint %d.\n"
2527 "Cannot set software breakpoint "
2528 "at read-only address %s\n"),
2529 bl->owner->number,
2530 paddress (bl->gdbarch, bl->address));
2531 return 1;
2532 }
2533 }
2534 }
2535
2536 /* First check to see if we have to handle an overlay. */
2537 if (overlay_debugging == ovly_off
2538 || bl->section == NULL
2539 || !(section_is_overlay (bl->section)))
2540 {
2541 /* No overlay handling: just set the breakpoint. */
2542 TRY
2543 {
2544 int val;
2545
2546 val = bl->owner->ops->insert_location (bl);
2547 if (val)
2548 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2549 }
2550 CATCH (e, RETURN_MASK_ALL)
2551 {
2552 bp_excpt = e;
2553 }
2554 END_CATCH
2555 }
2556 else
2557 {
2558 /* This breakpoint is in an overlay section.
2559 Shall we set a breakpoint at the LMA? */
2560 if (!overlay_events_enabled)
2561 {
2562 /* Yes -- overlay event support is not active,
2563 so we must try to set a breakpoint at the LMA.
2564 This will not work for a hardware breakpoint. */
2565 if (bl->loc_type == bp_loc_hardware_breakpoint)
2566 warning (_("hardware breakpoint %d not supported in overlay!"),
2567 bl->owner->number);
2568 else
2569 {
2570 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2571 bl->section);
2572 /* Set a software (trap) breakpoint at the LMA. */
2573 bl->overlay_target_info = bl->target_info;
2574 bl->overlay_target_info.reqstd_address = addr;
2575
2576 /* No overlay handling: just set the breakpoint. */
2577 TRY
2578 {
2579 int val;
2580
2581 bl->overlay_target_info.kind
2582 = breakpoint_kind (bl, &addr);
2583 bl->overlay_target_info.placed_address = addr;
2584 val = target_insert_breakpoint (bl->gdbarch,
2585 &bl->overlay_target_info);
2586 if (val)
2587 bp_excpt
2588 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2589 }
2590 CATCH (e, RETURN_MASK_ALL)
2591 {
2592 bp_excpt = e;
2593 }
2594 END_CATCH
2595
2596 if (bp_excpt.reason != 0)
2597 fprintf_unfiltered (tmp_error_stream,
2598 "Overlay breakpoint %d "
2599 "failed: in ROM?\n",
2600 bl->owner->number);
2601 }
2602 }
2603 /* Shall we set a breakpoint at the VMA? */
2604 if (section_is_mapped (bl->section))
2605 {
2606 /* Yes. This overlay section is mapped into memory. */
2607 TRY
2608 {
2609 int val;
2610
2611 val = bl->owner->ops->insert_location (bl);
2612 if (val)
2613 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2614 }
2615 CATCH (e, RETURN_MASK_ALL)
2616 {
2617 bp_excpt = e;
2618 }
2619 END_CATCH
2620 }
2621 else
2622 {
2623 /* No. This breakpoint will not be inserted.
2624 No error, but do not mark the bp as 'inserted'. */
2625 return 0;
2626 }
2627 }
2628
2629 if (bp_excpt.reason != 0)
2630 {
2631 /* Can't set the breakpoint. */
2632
2633 /* In some cases, we might not be able to insert a
2634 breakpoint in a shared library that has already been
2635 removed, but we have not yet processed the shlib unload
2636 event. Unfortunately, some targets that implement
2637 breakpoint insertion themselves can't tell why the
2638 breakpoint insertion failed (e.g., the remote target
2639 doesn't define error codes), so we must treat generic
2640 errors as memory errors. */
2641 if (bp_excpt.reason == RETURN_ERROR
2642 && (bp_excpt.error == GENERIC_ERROR
2643 || bp_excpt.error == MEMORY_ERROR)
2644 && bl->loc_type == bp_loc_software_breakpoint
2645 && (solib_name_from_address (bl->pspace, bl->address)
2646 || shared_objfile_contains_address_p (bl->pspace,
2647 bl->address)))
2648 {
2649 /* See also: disable_breakpoints_in_shlibs. */
2650 bl->shlib_disabled = 1;
2651 gdb::observers::breakpoint_modified.notify (bl->owner);
2652 if (!*disabled_breaks)
2653 {
2654 fprintf_unfiltered (tmp_error_stream,
2655 "Cannot insert breakpoint %d.\n",
2656 bl->owner->number);
2657 fprintf_unfiltered (tmp_error_stream,
2658 "Temporarily disabling shared "
2659 "library breakpoints:\n");
2660 }
2661 *disabled_breaks = 1;
2662 fprintf_unfiltered (tmp_error_stream,
2663 "breakpoint #%d\n", bl->owner->number);
2664 return 0;
2665 }
2666 else
2667 {
2668 if (bl->loc_type == bp_loc_hardware_breakpoint)
2669 {
2670 *hw_breakpoint_error = 1;
2671 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2672 fprintf_unfiltered (tmp_error_stream,
2673 "Cannot insert hardware breakpoint %d%s",
2674 bl->owner->number,
2675 bp_excpt.message ? ":" : ".\n");
2676 if (bp_excpt.message != NULL)
2677 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2678 bp_excpt.message);
2679 }
2680 else
2681 {
2682 if (bp_excpt.message == NULL)
2683 {
2684 std::string message
2685 = memory_error_message (TARGET_XFER_E_IO,
2686 bl->gdbarch, bl->address);
2687
2688 fprintf_unfiltered (tmp_error_stream,
2689 "Cannot insert breakpoint %d.\n"
2690 "%s\n",
2691 bl->owner->number, message.c_str ());
2692 }
2693 else
2694 {
2695 fprintf_unfiltered (tmp_error_stream,
2696 "Cannot insert breakpoint %d: %s\n",
2697 bl->owner->number,
2698 bp_excpt.message);
2699 }
2700 }
2701 return 1;
2702
2703 }
2704 }
2705 else
2706 bl->inserted = 1;
2707
2708 return 0;
2709 }
2710
2711 else if (bl->loc_type == bp_loc_hardware_watchpoint
2712 /* NOTE drow/2003-09-08: This state only exists for removing
2713 watchpoints. It's not clear that it's necessary... */
2714 && bl->owner->disposition != disp_del_at_next_stop)
2715 {
2716 int val;
2717
2718 gdb_assert (bl->owner->ops != NULL
2719 && bl->owner->ops->insert_location != NULL);
2720
2721 val = bl->owner->ops->insert_location (bl);
2722
2723 /* If trying to set a read-watchpoint, and it turns out it's not
2724 supported, try emulating one with an access watchpoint. */
2725 if (val == 1 && bl->watchpoint_type == hw_read)
2726 {
2727 struct bp_location *loc, **loc_temp;
2728
2729 /* But don't try to insert it, if there's already another
2730 hw_access location that would be considered a duplicate
2731 of this one. */
2732 ALL_BP_LOCATIONS (loc, loc_temp)
2733 if (loc != bl
2734 && loc->watchpoint_type == hw_access
2735 && watchpoint_locations_match (bl, loc))
2736 {
2737 bl->duplicate = 1;
2738 bl->inserted = 1;
2739 bl->target_info = loc->target_info;
2740 bl->watchpoint_type = hw_access;
2741 val = 0;
2742 break;
2743 }
2744
2745 if (val == 1)
2746 {
2747 bl->watchpoint_type = hw_access;
2748 val = bl->owner->ops->insert_location (bl);
2749
2750 if (val)
2751 /* Back to the original value. */
2752 bl->watchpoint_type = hw_read;
2753 }
2754 }
2755
2756 bl->inserted = (val == 0);
2757 }
2758
2759 else if (bl->owner->type == bp_catchpoint)
2760 {
2761 int val;
2762
2763 gdb_assert (bl->owner->ops != NULL
2764 && bl->owner->ops->insert_location != NULL);
2765
2766 val = bl->owner->ops->insert_location (bl);
2767 if (val)
2768 {
2769 bl->owner->enable_state = bp_disabled;
2770
2771 if (val == 1)
2772 warning (_("\
2773 Error inserting catchpoint %d: Your system does not support this type\n\
2774 of catchpoint."), bl->owner->number);
2775 else
2776 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2777 }
2778
2779 bl->inserted = (val == 0);
2780
2781 /* We've already printed an error message if there was a problem
2782 inserting this catchpoint, and we've disabled the catchpoint,
2783 so just return success. */
2784 return 0;
2785 }
2786
2787 return 0;
2788 }
2789
2790 /* This function is called when program space PSPACE is about to be
2791 deleted. It takes care of updating breakpoints to not reference
2792 PSPACE anymore. */
2793
2794 void
2795 breakpoint_program_space_exit (struct program_space *pspace)
2796 {
2797 struct breakpoint *b, *b_temp;
2798 struct bp_location *loc, **loc_temp;
2799
2800 /* Remove any breakpoint that was set through this program space. */
2801 ALL_BREAKPOINTS_SAFE (b, b_temp)
2802 {
2803 if (b->pspace == pspace)
2804 delete_breakpoint (b);
2805 }
2806
2807 /* Breakpoints set through other program spaces could have locations
2808 bound to PSPACE as well. Remove those. */
2809 ALL_BP_LOCATIONS (loc, loc_temp)
2810 {
2811 struct bp_location *tmp;
2812
2813 if (loc->pspace == pspace)
2814 {
2815 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2816 if (loc->owner->loc == loc)
2817 loc->owner->loc = loc->next;
2818 else
2819 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2820 if (tmp->next == loc)
2821 {
2822 tmp->next = loc->next;
2823 break;
2824 }
2825 }
2826 }
2827
2828 /* Now update the global location list to permanently delete the
2829 removed locations above. */
2830 update_global_location_list (UGLL_DONT_INSERT);
2831 }
2832
2833 /* Make sure all breakpoints are inserted in inferior.
2834 Throws exception on any error.
2835 A breakpoint that is already inserted won't be inserted
2836 again, so calling this function twice is safe. */
2837 void
2838 insert_breakpoints (void)
2839 {
2840 struct breakpoint *bpt;
2841
2842 ALL_BREAKPOINTS (bpt)
2843 if (is_hardware_watchpoint (bpt))
2844 {
2845 struct watchpoint *w = (struct watchpoint *) bpt;
2846
2847 update_watchpoint (w, 0 /* don't reparse. */);
2848 }
2849
2850 /* Updating watchpoints creates new locations, so update the global
2851 location list. Explicitly tell ugll to insert locations and
2852 ignore breakpoints_always_inserted_mode. */
2853 update_global_location_list (UGLL_INSERT);
2854 }
2855
2856 /* Invoke CALLBACK for each of bp_location. */
2857
2858 void
2859 iterate_over_bp_locations (walk_bp_location_callback callback)
2860 {
2861 struct bp_location *loc, **loc_tmp;
2862
2863 ALL_BP_LOCATIONS (loc, loc_tmp)
2864 {
2865 callback (loc, NULL);
2866 }
2867 }
2868
2869 /* This is used when we need to synch breakpoint conditions between GDB and the
2870 target. It is the case with deleting and disabling of breakpoints when using
2871 always-inserted mode. */
2872
2873 static void
2874 update_inserted_breakpoint_locations (void)
2875 {
2876 struct bp_location *bl, **blp_tmp;
2877 int error_flag = 0;
2878 int val = 0;
2879 int disabled_breaks = 0;
2880 int hw_breakpoint_error = 0;
2881 int hw_bp_details_reported = 0;
2882
2883 string_file tmp_error_stream;
2884
2885 /* Explicitly mark the warning -- this will only be printed if
2886 there was an error. */
2887 tmp_error_stream.puts ("Warning:\n");
2888
2889 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2890
2891 ALL_BP_LOCATIONS (bl, blp_tmp)
2892 {
2893 /* We only want to update software breakpoints and hardware
2894 breakpoints. */
2895 if (!is_breakpoint (bl->owner))
2896 continue;
2897
2898 /* We only want to update locations that are already inserted
2899 and need updating. This is to avoid unwanted insertion during
2900 deletion of breakpoints. */
2901 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2902 continue;
2903
2904 switch_to_program_space_and_thread (bl->pspace);
2905
2906 /* For targets that support global breakpoints, there's no need
2907 to select an inferior to insert breakpoint to. In fact, even
2908 if we aren't attached to any process yet, we should still
2909 insert breakpoints. */
2910 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2911 && ptid_equal (inferior_ptid, null_ptid))
2912 continue;
2913
2914 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2915 &hw_breakpoint_error, &hw_bp_details_reported);
2916 if (val)
2917 error_flag = val;
2918 }
2919
2920 if (error_flag)
2921 {
2922 target_terminal::ours_for_output ();
2923 error_stream (tmp_error_stream);
2924 }
2925 }
2926
2927 /* Used when starting or continuing the program. */
2928
2929 static void
2930 insert_breakpoint_locations (void)
2931 {
2932 struct breakpoint *bpt;
2933 struct bp_location *bl, **blp_tmp;
2934 int error_flag = 0;
2935 int val = 0;
2936 int disabled_breaks = 0;
2937 int hw_breakpoint_error = 0;
2938 int hw_bp_error_explained_already = 0;
2939
2940 string_file tmp_error_stream;
2941
2942 /* Explicitly mark the warning -- this will only be printed if
2943 there was an error. */
2944 tmp_error_stream.puts ("Warning:\n");
2945
2946 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2947
2948 ALL_BP_LOCATIONS (bl, blp_tmp)
2949 {
2950 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2951 continue;
2952
2953 /* There is no point inserting thread-specific breakpoints if
2954 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2955 has BL->OWNER always non-NULL. */
2956 if (bl->owner->thread != -1
2957 && !valid_global_thread_id (bl->owner->thread))
2958 continue;
2959
2960 switch_to_program_space_and_thread (bl->pspace);
2961
2962 /* For targets that support global breakpoints, there's no need
2963 to select an inferior to insert breakpoint to. In fact, even
2964 if we aren't attached to any process yet, we should still
2965 insert breakpoints. */
2966 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2967 && ptid_equal (inferior_ptid, null_ptid))
2968 continue;
2969
2970 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2971 &hw_breakpoint_error, &hw_bp_error_explained_already);
2972 if (val)
2973 error_flag = val;
2974 }
2975
2976 /* If we failed to insert all locations of a watchpoint, remove
2977 them, as half-inserted watchpoint is of limited use. */
2978 ALL_BREAKPOINTS (bpt)
2979 {
2980 int some_failed = 0;
2981 struct bp_location *loc;
2982
2983 if (!is_hardware_watchpoint (bpt))
2984 continue;
2985
2986 if (!breakpoint_enabled (bpt))
2987 continue;
2988
2989 if (bpt->disposition == disp_del_at_next_stop)
2990 continue;
2991
2992 for (loc = bpt->loc; loc; loc = loc->next)
2993 if (!loc->inserted && should_be_inserted (loc))
2994 {
2995 some_failed = 1;
2996 break;
2997 }
2998 if (some_failed)
2999 {
3000 for (loc = bpt->loc; loc; loc = loc->next)
3001 if (loc->inserted)
3002 remove_breakpoint (loc);
3003
3004 hw_breakpoint_error = 1;
3005 tmp_error_stream.printf ("Could not insert "
3006 "hardware watchpoint %d.\n",
3007 bpt->number);
3008 error_flag = -1;
3009 }
3010 }
3011
3012 if (error_flag)
3013 {
3014 /* If a hardware breakpoint or watchpoint was inserted, add a
3015 message about possibly exhausted resources. */
3016 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3017 {
3018 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3019 You may have requested too many hardware breakpoints/watchpoints.\n");
3020 }
3021 target_terminal::ours_for_output ();
3022 error_stream (tmp_error_stream);
3023 }
3024 }
3025
3026 /* Used when the program stops.
3027 Returns zero if successful, or non-zero if there was a problem
3028 removing a breakpoint location. */
3029
3030 int
3031 remove_breakpoints (void)
3032 {
3033 struct bp_location *bl, **blp_tmp;
3034 int val = 0;
3035
3036 ALL_BP_LOCATIONS (bl, blp_tmp)
3037 {
3038 if (bl->inserted && !is_tracepoint (bl->owner))
3039 val |= remove_breakpoint (bl);
3040 }
3041 return val;
3042 }
3043
3044 /* When a thread exits, remove breakpoints that are related to
3045 that thread. */
3046
3047 static void
3048 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3049 {
3050 struct breakpoint *b, *b_tmp;
3051
3052 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3053 {
3054 if (b->thread == tp->global_num && user_breakpoint_p (b))
3055 {
3056 b->disposition = disp_del_at_next_stop;
3057
3058 printf_filtered (_("\
3059 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3060 b->number, print_thread_id (tp));
3061
3062 /* Hide it from the user. */
3063 b->number = 0;
3064 }
3065 }
3066 }
3067
3068 /* Remove breakpoints of process PID. */
3069
3070 int
3071 remove_breakpoints_pid (int pid)
3072 {
3073 struct bp_location *bl, **blp_tmp;
3074 int val;
3075 struct inferior *inf = find_inferior_pid (pid);
3076
3077 ALL_BP_LOCATIONS (bl, blp_tmp)
3078 {
3079 if (bl->pspace != inf->pspace)
3080 continue;
3081
3082 if (bl->inserted && !bl->target_info.persist)
3083 {
3084 val = remove_breakpoint (bl);
3085 if (val != 0)
3086 return val;
3087 }
3088 }
3089 return 0;
3090 }
3091
3092 static int internal_breakpoint_number = -1;
3093
3094 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3095 If INTERNAL is non-zero, the breakpoint number will be populated
3096 from internal_breakpoint_number and that variable decremented.
3097 Otherwise the breakpoint number will be populated from
3098 breakpoint_count and that value incremented. Internal breakpoints
3099 do not set the internal var bpnum. */
3100 static void
3101 set_breakpoint_number (int internal, struct breakpoint *b)
3102 {
3103 if (internal)
3104 b->number = internal_breakpoint_number--;
3105 else
3106 {
3107 set_breakpoint_count (breakpoint_count + 1);
3108 b->number = breakpoint_count;
3109 }
3110 }
3111
3112 static struct breakpoint *
3113 create_internal_breakpoint (struct gdbarch *gdbarch,
3114 CORE_ADDR address, enum bptype type,
3115 const struct breakpoint_ops *ops)
3116 {
3117 symtab_and_line sal;
3118 sal.pc = address;
3119 sal.section = find_pc_overlay (sal.pc);
3120 sal.pspace = current_program_space;
3121
3122 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3123 b->number = internal_breakpoint_number--;
3124 b->disposition = disp_donttouch;
3125
3126 return b;
3127 }
3128
3129 static const char *const longjmp_names[] =
3130 {
3131 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3132 };
3133 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3134
3135 /* Per-objfile data private to breakpoint.c. */
3136 struct breakpoint_objfile_data
3137 {
3138 /* Minimal symbol for "_ovly_debug_event" (if any). */
3139 struct bound_minimal_symbol overlay_msym {};
3140
3141 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3142 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3143
3144 /* True if we have looked for longjmp probes. */
3145 int longjmp_searched = 0;
3146
3147 /* SystemTap probe points for longjmp (if any). These are non-owning
3148 references. */
3149 std::vector<probe *> longjmp_probes;
3150
3151 /* Minimal symbol for "std::terminate()" (if any). */
3152 struct bound_minimal_symbol terminate_msym {};
3153
3154 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3155 struct bound_minimal_symbol exception_msym {};
3156
3157 /* True if we have looked for exception probes. */
3158 int exception_searched = 0;
3159
3160 /* SystemTap probe points for unwinding (if any). These are non-owning
3161 references. */
3162 std::vector<probe *> exception_probes;
3163 };
3164
3165 static const struct objfile_data *breakpoint_objfile_key;
3166
3167 /* Minimal symbol not found sentinel. */
3168 static struct minimal_symbol msym_not_found;
3169
3170 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3171
3172 static int
3173 msym_not_found_p (const struct minimal_symbol *msym)
3174 {
3175 return msym == &msym_not_found;
3176 }
3177
3178 /* Return per-objfile data needed by breakpoint.c.
3179 Allocate the data if necessary. */
3180
3181 static struct breakpoint_objfile_data *
3182 get_breakpoint_objfile_data (struct objfile *objfile)
3183 {
3184 struct breakpoint_objfile_data *bp_objfile_data;
3185
3186 bp_objfile_data = ((struct breakpoint_objfile_data *)
3187 objfile_data (objfile, breakpoint_objfile_key));
3188 if (bp_objfile_data == NULL)
3189 {
3190 bp_objfile_data = new breakpoint_objfile_data ();
3191 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3192 }
3193 return bp_objfile_data;
3194 }
3195
3196 static void
3197 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3198 {
3199 struct breakpoint_objfile_data *bp_objfile_data
3200 = (struct breakpoint_objfile_data *) data;
3201
3202 delete bp_objfile_data;
3203 }
3204
3205 static void
3206 create_overlay_event_breakpoint (void)
3207 {
3208 struct objfile *objfile;
3209 const char *const func_name = "_ovly_debug_event";
3210
3211 ALL_OBJFILES (objfile)
3212 {
3213 struct breakpoint *b;
3214 struct breakpoint_objfile_data *bp_objfile_data;
3215 CORE_ADDR addr;
3216 struct explicit_location explicit_loc;
3217
3218 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3219
3220 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3221 continue;
3222
3223 if (bp_objfile_data->overlay_msym.minsym == NULL)
3224 {
3225 struct bound_minimal_symbol m;
3226
3227 m = lookup_minimal_symbol_text (func_name, objfile);
3228 if (m.minsym == NULL)
3229 {
3230 /* Avoid future lookups in this objfile. */
3231 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3232 continue;
3233 }
3234 bp_objfile_data->overlay_msym = m;
3235 }
3236
3237 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3238 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3239 bp_overlay_event,
3240 &internal_breakpoint_ops);
3241 initialize_explicit_location (&explicit_loc);
3242 explicit_loc.function_name = ASTRDUP (func_name);
3243 b->location = new_explicit_location (&explicit_loc);
3244
3245 if (overlay_debugging == ovly_auto)
3246 {
3247 b->enable_state = bp_enabled;
3248 overlay_events_enabled = 1;
3249 }
3250 else
3251 {
3252 b->enable_state = bp_disabled;
3253 overlay_events_enabled = 0;
3254 }
3255 }
3256 }
3257
3258 static void
3259 create_longjmp_master_breakpoint (void)
3260 {
3261 struct program_space *pspace;
3262
3263 scoped_restore_current_program_space restore_pspace;
3264
3265 ALL_PSPACES (pspace)
3266 {
3267 struct objfile *objfile;
3268
3269 set_current_program_space (pspace);
3270
3271 ALL_OBJFILES (objfile)
3272 {
3273 int i;
3274 struct gdbarch *gdbarch;
3275 struct breakpoint_objfile_data *bp_objfile_data;
3276
3277 gdbarch = get_objfile_arch (objfile);
3278
3279 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3280
3281 if (!bp_objfile_data->longjmp_searched)
3282 {
3283 std::vector<probe *> ret
3284 = find_probes_in_objfile (objfile, "libc", "longjmp");
3285
3286 if (!ret.empty ())
3287 {
3288 /* We are only interested in checking one element. */
3289 probe *p = ret[0];
3290
3291 if (!p->can_evaluate_arguments ())
3292 {
3293 /* We cannot use the probe interface here, because it does
3294 not know how to evaluate arguments. */
3295 ret.clear ();
3296 }
3297 }
3298 bp_objfile_data->longjmp_probes = ret;
3299 bp_objfile_data->longjmp_searched = 1;
3300 }
3301
3302 if (!bp_objfile_data->longjmp_probes.empty ())
3303 {
3304 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3305
3306 for (probe *p : bp_objfile_data->longjmp_probes)
3307 {
3308 struct breakpoint *b;
3309
3310 b = create_internal_breakpoint (gdbarch,
3311 p->get_relocated_address (objfile),
3312 bp_longjmp_master,
3313 &internal_breakpoint_ops);
3314 b->location = new_probe_location ("-probe-stap libc:longjmp");
3315 b->enable_state = bp_disabled;
3316 }
3317
3318 continue;
3319 }
3320
3321 if (!gdbarch_get_longjmp_target_p (gdbarch))
3322 continue;
3323
3324 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3325 {
3326 struct breakpoint *b;
3327 const char *func_name;
3328 CORE_ADDR addr;
3329 struct explicit_location explicit_loc;
3330
3331 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3332 continue;
3333
3334 func_name = longjmp_names[i];
3335 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3336 {
3337 struct bound_minimal_symbol m;
3338
3339 m = lookup_minimal_symbol_text (func_name, objfile);
3340 if (m.minsym == NULL)
3341 {
3342 /* Prevent future lookups in this objfile. */
3343 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3344 continue;
3345 }
3346 bp_objfile_data->longjmp_msym[i] = m;
3347 }
3348
3349 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3350 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3351 &internal_breakpoint_ops);
3352 initialize_explicit_location (&explicit_loc);
3353 explicit_loc.function_name = ASTRDUP (func_name);
3354 b->location = new_explicit_location (&explicit_loc);
3355 b->enable_state = bp_disabled;
3356 }
3357 }
3358 }
3359 }
3360
3361 /* Create a master std::terminate breakpoint. */
3362 static void
3363 create_std_terminate_master_breakpoint (void)
3364 {
3365 struct program_space *pspace;
3366 const char *const func_name = "std::terminate()";
3367
3368 scoped_restore_current_program_space restore_pspace;
3369
3370 ALL_PSPACES (pspace)
3371 {
3372 struct objfile *objfile;
3373 CORE_ADDR addr;
3374
3375 set_current_program_space (pspace);
3376
3377 ALL_OBJFILES (objfile)
3378 {
3379 struct breakpoint *b;
3380 struct breakpoint_objfile_data *bp_objfile_data;
3381 struct explicit_location explicit_loc;
3382
3383 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3384
3385 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3386 continue;
3387
3388 if (bp_objfile_data->terminate_msym.minsym == NULL)
3389 {
3390 struct bound_minimal_symbol m;
3391
3392 m = lookup_minimal_symbol (func_name, NULL, objfile);
3393 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3394 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3395 {
3396 /* Prevent future lookups in this objfile. */
3397 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3398 continue;
3399 }
3400 bp_objfile_data->terminate_msym = m;
3401 }
3402
3403 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3404 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3405 bp_std_terminate_master,
3406 &internal_breakpoint_ops);
3407 initialize_explicit_location (&explicit_loc);
3408 explicit_loc.function_name = ASTRDUP (func_name);
3409 b->location = new_explicit_location (&explicit_loc);
3410 b->enable_state = bp_disabled;
3411 }
3412 }
3413 }
3414
3415 /* Install a master breakpoint on the unwinder's debug hook. */
3416
3417 static void
3418 create_exception_master_breakpoint (void)
3419 {
3420 struct objfile *objfile;
3421 const char *const func_name = "_Unwind_DebugHook";
3422
3423 ALL_OBJFILES (objfile)
3424 {
3425 struct breakpoint *b;
3426 struct gdbarch *gdbarch;
3427 struct breakpoint_objfile_data *bp_objfile_data;
3428 CORE_ADDR addr;
3429 struct explicit_location explicit_loc;
3430
3431 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3432
3433 /* We prefer the SystemTap probe point if it exists. */
3434 if (!bp_objfile_data->exception_searched)
3435 {
3436 std::vector<probe *> ret
3437 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3438
3439 if (!ret.empty ())
3440 {
3441 /* We are only interested in checking one element. */
3442 probe *p = ret[0];
3443
3444 if (!p->can_evaluate_arguments ())
3445 {
3446 /* We cannot use the probe interface here, because it does
3447 not know how to evaluate arguments. */
3448 ret.clear ();
3449 }
3450 }
3451 bp_objfile_data->exception_probes = ret;
3452 bp_objfile_data->exception_searched = 1;
3453 }
3454
3455 if (!bp_objfile_data->exception_probes.empty ())
3456 {
3457 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3458
3459 for (probe *p : bp_objfile_data->exception_probes)
3460 {
3461 struct breakpoint *b;
3462
3463 b = create_internal_breakpoint (gdbarch,
3464 p->get_relocated_address (objfile),
3465 bp_exception_master,
3466 &internal_breakpoint_ops);
3467 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3468 b->enable_state = bp_disabled;
3469 }
3470
3471 continue;
3472 }
3473
3474 /* Otherwise, try the hook function. */
3475
3476 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3477 continue;
3478
3479 gdbarch = get_objfile_arch (objfile);
3480
3481 if (bp_objfile_data->exception_msym.minsym == NULL)
3482 {
3483 struct bound_minimal_symbol debug_hook;
3484
3485 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3486 if (debug_hook.minsym == NULL)
3487 {
3488 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3489 continue;
3490 }
3491
3492 bp_objfile_data->exception_msym = debug_hook;
3493 }
3494
3495 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3496 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3497 &current_target);
3498 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3499 &internal_breakpoint_ops);
3500 initialize_explicit_location (&explicit_loc);
3501 explicit_loc.function_name = ASTRDUP (func_name);
3502 b->location = new_explicit_location (&explicit_loc);
3503 b->enable_state = bp_disabled;
3504 }
3505 }
3506
3507 /* Does B have a location spec? */
3508
3509 static int
3510 breakpoint_event_location_empty_p (const struct breakpoint *b)
3511 {
3512 return b->location != NULL && event_location_empty_p (b->location.get ());
3513 }
3514
3515 void
3516 update_breakpoints_after_exec (void)
3517 {
3518 struct breakpoint *b, *b_tmp;
3519 struct bp_location *bploc, **bplocp_tmp;
3520
3521 /* We're about to delete breakpoints from GDB's lists. If the
3522 INSERTED flag is true, GDB will try to lift the breakpoints by
3523 writing the breakpoints' "shadow contents" back into memory. The
3524 "shadow contents" are NOT valid after an exec, so GDB should not
3525 do that. Instead, the target is responsible from marking
3526 breakpoints out as soon as it detects an exec. We don't do that
3527 here instead, because there may be other attempts to delete
3528 breakpoints after detecting an exec and before reaching here. */
3529 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3530 if (bploc->pspace == current_program_space)
3531 gdb_assert (!bploc->inserted);
3532
3533 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3534 {
3535 if (b->pspace != current_program_space)
3536 continue;
3537
3538 /* Solib breakpoints must be explicitly reset after an exec(). */
3539 if (b->type == bp_shlib_event)
3540 {
3541 delete_breakpoint (b);
3542 continue;
3543 }
3544
3545 /* JIT breakpoints must be explicitly reset after an exec(). */
3546 if (b->type == bp_jit_event)
3547 {
3548 delete_breakpoint (b);
3549 continue;
3550 }
3551
3552 /* Thread event breakpoints must be set anew after an exec(),
3553 as must overlay event and longjmp master breakpoints. */
3554 if (b->type == bp_thread_event || b->type == bp_overlay_event
3555 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3556 || b->type == bp_exception_master)
3557 {
3558 delete_breakpoint (b);
3559 continue;
3560 }
3561
3562 /* Step-resume breakpoints are meaningless after an exec(). */
3563 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3564 {
3565 delete_breakpoint (b);
3566 continue;
3567 }
3568
3569 /* Just like single-step breakpoints. */
3570 if (b->type == bp_single_step)
3571 {
3572 delete_breakpoint (b);
3573 continue;
3574 }
3575
3576 /* Longjmp and longjmp-resume breakpoints are also meaningless
3577 after an exec. */
3578 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3579 || b->type == bp_longjmp_call_dummy
3580 || b->type == bp_exception || b->type == bp_exception_resume)
3581 {
3582 delete_breakpoint (b);
3583 continue;
3584 }
3585
3586 if (b->type == bp_catchpoint)
3587 {
3588 /* For now, none of the bp_catchpoint breakpoints need to
3589 do anything at this point. In the future, if some of
3590 the catchpoints need to something, we will need to add
3591 a new method, and call this method from here. */
3592 continue;
3593 }
3594
3595 /* bp_finish is a special case. The only way we ought to be able
3596 to see one of these when an exec() has happened, is if the user
3597 caught a vfork, and then said "finish". Ordinarily a finish just
3598 carries them to the call-site of the current callee, by setting
3599 a temporary bp there and resuming. But in this case, the finish
3600 will carry them entirely through the vfork & exec.
3601
3602 We don't want to allow a bp_finish to remain inserted now. But
3603 we can't safely delete it, 'cause finish_command has a handle to
3604 the bp on a bpstat, and will later want to delete it. There's a
3605 chance (and I've seen it happen) that if we delete the bp_finish
3606 here, that its storage will get reused by the time finish_command
3607 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3608 We really must allow finish_command to delete a bp_finish.
3609
3610 In the absence of a general solution for the "how do we know
3611 it's safe to delete something others may have handles to?"
3612 problem, what we'll do here is just uninsert the bp_finish, and
3613 let finish_command delete it.
3614
3615 (We know the bp_finish is "doomed" in the sense that it's
3616 momentary, and will be deleted as soon as finish_command sees
3617 the inferior stopped. So it doesn't matter that the bp's
3618 address is probably bogus in the new a.out, unlike e.g., the
3619 solib breakpoints.) */
3620
3621 if (b->type == bp_finish)
3622 {
3623 continue;
3624 }
3625
3626 /* Without a symbolic address, we have little hope of the
3627 pre-exec() address meaning the same thing in the post-exec()
3628 a.out. */
3629 if (breakpoint_event_location_empty_p (b))
3630 {
3631 delete_breakpoint (b);
3632 continue;
3633 }
3634 }
3635 }
3636
3637 int
3638 detach_breakpoints (ptid_t ptid)
3639 {
3640 struct bp_location *bl, **blp_tmp;
3641 int val = 0;
3642 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3643 struct inferior *inf = current_inferior ();
3644
3645 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3646 error (_("Cannot detach breakpoints of inferior_ptid"));
3647
3648 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3649 inferior_ptid = ptid;
3650 ALL_BP_LOCATIONS (bl, blp_tmp)
3651 {
3652 if (bl->pspace != inf->pspace)
3653 continue;
3654
3655 /* This function must physically remove breakpoints locations
3656 from the specified ptid, without modifying the breakpoint
3657 package's state. Locations of type bp_loc_other are only
3658 maintained at GDB side. So, there is no need to remove
3659 these bp_loc_other locations. Moreover, removing these
3660 would modify the breakpoint package's state. */
3661 if (bl->loc_type == bp_loc_other)
3662 continue;
3663
3664 if (bl->inserted)
3665 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3666 }
3667
3668 return val;
3669 }
3670
3671 /* Remove the breakpoint location BL from the current address space.
3672 Note that this is used to detach breakpoints from a child fork.
3673 When we get here, the child isn't in the inferior list, and neither
3674 do we have objects to represent its address space --- we should
3675 *not* look at bl->pspace->aspace here. */
3676
3677 static int
3678 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3679 {
3680 int val;
3681
3682 /* BL is never in moribund_locations by our callers. */
3683 gdb_assert (bl->owner != NULL);
3684
3685 /* The type of none suggests that owner is actually deleted.
3686 This should not ever happen. */
3687 gdb_assert (bl->owner->type != bp_none);
3688
3689 if (bl->loc_type == bp_loc_software_breakpoint
3690 || bl->loc_type == bp_loc_hardware_breakpoint)
3691 {
3692 /* "Normal" instruction breakpoint: either the standard
3693 trap-instruction bp (bp_breakpoint), or a
3694 bp_hardware_breakpoint. */
3695
3696 /* First check to see if we have to handle an overlay. */
3697 if (overlay_debugging == ovly_off
3698 || bl->section == NULL
3699 || !(section_is_overlay (bl->section)))
3700 {
3701 /* No overlay handling: just remove the breakpoint. */
3702
3703 /* If we're trying to uninsert a memory breakpoint that we
3704 know is set in a dynamic object that is marked
3705 shlib_disabled, then either the dynamic object was
3706 removed with "remove-symbol-file" or with
3707 "nosharedlibrary". In the former case, we don't know
3708 whether another dynamic object might have loaded over the
3709 breakpoint's address -- the user might well let us know
3710 about it next with add-symbol-file (the whole point of
3711 add-symbol-file is letting the user manually maintain a
3712 list of dynamically loaded objects). If we have the
3713 breakpoint's shadow memory, that is, this is a software
3714 breakpoint managed by GDB, check whether the breakpoint
3715 is still inserted in memory, to avoid overwriting wrong
3716 code with stale saved shadow contents. Note that HW
3717 breakpoints don't have shadow memory, as they're
3718 implemented using a mechanism that is not dependent on
3719 being able to modify the target's memory, and as such
3720 they should always be removed. */
3721 if (bl->shlib_disabled
3722 && bl->target_info.shadow_len != 0
3723 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3724 val = 0;
3725 else
3726 val = bl->owner->ops->remove_location (bl, reason);
3727 }
3728 else
3729 {
3730 /* This breakpoint is in an overlay section.
3731 Did we set a breakpoint at the LMA? */
3732 if (!overlay_events_enabled)
3733 {
3734 /* Yes -- overlay event support is not active, so we
3735 should have set a breakpoint at the LMA. Remove it.
3736 */
3737 /* Ignore any failures: if the LMA is in ROM, we will
3738 have already warned when we failed to insert it. */
3739 if (bl->loc_type == bp_loc_hardware_breakpoint)
3740 target_remove_hw_breakpoint (bl->gdbarch,
3741 &bl->overlay_target_info);
3742 else
3743 target_remove_breakpoint (bl->gdbarch,
3744 &bl->overlay_target_info,
3745 reason);
3746 }
3747 /* Did we set a breakpoint at the VMA?
3748 If so, we will have marked the breakpoint 'inserted'. */
3749 if (bl->inserted)
3750 {
3751 /* Yes -- remove it. Previously we did not bother to
3752 remove the breakpoint if the section had been
3753 unmapped, but let's not rely on that being safe. We
3754 don't know what the overlay manager might do. */
3755
3756 /* However, we should remove *software* breakpoints only
3757 if the section is still mapped, or else we overwrite
3758 wrong code with the saved shadow contents. */
3759 if (bl->loc_type == bp_loc_hardware_breakpoint
3760 || section_is_mapped (bl->section))
3761 val = bl->owner->ops->remove_location (bl, reason);
3762 else
3763 val = 0;
3764 }
3765 else
3766 {
3767 /* No -- not inserted, so no need to remove. No error. */
3768 val = 0;
3769 }
3770 }
3771
3772 /* In some cases, we might not be able to remove a breakpoint in
3773 a shared library that has already been removed, but we have
3774 not yet processed the shlib unload event. Similarly for an
3775 unloaded add-symbol-file object - the user might not yet have
3776 had the chance to remove-symbol-file it. shlib_disabled will
3777 be set if the library/object has already been removed, but
3778 the breakpoint hasn't been uninserted yet, e.g., after
3779 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3780 always-inserted mode. */
3781 if (val
3782 && (bl->loc_type == bp_loc_software_breakpoint
3783 && (bl->shlib_disabled
3784 || solib_name_from_address (bl->pspace, bl->address)
3785 || shared_objfile_contains_address_p (bl->pspace,
3786 bl->address))))
3787 val = 0;
3788
3789 if (val)
3790 return val;
3791 bl->inserted = (reason == DETACH_BREAKPOINT);
3792 }
3793 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3794 {
3795 gdb_assert (bl->owner->ops != NULL
3796 && bl->owner->ops->remove_location != NULL);
3797
3798 bl->inserted = (reason == DETACH_BREAKPOINT);
3799 bl->owner->ops->remove_location (bl, reason);
3800
3801 /* Failure to remove any of the hardware watchpoints comes here. */
3802 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3803 warning (_("Could not remove hardware watchpoint %d."),
3804 bl->owner->number);
3805 }
3806 else if (bl->owner->type == bp_catchpoint
3807 && breakpoint_enabled (bl->owner)
3808 && !bl->duplicate)
3809 {
3810 gdb_assert (bl->owner->ops != NULL
3811 && bl->owner->ops->remove_location != NULL);
3812
3813 val = bl->owner->ops->remove_location (bl, reason);
3814 if (val)
3815 return val;
3816
3817 bl->inserted = (reason == DETACH_BREAKPOINT);
3818 }
3819
3820 return 0;
3821 }
3822
3823 static int
3824 remove_breakpoint (struct bp_location *bl)
3825 {
3826 /* BL is never in moribund_locations by our callers. */
3827 gdb_assert (bl->owner != NULL);
3828
3829 /* The type of none suggests that owner is actually deleted.
3830 This should not ever happen. */
3831 gdb_assert (bl->owner->type != bp_none);
3832
3833 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3834
3835 switch_to_program_space_and_thread (bl->pspace);
3836
3837 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3838 }
3839
3840 /* Clear the "inserted" flag in all breakpoints. */
3841
3842 void
3843 mark_breakpoints_out (void)
3844 {
3845 struct bp_location *bl, **blp_tmp;
3846
3847 ALL_BP_LOCATIONS (bl, blp_tmp)
3848 if (bl->pspace == current_program_space)
3849 bl->inserted = 0;
3850 }
3851
3852 /* Clear the "inserted" flag in all breakpoints and delete any
3853 breakpoints which should go away between runs of the program.
3854
3855 Plus other such housekeeping that has to be done for breakpoints
3856 between runs.
3857
3858 Note: this function gets called at the end of a run (by
3859 generic_mourn_inferior) and when a run begins (by
3860 init_wait_for_inferior). */
3861
3862
3863
3864 void
3865 breakpoint_init_inferior (enum inf_context context)
3866 {
3867 struct breakpoint *b, *b_tmp;
3868 struct bp_location *bl;
3869 int ix;
3870 struct program_space *pspace = current_program_space;
3871
3872 /* If breakpoint locations are shared across processes, then there's
3873 nothing to do. */
3874 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3875 return;
3876
3877 mark_breakpoints_out ();
3878
3879 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3880 {
3881 if (b->loc && b->loc->pspace != pspace)
3882 continue;
3883
3884 switch (b->type)
3885 {
3886 case bp_call_dummy:
3887 case bp_longjmp_call_dummy:
3888
3889 /* If the call dummy breakpoint is at the entry point it will
3890 cause problems when the inferior is rerun, so we better get
3891 rid of it. */
3892
3893 case bp_watchpoint_scope:
3894
3895 /* Also get rid of scope breakpoints. */
3896
3897 case bp_shlib_event:
3898
3899 /* Also remove solib event breakpoints. Their addresses may
3900 have changed since the last time we ran the program.
3901 Actually we may now be debugging against different target;
3902 and so the solib backend that installed this breakpoint may
3903 not be used in by the target. E.g.,
3904
3905 (gdb) file prog-linux
3906 (gdb) run # native linux target
3907 ...
3908 (gdb) kill
3909 (gdb) file prog-win.exe
3910 (gdb) tar rem :9999 # remote Windows gdbserver.
3911 */
3912
3913 case bp_step_resume:
3914
3915 /* Also remove step-resume breakpoints. */
3916
3917 case bp_single_step:
3918
3919 /* Also remove single-step breakpoints. */
3920
3921 delete_breakpoint (b);
3922 break;
3923
3924 case bp_watchpoint:
3925 case bp_hardware_watchpoint:
3926 case bp_read_watchpoint:
3927 case bp_access_watchpoint:
3928 {
3929 struct watchpoint *w = (struct watchpoint *) b;
3930
3931 /* Likewise for watchpoints on local expressions. */
3932 if (w->exp_valid_block != NULL)
3933 delete_breakpoint (b);
3934 else
3935 {
3936 /* Get rid of existing locations, which are no longer
3937 valid. New ones will be created in
3938 update_watchpoint, when the inferior is restarted.
3939 The next update_global_location_list call will
3940 garbage collect them. */
3941 b->loc = NULL;
3942
3943 if (context == inf_starting)
3944 {
3945 /* Reset val field to force reread of starting value in
3946 insert_breakpoints. */
3947 w->val.reset (nullptr);
3948 w->val_valid = 0;
3949 }
3950 }
3951 }
3952 break;
3953 default:
3954 break;
3955 }
3956 }
3957
3958 /* Get rid of the moribund locations. */
3959 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3960 decref_bp_location (&bl);
3961 VEC_free (bp_location_p, moribund_locations);
3962 }
3963
3964 /* These functions concern about actual breakpoints inserted in the
3965 target --- to e.g. check if we need to do decr_pc adjustment or if
3966 we need to hop over the bkpt --- so we check for address space
3967 match, not program space. */
3968
3969 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3970 exists at PC. It returns ordinary_breakpoint_here if it's an
3971 ordinary breakpoint, or permanent_breakpoint_here if it's a
3972 permanent breakpoint.
3973 - When continuing from a location with an ordinary breakpoint, we
3974 actually single step once before calling insert_breakpoints.
3975 - When continuing from a location with a permanent breakpoint, we
3976 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3977 the target, to advance the PC past the breakpoint. */
3978
3979 enum breakpoint_here
3980 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3981 {
3982 struct bp_location *bl, **blp_tmp;
3983 int any_breakpoint_here = 0;
3984
3985 ALL_BP_LOCATIONS (bl, blp_tmp)
3986 {
3987 if (bl->loc_type != bp_loc_software_breakpoint
3988 && bl->loc_type != bp_loc_hardware_breakpoint)
3989 continue;
3990
3991 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3992 if ((breakpoint_enabled (bl->owner)
3993 || bl->permanent)
3994 && breakpoint_location_address_match (bl, aspace, pc))
3995 {
3996 if (overlay_debugging
3997 && section_is_overlay (bl->section)
3998 && !section_is_mapped (bl->section))
3999 continue; /* unmapped overlay -- can't be a match */
4000 else if (bl->permanent)
4001 return permanent_breakpoint_here;
4002 else
4003 any_breakpoint_here = 1;
4004 }
4005 }
4006
4007 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4008 }
4009
4010 /* See breakpoint.h. */
4011
4012 int
4013 breakpoint_in_range_p (const address_space *aspace,
4014 CORE_ADDR addr, ULONGEST len)
4015 {
4016 struct bp_location *bl, **blp_tmp;
4017
4018 ALL_BP_LOCATIONS (bl, blp_tmp)
4019 {
4020 if (bl->loc_type != bp_loc_software_breakpoint
4021 && bl->loc_type != bp_loc_hardware_breakpoint)
4022 continue;
4023
4024 if ((breakpoint_enabled (bl->owner)
4025 || bl->permanent)
4026 && breakpoint_location_address_range_overlap (bl, aspace,
4027 addr, len))
4028 {
4029 if (overlay_debugging
4030 && section_is_overlay (bl->section)
4031 && !section_is_mapped (bl->section))
4032 {
4033 /* Unmapped overlay -- can't be a match. */
4034 continue;
4035 }
4036
4037 return 1;
4038 }
4039 }
4040
4041 return 0;
4042 }
4043
4044 /* Return true if there's a moribund breakpoint at PC. */
4045
4046 int
4047 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4048 {
4049 struct bp_location *loc;
4050 int ix;
4051
4052 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4053 if (breakpoint_location_address_match (loc, aspace, pc))
4054 return 1;
4055
4056 return 0;
4057 }
4058
4059 /* Returns non-zero iff BL is inserted at PC, in address space
4060 ASPACE. */
4061
4062 static int
4063 bp_location_inserted_here_p (struct bp_location *bl,
4064 const address_space *aspace, CORE_ADDR pc)
4065 {
4066 if (bl->inserted
4067 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4068 aspace, pc))
4069 {
4070 if (overlay_debugging
4071 && section_is_overlay (bl->section)
4072 && !section_is_mapped (bl->section))
4073 return 0; /* unmapped overlay -- can't be a match */
4074 else
4075 return 1;
4076 }
4077 return 0;
4078 }
4079
4080 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4081
4082 int
4083 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4084 {
4085 struct bp_location **blp, **blp_tmp = NULL;
4086
4087 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4088 {
4089 struct bp_location *bl = *blp;
4090
4091 if (bl->loc_type != bp_loc_software_breakpoint
4092 && bl->loc_type != bp_loc_hardware_breakpoint)
4093 continue;
4094
4095 if (bp_location_inserted_here_p (bl, aspace, pc))
4096 return 1;
4097 }
4098 return 0;
4099 }
4100
4101 /* This function returns non-zero iff there is a software breakpoint
4102 inserted at PC. */
4103
4104 int
4105 software_breakpoint_inserted_here_p (const address_space *aspace,
4106 CORE_ADDR pc)
4107 {
4108 struct bp_location **blp, **blp_tmp = NULL;
4109
4110 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4111 {
4112 struct bp_location *bl = *blp;
4113
4114 if (bl->loc_type != bp_loc_software_breakpoint)
4115 continue;
4116
4117 if (bp_location_inserted_here_p (bl, aspace, pc))
4118 return 1;
4119 }
4120
4121 return 0;
4122 }
4123
4124 /* See breakpoint.h. */
4125
4126 int
4127 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4128 CORE_ADDR pc)
4129 {
4130 struct bp_location **blp, **blp_tmp = NULL;
4131
4132 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4133 {
4134 struct bp_location *bl = *blp;
4135
4136 if (bl->loc_type != bp_loc_hardware_breakpoint)
4137 continue;
4138
4139 if (bp_location_inserted_here_p (bl, aspace, pc))
4140 return 1;
4141 }
4142
4143 return 0;
4144 }
4145
4146 int
4147 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4148 CORE_ADDR addr, ULONGEST len)
4149 {
4150 struct breakpoint *bpt;
4151
4152 ALL_BREAKPOINTS (bpt)
4153 {
4154 struct bp_location *loc;
4155
4156 if (bpt->type != bp_hardware_watchpoint
4157 && bpt->type != bp_access_watchpoint)
4158 continue;
4159
4160 if (!breakpoint_enabled (bpt))
4161 continue;
4162
4163 for (loc = bpt->loc; loc; loc = loc->next)
4164 if (loc->pspace->aspace == aspace && loc->inserted)
4165 {
4166 CORE_ADDR l, h;
4167
4168 /* Check for intersection. */
4169 l = std::max<CORE_ADDR> (loc->address, addr);
4170 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4171 if (l < h)
4172 return 1;
4173 }
4174 }
4175 return 0;
4176 }
4177 \f
4178
4179 /* bpstat stuff. External routines' interfaces are documented
4180 in breakpoint.h. */
4181
4182 int
4183 is_catchpoint (struct breakpoint *ep)
4184 {
4185 return (ep->type == bp_catchpoint);
4186 }
4187
4188 /* Frees any storage that is part of a bpstat. Does not walk the
4189 'next' chain. */
4190
4191 bpstats::~bpstats ()
4192 {
4193 if (bp_location_at != NULL)
4194 decref_bp_location (&bp_location_at);
4195 }
4196
4197 /* Clear a bpstat so that it says we are not at any breakpoint.
4198 Also free any storage that is part of a bpstat. */
4199
4200 void
4201 bpstat_clear (bpstat *bsp)
4202 {
4203 bpstat p;
4204 bpstat q;
4205
4206 if (bsp == 0)
4207 return;
4208 p = *bsp;
4209 while (p != NULL)
4210 {
4211 q = p->next;
4212 delete p;
4213 p = q;
4214 }
4215 *bsp = NULL;
4216 }
4217
4218 bpstats::bpstats (const bpstats &other)
4219 : next (NULL),
4220 bp_location_at (other.bp_location_at),
4221 breakpoint_at (other.breakpoint_at),
4222 commands (other.commands),
4223 print (other.print),
4224 stop (other.stop),
4225 print_it (other.print_it)
4226 {
4227 if (other.old_val != NULL)
4228 old_val = release_value (value_copy (other.old_val.get ()));
4229 incref_bp_location (bp_location_at);
4230 }
4231
4232 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4233 is part of the bpstat is copied as well. */
4234
4235 bpstat
4236 bpstat_copy (bpstat bs)
4237 {
4238 bpstat p = NULL;
4239 bpstat tmp;
4240 bpstat retval = NULL;
4241
4242 if (bs == NULL)
4243 return bs;
4244
4245 for (; bs != NULL; bs = bs->next)
4246 {
4247 tmp = new bpstats (*bs);
4248
4249 if (p == NULL)
4250 /* This is the first thing in the chain. */
4251 retval = tmp;
4252 else
4253 p->next = tmp;
4254 p = tmp;
4255 }
4256 p->next = NULL;
4257 return retval;
4258 }
4259
4260 /* Find the bpstat associated with this breakpoint. */
4261
4262 bpstat
4263 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4264 {
4265 if (bsp == NULL)
4266 return NULL;
4267
4268 for (; bsp != NULL; bsp = bsp->next)
4269 {
4270 if (bsp->breakpoint_at == breakpoint)
4271 return bsp;
4272 }
4273 return NULL;
4274 }
4275
4276 /* See breakpoint.h. */
4277
4278 int
4279 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4280 {
4281 for (; bsp != NULL; bsp = bsp->next)
4282 {
4283 if (bsp->breakpoint_at == NULL)
4284 {
4285 /* A moribund location can never explain a signal other than
4286 GDB_SIGNAL_TRAP. */
4287 if (sig == GDB_SIGNAL_TRAP)
4288 return 1;
4289 }
4290 else
4291 {
4292 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4293 sig))
4294 return 1;
4295 }
4296 }
4297
4298 return 0;
4299 }
4300
4301 /* Put in *NUM the breakpoint number of the first breakpoint we are
4302 stopped at. *BSP upon return is a bpstat which points to the
4303 remaining breakpoints stopped at (but which is not guaranteed to be
4304 good for anything but further calls to bpstat_num).
4305
4306 Return 0 if passed a bpstat which does not indicate any breakpoints.
4307 Return -1 if stopped at a breakpoint that has been deleted since
4308 we set it.
4309 Return 1 otherwise. */
4310
4311 int
4312 bpstat_num (bpstat *bsp, int *num)
4313 {
4314 struct breakpoint *b;
4315
4316 if ((*bsp) == NULL)
4317 return 0; /* No more breakpoint values */
4318
4319 /* We assume we'll never have several bpstats that correspond to a
4320 single breakpoint -- otherwise, this function might return the
4321 same number more than once and this will look ugly. */
4322 b = (*bsp)->breakpoint_at;
4323 *bsp = (*bsp)->next;
4324 if (b == NULL)
4325 return -1; /* breakpoint that's been deleted since */
4326
4327 *num = b->number; /* We have its number */
4328 return 1;
4329 }
4330
4331 /* See breakpoint.h. */
4332
4333 void
4334 bpstat_clear_actions (void)
4335 {
4336 struct thread_info *tp;
4337 bpstat bs;
4338
4339 if (ptid_equal (inferior_ptid, null_ptid))
4340 return;
4341
4342 tp = find_thread_ptid (inferior_ptid);
4343 if (tp == NULL)
4344 return;
4345
4346 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4347 {
4348 bs->commands = NULL;
4349 bs->old_val.reset (nullptr);
4350 }
4351 }
4352
4353 /* Called when a command is about to proceed the inferior. */
4354
4355 static void
4356 breakpoint_about_to_proceed (void)
4357 {
4358 if (!ptid_equal (inferior_ptid, null_ptid))
4359 {
4360 struct thread_info *tp = inferior_thread ();
4361
4362 /* Allow inferior function calls in breakpoint commands to not
4363 interrupt the command list. When the call finishes
4364 successfully, the inferior will be standing at the same
4365 breakpoint as if nothing happened. */
4366 if (tp->control.in_infcall)
4367 return;
4368 }
4369
4370 breakpoint_proceeded = 1;
4371 }
4372
4373 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4374 or its equivalent. */
4375
4376 static int
4377 command_line_is_silent (struct command_line *cmd)
4378 {
4379 return cmd && (strcmp ("silent", cmd->line) == 0);
4380 }
4381
4382 /* Execute all the commands associated with all the breakpoints at
4383 this location. Any of these commands could cause the process to
4384 proceed beyond this point, etc. We look out for such changes by
4385 checking the global "breakpoint_proceeded" after each command.
4386
4387 Returns true if a breakpoint command resumed the inferior. In that
4388 case, it is the caller's responsibility to recall it again with the
4389 bpstat of the current thread. */
4390
4391 static int
4392 bpstat_do_actions_1 (bpstat *bsp)
4393 {
4394 bpstat bs;
4395 int again = 0;
4396
4397 /* Avoid endless recursion if a `source' command is contained
4398 in bs->commands. */
4399 if (executing_breakpoint_commands)
4400 return 0;
4401
4402 scoped_restore save_executing
4403 = make_scoped_restore (&executing_breakpoint_commands, 1);
4404
4405 scoped_restore preventer = prevent_dont_repeat ();
4406
4407 /* This pointer will iterate over the list of bpstat's. */
4408 bs = *bsp;
4409
4410 breakpoint_proceeded = 0;
4411 for (; bs != NULL; bs = bs->next)
4412 {
4413 struct command_line *cmd = NULL;
4414
4415 /* Take ownership of the BSP's command tree, if it has one.
4416
4417 The command tree could legitimately contain commands like
4418 'step' and 'next', which call clear_proceed_status, which
4419 frees stop_bpstat's command tree. To make sure this doesn't
4420 free the tree we're executing out from under us, we need to
4421 take ownership of the tree ourselves. Since a given bpstat's
4422 commands are only executed once, we don't need to copy it; we
4423 can clear the pointer in the bpstat, and make sure we free
4424 the tree when we're done. */
4425 counted_command_line ccmd = bs->commands;
4426 bs->commands = NULL;
4427 if (ccmd != NULL)
4428 cmd = ccmd.get ();
4429 if (command_line_is_silent (cmd))
4430 {
4431 /* The action has been already done by bpstat_stop_status. */
4432 cmd = cmd->next;
4433 }
4434
4435 while (cmd != NULL)
4436 {
4437 execute_control_command (cmd);
4438
4439 if (breakpoint_proceeded)
4440 break;
4441 else
4442 cmd = cmd->next;
4443 }
4444
4445 if (breakpoint_proceeded)
4446 {
4447 if (current_ui->async)
4448 /* If we are in async mode, then the target might be still
4449 running, not stopped at any breakpoint, so nothing for
4450 us to do here -- just return to the event loop. */
4451 ;
4452 else
4453 /* In sync mode, when execute_control_command returns
4454 we're already standing on the next breakpoint.
4455 Breakpoint commands for that stop were not run, since
4456 execute_command does not run breakpoint commands --
4457 only command_line_handler does, but that one is not
4458 involved in execution of breakpoint commands. So, we
4459 can now execute breakpoint commands. It should be
4460 noted that making execute_command do bpstat actions is
4461 not an option -- in this case we'll have recursive
4462 invocation of bpstat for each breakpoint with a
4463 command, and can easily blow up GDB stack. Instead, we
4464 return true, which will trigger the caller to recall us
4465 with the new stop_bpstat. */
4466 again = 1;
4467 break;
4468 }
4469 }
4470 return again;
4471 }
4472
4473 void
4474 bpstat_do_actions (void)
4475 {
4476 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4477
4478 /* Do any commands attached to breakpoint we are stopped at. */
4479 while (!ptid_equal (inferior_ptid, null_ptid)
4480 && target_has_execution
4481 && !is_exited (inferior_ptid)
4482 && !is_executing (inferior_ptid))
4483 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4484 and only return when it is stopped at the next breakpoint, we
4485 keep doing breakpoint actions until it returns false to
4486 indicate the inferior was not resumed. */
4487 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4488 break;
4489
4490 discard_cleanups (cleanup_if_error);
4491 }
4492
4493 /* Print out the (old or new) value associated with a watchpoint. */
4494
4495 static void
4496 watchpoint_value_print (struct value *val, struct ui_file *stream)
4497 {
4498 if (val == NULL)
4499 fprintf_unfiltered (stream, _("<unreadable>"));
4500 else
4501 {
4502 struct value_print_options opts;
4503 get_user_print_options (&opts);
4504 value_print (val, stream, &opts);
4505 }
4506 }
4507
4508 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4509 debugging multiple threads. */
4510
4511 void
4512 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4513 {
4514 if (uiout->is_mi_like_p ())
4515 return;
4516
4517 uiout->text ("\n");
4518
4519 if (show_thread_that_caused_stop ())
4520 {
4521 const char *name;
4522 struct thread_info *thr = inferior_thread ();
4523
4524 uiout->text ("Thread ");
4525 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4526
4527 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4528 if (name != NULL)
4529 {
4530 uiout->text (" \"");
4531 uiout->field_fmt ("name", "%s", name);
4532 uiout->text ("\"");
4533 }
4534
4535 uiout->text (" hit ");
4536 }
4537 }
4538
4539 /* Generic routine for printing messages indicating why we
4540 stopped. The behavior of this function depends on the value
4541 'print_it' in the bpstat structure. Under some circumstances we
4542 may decide not to print anything here and delegate the task to
4543 normal_stop(). */
4544
4545 static enum print_stop_action
4546 print_bp_stop_message (bpstat bs)
4547 {
4548 switch (bs->print_it)
4549 {
4550 case print_it_noop:
4551 /* Nothing should be printed for this bpstat entry. */
4552 return PRINT_UNKNOWN;
4553 break;
4554
4555 case print_it_done:
4556 /* We still want to print the frame, but we already printed the
4557 relevant messages. */
4558 return PRINT_SRC_AND_LOC;
4559 break;
4560
4561 case print_it_normal:
4562 {
4563 struct breakpoint *b = bs->breakpoint_at;
4564
4565 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4566 which has since been deleted. */
4567 if (b == NULL)
4568 return PRINT_UNKNOWN;
4569
4570 /* Normal case. Call the breakpoint's print_it method. */
4571 return b->ops->print_it (bs);
4572 }
4573 break;
4574
4575 default:
4576 internal_error (__FILE__, __LINE__,
4577 _("print_bp_stop_message: unrecognized enum value"));
4578 break;
4579 }
4580 }
4581
4582 /* A helper function that prints a shared library stopped event. */
4583
4584 static void
4585 print_solib_event (int is_catchpoint)
4586 {
4587 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4588 int any_added
4589 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4590
4591 if (!is_catchpoint)
4592 {
4593 if (any_added || any_deleted)
4594 current_uiout->text (_("Stopped due to shared library event:\n"));
4595 else
4596 current_uiout->text (_("Stopped due to shared library event (no "
4597 "libraries added or removed)\n"));
4598 }
4599
4600 if (current_uiout->is_mi_like_p ())
4601 current_uiout->field_string ("reason",
4602 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4603
4604 if (any_deleted)
4605 {
4606 current_uiout->text (_(" Inferior unloaded "));
4607 ui_out_emit_list list_emitter (current_uiout, "removed");
4608 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4609 {
4610 const std::string &name = current_program_space->deleted_solibs[ix];
4611
4612 if (ix > 0)
4613 current_uiout->text (" ");
4614 current_uiout->field_string ("library", name);
4615 current_uiout->text ("\n");
4616 }
4617 }
4618
4619 if (any_added)
4620 {
4621 struct so_list *iter;
4622 int ix;
4623
4624 current_uiout->text (_(" Inferior loaded "));
4625 ui_out_emit_list list_emitter (current_uiout, "added");
4626 for (ix = 0;
4627 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4628 ix, iter);
4629 ++ix)
4630 {
4631 if (ix > 0)
4632 current_uiout->text (" ");
4633 current_uiout->field_string ("library", iter->so_name);
4634 current_uiout->text ("\n");
4635 }
4636 }
4637 }
4638
4639 /* Print a message indicating what happened. This is called from
4640 normal_stop(). The input to this routine is the head of the bpstat
4641 list - a list of the eventpoints that caused this stop. KIND is
4642 the target_waitkind for the stopping event. This
4643 routine calls the generic print routine for printing a message
4644 about reasons for stopping. This will print (for example) the
4645 "Breakpoint n," part of the output. The return value of this
4646 routine is one of:
4647
4648 PRINT_UNKNOWN: Means we printed nothing.
4649 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4650 code to print the location. An example is
4651 "Breakpoint 1, " which should be followed by
4652 the location.
4653 PRINT_SRC_ONLY: Means we printed something, but there is no need
4654 to also print the location part of the message.
4655 An example is the catch/throw messages, which
4656 don't require a location appended to the end.
4657 PRINT_NOTHING: We have done some printing and we don't need any
4658 further info to be printed. */
4659
4660 enum print_stop_action
4661 bpstat_print (bpstat bs, int kind)
4662 {
4663 enum print_stop_action val;
4664
4665 /* Maybe another breakpoint in the chain caused us to stop.
4666 (Currently all watchpoints go on the bpstat whether hit or not.
4667 That probably could (should) be changed, provided care is taken
4668 with respect to bpstat_explains_signal). */
4669 for (; bs; bs = bs->next)
4670 {
4671 val = print_bp_stop_message (bs);
4672 if (val == PRINT_SRC_ONLY
4673 || val == PRINT_SRC_AND_LOC
4674 || val == PRINT_NOTHING)
4675 return val;
4676 }
4677
4678 /* If we had hit a shared library event breakpoint,
4679 print_bp_stop_message would print out this message. If we hit an
4680 OS-level shared library event, do the same thing. */
4681 if (kind == TARGET_WAITKIND_LOADED)
4682 {
4683 print_solib_event (0);
4684 return PRINT_NOTHING;
4685 }
4686
4687 /* We reached the end of the chain, or we got a null BS to start
4688 with and nothing was printed. */
4689 return PRINT_UNKNOWN;
4690 }
4691
4692 /* Evaluate the boolean expression EXP and return the result. */
4693
4694 static bool
4695 breakpoint_cond_eval (expression *exp)
4696 {
4697 struct value *mark = value_mark ();
4698 bool res = value_true (evaluate_expression (exp));
4699
4700 value_free_to_mark (mark);
4701 return res;
4702 }
4703
4704 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4705
4706 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4707 : next (NULL),
4708 bp_location_at (bl),
4709 breakpoint_at (bl->owner),
4710 commands (NULL),
4711 print (0),
4712 stop (0),
4713 print_it (print_it_normal)
4714 {
4715 incref_bp_location (bl);
4716 **bs_link_pointer = this;
4717 *bs_link_pointer = &next;
4718 }
4719
4720 bpstats::bpstats ()
4721 : next (NULL),
4722 bp_location_at (NULL),
4723 breakpoint_at (NULL),
4724 commands (NULL),
4725 print (0),
4726 stop (0),
4727 print_it (print_it_normal)
4728 {
4729 }
4730 \f
4731 /* The target has stopped with waitstatus WS. Check if any hardware
4732 watchpoints have triggered, according to the target. */
4733
4734 int
4735 watchpoints_triggered (struct target_waitstatus *ws)
4736 {
4737 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4738 CORE_ADDR addr;
4739 struct breakpoint *b;
4740
4741 if (!stopped_by_watchpoint)
4742 {
4743 /* We were not stopped by a watchpoint. Mark all watchpoints
4744 as not triggered. */
4745 ALL_BREAKPOINTS (b)
4746 if (is_hardware_watchpoint (b))
4747 {
4748 struct watchpoint *w = (struct watchpoint *) b;
4749
4750 w->watchpoint_triggered = watch_triggered_no;
4751 }
4752
4753 return 0;
4754 }
4755
4756 if (!target_stopped_data_address (&current_target, &addr))
4757 {
4758 /* We were stopped by a watchpoint, but we don't know where.
4759 Mark all watchpoints as unknown. */
4760 ALL_BREAKPOINTS (b)
4761 if (is_hardware_watchpoint (b))
4762 {
4763 struct watchpoint *w = (struct watchpoint *) b;
4764
4765 w->watchpoint_triggered = watch_triggered_unknown;
4766 }
4767
4768 return 1;
4769 }
4770
4771 /* The target could report the data address. Mark watchpoints
4772 affected by this data address as triggered, and all others as not
4773 triggered. */
4774
4775 ALL_BREAKPOINTS (b)
4776 if (is_hardware_watchpoint (b))
4777 {
4778 struct watchpoint *w = (struct watchpoint *) b;
4779 struct bp_location *loc;
4780
4781 w->watchpoint_triggered = watch_triggered_no;
4782 for (loc = b->loc; loc; loc = loc->next)
4783 {
4784 if (is_masked_watchpoint (b))
4785 {
4786 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4787 CORE_ADDR start = loc->address & w->hw_wp_mask;
4788
4789 if (newaddr == start)
4790 {
4791 w->watchpoint_triggered = watch_triggered_yes;
4792 break;
4793 }
4794 }
4795 /* Exact match not required. Within range is sufficient. */
4796 else if (target_watchpoint_addr_within_range (&current_target,
4797 addr, loc->address,
4798 loc->length))
4799 {
4800 w->watchpoint_triggered = watch_triggered_yes;
4801 break;
4802 }
4803 }
4804 }
4805
4806 return 1;
4807 }
4808
4809 /* Possible return values for watchpoint_check. */
4810 enum wp_check_result
4811 {
4812 /* The watchpoint has been deleted. */
4813 WP_DELETED = 1,
4814
4815 /* The value has changed. */
4816 WP_VALUE_CHANGED = 2,
4817
4818 /* The value has not changed. */
4819 WP_VALUE_NOT_CHANGED = 3,
4820
4821 /* Ignore this watchpoint, no matter if the value changed or not. */
4822 WP_IGNORE = 4,
4823 };
4824
4825 #define BP_TEMPFLAG 1
4826 #define BP_HARDWAREFLAG 2
4827
4828 /* Evaluate watchpoint condition expression and check if its value
4829 changed. */
4830
4831 static wp_check_result
4832 watchpoint_check (bpstat bs)
4833 {
4834 struct watchpoint *b;
4835 struct frame_info *fr;
4836 int within_current_scope;
4837
4838 /* BS is built from an existing struct breakpoint. */
4839 gdb_assert (bs->breakpoint_at != NULL);
4840 b = (struct watchpoint *) bs->breakpoint_at;
4841
4842 /* If this is a local watchpoint, we only want to check if the
4843 watchpoint frame is in scope if the current thread is the thread
4844 that was used to create the watchpoint. */
4845 if (!watchpoint_in_thread_scope (b))
4846 return WP_IGNORE;
4847
4848 if (b->exp_valid_block == NULL)
4849 within_current_scope = 1;
4850 else
4851 {
4852 struct frame_info *frame = get_current_frame ();
4853 struct gdbarch *frame_arch = get_frame_arch (frame);
4854 CORE_ADDR frame_pc = get_frame_pc (frame);
4855
4856 /* stack_frame_destroyed_p() returns a non-zero value if we're
4857 still in the function but the stack frame has already been
4858 invalidated. Since we can't rely on the values of local
4859 variables after the stack has been destroyed, we are treating
4860 the watchpoint in that state as `not changed' without further
4861 checking. Don't mark watchpoints as changed if the current
4862 frame is in an epilogue - even if they are in some other
4863 frame, our view of the stack is likely to be wrong and
4864 frame_find_by_id could error out. */
4865 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4866 return WP_IGNORE;
4867
4868 fr = frame_find_by_id (b->watchpoint_frame);
4869 within_current_scope = (fr != NULL);
4870
4871 /* If we've gotten confused in the unwinder, we might have
4872 returned a frame that can't describe this variable. */
4873 if (within_current_scope)
4874 {
4875 struct symbol *function;
4876
4877 function = get_frame_function (fr);
4878 if (function == NULL
4879 || !contained_in (b->exp_valid_block,
4880 SYMBOL_BLOCK_VALUE (function)))
4881 within_current_scope = 0;
4882 }
4883
4884 if (within_current_scope)
4885 /* If we end up stopping, the current frame will get selected
4886 in normal_stop. So this call to select_frame won't affect
4887 the user. */
4888 select_frame (fr);
4889 }
4890
4891 if (within_current_scope)
4892 {
4893 /* We use value_{,free_to_}mark because it could be a *long*
4894 time before we return to the command level and call
4895 free_all_values. We can't call free_all_values because we
4896 might be in the middle of evaluating a function call. */
4897
4898 int pc = 0;
4899 struct value *mark;
4900 struct value *new_val;
4901
4902 if (is_masked_watchpoint (b))
4903 /* Since we don't know the exact trigger address (from
4904 stopped_data_address), just tell the user we've triggered
4905 a mask watchpoint. */
4906 return WP_VALUE_CHANGED;
4907
4908 mark = value_mark ();
4909 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4910
4911 if (b->val_bitsize != 0)
4912 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4913
4914 /* We use value_equal_contents instead of value_equal because
4915 the latter coerces an array to a pointer, thus comparing just
4916 the address of the array instead of its contents. This is
4917 not what we want. */
4918 if ((b->val != NULL) != (new_val != NULL)
4919 || (b->val != NULL && !value_equal_contents (b->val.get (),
4920 new_val)))
4921 {
4922 bs->old_val = b->val;
4923 b->val = release_value (new_val);
4924 b->val_valid = 1;
4925 if (new_val != NULL)
4926 value_free_to_mark (mark);
4927 return WP_VALUE_CHANGED;
4928 }
4929 else
4930 {
4931 /* Nothing changed. */
4932 value_free_to_mark (mark);
4933 return WP_VALUE_NOT_CHANGED;
4934 }
4935 }
4936 else
4937 {
4938 /* This seems like the only logical thing to do because
4939 if we temporarily ignored the watchpoint, then when
4940 we reenter the block in which it is valid it contains
4941 garbage (in the case of a function, it may have two
4942 garbage values, one before and one after the prologue).
4943 So we can't even detect the first assignment to it and
4944 watch after that (since the garbage may or may not equal
4945 the first value assigned). */
4946 /* We print all the stop information in
4947 breakpoint_ops->print_it, but in this case, by the time we
4948 call breakpoint_ops->print_it this bp will be deleted
4949 already. So we have no choice but print the information
4950 here. */
4951
4952 SWITCH_THRU_ALL_UIS ()
4953 {
4954 struct ui_out *uiout = current_uiout;
4955
4956 if (uiout->is_mi_like_p ())
4957 uiout->field_string
4958 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4959 uiout->text ("\nWatchpoint ");
4960 uiout->field_int ("wpnum", b->number);
4961 uiout->text (" deleted because the program has left the block in\n"
4962 "which its expression is valid.\n");
4963 }
4964
4965 /* Make sure the watchpoint's commands aren't executed. */
4966 b->commands = NULL;
4967 watchpoint_del_at_next_stop (b);
4968
4969 return WP_DELETED;
4970 }
4971 }
4972
4973 /* Return true if it looks like target has stopped due to hitting
4974 breakpoint location BL. This function does not check if we should
4975 stop, only if BL explains the stop. */
4976
4977 static int
4978 bpstat_check_location (const struct bp_location *bl,
4979 const address_space *aspace, CORE_ADDR bp_addr,
4980 const struct target_waitstatus *ws)
4981 {
4982 struct breakpoint *b = bl->owner;
4983
4984 /* BL is from an existing breakpoint. */
4985 gdb_assert (b != NULL);
4986
4987 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4988 }
4989
4990 /* Determine if the watched values have actually changed, and we
4991 should stop. If not, set BS->stop to 0. */
4992
4993 static void
4994 bpstat_check_watchpoint (bpstat bs)
4995 {
4996 const struct bp_location *bl;
4997 struct watchpoint *b;
4998
4999 /* BS is built for existing struct breakpoint. */
5000 bl = bs->bp_location_at;
5001 gdb_assert (bl != NULL);
5002 b = (struct watchpoint *) bs->breakpoint_at;
5003 gdb_assert (b != NULL);
5004
5005 {
5006 int must_check_value = 0;
5007
5008 if (b->type == bp_watchpoint)
5009 /* For a software watchpoint, we must always check the
5010 watched value. */
5011 must_check_value = 1;
5012 else if (b->watchpoint_triggered == watch_triggered_yes)
5013 /* We have a hardware watchpoint (read, write, or access)
5014 and the target earlier reported an address watched by
5015 this watchpoint. */
5016 must_check_value = 1;
5017 else if (b->watchpoint_triggered == watch_triggered_unknown
5018 && b->type == bp_hardware_watchpoint)
5019 /* We were stopped by a hardware watchpoint, but the target could
5020 not report the data address. We must check the watchpoint's
5021 value. Access and read watchpoints are out of luck; without
5022 a data address, we can't figure it out. */
5023 must_check_value = 1;
5024
5025 if (must_check_value)
5026 {
5027 wp_check_result e;
5028
5029 TRY
5030 {
5031 e = watchpoint_check (bs);
5032 }
5033 CATCH (ex, RETURN_MASK_ALL)
5034 {
5035 exception_fprintf (gdb_stderr, ex,
5036 "Error evaluating expression "
5037 "for watchpoint %d\n",
5038 b->number);
5039
5040 SWITCH_THRU_ALL_UIS ()
5041 {
5042 printf_filtered (_("Watchpoint %d deleted.\n"),
5043 b->number);
5044 }
5045 watchpoint_del_at_next_stop (b);
5046 e = WP_DELETED;
5047 }
5048 END_CATCH
5049
5050 switch (e)
5051 {
5052 case WP_DELETED:
5053 /* We've already printed what needs to be printed. */
5054 bs->print_it = print_it_done;
5055 /* Stop. */
5056 break;
5057 case WP_IGNORE:
5058 bs->print_it = print_it_noop;
5059 bs->stop = 0;
5060 break;
5061 case WP_VALUE_CHANGED:
5062 if (b->type == bp_read_watchpoint)
5063 {
5064 /* There are two cases to consider here:
5065
5066 1. We're watching the triggered memory for reads.
5067 In that case, trust the target, and always report
5068 the watchpoint hit to the user. Even though
5069 reads don't cause value changes, the value may
5070 have changed since the last time it was read, and
5071 since we're not trapping writes, we will not see
5072 those, and as such we should ignore our notion of
5073 old value.
5074
5075 2. We're watching the triggered memory for both
5076 reads and writes. There are two ways this may
5077 happen:
5078
5079 2.1. This is a target that can't break on data
5080 reads only, but can break on accesses (reads or
5081 writes), such as e.g., x86. We detect this case
5082 at the time we try to insert read watchpoints.
5083
5084 2.2. Otherwise, the target supports read
5085 watchpoints, but, the user set an access or write
5086 watchpoint watching the same memory as this read
5087 watchpoint.
5088
5089 If we're watching memory writes as well as reads,
5090 ignore watchpoint hits when we find that the
5091 value hasn't changed, as reads don't cause
5092 changes. This still gives false positives when
5093 the program writes the same value to memory as
5094 what there was already in memory (we will confuse
5095 it for a read), but it's much better than
5096 nothing. */
5097
5098 int other_write_watchpoint = 0;
5099
5100 if (bl->watchpoint_type == hw_read)
5101 {
5102 struct breakpoint *other_b;
5103
5104 ALL_BREAKPOINTS (other_b)
5105 if (other_b->type == bp_hardware_watchpoint
5106 || other_b->type == bp_access_watchpoint)
5107 {
5108 struct watchpoint *other_w =
5109 (struct watchpoint *) other_b;
5110
5111 if (other_w->watchpoint_triggered
5112 == watch_triggered_yes)
5113 {
5114 other_write_watchpoint = 1;
5115 break;
5116 }
5117 }
5118 }
5119
5120 if (other_write_watchpoint
5121 || bl->watchpoint_type == hw_access)
5122 {
5123 /* We're watching the same memory for writes,
5124 and the value changed since the last time we
5125 updated it, so this trap must be for a write.
5126 Ignore it. */
5127 bs->print_it = print_it_noop;
5128 bs->stop = 0;
5129 }
5130 }
5131 break;
5132 case WP_VALUE_NOT_CHANGED:
5133 if (b->type == bp_hardware_watchpoint
5134 || b->type == bp_watchpoint)
5135 {
5136 /* Don't stop: write watchpoints shouldn't fire if
5137 the value hasn't changed. */
5138 bs->print_it = print_it_noop;
5139 bs->stop = 0;
5140 }
5141 /* Stop. */
5142 break;
5143 default:
5144 /* Can't happen. */
5145 break;
5146 }
5147 }
5148 else /* must_check_value == 0 */
5149 {
5150 /* This is a case where some watchpoint(s) triggered, but
5151 not at the address of this watchpoint, or else no
5152 watchpoint triggered after all. So don't print
5153 anything for this watchpoint. */
5154 bs->print_it = print_it_noop;
5155 bs->stop = 0;
5156 }
5157 }
5158 }
5159
5160 /* For breakpoints that are currently marked as telling gdb to stop,
5161 check conditions (condition proper, frame, thread and ignore count)
5162 of breakpoint referred to by BS. If we should not stop for this
5163 breakpoint, set BS->stop to 0. */
5164
5165 static void
5166 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5167 {
5168 const struct bp_location *bl;
5169 struct breakpoint *b;
5170 /* Assume stop. */
5171 bool condition_result = true;
5172 struct expression *cond;
5173
5174 gdb_assert (bs->stop);
5175
5176 /* BS is built for existing struct breakpoint. */
5177 bl = bs->bp_location_at;
5178 gdb_assert (bl != NULL);
5179 b = bs->breakpoint_at;
5180 gdb_assert (b != NULL);
5181
5182 /* Even if the target evaluated the condition on its end and notified GDB, we
5183 need to do so again since GDB does not know if we stopped due to a
5184 breakpoint or a single step breakpoint. */
5185
5186 if (frame_id_p (b->frame_id)
5187 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5188 {
5189 bs->stop = 0;
5190 return;
5191 }
5192
5193 /* If this is a thread/task-specific breakpoint, don't waste cpu
5194 evaluating the condition if this isn't the specified
5195 thread/task. */
5196 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5197 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5198
5199 {
5200 bs->stop = 0;
5201 return;
5202 }
5203
5204 /* Evaluate extension language breakpoints that have a "stop" method
5205 implemented. */
5206 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5207
5208 if (is_watchpoint (b))
5209 {
5210 struct watchpoint *w = (struct watchpoint *) b;
5211
5212 cond = w->cond_exp.get ();
5213 }
5214 else
5215 cond = bl->cond.get ();
5216
5217 if (cond && b->disposition != disp_del_at_next_stop)
5218 {
5219 int within_current_scope = 1;
5220 struct watchpoint * w;
5221
5222 /* We use value_mark and value_free_to_mark because it could
5223 be a long time before we return to the command level and
5224 call free_all_values. We can't call free_all_values
5225 because we might be in the middle of evaluating a
5226 function call. */
5227 struct value *mark = value_mark ();
5228
5229 if (is_watchpoint (b))
5230 w = (struct watchpoint *) b;
5231 else
5232 w = NULL;
5233
5234 /* Need to select the frame, with all that implies so that
5235 the conditions will have the right context. Because we
5236 use the frame, we will not see an inlined function's
5237 variables when we arrive at a breakpoint at the start
5238 of the inlined function; the current frame will be the
5239 call site. */
5240 if (w == NULL || w->cond_exp_valid_block == NULL)
5241 select_frame (get_current_frame ());
5242 else
5243 {
5244 struct frame_info *frame;
5245
5246 /* For local watchpoint expressions, which particular
5247 instance of a local is being watched matters, so we
5248 keep track of the frame to evaluate the expression
5249 in. To evaluate the condition however, it doesn't
5250 really matter which instantiation of the function
5251 where the condition makes sense triggers the
5252 watchpoint. This allows an expression like "watch
5253 global if q > 10" set in `func', catch writes to
5254 global on all threads that call `func', or catch
5255 writes on all recursive calls of `func' by a single
5256 thread. We simply always evaluate the condition in
5257 the innermost frame that's executing where it makes
5258 sense to evaluate the condition. It seems
5259 intuitive. */
5260 frame = block_innermost_frame (w->cond_exp_valid_block);
5261 if (frame != NULL)
5262 select_frame (frame);
5263 else
5264 within_current_scope = 0;
5265 }
5266 if (within_current_scope)
5267 {
5268 TRY
5269 {
5270 condition_result = breakpoint_cond_eval (cond);
5271 }
5272 CATCH (ex, RETURN_MASK_ALL)
5273 {
5274 exception_fprintf (gdb_stderr, ex,
5275 "Error in testing breakpoint condition:\n");
5276 }
5277 END_CATCH
5278 }
5279 else
5280 {
5281 warning (_("Watchpoint condition cannot be tested "
5282 "in the current scope"));
5283 /* If we failed to set the right context for this
5284 watchpoint, unconditionally report it. */
5285 }
5286 /* FIXME-someday, should give breakpoint #. */
5287 value_free_to_mark (mark);
5288 }
5289
5290 if (cond && !condition_result)
5291 {
5292 bs->stop = 0;
5293 }
5294 else if (b->ignore_count > 0)
5295 {
5296 b->ignore_count--;
5297 bs->stop = 0;
5298 /* Increase the hit count even though we don't stop. */
5299 ++(b->hit_count);
5300 gdb::observers::breakpoint_modified.notify (b);
5301 }
5302 }
5303
5304 /* Returns true if we need to track moribund locations of LOC's type
5305 on the current target. */
5306
5307 static int
5308 need_moribund_for_location_type (struct bp_location *loc)
5309 {
5310 return ((loc->loc_type == bp_loc_software_breakpoint
5311 && !target_supports_stopped_by_sw_breakpoint ())
5312 || (loc->loc_type == bp_loc_hardware_breakpoint
5313 && !target_supports_stopped_by_hw_breakpoint ()));
5314 }
5315
5316
5317 /* Get a bpstat associated with having just stopped at address
5318 BP_ADDR in thread PTID.
5319
5320 Determine whether we stopped at a breakpoint, etc, or whether we
5321 don't understand this stop. Result is a chain of bpstat's such
5322 that:
5323
5324 if we don't understand the stop, the result is a null pointer.
5325
5326 if we understand why we stopped, the result is not null.
5327
5328 Each element of the chain refers to a particular breakpoint or
5329 watchpoint at which we have stopped. (We may have stopped for
5330 several reasons concurrently.)
5331
5332 Each element of the chain has valid next, breakpoint_at,
5333 commands, FIXME??? fields. */
5334
5335 bpstat
5336 bpstat_stop_status (const address_space *aspace,
5337 CORE_ADDR bp_addr, ptid_t ptid,
5338 const struct target_waitstatus *ws)
5339 {
5340 struct breakpoint *b = NULL;
5341 struct bp_location *bl;
5342 struct bp_location *loc;
5343 /* First item of allocated bpstat's. */
5344 bpstat bs_head = NULL, *bs_link = &bs_head;
5345 /* Pointer to the last thing in the chain currently. */
5346 bpstat bs;
5347 int ix;
5348 int need_remove_insert;
5349 int removed_any;
5350
5351 /* First, build the bpstat chain with locations that explain a
5352 target stop, while being careful to not set the target running,
5353 as that may invalidate locations (in particular watchpoint
5354 locations are recreated). Resuming will happen here with
5355 breakpoint conditions or watchpoint expressions that include
5356 inferior function calls. */
5357
5358 ALL_BREAKPOINTS (b)
5359 {
5360 if (!breakpoint_enabled (b))
5361 continue;
5362
5363 for (bl = b->loc; bl != NULL; bl = bl->next)
5364 {
5365 /* For hardware watchpoints, we look only at the first
5366 location. The watchpoint_check function will work on the
5367 entire expression, not the individual locations. For
5368 read watchpoints, the watchpoints_triggered function has
5369 checked all locations already. */
5370 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5371 break;
5372
5373 if (!bl->enabled || bl->shlib_disabled)
5374 continue;
5375
5376 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5377 continue;
5378
5379 /* Come here if it's a watchpoint, or if the break address
5380 matches. */
5381
5382 bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5383 explain stop. */
5384
5385 /* Assume we stop. Should we find a watchpoint that is not
5386 actually triggered, or if the condition of the breakpoint
5387 evaluates as false, we'll reset 'stop' to 0. */
5388 bs->stop = 1;
5389 bs->print = 1;
5390
5391 /* If this is a scope breakpoint, mark the associated
5392 watchpoint as triggered so that we will handle the
5393 out-of-scope event. We'll get to the watchpoint next
5394 iteration. */
5395 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5396 {
5397 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5398
5399 w->watchpoint_triggered = watch_triggered_yes;
5400 }
5401 }
5402 }
5403
5404 /* Check if a moribund breakpoint explains the stop. */
5405 if (!target_supports_stopped_by_sw_breakpoint ()
5406 || !target_supports_stopped_by_hw_breakpoint ())
5407 {
5408 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5409 {
5410 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5411 && need_moribund_for_location_type (loc))
5412 {
5413 bs = new bpstats (loc, &bs_link);
5414 /* For hits of moribund locations, we should just proceed. */
5415 bs->stop = 0;
5416 bs->print = 0;
5417 bs->print_it = print_it_noop;
5418 }
5419 }
5420 }
5421
5422 /* A bit of special processing for shlib breakpoints. We need to
5423 process solib loading here, so that the lists of loaded and
5424 unloaded libraries are correct before we handle "catch load" and
5425 "catch unload". */
5426 for (bs = bs_head; bs != NULL; bs = bs->next)
5427 {
5428 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5429 {
5430 handle_solib_event ();
5431 break;
5432 }
5433 }
5434
5435 /* Now go through the locations that caused the target to stop, and
5436 check whether we're interested in reporting this stop to higher
5437 layers, or whether we should resume the target transparently. */
5438
5439 removed_any = 0;
5440
5441 for (bs = bs_head; bs != NULL; bs = bs->next)
5442 {
5443 if (!bs->stop)
5444 continue;
5445
5446 b = bs->breakpoint_at;
5447 b->ops->check_status (bs);
5448 if (bs->stop)
5449 {
5450 bpstat_check_breakpoint_conditions (bs, ptid);
5451
5452 if (bs->stop)
5453 {
5454 ++(b->hit_count);
5455 gdb::observers::breakpoint_modified.notify (b);
5456
5457 /* We will stop here. */
5458 if (b->disposition == disp_disable)
5459 {
5460 --(b->enable_count);
5461 if (b->enable_count <= 0)
5462 b->enable_state = bp_disabled;
5463 removed_any = 1;
5464 }
5465 if (b->silent)
5466 bs->print = 0;
5467 bs->commands = b->commands;
5468 if (command_line_is_silent (bs->commands
5469 ? bs->commands.get () : NULL))
5470 bs->print = 0;
5471
5472 b->ops->after_condition_true (bs);
5473 }
5474
5475 }
5476
5477 /* Print nothing for this entry if we don't stop or don't
5478 print. */
5479 if (!bs->stop || !bs->print)
5480 bs->print_it = print_it_noop;
5481 }
5482
5483 /* If we aren't stopping, the value of some hardware watchpoint may
5484 not have changed, but the intermediate memory locations we are
5485 watching may have. Don't bother if we're stopping; this will get
5486 done later. */
5487 need_remove_insert = 0;
5488 if (! bpstat_causes_stop (bs_head))
5489 for (bs = bs_head; bs != NULL; bs = bs->next)
5490 if (!bs->stop
5491 && bs->breakpoint_at
5492 && is_hardware_watchpoint (bs->breakpoint_at))
5493 {
5494 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5495
5496 update_watchpoint (w, 0 /* don't reparse. */);
5497 need_remove_insert = 1;
5498 }
5499
5500 if (need_remove_insert)
5501 update_global_location_list (UGLL_MAY_INSERT);
5502 else if (removed_any)
5503 update_global_location_list (UGLL_DONT_INSERT);
5504
5505 return bs_head;
5506 }
5507
5508 static void
5509 handle_jit_event (void)
5510 {
5511 struct frame_info *frame;
5512 struct gdbarch *gdbarch;
5513
5514 if (debug_infrun)
5515 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5516
5517 /* Switch terminal for any messages produced by
5518 breakpoint_re_set. */
5519 target_terminal::ours_for_output ();
5520
5521 frame = get_current_frame ();
5522 gdbarch = get_frame_arch (frame);
5523
5524 jit_event_handler (gdbarch);
5525
5526 target_terminal::inferior ();
5527 }
5528
5529 /* Prepare WHAT final decision for infrun. */
5530
5531 /* Decide what infrun needs to do with this bpstat. */
5532
5533 struct bpstat_what
5534 bpstat_what (bpstat bs_head)
5535 {
5536 struct bpstat_what retval;
5537 bpstat bs;
5538
5539 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5540 retval.call_dummy = STOP_NONE;
5541 retval.is_longjmp = 0;
5542
5543 for (bs = bs_head; bs != NULL; bs = bs->next)
5544 {
5545 /* Extract this BS's action. After processing each BS, we check
5546 if its action overrides all we've seem so far. */
5547 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5548 enum bptype bptype;
5549
5550 if (bs->breakpoint_at == NULL)
5551 {
5552 /* I suspect this can happen if it was a momentary
5553 breakpoint which has since been deleted. */
5554 bptype = bp_none;
5555 }
5556 else
5557 bptype = bs->breakpoint_at->type;
5558
5559 switch (bptype)
5560 {
5561 case bp_none:
5562 break;
5563 case bp_breakpoint:
5564 case bp_hardware_breakpoint:
5565 case bp_single_step:
5566 case bp_until:
5567 case bp_finish:
5568 case bp_shlib_event:
5569 if (bs->stop)
5570 {
5571 if (bs->print)
5572 this_action = BPSTAT_WHAT_STOP_NOISY;
5573 else
5574 this_action = BPSTAT_WHAT_STOP_SILENT;
5575 }
5576 else
5577 this_action = BPSTAT_WHAT_SINGLE;
5578 break;
5579 case bp_watchpoint:
5580 case bp_hardware_watchpoint:
5581 case bp_read_watchpoint:
5582 case bp_access_watchpoint:
5583 if (bs->stop)
5584 {
5585 if (bs->print)
5586 this_action = BPSTAT_WHAT_STOP_NOISY;
5587 else
5588 this_action = BPSTAT_WHAT_STOP_SILENT;
5589 }
5590 else
5591 {
5592 /* There was a watchpoint, but we're not stopping.
5593 This requires no further action. */
5594 }
5595 break;
5596 case bp_longjmp:
5597 case bp_longjmp_call_dummy:
5598 case bp_exception:
5599 if (bs->stop)
5600 {
5601 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5602 retval.is_longjmp = bptype != bp_exception;
5603 }
5604 else
5605 this_action = BPSTAT_WHAT_SINGLE;
5606 break;
5607 case bp_longjmp_resume:
5608 case bp_exception_resume:
5609 if (bs->stop)
5610 {
5611 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5612 retval.is_longjmp = bptype == bp_longjmp_resume;
5613 }
5614 else
5615 this_action = BPSTAT_WHAT_SINGLE;
5616 break;
5617 case bp_step_resume:
5618 if (bs->stop)
5619 this_action = BPSTAT_WHAT_STEP_RESUME;
5620 else
5621 {
5622 /* It is for the wrong frame. */
5623 this_action = BPSTAT_WHAT_SINGLE;
5624 }
5625 break;
5626 case bp_hp_step_resume:
5627 if (bs->stop)
5628 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5629 else
5630 {
5631 /* It is for the wrong frame. */
5632 this_action = BPSTAT_WHAT_SINGLE;
5633 }
5634 break;
5635 case bp_watchpoint_scope:
5636 case bp_thread_event:
5637 case bp_overlay_event:
5638 case bp_longjmp_master:
5639 case bp_std_terminate_master:
5640 case bp_exception_master:
5641 this_action = BPSTAT_WHAT_SINGLE;
5642 break;
5643 case bp_catchpoint:
5644 if (bs->stop)
5645 {
5646 if (bs->print)
5647 this_action = BPSTAT_WHAT_STOP_NOISY;
5648 else
5649 this_action = BPSTAT_WHAT_STOP_SILENT;
5650 }
5651 else
5652 {
5653 /* There was a catchpoint, but we're not stopping.
5654 This requires no further action. */
5655 }
5656 break;
5657 case bp_jit_event:
5658 this_action = BPSTAT_WHAT_SINGLE;
5659 break;
5660 case bp_call_dummy:
5661 /* Make sure the action is stop (silent or noisy),
5662 so infrun.c pops the dummy frame. */
5663 retval.call_dummy = STOP_STACK_DUMMY;
5664 this_action = BPSTAT_WHAT_STOP_SILENT;
5665 break;
5666 case bp_std_terminate:
5667 /* Make sure the action is stop (silent or noisy),
5668 so infrun.c pops the dummy frame. */
5669 retval.call_dummy = STOP_STD_TERMINATE;
5670 this_action = BPSTAT_WHAT_STOP_SILENT;
5671 break;
5672 case bp_tracepoint:
5673 case bp_fast_tracepoint:
5674 case bp_static_tracepoint:
5675 /* Tracepoint hits should not be reported back to GDB, and
5676 if one got through somehow, it should have been filtered
5677 out already. */
5678 internal_error (__FILE__, __LINE__,
5679 _("bpstat_what: tracepoint encountered"));
5680 break;
5681 case bp_gnu_ifunc_resolver:
5682 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5683 this_action = BPSTAT_WHAT_SINGLE;
5684 break;
5685 case bp_gnu_ifunc_resolver_return:
5686 /* The breakpoint will be removed, execution will restart from the
5687 PC of the former breakpoint. */
5688 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5689 break;
5690
5691 case bp_dprintf:
5692 if (bs->stop)
5693 this_action = BPSTAT_WHAT_STOP_SILENT;
5694 else
5695 this_action = BPSTAT_WHAT_SINGLE;
5696 break;
5697
5698 default:
5699 internal_error (__FILE__, __LINE__,
5700 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5701 }
5702
5703 retval.main_action = std::max (retval.main_action, this_action);
5704 }
5705
5706 return retval;
5707 }
5708
5709 void
5710 bpstat_run_callbacks (bpstat bs_head)
5711 {
5712 bpstat bs;
5713
5714 for (bs = bs_head; bs != NULL; bs = bs->next)
5715 {
5716 struct breakpoint *b = bs->breakpoint_at;
5717
5718 if (b == NULL)
5719 continue;
5720 switch (b->type)
5721 {
5722 case bp_jit_event:
5723 handle_jit_event ();
5724 break;
5725 case bp_gnu_ifunc_resolver:
5726 gnu_ifunc_resolver_stop (b);
5727 break;
5728 case bp_gnu_ifunc_resolver_return:
5729 gnu_ifunc_resolver_return_stop (b);
5730 break;
5731 }
5732 }
5733 }
5734
5735 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5736 without hardware support). This isn't related to a specific bpstat,
5737 just to things like whether watchpoints are set. */
5738
5739 int
5740 bpstat_should_step (void)
5741 {
5742 struct breakpoint *b;
5743
5744 ALL_BREAKPOINTS (b)
5745 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5746 return 1;
5747 return 0;
5748 }
5749
5750 int
5751 bpstat_causes_stop (bpstat bs)
5752 {
5753 for (; bs != NULL; bs = bs->next)
5754 if (bs->stop)
5755 return 1;
5756
5757 return 0;
5758 }
5759
5760 \f
5761
5762 /* Compute a string of spaces suitable to indent the next line
5763 so it starts at the position corresponding to the table column
5764 named COL_NAME in the currently active table of UIOUT. */
5765
5766 static char *
5767 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5768 {
5769 static char wrap_indent[80];
5770 int i, total_width, width, align;
5771 const char *text;
5772
5773 total_width = 0;
5774 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5775 {
5776 if (strcmp (text, col_name) == 0)
5777 {
5778 gdb_assert (total_width < sizeof wrap_indent);
5779 memset (wrap_indent, ' ', total_width);
5780 wrap_indent[total_width] = 0;
5781
5782 return wrap_indent;
5783 }
5784
5785 total_width += width + 1;
5786 }
5787
5788 return NULL;
5789 }
5790
5791 /* Determine if the locations of this breakpoint will have their conditions
5792 evaluated by the target, host or a mix of both. Returns the following:
5793
5794 "host": Host evals condition.
5795 "host or target": Host or Target evals condition.
5796 "target": Target evals condition.
5797 */
5798
5799 static const char *
5800 bp_condition_evaluator (struct breakpoint *b)
5801 {
5802 struct bp_location *bl;
5803 char host_evals = 0;
5804 char target_evals = 0;
5805
5806 if (!b)
5807 return NULL;
5808
5809 if (!is_breakpoint (b))
5810 return NULL;
5811
5812 if (gdb_evaluates_breakpoint_condition_p ()
5813 || !target_supports_evaluation_of_breakpoint_conditions ())
5814 return condition_evaluation_host;
5815
5816 for (bl = b->loc; bl; bl = bl->next)
5817 {
5818 if (bl->cond_bytecode)
5819 target_evals++;
5820 else
5821 host_evals++;
5822 }
5823
5824 if (host_evals && target_evals)
5825 return condition_evaluation_both;
5826 else if (target_evals)
5827 return condition_evaluation_target;
5828 else
5829 return condition_evaluation_host;
5830 }
5831
5832 /* Determine the breakpoint location's condition evaluator. This is
5833 similar to bp_condition_evaluator, but for locations. */
5834
5835 static const char *
5836 bp_location_condition_evaluator (struct bp_location *bl)
5837 {
5838 if (bl && !is_breakpoint (bl->owner))
5839 return NULL;
5840
5841 if (gdb_evaluates_breakpoint_condition_p ()
5842 || !target_supports_evaluation_of_breakpoint_conditions ())
5843 return condition_evaluation_host;
5844
5845 if (bl && bl->cond_bytecode)
5846 return condition_evaluation_target;
5847 else
5848 return condition_evaluation_host;
5849 }
5850
5851 /* Print the LOC location out of the list of B->LOC locations. */
5852
5853 static void
5854 print_breakpoint_location (struct breakpoint *b,
5855 struct bp_location *loc)
5856 {
5857 struct ui_out *uiout = current_uiout;
5858
5859 scoped_restore_current_program_space restore_pspace;
5860
5861 if (loc != NULL && loc->shlib_disabled)
5862 loc = NULL;
5863
5864 if (loc != NULL)
5865 set_current_program_space (loc->pspace);
5866
5867 if (b->display_canonical)
5868 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5869 else if (loc && loc->symtab)
5870 {
5871 const struct symbol *sym = loc->symbol;
5872
5873 if (sym == NULL)
5874 sym = find_pc_sect_function (loc->address, loc->section);
5875
5876 if (sym)
5877 {
5878 uiout->text ("in ");
5879 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5880 uiout->text (" ");
5881 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5882 uiout->text ("at ");
5883 }
5884 uiout->field_string ("file",
5885 symtab_to_filename_for_display (loc->symtab));
5886 uiout->text (":");
5887
5888 if (uiout->is_mi_like_p ())
5889 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5890
5891 uiout->field_int ("line", loc->line_number);
5892 }
5893 else if (loc)
5894 {
5895 string_file stb;
5896
5897 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5898 demangle, "");
5899 uiout->field_stream ("at", stb);
5900 }
5901 else
5902 {
5903 uiout->field_string ("pending",
5904 event_location_to_string (b->location.get ()));
5905 /* If extra_string is available, it could be holding a condition
5906 or dprintf arguments. In either case, make sure it is printed,
5907 too, but only for non-MI streams. */
5908 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5909 {
5910 if (b->type == bp_dprintf)
5911 uiout->text (",");
5912 else
5913 uiout->text (" ");
5914 uiout->text (b->extra_string);
5915 }
5916 }
5917
5918 if (loc && is_breakpoint (b)
5919 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5920 && bp_condition_evaluator (b) == condition_evaluation_both)
5921 {
5922 uiout->text (" (");
5923 uiout->field_string ("evaluated-by",
5924 bp_location_condition_evaluator (loc));
5925 uiout->text (")");
5926 }
5927 }
5928
5929 static const char *
5930 bptype_string (enum bptype type)
5931 {
5932 struct ep_type_description
5933 {
5934 enum bptype type;
5935 const char *description;
5936 };
5937 static struct ep_type_description bptypes[] =
5938 {
5939 {bp_none, "?deleted?"},
5940 {bp_breakpoint, "breakpoint"},
5941 {bp_hardware_breakpoint, "hw breakpoint"},
5942 {bp_single_step, "sw single-step"},
5943 {bp_until, "until"},
5944 {bp_finish, "finish"},
5945 {bp_watchpoint, "watchpoint"},
5946 {bp_hardware_watchpoint, "hw watchpoint"},
5947 {bp_read_watchpoint, "read watchpoint"},
5948 {bp_access_watchpoint, "acc watchpoint"},
5949 {bp_longjmp, "longjmp"},
5950 {bp_longjmp_resume, "longjmp resume"},
5951 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5952 {bp_exception, "exception"},
5953 {bp_exception_resume, "exception resume"},
5954 {bp_step_resume, "step resume"},
5955 {bp_hp_step_resume, "high-priority step resume"},
5956 {bp_watchpoint_scope, "watchpoint scope"},
5957 {bp_call_dummy, "call dummy"},
5958 {bp_std_terminate, "std::terminate"},
5959 {bp_shlib_event, "shlib events"},
5960 {bp_thread_event, "thread events"},
5961 {bp_overlay_event, "overlay events"},
5962 {bp_longjmp_master, "longjmp master"},
5963 {bp_std_terminate_master, "std::terminate master"},
5964 {bp_exception_master, "exception master"},
5965 {bp_catchpoint, "catchpoint"},
5966 {bp_tracepoint, "tracepoint"},
5967 {bp_fast_tracepoint, "fast tracepoint"},
5968 {bp_static_tracepoint, "static tracepoint"},
5969 {bp_dprintf, "dprintf"},
5970 {bp_jit_event, "jit events"},
5971 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5972 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5973 };
5974
5975 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5976 || ((int) type != bptypes[(int) type].type))
5977 internal_error (__FILE__, __LINE__,
5978 _("bptypes table does not describe type #%d."),
5979 (int) type);
5980
5981 return bptypes[(int) type].description;
5982 }
5983
5984 /* For MI, output a field named 'thread-groups' with a list as the value.
5985 For CLI, prefix the list with the string 'inf'. */
5986
5987 static void
5988 output_thread_groups (struct ui_out *uiout,
5989 const char *field_name,
5990 const std::vector<int> &inf_nums,
5991 int mi_only)
5992 {
5993 int is_mi = uiout->is_mi_like_p ();
5994
5995 /* For backward compatibility, don't display inferiors in CLI unless
5996 there are several. Always display them for MI. */
5997 if (!is_mi && mi_only)
5998 return;
5999
6000 ui_out_emit_list list_emitter (uiout, field_name);
6001
6002 for (size_t i = 0; i < inf_nums.size (); i++)
6003 {
6004 if (is_mi)
6005 {
6006 char mi_group[10];
6007
6008 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
6009 uiout->field_string (NULL, mi_group);
6010 }
6011 else
6012 {
6013 if (i == 0)
6014 uiout->text (" inf ");
6015 else
6016 uiout->text (", ");
6017
6018 uiout->text (plongest (inf_nums[i]));
6019 }
6020 }
6021 }
6022
6023 /* Print B to gdb_stdout. */
6024
6025 static void
6026 print_one_breakpoint_location (struct breakpoint *b,
6027 struct bp_location *loc,
6028 int loc_number,
6029 struct bp_location **last_loc,
6030 int allflag)
6031 {
6032 struct command_line *l;
6033 static char bpenables[] = "nynny";
6034
6035 struct ui_out *uiout = current_uiout;
6036 int header_of_multiple = 0;
6037 int part_of_multiple = (loc != NULL);
6038 struct value_print_options opts;
6039
6040 get_user_print_options (&opts);
6041
6042 gdb_assert (!loc || loc_number != 0);
6043 /* See comment in print_one_breakpoint concerning treatment of
6044 breakpoints with single disabled location. */
6045 if (loc == NULL
6046 && (b->loc != NULL
6047 && (b->loc->next != NULL || !b->loc->enabled)))
6048 header_of_multiple = 1;
6049 if (loc == NULL)
6050 loc = b->loc;
6051
6052 annotate_record ();
6053
6054 /* 1 */
6055 annotate_field (0);
6056 if (part_of_multiple)
6057 {
6058 char *formatted;
6059 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6060 uiout->field_string ("number", formatted);
6061 xfree (formatted);
6062 }
6063 else
6064 {
6065 uiout->field_int ("number", b->number);
6066 }
6067
6068 /* 2 */
6069 annotate_field (1);
6070 if (part_of_multiple)
6071 uiout->field_skip ("type");
6072 else
6073 uiout->field_string ("type", bptype_string (b->type));
6074
6075 /* 3 */
6076 annotate_field (2);
6077 if (part_of_multiple)
6078 uiout->field_skip ("disp");
6079 else
6080 uiout->field_string ("disp", bpdisp_text (b->disposition));
6081
6082
6083 /* 4 */
6084 annotate_field (3);
6085 if (part_of_multiple)
6086 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6087 else
6088 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6089 uiout->spaces (2);
6090
6091
6092 /* 5 and 6 */
6093 if (b->ops != NULL && b->ops->print_one != NULL)
6094 {
6095 /* Although the print_one can possibly print all locations,
6096 calling it here is not likely to get any nice result. So,
6097 make sure there's just one location. */
6098 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6099 b->ops->print_one (b, last_loc);
6100 }
6101 else
6102 switch (b->type)
6103 {
6104 case bp_none:
6105 internal_error (__FILE__, __LINE__,
6106 _("print_one_breakpoint: bp_none encountered\n"));
6107 break;
6108
6109 case bp_watchpoint:
6110 case bp_hardware_watchpoint:
6111 case bp_read_watchpoint:
6112 case bp_access_watchpoint:
6113 {
6114 struct watchpoint *w = (struct watchpoint *) b;
6115
6116 /* Field 4, the address, is omitted (which makes the columns
6117 not line up too nicely with the headers, but the effect
6118 is relatively readable). */
6119 if (opts.addressprint)
6120 uiout->field_skip ("addr");
6121 annotate_field (5);
6122 uiout->field_string ("what", w->exp_string);
6123 }
6124 break;
6125
6126 case bp_breakpoint:
6127 case bp_hardware_breakpoint:
6128 case bp_single_step:
6129 case bp_until:
6130 case bp_finish:
6131 case bp_longjmp:
6132 case bp_longjmp_resume:
6133 case bp_longjmp_call_dummy:
6134 case bp_exception:
6135 case bp_exception_resume:
6136 case bp_step_resume:
6137 case bp_hp_step_resume:
6138 case bp_watchpoint_scope:
6139 case bp_call_dummy:
6140 case bp_std_terminate:
6141 case bp_shlib_event:
6142 case bp_thread_event:
6143 case bp_overlay_event:
6144 case bp_longjmp_master:
6145 case bp_std_terminate_master:
6146 case bp_exception_master:
6147 case bp_tracepoint:
6148 case bp_fast_tracepoint:
6149 case bp_static_tracepoint:
6150 case bp_dprintf:
6151 case bp_jit_event:
6152 case bp_gnu_ifunc_resolver:
6153 case bp_gnu_ifunc_resolver_return:
6154 if (opts.addressprint)
6155 {
6156 annotate_field (4);
6157 if (header_of_multiple)
6158 uiout->field_string ("addr", "<MULTIPLE>");
6159 else if (b->loc == NULL || loc->shlib_disabled)
6160 uiout->field_string ("addr", "<PENDING>");
6161 else
6162 uiout->field_core_addr ("addr",
6163 loc->gdbarch, loc->address);
6164 }
6165 annotate_field (5);
6166 if (!header_of_multiple)
6167 print_breakpoint_location (b, loc);
6168 if (b->loc)
6169 *last_loc = b->loc;
6170 break;
6171 }
6172
6173
6174 if (loc != NULL && !header_of_multiple)
6175 {
6176 struct inferior *inf;
6177 std::vector<int> inf_nums;
6178 int mi_only = 1;
6179
6180 ALL_INFERIORS (inf)
6181 {
6182 if (inf->pspace == loc->pspace)
6183 inf_nums.push_back (inf->num);
6184 }
6185
6186 /* For backward compatibility, don't display inferiors in CLI unless
6187 there are several. Always display for MI. */
6188 if (allflag
6189 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6190 && (number_of_program_spaces () > 1
6191 || number_of_inferiors () > 1)
6192 /* LOC is for existing B, it cannot be in
6193 moribund_locations and thus having NULL OWNER. */
6194 && loc->owner->type != bp_catchpoint))
6195 mi_only = 0;
6196 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6197 }
6198
6199 if (!part_of_multiple)
6200 {
6201 if (b->thread != -1)
6202 {
6203 /* FIXME: This seems to be redundant and lost here; see the
6204 "stop only in" line a little further down. */
6205 uiout->text (" thread ");
6206 uiout->field_int ("thread", b->thread);
6207 }
6208 else if (b->task != 0)
6209 {
6210 uiout->text (" task ");
6211 uiout->field_int ("task", b->task);
6212 }
6213 }
6214
6215 uiout->text ("\n");
6216
6217 if (!part_of_multiple)
6218 b->ops->print_one_detail (b, uiout);
6219
6220 if (part_of_multiple && frame_id_p (b->frame_id))
6221 {
6222 annotate_field (6);
6223 uiout->text ("\tstop only in stack frame at ");
6224 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6225 the frame ID. */
6226 uiout->field_core_addr ("frame",
6227 b->gdbarch, b->frame_id.stack_addr);
6228 uiout->text ("\n");
6229 }
6230
6231 if (!part_of_multiple && b->cond_string)
6232 {
6233 annotate_field (7);
6234 if (is_tracepoint (b))
6235 uiout->text ("\ttrace only if ");
6236 else
6237 uiout->text ("\tstop only if ");
6238 uiout->field_string ("cond", b->cond_string);
6239
6240 /* Print whether the target is doing the breakpoint's condition
6241 evaluation. If GDB is doing the evaluation, don't print anything. */
6242 if (is_breakpoint (b)
6243 && breakpoint_condition_evaluation_mode ()
6244 == condition_evaluation_target)
6245 {
6246 uiout->text (" (");
6247 uiout->field_string ("evaluated-by",
6248 bp_condition_evaluator (b));
6249 uiout->text (" evals)");
6250 }
6251 uiout->text ("\n");
6252 }
6253
6254 if (!part_of_multiple && b->thread != -1)
6255 {
6256 /* FIXME should make an annotation for this. */
6257 uiout->text ("\tstop only in thread ");
6258 if (uiout->is_mi_like_p ())
6259 uiout->field_int ("thread", b->thread);
6260 else
6261 {
6262 struct thread_info *thr = find_thread_global_id (b->thread);
6263
6264 uiout->field_string ("thread", print_thread_id (thr));
6265 }
6266 uiout->text ("\n");
6267 }
6268
6269 if (!part_of_multiple)
6270 {
6271 if (b->hit_count)
6272 {
6273 /* FIXME should make an annotation for this. */
6274 if (is_catchpoint (b))
6275 uiout->text ("\tcatchpoint");
6276 else if (is_tracepoint (b))
6277 uiout->text ("\ttracepoint");
6278 else
6279 uiout->text ("\tbreakpoint");
6280 uiout->text (" already hit ");
6281 uiout->field_int ("times", b->hit_count);
6282 if (b->hit_count == 1)
6283 uiout->text (" time\n");
6284 else
6285 uiout->text (" times\n");
6286 }
6287 else
6288 {
6289 /* Output the count also if it is zero, but only if this is mi. */
6290 if (uiout->is_mi_like_p ())
6291 uiout->field_int ("times", b->hit_count);
6292 }
6293 }
6294
6295 if (!part_of_multiple && b->ignore_count)
6296 {
6297 annotate_field (8);
6298 uiout->text ("\tignore next ");
6299 uiout->field_int ("ignore", b->ignore_count);
6300 uiout->text (" hits\n");
6301 }
6302
6303 /* Note that an enable count of 1 corresponds to "enable once"
6304 behavior, which is reported by the combination of enablement and
6305 disposition, so we don't need to mention it here. */
6306 if (!part_of_multiple && b->enable_count > 1)
6307 {
6308 annotate_field (8);
6309 uiout->text ("\tdisable after ");
6310 /* Tweak the wording to clarify that ignore and enable counts
6311 are distinct, and have additive effect. */
6312 if (b->ignore_count)
6313 uiout->text ("additional ");
6314 else
6315 uiout->text ("next ");
6316 uiout->field_int ("enable", b->enable_count);
6317 uiout->text (" hits\n");
6318 }
6319
6320 if (!part_of_multiple && is_tracepoint (b))
6321 {
6322 struct tracepoint *tp = (struct tracepoint *) b;
6323
6324 if (tp->traceframe_usage)
6325 {
6326 uiout->text ("\ttrace buffer usage ");
6327 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6328 uiout->text (" bytes\n");
6329 }
6330 }
6331
6332 l = b->commands ? b->commands.get () : NULL;
6333 if (!part_of_multiple && l)
6334 {
6335 annotate_field (9);
6336 ui_out_emit_tuple tuple_emitter (uiout, "script");
6337 print_command_lines (uiout, l, 4);
6338 }
6339
6340 if (is_tracepoint (b))
6341 {
6342 struct tracepoint *t = (struct tracepoint *) b;
6343
6344 if (!part_of_multiple && t->pass_count)
6345 {
6346 annotate_field (10);
6347 uiout->text ("\tpass count ");
6348 uiout->field_int ("pass", t->pass_count);
6349 uiout->text (" \n");
6350 }
6351
6352 /* Don't display it when tracepoint or tracepoint location is
6353 pending. */
6354 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6355 {
6356 annotate_field (11);
6357
6358 if (uiout->is_mi_like_p ())
6359 uiout->field_string ("installed",
6360 loc->inserted ? "y" : "n");
6361 else
6362 {
6363 if (loc->inserted)
6364 uiout->text ("\t");
6365 else
6366 uiout->text ("\tnot ");
6367 uiout->text ("installed on target\n");
6368 }
6369 }
6370 }
6371
6372 if (uiout->is_mi_like_p () && !part_of_multiple)
6373 {
6374 if (is_watchpoint (b))
6375 {
6376 struct watchpoint *w = (struct watchpoint *) b;
6377
6378 uiout->field_string ("original-location", w->exp_string);
6379 }
6380 else if (b->location != NULL
6381 && event_location_to_string (b->location.get ()) != NULL)
6382 uiout->field_string ("original-location",
6383 event_location_to_string (b->location.get ()));
6384 }
6385 }
6386
6387 static void
6388 print_one_breakpoint (struct breakpoint *b,
6389 struct bp_location **last_loc,
6390 int allflag)
6391 {
6392 struct ui_out *uiout = current_uiout;
6393
6394 {
6395 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6396
6397 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6398 }
6399
6400 /* If this breakpoint has custom print function,
6401 it's already printed. Otherwise, print individual
6402 locations, if any. */
6403 if (b->ops == NULL || b->ops->print_one == NULL)
6404 {
6405 /* If breakpoint has a single location that is disabled, we
6406 print it as if it had several locations, since otherwise it's
6407 hard to represent "breakpoint enabled, location disabled"
6408 situation.
6409
6410 Note that while hardware watchpoints have several locations
6411 internally, that's not a property exposed to user. */
6412 if (b->loc
6413 && !is_hardware_watchpoint (b)
6414 && (b->loc->next || !b->loc->enabled))
6415 {
6416 struct bp_location *loc;
6417 int n = 1;
6418
6419 for (loc = b->loc; loc; loc = loc->next, ++n)
6420 {
6421 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6422 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6423 }
6424 }
6425 }
6426 }
6427
6428 static int
6429 breakpoint_address_bits (struct breakpoint *b)
6430 {
6431 int print_address_bits = 0;
6432 struct bp_location *loc;
6433
6434 /* Software watchpoints that aren't watching memory don't have an
6435 address to print. */
6436 if (is_no_memory_software_watchpoint (b))
6437 return 0;
6438
6439 for (loc = b->loc; loc; loc = loc->next)
6440 {
6441 int addr_bit;
6442
6443 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6444 if (addr_bit > print_address_bits)
6445 print_address_bits = addr_bit;
6446 }
6447
6448 return print_address_bits;
6449 }
6450
6451 /* See breakpoint.h. */
6452
6453 void
6454 print_breakpoint (breakpoint *b)
6455 {
6456 struct bp_location *dummy_loc = NULL;
6457 print_one_breakpoint (b, &dummy_loc, 0);
6458 }
6459
6460 /* Return true if this breakpoint was set by the user, false if it is
6461 internal or momentary. */
6462
6463 int
6464 user_breakpoint_p (struct breakpoint *b)
6465 {
6466 return b->number > 0;
6467 }
6468
6469 /* See breakpoint.h. */
6470
6471 int
6472 pending_breakpoint_p (struct breakpoint *b)
6473 {
6474 return b->loc == NULL;
6475 }
6476
6477 /* Print information on user settable breakpoint (watchpoint, etc)
6478 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6479 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6480 FILTER is non-NULL, call it on each breakpoint and only include the
6481 ones for which it returns non-zero. Return the total number of
6482 breakpoints listed. */
6483
6484 static int
6485 breakpoint_1 (const char *args, int allflag,
6486 int (*filter) (const struct breakpoint *))
6487 {
6488 struct breakpoint *b;
6489 struct bp_location *last_loc = NULL;
6490 int nr_printable_breakpoints;
6491 struct value_print_options opts;
6492 int print_address_bits = 0;
6493 int print_type_col_width = 14;
6494 struct ui_out *uiout = current_uiout;
6495
6496 get_user_print_options (&opts);
6497
6498 /* Compute the number of rows in the table, as well as the size
6499 required for address fields. */
6500 nr_printable_breakpoints = 0;
6501 ALL_BREAKPOINTS (b)
6502 {
6503 /* If we have a filter, only list the breakpoints it accepts. */
6504 if (filter && !filter (b))
6505 continue;
6506
6507 /* If we have an "args" string, it is a list of breakpoints to
6508 accept. Skip the others. */
6509 if (args != NULL && *args != '\0')
6510 {
6511 if (allflag && parse_and_eval_long (args) != b->number)
6512 continue;
6513 if (!allflag && !number_is_in_list (args, b->number))
6514 continue;
6515 }
6516
6517 if (allflag || user_breakpoint_p (b))
6518 {
6519 int addr_bit, type_len;
6520
6521 addr_bit = breakpoint_address_bits (b);
6522 if (addr_bit > print_address_bits)
6523 print_address_bits = addr_bit;
6524
6525 type_len = strlen (bptype_string (b->type));
6526 if (type_len > print_type_col_width)
6527 print_type_col_width = type_len;
6528
6529 nr_printable_breakpoints++;
6530 }
6531 }
6532
6533 {
6534 ui_out_emit_table table_emitter (uiout,
6535 opts.addressprint ? 6 : 5,
6536 nr_printable_breakpoints,
6537 "BreakpointTable");
6538
6539 if (nr_printable_breakpoints > 0)
6540 annotate_breakpoints_headers ();
6541 if (nr_printable_breakpoints > 0)
6542 annotate_field (0);
6543 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6544 if (nr_printable_breakpoints > 0)
6545 annotate_field (1);
6546 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6547 if (nr_printable_breakpoints > 0)
6548 annotate_field (2);
6549 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6550 if (nr_printable_breakpoints > 0)
6551 annotate_field (3);
6552 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6553 if (opts.addressprint)
6554 {
6555 if (nr_printable_breakpoints > 0)
6556 annotate_field (4);
6557 if (print_address_bits <= 32)
6558 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6559 else
6560 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6561 }
6562 if (nr_printable_breakpoints > 0)
6563 annotate_field (5);
6564 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6565 uiout->table_body ();
6566 if (nr_printable_breakpoints > 0)
6567 annotate_breakpoints_table ();
6568
6569 ALL_BREAKPOINTS (b)
6570 {
6571 QUIT;
6572 /* If we have a filter, only list the breakpoints it accepts. */
6573 if (filter && !filter (b))
6574 continue;
6575
6576 /* If we have an "args" string, it is a list of breakpoints to
6577 accept. Skip the others. */
6578
6579 if (args != NULL && *args != '\0')
6580 {
6581 if (allflag) /* maintenance info breakpoint */
6582 {
6583 if (parse_and_eval_long (args) != b->number)
6584 continue;
6585 }
6586 else /* all others */
6587 {
6588 if (!number_is_in_list (args, b->number))
6589 continue;
6590 }
6591 }
6592 /* We only print out user settable breakpoints unless the
6593 allflag is set. */
6594 if (allflag || user_breakpoint_p (b))
6595 print_one_breakpoint (b, &last_loc, allflag);
6596 }
6597 }
6598
6599 if (nr_printable_breakpoints == 0)
6600 {
6601 /* If there's a filter, let the caller decide how to report
6602 empty list. */
6603 if (!filter)
6604 {
6605 if (args == NULL || *args == '\0')
6606 uiout->message ("No breakpoints or watchpoints.\n");
6607 else
6608 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6609 args);
6610 }
6611 }
6612 else
6613 {
6614 if (last_loc && !server_command)
6615 set_next_address (last_loc->gdbarch, last_loc->address);
6616 }
6617
6618 /* FIXME? Should this be moved up so that it is only called when
6619 there have been breakpoints? */
6620 annotate_breakpoints_table_end ();
6621
6622 return nr_printable_breakpoints;
6623 }
6624
6625 /* Display the value of default-collect in a way that is generally
6626 compatible with the breakpoint list. */
6627
6628 static void
6629 default_collect_info (void)
6630 {
6631 struct ui_out *uiout = current_uiout;
6632
6633 /* If it has no value (which is frequently the case), say nothing; a
6634 message like "No default-collect." gets in user's face when it's
6635 not wanted. */
6636 if (!*default_collect)
6637 return;
6638
6639 /* The following phrase lines up nicely with per-tracepoint collect
6640 actions. */
6641 uiout->text ("default collect ");
6642 uiout->field_string ("default-collect", default_collect);
6643 uiout->text (" \n");
6644 }
6645
6646 static void
6647 info_breakpoints_command (const char *args, int from_tty)
6648 {
6649 breakpoint_1 (args, 0, NULL);
6650
6651 default_collect_info ();
6652 }
6653
6654 static void
6655 info_watchpoints_command (const char *args, int from_tty)
6656 {
6657 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6658 struct ui_out *uiout = current_uiout;
6659
6660 if (num_printed == 0)
6661 {
6662 if (args == NULL || *args == '\0')
6663 uiout->message ("No watchpoints.\n");
6664 else
6665 uiout->message ("No watchpoint matching '%s'.\n", args);
6666 }
6667 }
6668
6669 static void
6670 maintenance_info_breakpoints (const char *args, int from_tty)
6671 {
6672 breakpoint_1 (args, 1, NULL);
6673
6674 default_collect_info ();
6675 }
6676
6677 static int
6678 breakpoint_has_pc (struct breakpoint *b,
6679 struct program_space *pspace,
6680 CORE_ADDR pc, struct obj_section *section)
6681 {
6682 struct bp_location *bl = b->loc;
6683
6684 for (; bl; bl = bl->next)
6685 {
6686 if (bl->pspace == pspace
6687 && bl->address == pc
6688 && (!overlay_debugging || bl->section == section))
6689 return 1;
6690 }
6691 return 0;
6692 }
6693
6694 /* Print a message describing any user-breakpoints set at PC. This
6695 concerns with logical breakpoints, so we match program spaces, not
6696 address spaces. */
6697
6698 static void
6699 describe_other_breakpoints (struct gdbarch *gdbarch,
6700 struct program_space *pspace, CORE_ADDR pc,
6701 struct obj_section *section, int thread)
6702 {
6703 int others = 0;
6704 struct breakpoint *b;
6705
6706 ALL_BREAKPOINTS (b)
6707 others += (user_breakpoint_p (b)
6708 && breakpoint_has_pc (b, pspace, pc, section));
6709 if (others > 0)
6710 {
6711 if (others == 1)
6712 printf_filtered (_("Note: breakpoint "));
6713 else /* if (others == ???) */
6714 printf_filtered (_("Note: breakpoints "));
6715 ALL_BREAKPOINTS (b)
6716 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6717 {
6718 others--;
6719 printf_filtered ("%d", b->number);
6720 if (b->thread == -1 && thread != -1)
6721 printf_filtered (" (all threads)");
6722 else if (b->thread != -1)
6723 printf_filtered (" (thread %d)", b->thread);
6724 printf_filtered ("%s%s ",
6725 ((b->enable_state == bp_disabled
6726 || b->enable_state == bp_call_disabled)
6727 ? " (disabled)"
6728 : ""),
6729 (others > 1) ? ","
6730 : ((others == 1) ? " and" : ""));
6731 }
6732 printf_filtered (_("also set at pc "));
6733 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6734 printf_filtered (".\n");
6735 }
6736 }
6737 \f
6738
6739 /* Return true iff it is meaningful to use the address member of
6740 BPT locations. For some breakpoint types, the locations' address members
6741 are irrelevant and it makes no sense to attempt to compare them to other
6742 addresses (or use them for any other purpose either).
6743
6744 More specifically, each of the following breakpoint types will
6745 always have a zero valued location address and we don't want to mark
6746 breakpoints of any of these types to be a duplicate of an actual
6747 breakpoint location at address zero:
6748
6749 bp_watchpoint
6750 bp_catchpoint
6751
6752 */
6753
6754 static int
6755 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6756 {
6757 enum bptype type = bpt->type;
6758
6759 return (type != bp_watchpoint && type != bp_catchpoint);
6760 }
6761
6762 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6763 true if LOC1 and LOC2 represent the same watchpoint location. */
6764
6765 static int
6766 watchpoint_locations_match (struct bp_location *loc1,
6767 struct bp_location *loc2)
6768 {
6769 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6770 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6771
6772 /* Both of them must exist. */
6773 gdb_assert (w1 != NULL);
6774 gdb_assert (w2 != NULL);
6775
6776 /* If the target can evaluate the condition expression in hardware,
6777 then we we need to insert both watchpoints even if they are at
6778 the same place. Otherwise the watchpoint will only trigger when
6779 the condition of whichever watchpoint was inserted evaluates to
6780 true, not giving a chance for GDB to check the condition of the
6781 other watchpoint. */
6782 if ((w1->cond_exp
6783 && target_can_accel_watchpoint_condition (loc1->address,
6784 loc1->length,
6785 loc1->watchpoint_type,
6786 w1->cond_exp.get ()))
6787 || (w2->cond_exp
6788 && target_can_accel_watchpoint_condition (loc2->address,
6789 loc2->length,
6790 loc2->watchpoint_type,
6791 w2->cond_exp.get ())))
6792 return 0;
6793
6794 /* Note that this checks the owner's type, not the location's. In
6795 case the target does not support read watchpoints, but does
6796 support access watchpoints, we'll have bp_read_watchpoint
6797 watchpoints with hw_access locations. Those should be considered
6798 duplicates of hw_read locations. The hw_read locations will
6799 become hw_access locations later. */
6800 return (loc1->owner->type == loc2->owner->type
6801 && loc1->pspace->aspace == loc2->pspace->aspace
6802 && loc1->address == loc2->address
6803 && loc1->length == loc2->length);
6804 }
6805
6806 /* See breakpoint.h. */
6807
6808 int
6809 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6810 const address_space *aspace2, CORE_ADDR addr2)
6811 {
6812 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6813 || aspace1 == aspace2)
6814 && addr1 == addr2);
6815 }
6816
6817 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6818 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6819 matches ASPACE2. On targets that have global breakpoints, the address
6820 space doesn't really matter. */
6821
6822 static int
6823 breakpoint_address_match_range (const address_space *aspace1,
6824 CORE_ADDR addr1,
6825 int len1, const address_space *aspace2,
6826 CORE_ADDR addr2)
6827 {
6828 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6829 || aspace1 == aspace2)
6830 && addr2 >= addr1 && addr2 < addr1 + len1);
6831 }
6832
6833 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6834 a ranged breakpoint. In most targets, a match happens only if ASPACE
6835 matches the breakpoint's address space. On targets that have global
6836 breakpoints, the address space doesn't really matter. */
6837
6838 static int
6839 breakpoint_location_address_match (struct bp_location *bl,
6840 const address_space *aspace,
6841 CORE_ADDR addr)
6842 {
6843 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6844 aspace, addr)
6845 || (bl->length
6846 && breakpoint_address_match_range (bl->pspace->aspace,
6847 bl->address, bl->length,
6848 aspace, addr)));
6849 }
6850
6851 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6852 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6853 match happens only if ASPACE matches the breakpoint's address
6854 space. On targets that have global breakpoints, the address space
6855 doesn't really matter. */
6856
6857 static int
6858 breakpoint_location_address_range_overlap (struct bp_location *bl,
6859 const address_space *aspace,
6860 CORE_ADDR addr, int len)
6861 {
6862 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6863 || bl->pspace->aspace == aspace)
6864 {
6865 int bl_len = bl->length != 0 ? bl->length : 1;
6866
6867 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6868 return 1;
6869 }
6870 return 0;
6871 }
6872
6873 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6874 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6875 true, otherwise returns false. */
6876
6877 static int
6878 tracepoint_locations_match (struct bp_location *loc1,
6879 struct bp_location *loc2)
6880 {
6881 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6882 /* Since tracepoint locations are never duplicated with others', tracepoint
6883 locations at the same address of different tracepoints are regarded as
6884 different locations. */
6885 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6886 else
6887 return 0;
6888 }
6889
6890 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6891 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6892 represent the same location. */
6893
6894 static int
6895 breakpoint_locations_match (struct bp_location *loc1,
6896 struct bp_location *loc2)
6897 {
6898 int hw_point1, hw_point2;
6899
6900 /* Both of them must not be in moribund_locations. */
6901 gdb_assert (loc1->owner != NULL);
6902 gdb_assert (loc2->owner != NULL);
6903
6904 hw_point1 = is_hardware_watchpoint (loc1->owner);
6905 hw_point2 = is_hardware_watchpoint (loc2->owner);
6906
6907 if (hw_point1 != hw_point2)
6908 return 0;
6909 else if (hw_point1)
6910 return watchpoint_locations_match (loc1, loc2);
6911 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6912 return tracepoint_locations_match (loc1, loc2);
6913 else
6914 /* We compare bp_location.length in order to cover ranged breakpoints. */
6915 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6916 loc2->pspace->aspace, loc2->address)
6917 && loc1->length == loc2->length);
6918 }
6919
6920 static void
6921 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6922 int bnum, int have_bnum)
6923 {
6924 /* The longest string possibly returned by hex_string_custom
6925 is 50 chars. These must be at least that big for safety. */
6926 char astr1[64];
6927 char astr2[64];
6928
6929 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6930 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6931 if (have_bnum)
6932 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6933 bnum, astr1, astr2);
6934 else
6935 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6936 }
6937
6938 /* Adjust a breakpoint's address to account for architectural
6939 constraints on breakpoint placement. Return the adjusted address.
6940 Note: Very few targets require this kind of adjustment. For most
6941 targets, this function is simply the identity function. */
6942
6943 static CORE_ADDR
6944 adjust_breakpoint_address (struct gdbarch *gdbarch,
6945 CORE_ADDR bpaddr, enum bptype bptype)
6946 {
6947 if (bptype == bp_watchpoint
6948 || bptype == bp_hardware_watchpoint
6949 || bptype == bp_read_watchpoint
6950 || bptype == bp_access_watchpoint
6951 || bptype == bp_catchpoint)
6952 {
6953 /* Watchpoints and the various bp_catch_* eventpoints should not
6954 have their addresses modified. */
6955 return bpaddr;
6956 }
6957 else if (bptype == bp_single_step)
6958 {
6959 /* Single-step breakpoints should not have their addresses
6960 modified. If there's any architectural constrain that
6961 applies to this address, then it should have already been
6962 taken into account when the breakpoint was created in the
6963 first place. If we didn't do this, stepping through e.g.,
6964 Thumb-2 IT blocks would break. */
6965 return bpaddr;
6966 }
6967 else
6968 {
6969 CORE_ADDR adjusted_bpaddr = bpaddr;
6970
6971 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6972 {
6973 /* Some targets have architectural constraints on the placement
6974 of breakpoint instructions. Obtain the adjusted address. */
6975 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6976 }
6977
6978 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6979
6980 /* An adjusted breakpoint address can significantly alter
6981 a user's expectations. Print a warning if an adjustment
6982 is required. */
6983 if (adjusted_bpaddr != bpaddr)
6984 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6985
6986 return adjusted_bpaddr;
6987 }
6988 }
6989
6990 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
6991 {
6992 bp_location *loc = this;
6993
6994 gdb_assert (ops != NULL);
6995
6996 loc->ops = ops;
6997 loc->owner = owner;
6998 loc->cond_bytecode = NULL;
6999 loc->shlib_disabled = 0;
7000 loc->enabled = 1;
7001
7002 switch (owner->type)
7003 {
7004 case bp_breakpoint:
7005 case bp_single_step:
7006 case bp_until:
7007 case bp_finish:
7008 case bp_longjmp:
7009 case bp_longjmp_resume:
7010 case bp_longjmp_call_dummy:
7011 case bp_exception:
7012 case bp_exception_resume:
7013 case bp_step_resume:
7014 case bp_hp_step_resume:
7015 case bp_watchpoint_scope:
7016 case bp_call_dummy:
7017 case bp_std_terminate:
7018 case bp_shlib_event:
7019 case bp_thread_event:
7020 case bp_overlay_event:
7021 case bp_jit_event:
7022 case bp_longjmp_master:
7023 case bp_std_terminate_master:
7024 case bp_exception_master:
7025 case bp_gnu_ifunc_resolver:
7026 case bp_gnu_ifunc_resolver_return:
7027 case bp_dprintf:
7028 loc->loc_type = bp_loc_software_breakpoint;
7029 mark_breakpoint_location_modified (loc);
7030 break;
7031 case bp_hardware_breakpoint:
7032 loc->loc_type = bp_loc_hardware_breakpoint;
7033 mark_breakpoint_location_modified (loc);
7034 break;
7035 case bp_hardware_watchpoint:
7036 case bp_read_watchpoint:
7037 case bp_access_watchpoint:
7038 loc->loc_type = bp_loc_hardware_watchpoint;
7039 break;
7040 case bp_watchpoint:
7041 case bp_catchpoint:
7042 case bp_tracepoint:
7043 case bp_fast_tracepoint:
7044 case bp_static_tracepoint:
7045 loc->loc_type = bp_loc_other;
7046 break;
7047 default:
7048 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7049 }
7050
7051 loc->refc = 1;
7052 }
7053
7054 /* Allocate a struct bp_location. */
7055
7056 static struct bp_location *
7057 allocate_bp_location (struct breakpoint *bpt)
7058 {
7059 return bpt->ops->allocate_location (bpt);
7060 }
7061
7062 static void
7063 free_bp_location (struct bp_location *loc)
7064 {
7065 loc->ops->dtor (loc);
7066 delete loc;
7067 }
7068
7069 /* Increment reference count. */
7070
7071 static void
7072 incref_bp_location (struct bp_location *bl)
7073 {
7074 ++bl->refc;
7075 }
7076
7077 /* Decrement reference count. If the reference count reaches 0,
7078 destroy the bp_location. Sets *BLP to NULL. */
7079
7080 static void
7081 decref_bp_location (struct bp_location **blp)
7082 {
7083 gdb_assert ((*blp)->refc > 0);
7084
7085 if (--(*blp)->refc == 0)
7086 free_bp_location (*blp);
7087 *blp = NULL;
7088 }
7089
7090 /* Add breakpoint B at the end of the global breakpoint chain. */
7091
7092 static breakpoint *
7093 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7094 {
7095 struct breakpoint *b1;
7096 struct breakpoint *result = b.get ();
7097
7098 /* Add this breakpoint to the end of the chain so that a list of
7099 breakpoints will come out in order of increasing numbers. */
7100
7101 b1 = breakpoint_chain;
7102 if (b1 == 0)
7103 breakpoint_chain = b.release ();
7104 else
7105 {
7106 while (b1->next)
7107 b1 = b1->next;
7108 b1->next = b.release ();
7109 }
7110
7111 return result;
7112 }
7113
7114 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7115
7116 static void
7117 init_raw_breakpoint_without_location (struct breakpoint *b,
7118 struct gdbarch *gdbarch,
7119 enum bptype bptype,
7120 const struct breakpoint_ops *ops)
7121 {
7122 gdb_assert (ops != NULL);
7123
7124 b->ops = ops;
7125 b->type = bptype;
7126 b->gdbarch = gdbarch;
7127 b->language = current_language->la_language;
7128 b->input_radix = input_radix;
7129 b->related_breakpoint = b;
7130 }
7131
7132 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7133 that has type BPTYPE and has no locations as yet. */
7134
7135 static struct breakpoint *
7136 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7137 enum bptype bptype,
7138 const struct breakpoint_ops *ops)
7139 {
7140 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7141
7142 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7143 return add_to_breakpoint_chain (std::move (b));
7144 }
7145
7146 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7147 resolutions should be made as the user specified the location explicitly
7148 enough. */
7149
7150 static void
7151 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7152 {
7153 gdb_assert (loc->owner != NULL);
7154
7155 if (loc->owner->type == bp_breakpoint
7156 || loc->owner->type == bp_hardware_breakpoint
7157 || is_tracepoint (loc->owner))
7158 {
7159 const char *function_name;
7160
7161 if (loc->msymbol != NULL
7162 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7163 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc)
7164 && !explicit_loc)
7165 {
7166 struct breakpoint *b = loc->owner;
7167
7168 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7169
7170 if (b->type == bp_breakpoint && b->loc == loc
7171 && loc->next == NULL && b->related_breakpoint == b)
7172 {
7173 /* Create only the whole new breakpoint of this type but do not
7174 mess more complicated breakpoints with multiple locations. */
7175 b->type = bp_gnu_ifunc_resolver;
7176 /* Remember the resolver's address for use by the return
7177 breakpoint. */
7178 loc->related_address = loc->address;
7179 }
7180 }
7181 else
7182 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7183
7184 if (function_name)
7185 loc->function_name = xstrdup (function_name);
7186 }
7187 }
7188
7189 /* Attempt to determine architecture of location identified by SAL. */
7190 struct gdbarch *
7191 get_sal_arch (struct symtab_and_line sal)
7192 {
7193 if (sal.section)
7194 return get_objfile_arch (sal.section->objfile);
7195 if (sal.symtab)
7196 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7197
7198 return NULL;
7199 }
7200
7201 /* Low level routine for partially initializing a breakpoint of type
7202 BPTYPE. The newly created breakpoint's address, section, source
7203 file name, and line number are provided by SAL.
7204
7205 It is expected that the caller will complete the initialization of
7206 the newly created breakpoint struct as well as output any status
7207 information regarding the creation of a new breakpoint. */
7208
7209 static void
7210 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7211 struct symtab_and_line sal, enum bptype bptype,
7212 const struct breakpoint_ops *ops)
7213 {
7214 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7215
7216 add_location_to_breakpoint (b, &sal);
7217
7218 if (bptype != bp_catchpoint)
7219 gdb_assert (sal.pspace != NULL);
7220
7221 /* Store the program space that was used to set the breakpoint,
7222 except for ordinary breakpoints, which are independent of the
7223 program space. */
7224 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7225 b->pspace = sal.pspace;
7226 }
7227
7228 /* set_raw_breakpoint is a low level routine for allocating and
7229 partially initializing a breakpoint of type BPTYPE. The newly
7230 created breakpoint's address, section, source file name, and line
7231 number are provided by SAL. The newly created and partially
7232 initialized breakpoint is added to the breakpoint chain and
7233 is also returned as the value of this function.
7234
7235 It is expected that the caller will complete the initialization of
7236 the newly created breakpoint struct as well as output any status
7237 information regarding the creation of a new breakpoint. In
7238 particular, set_raw_breakpoint does NOT set the breakpoint
7239 number! Care should be taken to not allow an error to occur
7240 prior to completing the initialization of the breakpoint. If this
7241 should happen, a bogus breakpoint will be left on the chain. */
7242
7243 struct breakpoint *
7244 set_raw_breakpoint (struct gdbarch *gdbarch,
7245 struct symtab_and_line sal, enum bptype bptype,
7246 const struct breakpoint_ops *ops)
7247 {
7248 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7249
7250 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7251 return add_to_breakpoint_chain (std::move (b));
7252 }
7253
7254 /* Call this routine when stepping and nexting to enable a breakpoint
7255 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7256 initiated the operation. */
7257
7258 void
7259 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7260 {
7261 struct breakpoint *b, *b_tmp;
7262 int thread = tp->global_num;
7263
7264 /* To avoid having to rescan all objfile symbols at every step,
7265 we maintain a list of continually-inserted but always disabled
7266 longjmp "master" breakpoints. Here, we simply create momentary
7267 clones of those and enable them for the requested thread. */
7268 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7269 if (b->pspace == current_program_space
7270 && (b->type == bp_longjmp_master
7271 || b->type == bp_exception_master))
7272 {
7273 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7274 struct breakpoint *clone;
7275
7276 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7277 after their removal. */
7278 clone = momentary_breakpoint_from_master (b, type,
7279 &momentary_breakpoint_ops, 1);
7280 clone->thread = thread;
7281 }
7282
7283 tp->initiating_frame = frame;
7284 }
7285
7286 /* Delete all longjmp breakpoints from THREAD. */
7287 void
7288 delete_longjmp_breakpoint (int thread)
7289 {
7290 struct breakpoint *b, *b_tmp;
7291
7292 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7293 if (b->type == bp_longjmp || b->type == bp_exception)
7294 {
7295 if (b->thread == thread)
7296 delete_breakpoint (b);
7297 }
7298 }
7299
7300 void
7301 delete_longjmp_breakpoint_at_next_stop (int thread)
7302 {
7303 struct breakpoint *b, *b_tmp;
7304
7305 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7306 if (b->type == bp_longjmp || b->type == bp_exception)
7307 {
7308 if (b->thread == thread)
7309 b->disposition = disp_del_at_next_stop;
7310 }
7311 }
7312
7313 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7314 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7315 pointer to any of them. Return NULL if this system cannot place longjmp
7316 breakpoints. */
7317
7318 struct breakpoint *
7319 set_longjmp_breakpoint_for_call_dummy (void)
7320 {
7321 struct breakpoint *b, *retval = NULL;
7322
7323 ALL_BREAKPOINTS (b)
7324 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7325 {
7326 struct breakpoint *new_b;
7327
7328 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7329 &momentary_breakpoint_ops,
7330 1);
7331 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7332
7333 /* Link NEW_B into the chain of RETVAL breakpoints. */
7334
7335 gdb_assert (new_b->related_breakpoint == new_b);
7336 if (retval == NULL)
7337 retval = new_b;
7338 new_b->related_breakpoint = retval;
7339 while (retval->related_breakpoint != new_b->related_breakpoint)
7340 retval = retval->related_breakpoint;
7341 retval->related_breakpoint = new_b;
7342 }
7343
7344 return retval;
7345 }
7346
7347 /* Verify all existing dummy frames and their associated breakpoints for
7348 TP. Remove those which can no longer be found in the current frame
7349 stack.
7350
7351 You should call this function only at places where it is safe to currently
7352 unwind the whole stack. Failed stack unwind would discard live dummy
7353 frames. */
7354
7355 void
7356 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7357 {
7358 struct breakpoint *b, *b_tmp;
7359
7360 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7361 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7362 {
7363 struct breakpoint *dummy_b = b->related_breakpoint;
7364
7365 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7366 dummy_b = dummy_b->related_breakpoint;
7367 if (dummy_b->type != bp_call_dummy
7368 || frame_find_by_id (dummy_b->frame_id) != NULL)
7369 continue;
7370
7371 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7372
7373 while (b->related_breakpoint != b)
7374 {
7375 if (b_tmp == b->related_breakpoint)
7376 b_tmp = b->related_breakpoint->next;
7377 delete_breakpoint (b->related_breakpoint);
7378 }
7379 delete_breakpoint (b);
7380 }
7381 }
7382
7383 void
7384 enable_overlay_breakpoints (void)
7385 {
7386 struct breakpoint *b;
7387
7388 ALL_BREAKPOINTS (b)
7389 if (b->type == bp_overlay_event)
7390 {
7391 b->enable_state = bp_enabled;
7392 update_global_location_list (UGLL_MAY_INSERT);
7393 overlay_events_enabled = 1;
7394 }
7395 }
7396
7397 void
7398 disable_overlay_breakpoints (void)
7399 {
7400 struct breakpoint *b;
7401
7402 ALL_BREAKPOINTS (b)
7403 if (b->type == bp_overlay_event)
7404 {
7405 b->enable_state = bp_disabled;
7406 update_global_location_list (UGLL_DONT_INSERT);
7407 overlay_events_enabled = 0;
7408 }
7409 }
7410
7411 /* Set an active std::terminate breakpoint for each std::terminate
7412 master breakpoint. */
7413 void
7414 set_std_terminate_breakpoint (void)
7415 {
7416 struct breakpoint *b, *b_tmp;
7417
7418 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7419 if (b->pspace == current_program_space
7420 && b->type == bp_std_terminate_master)
7421 {
7422 momentary_breakpoint_from_master (b, bp_std_terminate,
7423 &momentary_breakpoint_ops, 1);
7424 }
7425 }
7426
7427 /* Delete all the std::terminate breakpoints. */
7428 void
7429 delete_std_terminate_breakpoint (void)
7430 {
7431 struct breakpoint *b, *b_tmp;
7432
7433 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7434 if (b->type == bp_std_terminate)
7435 delete_breakpoint (b);
7436 }
7437
7438 struct breakpoint *
7439 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7440 {
7441 struct breakpoint *b;
7442
7443 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7444 &internal_breakpoint_ops);
7445
7446 b->enable_state = bp_enabled;
7447 /* location has to be used or breakpoint_re_set will delete me. */
7448 b->location = new_address_location (b->loc->address, NULL, 0);
7449
7450 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7451
7452 return b;
7453 }
7454
7455 struct lang_and_radix
7456 {
7457 enum language lang;
7458 int radix;
7459 };
7460
7461 /* Create a breakpoint for JIT code registration and unregistration. */
7462
7463 struct breakpoint *
7464 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7465 {
7466 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7467 &internal_breakpoint_ops);
7468 }
7469
7470 /* Remove JIT code registration and unregistration breakpoint(s). */
7471
7472 void
7473 remove_jit_event_breakpoints (void)
7474 {
7475 struct breakpoint *b, *b_tmp;
7476
7477 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7478 if (b->type == bp_jit_event
7479 && b->loc->pspace == current_program_space)
7480 delete_breakpoint (b);
7481 }
7482
7483 void
7484 remove_solib_event_breakpoints (void)
7485 {
7486 struct breakpoint *b, *b_tmp;
7487
7488 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7489 if (b->type == bp_shlib_event
7490 && b->loc->pspace == current_program_space)
7491 delete_breakpoint (b);
7492 }
7493
7494 /* See breakpoint.h. */
7495
7496 void
7497 remove_solib_event_breakpoints_at_next_stop (void)
7498 {
7499 struct breakpoint *b, *b_tmp;
7500
7501 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7502 if (b->type == bp_shlib_event
7503 && b->loc->pspace == current_program_space)
7504 b->disposition = disp_del_at_next_stop;
7505 }
7506
7507 /* Helper for create_solib_event_breakpoint /
7508 create_and_insert_solib_event_breakpoint. Allows specifying which
7509 INSERT_MODE to pass through to update_global_location_list. */
7510
7511 static struct breakpoint *
7512 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7513 enum ugll_insert_mode insert_mode)
7514 {
7515 struct breakpoint *b;
7516
7517 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7518 &internal_breakpoint_ops);
7519 update_global_location_list_nothrow (insert_mode);
7520 return b;
7521 }
7522
7523 struct breakpoint *
7524 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7525 {
7526 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7527 }
7528
7529 /* See breakpoint.h. */
7530
7531 struct breakpoint *
7532 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7533 {
7534 struct breakpoint *b;
7535
7536 /* Explicitly tell update_global_location_list to insert
7537 locations. */
7538 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7539 if (!b->loc->inserted)
7540 {
7541 delete_breakpoint (b);
7542 return NULL;
7543 }
7544 return b;
7545 }
7546
7547 /* Disable any breakpoints that are on code in shared libraries. Only
7548 apply to enabled breakpoints, disabled ones can just stay disabled. */
7549
7550 void
7551 disable_breakpoints_in_shlibs (void)
7552 {
7553 struct bp_location *loc, **locp_tmp;
7554
7555 ALL_BP_LOCATIONS (loc, locp_tmp)
7556 {
7557 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7558 struct breakpoint *b = loc->owner;
7559
7560 /* We apply the check to all breakpoints, including disabled for
7561 those with loc->duplicate set. This is so that when breakpoint
7562 becomes enabled, or the duplicate is removed, gdb will try to
7563 insert all breakpoints. If we don't set shlib_disabled here,
7564 we'll try to insert those breakpoints and fail. */
7565 if (((b->type == bp_breakpoint)
7566 || (b->type == bp_jit_event)
7567 || (b->type == bp_hardware_breakpoint)
7568 || (is_tracepoint (b)))
7569 && loc->pspace == current_program_space
7570 && !loc->shlib_disabled
7571 && solib_name_from_address (loc->pspace, loc->address)
7572 )
7573 {
7574 loc->shlib_disabled = 1;
7575 }
7576 }
7577 }
7578
7579 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7580 notification of unloaded_shlib. Only apply to enabled breakpoints,
7581 disabled ones can just stay disabled. */
7582
7583 static void
7584 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7585 {
7586 struct bp_location *loc, **locp_tmp;
7587 int disabled_shlib_breaks = 0;
7588
7589 ALL_BP_LOCATIONS (loc, locp_tmp)
7590 {
7591 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7592 struct breakpoint *b = loc->owner;
7593
7594 if (solib->pspace == loc->pspace
7595 && !loc->shlib_disabled
7596 && (((b->type == bp_breakpoint
7597 || b->type == bp_jit_event
7598 || b->type == bp_hardware_breakpoint)
7599 && (loc->loc_type == bp_loc_hardware_breakpoint
7600 || loc->loc_type == bp_loc_software_breakpoint))
7601 || is_tracepoint (b))
7602 && solib_contains_address_p (solib, loc->address))
7603 {
7604 loc->shlib_disabled = 1;
7605 /* At this point, we cannot rely on remove_breakpoint
7606 succeeding so we must mark the breakpoint as not inserted
7607 to prevent future errors occurring in remove_breakpoints. */
7608 loc->inserted = 0;
7609
7610 /* This may cause duplicate notifications for the same breakpoint. */
7611 gdb::observers::breakpoint_modified.notify (b);
7612
7613 if (!disabled_shlib_breaks)
7614 {
7615 target_terminal::ours_for_output ();
7616 warning (_("Temporarily disabling breakpoints "
7617 "for unloaded shared library \"%s\""),
7618 solib->so_name);
7619 }
7620 disabled_shlib_breaks = 1;
7621 }
7622 }
7623 }
7624
7625 /* Disable any breakpoints and tracepoints in OBJFILE upon
7626 notification of free_objfile. Only apply to enabled breakpoints,
7627 disabled ones can just stay disabled. */
7628
7629 static void
7630 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7631 {
7632 struct breakpoint *b;
7633
7634 if (objfile == NULL)
7635 return;
7636
7637 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7638 managed by the user with add-symbol-file/remove-symbol-file.
7639 Similarly to how breakpoints in shared libraries are handled in
7640 response to "nosharedlibrary", mark breakpoints in such modules
7641 shlib_disabled so they end up uninserted on the next global
7642 location list update. Shared libraries not loaded by the user
7643 aren't handled here -- they're already handled in
7644 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7645 solib_unloaded observer. We skip objfiles that are not
7646 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7647 main objfile). */
7648 if ((objfile->flags & OBJF_SHARED) == 0
7649 || (objfile->flags & OBJF_USERLOADED) == 0)
7650 return;
7651
7652 ALL_BREAKPOINTS (b)
7653 {
7654 struct bp_location *loc;
7655 int bp_modified = 0;
7656
7657 if (!is_breakpoint (b) && !is_tracepoint (b))
7658 continue;
7659
7660 for (loc = b->loc; loc != NULL; loc = loc->next)
7661 {
7662 CORE_ADDR loc_addr = loc->address;
7663
7664 if (loc->loc_type != bp_loc_hardware_breakpoint
7665 && loc->loc_type != bp_loc_software_breakpoint)
7666 continue;
7667
7668 if (loc->shlib_disabled != 0)
7669 continue;
7670
7671 if (objfile->pspace != loc->pspace)
7672 continue;
7673
7674 if (loc->loc_type != bp_loc_hardware_breakpoint
7675 && loc->loc_type != bp_loc_software_breakpoint)
7676 continue;
7677
7678 if (is_addr_in_objfile (loc_addr, objfile))
7679 {
7680 loc->shlib_disabled = 1;
7681 /* At this point, we don't know whether the object was
7682 unmapped from the inferior or not, so leave the
7683 inserted flag alone. We'll handle failure to
7684 uninsert quietly, in case the object was indeed
7685 unmapped. */
7686
7687 mark_breakpoint_location_modified (loc);
7688
7689 bp_modified = 1;
7690 }
7691 }
7692
7693 if (bp_modified)
7694 gdb::observers::breakpoint_modified.notify (b);
7695 }
7696 }
7697
7698 /* FORK & VFORK catchpoints. */
7699
7700 /* An instance of this type is used to represent a fork or vfork
7701 catchpoint. A breakpoint is really of this type iff its ops pointer points
7702 to CATCH_FORK_BREAKPOINT_OPS. */
7703
7704 struct fork_catchpoint : public breakpoint
7705 {
7706 /* Process id of a child process whose forking triggered this
7707 catchpoint. This field is only valid immediately after this
7708 catchpoint has triggered. */
7709 ptid_t forked_inferior_pid;
7710 };
7711
7712 /* Implement the "insert" breakpoint_ops method for fork
7713 catchpoints. */
7714
7715 static int
7716 insert_catch_fork (struct bp_location *bl)
7717 {
7718 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7719 }
7720
7721 /* Implement the "remove" breakpoint_ops method for fork
7722 catchpoints. */
7723
7724 static int
7725 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7726 {
7727 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7728 }
7729
7730 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7731 catchpoints. */
7732
7733 static int
7734 breakpoint_hit_catch_fork (const struct bp_location *bl,
7735 const address_space *aspace, CORE_ADDR bp_addr,
7736 const struct target_waitstatus *ws)
7737 {
7738 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7739
7740 if (ws->kind != TARGET_WAITKIND_FORKED)
7741 return 0;
7742
7743 c->forked_inferior_pid = ws->value.related_pid;
7744 return 1;
7745 }
7746
7747 /* Implement the "print_it" breakpoint_ops method for fork
7748 catchpoints. */
7749
7750 static enum print_stop_action
7751 print_it_catch_fork (bpstat bs)
7752 {
7753 struct ui_out *uiout = current_uiout;
7754 struct breakpoint *b = bs->breakpoint_at;
7755 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7756
7757 annotate_catchpoint (b->number);
7758 maybe_print_thread_hit_breakpoint (uiout);
7759 if (b->disposition == disp_del)
7760 uiout->text ("Temporary catchpoint ");
7761 else
7762 uiout->text ("Catchpoint ");
7763 if (uiout->is_mi_like_p ())
7764 {
7765 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7766 uiout->field_string ("disp", bpdisp_text (b->disposition));
7767 }
7768 uiout->field_int ("bkptno", b->number);
7769 uiout->text (" (forked process ");
7770 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7771 uiout->text ("), ");
7772 return PRINT_SRC_AND_LOC;
7773 }
7774
7775 /* Implement the "print_one" breakpoint_ops method for fork
7776 catchpoints. */
7777
7778 static void
7779 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7780 {
7781 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7782 struct value_print_options opts;
7783 struct ui_out *uiout = current_uiout;
7784
7785 get_user_print_options (&opts);
7786
7787 /* Field 4, the address, is omitted (which makes the columns not
7788 line up too nicely with the headers, but the effect is relatively
7789 readable). */
7790 if (opts.addressprint)
7791 uiout->field_skip ("addr");
7792 annotate_field (5);
7793 uiout->text ("fork");
7794 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7795 {
7796 uiout->text (", process ");
7797 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7798 uiout->spaces (1);
7799 }
7800
7801 if (uiout->is_mi_like_p ())
7802 uiout->field_string ("catch-type", "fork");
7803 }
7804
7805 /* Implement the "print_mention" breakpoint_ops method for fork
7806 catchpoints. */
7807
7808 static void
7809 print_mention_catch_fork (struct breakpoint *b)
7810 {
7811 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7812 }
7813
7814 /* Implement the "print_recreate" breakpoint_ops method for fork
7815 catchpoints. */
7816
7817 static void
7818 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7819 {
7820 fprintf_unfiltered (fp, "catch fork");
7821 print_recreate_thread (b, fp);
7822 }
7823
7824 /* The breakpoint_ops structure to be used in fork catchpoints. */
7825
7826 static struct breakpoint_ops catch_fork_breakpoint_ops;
7827
7828 /* Implement the "insert" breakpoint_ops method for vfork
7829 catchpoints. */
7830
7831 static int
7832 insert_catch_vfork (struct bp_location *bl)
7833 {
7834 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7835 }
7836
7837 /* Implement the "remove" breakpoint_ops method for vfork
7838 catchpoints. */
7839
7840 static int
7841 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7842 {
7843 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7844 }
7845
7846 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7847 catchpoints. */
7848
7849 static int
7850 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7851 const address_space *aspace, CORE_ADDR bp_addr,
7852 const struct target_waitstatus *ws)
7853 {
7854 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7855
7856 if (ws->kind != TARGET_WAITKIND_VFORKED)
7857 return 0;
7858
7859 c->forked_inferior_pid = ws->value.related_pid;
7860 return 1;
7861 }
7862
7863 /* Implement the "print_it" breakpoint_ops method for vfork
7864 catchpoints. */
7865
7866 static enum print_stop_action
7867 print_it_catch_vfork (bpstat bs)
7868 {
7869 struct ui_out *uiout = current_uiout;
7870 struct breakpoint *b = bs->breakpoint_at;
7871 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7872
7873 annotate_catchpoint (b->number);
7874 maybe_print_thread_hit_breakpoint (uiout);
7875 if (b->disposition == disp_del)
7876 uiout->text ("Temporary catchpoint ");
7877 else
7878 uiout->text ("Catchpoint ");
7879 if (uiout->is_mi_like_p ())
7880 {
7881 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7882 uiout->field_string ("disp", bpdisp_text (b->disposition));
7883 }
7884 uiout->field_int ("bkptno", b->number);
7885 uiout->text (" (vforked process ");
7886 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7887 uiout->text ("), ");
7888 return PRINT_SRC_AND_LOC;
7889 }
7890
7891 /* Implement the "print_one" breakpoint_ops method for vfork
7892 catchpoints. */
7893
7894 static void
7895 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7896 {
7897 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7898 struct value_print_options opts;
7899 struct ui_out *uiout = current_uiout;
7900
7901 get_user_print_options (&opts);
7902 /* Field 4, the address, is omitted (which makes the columns not
7903 line up too nicely with the headers, but the effect is relatively
7904 readable). */
7905 if (opts.addressprint)
7906 uiout->field_skip ("addr");
7907 annotate_field (5);
7908 uiout->text ("vfork");
7909 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7910 {
7911 uiout->text (", process ");
7912 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7913 uiout->spaces (1);
7914 }
7915
7916 if (uiout->is_mi_like_p ())
7917 uiout->field_string ("catch-type", "vfork");
7918 }
7919
7920 /* Implement the "print_mention" breakpoint_ops method for vfork
7921 catchpoints. */
7922
7923 static void
7924 print_mention_catch_vfork (struct breakpoint *b)
7925 {
7926 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7927 }
7928
7929 /* Implement the "print_recreate" breakpoint_ops method for vfork
7930 catchpoints. */
7931
7932 static void
7933 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7934 {
7935 fprintf_unfiltered (fp, "catch vfork");
7936 print_recreate_thread (b, fp);
7937 }
7938
7939 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7940
7941 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7942
7943 /* An instance of this type is used to represent an solib catchpoint.
7944 A breakpoint is really of this type iff its ops pointer points to
7945 CATCH_SOLIB_BREAKPOINT_OPS. */
7946
7947 struct solib_catchpoint : public breakpoint
7948 {
7949 ~solib_catchpoint () override;
7950
7951 /* True for "catch load", false for "catch unload". */
7952 unsigned char is_load;
7953
7954 /* Regular expression to match, if any. COMPILED is only valid when
7955 REGEX is non-NULL. */
7956 char *regex;
7957 std::unique_ptr<compiled_regex> compiled;
7958 };
7959
7960 solib_catchpoint::~solib_catchpoint ()
7961 {
7962 xfree (this->regex);
7963 }
7964
7965 static int
7966 insert_catch_solib (struct bp_location *ignore)
7967 {
7968 return 0;
7969 }
7970
7971 static int
7972 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7973 {
7974 return 0;
7975 }
7976
7977 static int
7978 breakpoint_hit_catch_solib (const struct bp_location *bl,
7979 const address_space *aspace,
7980 CORE_ADDR bp_addr,
7981 const struct target_waitstatus *ws)
7982 {
7983 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7984 struct breakpoint *other;
7985
7986 if (ws->kind == TARGET_WAITKIND_LOADED)
7987 return 1;
7988
7989 ALL_BREAKPOINTS (other)
7990 {
7991 struct bp_location *other_bl;
7992
7993 if (other == bl->owner)
7994 continue;
7995
7996 if (other->type != bp_shlib_event)
7997 continue;
7998
7999 if (self->pspace != NULL && other->pspace != self->pspace)
8000 continue;
8001
8002 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8003 {
8004 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8005 return 1;
8006 }
8007 }
8008
8009 return 0;
8010 }
8011
8012 static void
8013 check_status_catch_solib (struct bpstats *bs)
8014 {
8015 struct solib_catchpoint *self
8016 = (struct solib_catchpoint *) bs->breakpoint_at;
8017
8018 if (self->is_load)
8019 {
8020 struct so_list *iter;
8021
8022 for (int ix = 0;
8023 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8024 ix, iter);
8025 ++ix)
8026 {
8027 if (!self->regex
8028 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8029 return;
8030 }
8031 }
8032 else
8033 {
8034 for (const std::string &iter : current_program_space->deleted_solibs)
8035 {
8036 if (!self->regex
8037 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8038 return;
8039 }
8040 }
8041
8042 bs->stop = 0;
8043 bs->print_it = print_it_noop;
8044 }
8045
8046 static enum print_stop_action
8047 print_it_catch_solib (bpstat bs)
8048 {
8049 struct breakpoint *b = bs->breakpoint_at;
8050 struct ui_out *uiout = current_uiout;
8051
8052 annotate_catchpoint (b->number);
8053 maybe_print_thread_hit_breakpoint (uiout);
8054 if (b->disposition == disp_del)
8055 uiout->text ("Temporary catchpoint ");
8056 else
8057 uiout->text ("Catchpoint ");
8058 uiout->field_int ("bkptno", b->number);
8059 uiout->text ("\n");
8060 if (uiout->is_mi_like_p ())
8061 uiout->field_string ("disp", bpdisp_text (b->disposition));
8062 print_solib_event (1);
8063 return PRINT_SRC_AND_LOC;
8064 }
8065
8066 static void
8067 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8068 {
8069 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8070 struct value_print_options opts;
8071 struct ui_out *uiout = current_uiout;
8072 char *msg;
8073
8074 get_user_print_options (&opts);
8075 /* Field 4, the address, is omitted (which makes the columns not
8076 line up too nicely with the headers, but the effect is relatively
8077 readable). */
8078 if (opts.addressprint)
8079 {
8080 annotate_field (4);
8081 uiout->field_skip ("addr");
8082 }
8083
8084 annotate_field (5);
8085 if (self->is_load)
8086 {
8087 if (self->regex)
8088 msg = xstrprintf (_("load of library matching %s"), self->regex);
8089 else
8090 msg = xstrdup (_("load of library"));
8091 }
8092 else
8093 {
8094 if (self->regex)
8095 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8096 else
8097 msg = xstrdup (_("unload of library"));
8098 }
8099 uiout->field_string ("what", msg);
8100 xfree (msg);
8101
8102 if (uiout->is_mi_like_p ())
8103 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8104 }
8105
8106 static void
8107 print_mention_catch_solib (struct breakpoint *b)
8108 {
8109 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8110
8111 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8112 self->is_load ? "load" : "unload");
8113 }
8114
8115 static void
8116 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8117 {
8118 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8119
8120 fprintf_unfiltered (fp, "%s %s",
8121 b->disposition == disp_del ? "tcatch" : "catch",
8122 self->is_load ? "load" : "unload");
8123 if (self->regex)
8124 fprintf_unfiltered (fp, " %s", self->regex);
8125 fprintf_unfiltered (fp, "\n");
8126 }
8127
8128 static struct breakpoint_ops catch_solib_breakpoint_ops;
8129
8130 /* Shared helper function (MI and CLI) for creating and installing
8131 a shared object event catchpoint. If IS_LOAD is non-zero then
8132 the events to be caught are load events, otherwise they are
8133 unload events. If IS_TEMP is non-zero the catchpoint is a
8134 temporary one. If ENABLED is non-zero the catchpoint is
8135 created in an enabled state. */
8136
8137 void
8138 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8139 {
8140 struct gdbarch *gdbarch = get_current_arch ();
8141
8142 if (!arg)
8143 arg = "";
8144 arg = skip_spaces (arg);
8145
8146 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8147
8148 if (*arg != '\0')
8149 {
8150 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8151 _("Invalid regexp")));
8152 c->regex = xstrdup (arg);
8153 }
8154
8155 c->is_load = is_load;
8156 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8157 &catch_solib_breakpoint_ops);
8158
8159 c->enable_state = enabled ? bp_enabled : bp_disabled;
8160
8161 install_breakpoint (0, std::move (c), 1);
8162 }
8163
8164 /* A helper function that does all the work for "catch load" and
8165 "catch unload". */
8166
8167 static void
8168 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8169 struct cmd_list_element *command)
8170 {
8171 int tempflag;
8172 const int enabled = 1;
8173
8174 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8175
8176 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8177 }
8178
8179 static void
8180 catch_load_command_1 (const char *arg, int from_tty,
8181 struct cmd_list_element *command)
8182 {
8183 catch_load_or_unload (arg, from_tty, 1, command);
8184 }
8185
8186 static void
8187 catch_unload_command_1 (const char *arg, int from_tty,
8188 struct cmd_list_element *command)
8189 {
8190 catch_load_or_unload (arg, from_tty, 0, command);
8191 }
8192
8193 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8194 is non-zero, then make the breakpoint temporary. If COND_STRING is
8195 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8196 the breakpoint_ops structure associated to the catchpoint. */
8197
8198 void
8199 init_catchpoint (struct breakpoint *b,
8200 struct gdbarch *gdbarch, int tempflag,
8201 const char *cond_string,
8202 const struct breakpoint_ops *ops)
8203 {
8204 symtab_and_line sal;
8205 sal.pspace = current_program_space;
8206
8207 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8208
8209 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8210 b->disposition = tempflag ? disp_del : disp_donttouch;
8211 }
8212
8213 void
8214 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8215 {
8216 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8217 set_breakpoint_number (internal, b);
8218 if (is_tracepoint (b))
8219 set_tracepoint_count (breakpoint_count);
8220 if (!internal)
8221 mention (b);
8222 gdb::observers::breakpoint_created.notify (b);
8223
8224 if (update_gll)
8225 update_global_location_list (UGLL_MAY_INSERT);
8226 }
8227
8228 static void
8229 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8230 int tempflag, const char *cond_string,
8231 const struct breakpoint_ops *ops)
8232 {
8233 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8234
8235 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8236
8237 c->forked_inferior_pid = null_ptid;
8238
8239 install_breakpoint (0, std::move (c), 1);
8240 }
8241
8242 /* Exec catchpoints. */
8243
8244 /* An instance of this type is used to represent an exec catchpoint.
8245 A breakpoint is really of this type iff its ops pointer points to
8246 CATCH_EXEC_BREAKPOINT_OPS. */
8247
8248 struct exec_catchpoint : public breakpoint
8249 {
8250 ~exec_catchpoint () override;
8251
8252 /* Filename of a program whose exec triggered this catchpoint.
8253 This field is only valid immediately after this catchpoint has
8254 triggered. */
8255 char *exec_pathname;
8256 };
8257
8258 /* Exec catchpoint destructor. */
8259
8260 exec_catchpoint::~exec_catchpoint ()
8261 {
8262 xfree (this->exec_pathname);
8263 }
8264
8265 static int
8266 insert_catch_exec (struct bp_location *bl)
8267 {
8268 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8269 }
8270
8271 static int
8272 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8273 {
8274 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8275 }
8276
8277 static int
8278 breakpoint_hit_catch_exec (const struct bp_location *bl,
8279 const address_space *aspace, CORE_ADDR bp_addr,
8280 const struct target_waitstatus *ws)
8281 {
8282 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8283
8284 if (ws->kind != TARGET_WAITKIND_EXECD)
8285 return 0;
8286
8287 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8288 return 1;
8289 }
8290
8291 static enum print_stop_action
8292 print_it_catch_exec (bpstat bs)
8293 {
8294 struct ui_out *uiout = current_uiout;
8295 struct breakpoint *b = bs->breakpoint_at;
8296 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8297
8298 annotate_catchpoint (b->number);
8299 maybe_print_thread_hit_breakpoint (uiout);
8300 if (b->disposition == disp_del)
8301 uiout->text ("Temporary catchpoint ");
8302 else
8303 uiout->text ("Catchpoint ");
8304 if (uiout->is_mi_like_p ())
8305 {
8306 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8307 uiout->field_string ("disp", bpdisp_text (b->disposition));
8308 }
8309 uiout->field_int ("bkptno", b->number);
8310 uiout->text (" (exec'd ");
8311 uiout->field_string ("new-exec", c->exec_pathname);
8312 uiout->text ("), ");
8313
8314 return PRINT_SRC_AND_LOC;
8315 }
8316
8317 static void
8318 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8319 {
8320 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8321 struct value_print_options opts;
8322 struct ui_out *uiout = current_uiout;
8323
8324 get_user_print_options (&opts);
8325
8326 /* Field 4, the address, is omitted (which makes the columns
8327 not line up too nicely with the headers, but the effect
8328 is relatively readable). */
8329 if (opts.addressprint)
8330 uiout->field_skip ("addr");
8331 annotate_field (5);
8332 uiout->text ("exec");
8333 if (c->exec_pathname != NULL)
8334 {
8335 uiout->text (", program \"");
8336 uiout->field_string ("what", c->exec_pathname);
8337 uiout->text ("\" ");
8338 }
8339
8340 if (uiout->is_mi_like_p ())
8341 uiout->field_string ("catch-type", "exec");
8342 }
8343
8344 static void
8345 print_mention_catch_exec (struct breakpoint *b)
8346 {
8347 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8348 }
8349
8350 /* Implement the "print_recreate" breakpoint_ops method for exec
8351 catchpoints. */
8352
8353 static void
8354 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8355 {
8356 fprintf_unfiltered (fp, "catch exec");
8357 print_recreate_thread (b, fp);
8358 }
8359
8360 static struct breakpoint_ops catch_exec_breakpoint_ops;
8361
8362 static int
8363 hw_breakpoint_used_count (void)
8364 {
8365 int i = 0;
8366 struct breakpoint *b;
8367 struct bp_location *bl;
8368
8369 ALL_BREAKPOINTS (b)
8370 {
8371 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8372 for (bl = b->loc; bl; bl = bl->next)
8373 {
8374 /* Special types of hardware breakpoints may use more than
8375 one register. */
8376 i += b->ops->resources_needed (bl);
8377 }
8378 }
8379
8380 return i;
8381 }
8382
8383 /* Returns the resources B would use if it were a hardware
8384 watchpoint. */
8385
8386 static int
8387 hw_watchpoint_use_count (struct breakpoint *b)
8388 {
8389 int i = 0;
8390 struct bp_location *bl;
8391
8392 if (!breakpoint_enabled (b))
8393 return 0;
8394
8395 for (bl = b->loc; bl; bl = bl->next)
8396 {
8397 /* Special types of hardware watchpoints may use more than
8398 one register. */
8399 i += b->ops->resources_needed (bl);
8400 }
8401
8402 return i;
8403 }
8404
8405 /* Returns the sum the used resources of all hardware watchpoints of
8406 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8407 the sum of the used resources of all hardware watchpoints of other
8408 types _not_ TYPE. */
8409
8410 static int
8411 hw_watchpoint_used_count_others (struct breakpoint *except,
8412 enum bptype type, int *other_type_used)
8413 {
8414 int i = 0;
8415 struct breakpoint *b;
8416
8417 *other_type_used = 0;
8418 ALL_BREAKPOINTS (b)
8419 {
8420 if (b == except)
8421 continue;
8422 if (!breakpoint_enabled (b))
8423 continue;
8424
8425 if (b->type == type)
8426 i += hw_watchpoint_use_count (b);
8427 else if (is_hardware_watchpoint (b))
8428 *other_type_used = 1;
8429 }
8430
8431 return i;
8432 }
8433
8434 void
8435 disable_watchpoints_before_interactive_call_start (void)
8436 {
8437 struct breakpoint *b;
8438
8439 ALL_BREAKPOINTS (b)
8440 {
8441 if (is_watchpoint (b) && breakpoint_enabled (b))
8442 {
8443 b->enable_state = bp_call_disabled;
8444 update_global_location_list (UGLL_DONT_INSERT);
8445 }
8446 }
8447 }
8448
8449 void
8450 enable_watchpoints_after_interactive_call_stop (void)
8451 {
8452 struct breakpoint *b;
8453
8454 ALL_BREAKPOINTS (b)
8455 {
8456 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8457 {
8458 b->enable_state = bp_enabled;
8459 update_global_location_list (UGLL_MAY_INSERT);
8460 }
8461 }
8462 }
8463
8464 void
8465 disable_breakpoints_before_startup (void)
8466 {
8467 current_program_space->executing_startup = 1;
8468 update_global_location_list (UGLL_DONT_INSERT);
8469 }
8470
8471 void
8472 enable_breakpoints_after_startup (void)
8473 {
8474 current_program_space->executing_startup = 0;
8475 breakpoint_re_set ();
8476 }
8477
8478 /* Create a new single-step breakpoint for thread THREAD, with no
8479 locations. */
8480
8481 static struct breakpoint *
8482 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8483 {
8484 std::unique_ptr<breakpoint> b (new breakpoint ());
8485
8486 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8487 &momentary_breakpoint_ops);
8488
8489 b->disposition = disp_donttouch;
8490 b->frame_id = null_frame_id;
8491
8492 b->thread = thread;
8493 gdb_assert (b->thread != 0);
8494
8495 return add_to_breakpoint_chain (std::move (b));
8496 }
8497
8498 /* Set a momentary breakpoint of type TYPE at address specified by
8499 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8500 frame. */
8501
8502 breakpoint_up
8503 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8504 struct frame_id frame_id, enum bptype type)
8505 {
8506 struct breakpoint *b;
8507
8508 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8509 tail-called one. */
8510 gdb_assert (!frame_id_artificial_p (frame_id));
8511
8512 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8513 b->enable_state = bp_enabled;
8514 b->disposition = disp_donttouch;
8515 b->frame_id = frame_id;
8516
8517 /* If we're debugging a multi-threaded program, then we want
8518 momentary breakpoints to be active in only a single thread of
8519 control. */
8520 if (in_thread_list (inferior_ptid))
8521 b->thread = ptid_to_global_thread_id (inferior_ptid);
8522
8523 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8524
8525 return breakpoint_up (b);
8526 }
8527
8528 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8529 The new breakpoint will have type TYPE, use OPS as its
8530 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8531
8532 static struct breakpoint *
8533 momentary_breakpoint_from_master (struct breakpoint *orig,
8534 enum bptype type,
8535 const struct breakpoint_ops *ops,
8536 int loc_enabled)
8537 {
8538 struct breakpoint *copy;
8539
8540 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8541 copy->loc = allocate_bp_location (copy);
8542 set_breakpoint_location_function (copy->loc, 1);
8543
8544 copy->loc->gdbarch = orig->loc->gdbarch;
8545 copy->loc->requested_address = orig->loc->requested_address;
8546 copy->loc->address = orig->loc->address;
8547 copy->loc->section = orig->loc->section;
8548 copy->loc->pspace = orig->loc->pspace;
8549 copy->loc->probe = orig->loc->probe;
8550 copy->loc->line_number = orig->loc->line_number;
8551 copy->loc->symtab = orig->loc->symtab;
8552 copy->loc->enabled = loc_enabled;
8553 copy->frame_id = orig->frame_id;
8554 copy->thread = orig->thread;
8555 copy->pspace = orig->pspace;
8556
8557 copy->enable_state = bp_enabled;
8558 copy->disposition = disp_donttouch;
8559 copy->number = internal_breakpoint_number--;
8560
8561 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8562 return copy;
8563 }
8564
8565 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8566 ORIG is NULL. */
8567
8568 struct breakpoint *
8569 clone_momentary_breakpoint (struct breakpoint *orig)
8570 {
8571 /* If there's nothing to clone, then return nothing. */
8572 if (orig == NULL)
8573 return NULL;
8574
8575 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8576 }
8577
8578 breakpoint_up
8579 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8580 enum bptype type)
8581 {
8582 struct symtab_and_line sal;
8583
8584 sal = find_pc_line (pc, 0);
8585 sal.pc = pc;
8586 sal.section = find_pc_overlay (pc);
8587 sal.explicit_pc = 1;
8588
8589 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8590 }
8591 \f
8592
8593 /* Tell the user we have just set a breakpoint B. */
8594
8595 static void
8596 mention (struct breakpoint *b)
8597 {
8598 b->ops->print_mention (b);
8599 if (current_uiout->is_mi_like_p ())
8600 return;
8601 printf_filtered ("\n");
8602 }
8603 \f
8604
8605 static int bp_loc_is_permanent (struct bp_location *loc);
8606
8607 static struct bp_location *
8608 add_location_to_breakpoint (struct breakpoint *b,
8609 const struct symtab_and_line *sal)
8610 {
8611 struct bp_location *loc, **tmp;
8612 CORE_ADDR adjusted_address;
8613 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8614
8615 if (loc_gdbarch == NULL)
8616 loc_gdbarch = b->gdbarch;
8617
8618 /* Adjust the breakpoint's address prior to allocating a location.
8619 Once we call allocate_bp_location(), that mostly uninitialized
8620 location will be placed on the location chain. Adjustment of the
8621 breakpoint may cause target_read_memory() to be called and we do
8622 not want its scan of the location chain to find a breakpoint and
8623 location that's only been partially initialized. */
8624 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8625 sal->pc, b->type);
8626
8627 /* Sort the locations by their ADDRESS. */
8628 loc = allocate_bp_location (b);
8629 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8630 tmp = &((*tmp)->next))
8631 ;
8632 loc->next = *tmp;
8633 *tmp = loc;
8634
8635 loc->requested_address = sal->pc;
8636 loc->address = adjusted_address;
8637 loc->pspace = sal->pspace;
8638 loc->probe.prob = sal->prob;
8639 loc->probe.objfile = sal->objfile;
8640 gdb_assert (loc->pspace != NULL);
8641 loc->section = sal->section;
8642 loc->gdbarch = loc_gdbarch;
8643 loc->line_number = sal->line;
8644 loc->symtab = sal->symtab;
8645 loc->symbol = sal->symbol;
8646 loc->msymbol = sal->msymbol;
8647 loc->objfile = sal->objfile;
8648
8649 set_breakpoint_location_function (loc,
8650 sal->explicit_pc || sal->explicit_line);
8651
8652 /* While by definition, permanent breakpoints are already present in the
8653 code, we don't mark the location as inserted. Normally one would expect
8654 that GDB could rely on that breakpoint instruction to stop the program,
8655 thus removing the need to insert its own breakpoint, except that executing
8656 the breakpoint instruction can kill the target instead of reporting a
8657 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8658 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8659 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8660 breakpoint be inserted normally results in QEMU knowing about the GDB
8661 breakpoint, and thus trap before the breakpoint instruction is executed.
8662 (If GDB later needs to continue execution past the permanent breakpoint,
8663 it manually increments the PC, thus avoiding executing the breakpoint
8664 instruction.) */
8665 if (bp_loc_is_permanent (loc))
8666 loc->permanent = 1;
8667
8668 return loc;
8669 }
8670 \f
8671
8672 /* See breakpoint.h. */
8673
8674 int
8675 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8676 {
8677 int len;
8678 CORE_ADDR addr;
8679 const gdb_byte *bpoint;
8680 gdb_byte *target_mem;
8681
8682 addr = address;
8683 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8684
8685 /* Software breakpoints unsupported? */
8686 if (bpoint == NULL)
8687 return 0;
8688
8689 target_mem = (gdb_byte *) alloca (len);
8690
8691 /* Enable the automatic memory restoration from breakpoints while
8692 we read the memory. Otherwise we could say about our temporary
8693 breakpoints they are permanent. */
8694 scoped_restore restore_memory
8695 = make_scoped_restore_show_memory_breakpoints (0);
8696
8697 if (target_read_memory (address, target_mem, len) == 0
8698 && memcmp (target_mem, bpoint, len) == 0)
8699 return 1;
8700
8701 return 0;
8702 }
8703
8704 /* Return 1 if LOC is pointing to a permanent breakpoint,
8705 return 0 otherwise. */
8706
8707 static int
8708 bp_loc_is_permanent (struct bp_location *loc)
8709 {
8710 gdb_assert (loc != NULL);
8711
8712 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8713 attempt to read from the addresses the locations of these breakpoint types
8714 point to. program_breakpoint_here_p, below, will attempt to read
8715 memory. */
8716 if (!breakpoint_address_is_meaningful (loc->owner))
8717 return 0;
8718
8719 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8720 switch_to_program_space_and_thread (loc->pspace);
8721 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8722 }
8723
8724 /* Build a command list for the dprintf corresponding to the current
8725 settings of the dprintf style options. */
8726
8727 static void
8728 update_dprintf_command_list (struct breakpoint *b)
8729 {
8730 char *dprintf_args = b->extra_string;
8731 char *printf_line = NULL;
8732
8733 if (!dprintf_args)
8734 return;
8735
8736 dprintf_args = skip_spaces (dprintf_args);
8737
8738 /* Allow a comma, as it may have terminated a location, but don't
8739 insist on it. */
8740 if (*dprintf_args == ',')
8741 ++dprintf_args;
8742 dprintf_args = skip_spaces (dprintf_args);
8743
8744 if (*dprintf_args != '"')
8745 error (_("Bad format string, missing '\"'."));
8746
8747 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8748 printf_line = xstrprintf ("printf %s", dprintf_args);
8749 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8750 {
8751 if (!dprintf_function)
8752 error (_("No function supplied for dprintf call"));
8753
8754 if (dprintf_channel && strlen (dprintf_channel) > 0)
8755 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8756 dprintf_function,
8757 dprintf_channel,
8758 dprintf_args);
8759 else
8760 printf_line = xstrprintf ("call (void) %s (%s)",
8761 dprintf_function,
8762 dprintf_args);
8763 }
8764 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8765 {
8766 if (target_can_run_breakpoint_commands ())
8767 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8768 else
8769 {
8770 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8771 printf_line = xstrprintf ("printf %s", dprintf_args);
8772 }
8773 }
8774 else
8775 internal_error (__FILE__, __LINE__,
8776 _("Invalid dprintf style."));
8777
8778 gdb_assert (printf_line != NULL);
8779 /* Manufacture a printf sequence. */
8780 {
8781 struct command_line *printf_cmd_line = XNEW (struct command_line);
8782
8783 printf_cmd_line->control_type = simple_control;
8784 printf_cmd_line->body_count = 0;
8785 printf_cmd_line->body_list = NULL;
8786 printf_cmd_line->next = NULL;
8787 printf_cmd_line->line = printf_line;
8788
8789 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
8790 }
8791 }
8792
8793 /* Update all dprintf commands, making their command lists reflect
8794 current style settings. */
8795
8796 static void
8797 update_dprintf_commands (const char *args, int from_tty,
8798 struct cmd_list_element *c)
8799 {
8800 struct breakpoint *b;
8801
8802 ALL_BREAKPOINTS (b)
8803 {
8804 if (b->type == bp_dprintf)
8805 update_dprintf_command_list (b);
8806 }
8807 }
8808
8809 /* Create a breakpoint with SAL as location. Use LOCATION
8810 as a description of the location, and COND_STRING
8811 as condition expression. If LOCATION is NULL then create an
8812 "address location" from the address in the SAL. */
8813
8814 static void
8815 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8816 gdb::array_view<const symtab_and_line> sals,
8817 event_location_up &&location,
8818 gdb::unique_xmalloc_ptr<char> filter,
8819 gdb::unique_xmalloc_ptr<char> cond_string,
8820 gdb::unique_xmalloc_ptr<char> extra_string,
8821 enum bptype type, enum bpdisp disposition,
8822 int thread, int task, int ignore_count,
8823 const struct breakpoint_ops *ops, int from_tty,
8824 int enabled, int internal, unsigned flags,
8825 int display_canonical)
8826 {
8827 int i;
8828
8829 if (type == bp_hardware_breakpoint)
8830 {
8831 int target_resources_ok;
8832
8833 i = hw_breakpoint_used_count ();
8834 target_resources_ok =
8835 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8836 i + 1, 0);
8837 if (target_resources_ok == 0)
8838 error (_("No hardware breakpoint support in the target."));
8839 else if (target_resources_ok < 0)
8840 error (_("Hardware breakpoints used exceeds limit."));
8841 }
8842
8843 gdb_assert (!sals.empty ());
8844
8845 for (const auto &sal : sals)
8846 {
8847 struct bp_location *loc;
8848
8849 if (from_tty)
8850 {
8851 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8852 if (!loc_gdbarch)
8853 loc_gdbarch = gdbarch;
8854
8855 describe_other_breakpoints (loc_gdbarch,
8856 sal.pspace, sal.pc, sal.section, thread);
8857 }
8858
8859 if (&sal == &sals[0])
8860 {
8861 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8862 b->thread = thread;
8863 b->task = task;
8864
8865 b->cond_string = cond_string.release ();
8866 b->extra_string = extra_string.release ();
8867 b->ignore_count = ignore_count;
8868 b->enable_state = enabled ? bp_enabled : bp_disabled;
8869 b->disposition = disposition;
8870
8871 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8872 b->loc->inserted = 1;
8873
8874 if (type == bp_static_tracepoint)
8875 {
8876 struct tracepoint *t = (struct tracepoint *) b;
8877 struct static_tracepoint_marker marker;
8878
8879 if (strace_marker_p (b))
8880 {
8881 /* We already know the marker exists, otherwise, we
8882 wouldn't see a sal for it. */
8883 const char *p
8884 = &event_location_to_string (b->location.get ())[3];
8885 const char *endp;
8886
8887 p = skip_spaces (p);
8888
8889 endp = skip_to_space (p);
8890
8891 t->static_trace_marker_id.assign (p, endp - p);
8892
8893 printf_filtered (_("Probed static tracepoint "
8894 "marker \"%s\"\n"),
8895 t->static_trace_marker_id.c_str ());
8896 }
8897 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8898 {
8899 t->static_trace_marker_id = std::move (marker.str_id);
8900
8901 printf_filtered (_("Probed static tracepoint "
8902 "marker \"%s\"\n"),
8903 t->static_trace_marker_id.c_str ());
8904 }
8905 else
8906 warning (_("Couldn't determine the static "
8907 "tracepoint marker to probe"));
8908 }
8909
8910 loc = b->loc;
8911 }
8912 else
8913 {
8914 loc = add_location_to_breakpoint (b, &sal);
8915 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8916 loc->inserted = 1;
8917 }
8918
8919 if (b->cond_string)
8920 {
8921 const char *arg = b->cond_string;
8922
8923 loc->cond = parse_exp_1 (&arg, loc->address,
8924 block_for_pc (loc->address), 0);
8925 if (*arg)
8926 error (_("Garbage '%s' follows condition"), arg);
8927 }
8928
8929 /* Dynamic printf requires and uses additional arguments on the
8930 command line, otherwise it's an error. */
8931 if (type == bp_dprintf)
8932 {
8933 if (b->extra_string)
8934 update_dprintf_command_list (b);
8935 else
8936 error (_("Format string required"));
8937 }
8938 else if (b->extra_string)
8939 error (_("Garbage '%s' at end of command"), b->extra_string);
8940 }
8941
8942 b->display_canonical = display_canonical;
8943 if (location != NULL)
8944 b->location = std::move (location);
8945 else
8946 b->location = new_address_location (b->loc->address, NULL, 0);
8947 b->filter = filter.release ();
8948 }
8949
8950 static void
8951 create_breakpoint_sal (struct gdbarch *gdbarch,
8952 gdb::array_view<const symtab_and_line> sals,
8953 event_location_up &&location,
8954 gdb::unique_xmalloc_ptr<char> filter,
8955 gdb::unique_xmalloc_ptr<char> cond_string,
8956 gdb::unique_xmalloc_ptr<char> extra_string,
8957 enum bptype type, enum bpdisp disposition,
8958 int thread, int task, int ignore_count,
8959 const struct breakpoint_ops *ops, int from_tty,
8960 int enabled, int internal, unsigned flags,
8961 int display_canonical)
8962 {
8963 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8964
8965 init_breakpoint_sal (b.get (), gdbarch,
8966 sals, std::move (location),
8967 std::move (filter),
8968 std::move (cond_string),
8969 std::move (extra_string),
8970 type, disposition,
8971 thread, task, ignore_count,
8972 ops, from_tty,
8973 enabled, internal, flags,
8974 display_canonical);
8975
8976 install_breakpoint (internal, std::move (b), 0);
8977 }
8978
8979 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8980 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8981 value. COND_STRING, if not NULL, specified the condition to be
8982 used for all breakpoints. Essentially the only case where
8983 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8984 function. In that case, it's still not possible to specify
8985 separate conditions for different overloaded functions, so
8986 we take just a single condition string.
8987
8988 NOTE: If the function succeeds, the caller is expected to cleanup
8989 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8990 array contents). If the function fails (error() is called), the
8991 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8992 COND and SALS arrays and each of those arrays contents. */
8993
8994 static void
8995 create_breakpoints_sal (struct gdbarch *gdbarch,
8996 struct linespec_result *canonical,
8997 gdb::unique_xmalloc_ptr<char> cond_string,
8998 gdb::unique_xmalloc_ptr<char> extra_string,
8999 enum bptype type, enum bpdisp disposition,
9000 int thread, int task, int ignore_count,
9001 const struct breakpoint_ops *ops, int from_tty,
9002 int enabled, int internal, unsigned flags)
9003 {
9004 if (canonical->pre_expanded)
9005 gdb_assert (canonical->lsals.size () == 1);
9006
9007 for (const auto &lsal : canonical->lsals)
9008 {
9009 /* Note that 'location' can be NULL in the case of a plain
9010 'break', without arguments. */
9011 event_location_up location
9012 = (canonical->location != NULL
9013 ? copy_event_location (canonical->location.get ()) : NULL);
9014 gdb::unique_xmalloc_ptr<char> filter_string
9015 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9016
9017 create_breakpoint_sal (gdbarch, lsal.sals,
9018 std::move (location),
9019 std::move (filter_string),
9020 std::move (cond_string),
9021 std::move (extra_string),
9022 type, disposition,
9023 thread, task, ignore_count, ops,
9024 from_tty, enabled, internal, flags,
9025 canonical->special_display);
9026 }
9027 }
9028
9029 /* Parse LOCATION which is assumed to be a SAL specification possibly
9030 followed by conditionals. On return, SALS contains an array of SAL
9031 addresses found. LOCATION points to the end of the SAL (for
9032 linespec locations).
9033
9034 The array and the line spec strings are allocated on the heap, it is
9035 the caller's responsibility to free them. */
9036
9037 static void
9038 parse_breakpoint_sals (const struct event_location *location,
9039 struct linespec_result *canonical)
9040 {
9041 struct symtab_and_line cursal;
9042
9043 if (event_location_type (location) == LINESPEC_LOCATION)
9044 {
9045 const char *spec = get_linespec_location (location)->spec_string;
9046
9047 if (spec == NULL)
9048 {
9049 /* The last displayed codepoint, if it's valid, is our default
9050 breakpoint address. */
9051 if (last_displayed_sal_is_valid ())
9052 {
9053 /* Set sal's pspace, pc, symtab, and line to the values
9054 corresponding to the last call to print_frame_info.
9055 Be sure to reinitialize LINE with NOTCURRENT == 0
9056 as the breakpoint line number is inappropriate otherwise.
9057 find_pc_line would adjust PC, re-set it back. */
9058 symtab_and_line sal = get_last_displayed_sal ();
9059 CORE_ADDR pc = sal.pc;
9060
9061 sal = find_pc_line (pc, 0);
9062
9063 /* "break" without arguments is equivalent to "break *PC"
9064 where PC is the last displayed codepoint's address. So
9065 make sure to set sal.explicit_pc to prevent GDB from
9066 trying to expand the list of sals to include all other
9067 instances with the same symtab and line. */
9068 sal.pc = pc;
9069 sal.explicit_pc = 1;
9070
9071 struct linespec_sals lsal;
9072 lsal.sals = {sal};
9073 lsal.canonical = NULL;
9074
9075 canonical->lsals.push_back (std::move (lsal));
9076 return;
9077 }
9078 else
9079 error (_("No default breakpoint address now."));
9080 }
9081 }
9082
9083 /* Force almost all breakpoints to be in terms of the
9084 current_source_symtab (which is decode_line_1's default).
9085 This should produce the results we want almost all of the
9086 time while leaving default_breakpoint_* alone.
9087
9088 ObjC: However, don't match an Objective-C method name which
9089 may have a '+' or '-' succeeded by a '['. */
9090 cursal = get_current_source_symtab_and_line ();
9091 if (last_displayed_sal_is_valid ())
9092 {
9093 const char *spec = NULL;
9094
9095 if (event_location_type (location) == LINESPEC_LOCATION)
9096 spec = get_linespec_location (location)->spec_string;
9097
9098 if (!cursal.symtab
9099 || (spec != NULL
9100 && strchr ("+-", spec[0]) != NULL
9101 && spec[1] != '['))
9102 {
9103 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9104 get_last_displayed_symtab (),
9105 get_last_displayed_line (),
9106 canonical, NULL, NULL);
9107 return;
9108 }
9109 }
9110
9111 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9112 cursal.symtab, cursal.line, canonical, NULL, NULL);
9113 }
9114
9115
9116 /* Convert each SAL into a real PC. Verify that the PC can be
9117 inserted as a breakpoint. If it can't throw an error. */
9118
9119 static void
9120 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9121 {
9122 for (auto &sal : sals)
9123 resolve_sal_pc (&sal);
9124 }
9125
9126 /* Fast tracepoints may have restrictions on valid locations. For
9127 instance, a fast tracepoint using a jump instead of a trap will
9128 likely have to overwrite more bytes than a trap would, and so can
9129 only be placed where the instruction is longer than the jump, or a
9130 multi-instruction sequence does not have a jump into the middle of
9131 it, etc. */
9132
9133 static void
9134 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9135 gdb::array_view<const symtab_and_line> sals)
9136 {
9137 for (const auto &sal : sals)
9138 {
9139 struct gdbarch *sarch;
9140
9141 sarch = get_sal_arch (sal);
9142 /* We fall back to GDBARCH if there is no architecture
9143 associated with SAL. */
9144 if (sarch == NULL)
9145 sarch = gdbarch;
9146 std::string msg;
9147 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9148 error (_("May not have a fast tracepoint at %s%s"),
9149 paddress (sarch, sal.pc), msg.c_str ());
9150 }
9151 }
9152
9153 /* Given TOK, a string specification of condition and thread, as
9154 accepted by the 'break' command, extract the condition
9155 string and thread number and set *COND_STRING and *THREAD.
9156 PC identifies the context at which the condition should be parsed.
9157 If no condition is found, *COND_STRING is set to NULL.
9158 If no thread is found, *THREAD is set to -1. */
9159
9160 static void
9161 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9162 char **cond_string, int *thread, int *task,
9163 char **rest)
9164 {
9165 *cond_string = NULL;
9166 *thread = -1;
9167 *task = 0;
9168 *rest = NULL;
9169
9170 while (tok && *tok)
9171 {
9172 const char *end_tok;
9173 int toklen;
9174 const char *cond_start = NULL;
9175 const char *cond_end = NULL;
9176
9177 tok = skip_spaces (tok);
9178
9179 if ((*tok == '"' || *tok == ',') && rest)
9180 {
9181 *rest = savestring (tok, strlen (tok));
9182 return;
9183 }
9184
9185 end_tok = skip_to_space (tok);
9186
9187 toklen = end_tok - tok;
9188
9189 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9190 {
9191 tok = cond_start = end_tok + 1;
9192 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9193 cond_end = tok;
9194 *cond_string = savestring (cond_start, cond_end - cond_start);
9195 }
9196 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9197 {
9198 const char *tmptok;
9199 struct thread_info *thr;
9200
9201 tok = end_tok + 1;
9202 thr = parse_thread_id (tok, &tmptok);
9203 if (tok == tmptok)
9204 error (_("Junk after thread keyword."));
9205 *thread = thr->global_num;
9206 tok = tmptok;
9207 }
9208 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9209 {
9210 char *tmptok;
9211
9212 tok = end_tok + 1;
9213 *task = strtol (tok, &tmptok, 0);
9214 if (tok == tmptok)
9215 error (_("Junk after task keyword."));
9216 if (!valid_task_id (*task))
9217 error (_("Unknown task %d."), *task);
9218 tok = tmptok;
9219 }
9220 else if (rest)
9221 {
9222 *rest = savestring (tok, strlen (tok));
9223 return;
9224 }
9225 else
9226 error (_("Junk at end of arguments."));
9227 }
9228 }
9229
9230 /* Decode a static tracepoint marker spec. */
9231
9232 static std::vector<symtab_and_line>
9233 decode_static_tracepoint_spec (const char **arg_p)
9234 {
9235 const char *p = &(*arg_p)[3];
9236 const char *endp;
9237
9238 p = skip_spaces (p);
9239
9240 endp = skip_to_space (p);
9241
9242 std::string marker_str (p, endp - p);
9243
9244 std::vector<static_tracepoint_marker> markers
9245 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9246 if (markers.empty ())
9247 error (_("No known static tracepoint marker named %s"),
9248 marker_str.c_str ());
9249
9250 std::vector<symtab_and_line> sals;
9251 sals.reserve (markers.size ());
9252
9253 for (const static_tracepoint_marker &marker : markers)
9254 {
9255 symtab_and_line sal = find_pc_line (marker.address, 0);
9256 sal.pc = marker.address;
9257 sals.push_back (sal);
9258 }
9259
9260 *arg_p = endp;
9261 return sals;
9262 }
9263
9264 /* See breakpoint.h. */
9265
9266 int
9267 create_breakpoint (struct gdbarch *gdbarch,
9268 const struct event_location *location,
9269 const char *cond_string,
9270 int thread, const char *extra_string,
9271 int parse_extra,
9272 int tempflag, enum bptype type_wanted,
9273 int ignore_count,
9274 enum auto_boolean pending_break_support,
9275 const struct breakpoint_ops *ops,
9276 int from_tty, int enabled, int internal,
9277 unsigned flags)
9278 {
9279 struct linespec_result canonical;
9280 struct cleanup *bkpt_chain = NULL;
9281 int pending = 0;
9282 int task = 0;
9283 int prev_bkpt_count = breakpoint_count;
9284
9285 gdb_assert (ops != NULL);
9286
9287 /* If extra_string isn't useful, set it to NULL. */
9288 if (extra_string != NULL && *extra_string == '\0')
9289 extra_string = NULL;
9290
9291 TRY
9292 {
9293 ops->create_sals_from_location (location, &canonical, type_wanted);
9294 }
9295 CATCH (e, RETURN_MASK_ERROR)
9296 {
9297 /* If caller is interested in rc value from parse, set
9298 value. */
9299 if (e.error == NOT_FOUND_ERROR)
9300 {
9301 /* If pending breakpoint support is turned off, throw
9302 error. */
9303
9304 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9305 throw_exception (e);
9306
9307 exception_print (gdb_stderr, e);
9308
9309 /* If pending breakpoint support is auto query and the user
9310 selects no, then simply return the error code. */
9311 if (pending_break_support == AUTO_BOOLEAN_AUTO
9312 && !nquery (_("Make %s pending on future shared library load? "),
9313 bptype_string (type_wanted)))
9314 return 0;
9315
9316 /* At this point, either the user was queried about setting
9317 a pending breakpoint and selected yes, or pending
9318 breakpoint behavior is on and thus a pending breakpoint
9319 is defaulted on behalf of the user. */
9320 pending = 1;
9321 }
9322 else
9323 throw_exception (e);
9324 }
9325 END_CATCH
9326
9327 if (!pending && canonical.lsals.empty ())
9328 return 0;
9329
9330 /* ----------------------------- SNIP -----------------------------
9331 Anything added to the cleanup chain beyond this point is assumed
9332 to be part of a breakpoint. If the breakpoint create succeeds
9333 then the memory is not reclaimed. */
9334 bkpt_chain = make_cleanup (null_cleanup, 0);
9335
9336 /* Resolve all line numbers to PC's and verify that the addresses
9337 are ok for the target. */
9338 if (!pending)
9339 {
9340 for (auto &lsal : canonical.lsals)
9341 breakpoint_sals_to_pc (lsal.sals);
9342 }
9343
9344 /* Fast tracepoints may have additional restrictions on location. */
9345 if (!pending && type_wanted == bp_fast_tracepoint)
9346 {
9347 for (const auto &lsal : canonical.lsals)
9348 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9349 }
9350
9351 /* Verify that condition can be parsed, before setting any
9352 breakpoints. Allocate a separate condition expression for each
9353 breakpoint. */
9354 if (!pending)
9355 {
9356 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9357 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9358
9359 if (parse_extra)
9360 {
9361 char *rest;
9362 char *cond;
9363
9364 const linespec_sals &lsal = canonical.lsals[0];
9365
9366 /* Here we only parse 'arg' to separate condition
9367 from thread number, so parsing in context of first
9368 sal is OK. When setting the breakpoint we'll
9369 re-parse it in context of each sal. */
9370
9371 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9372 &cond, &thread, &task, &rest);
9373 cond_string_copy.reset (cond);
9374 extra_string_copy.reset (rest);
9375 }
9376 else
9377 {
9378 if (type_wanted != bp_dprintf
9379 && extra_string != NULL && *extra_string != '\0')
9380 error (_("Garbage '%s' at end of location"), extra_string);
9381
9382 /* Create a private copy of condition string. */
9383 if (cond_string)
9384 cond_string_copy.reset (xstrdup (cond_string));
9385 /* Create a private copy of any extra string. */
9386 if (extra_string)
9387 extra_string_copy.reset (xstrdup (extra_string));
9388 }
9389
9390 ops->create_breakpoints_sal (gdbarch, &canonical,
9391 std::move (cond_string_copy),
9392 std::move (extra_string_copy),
9393 type_wanted,
9394 tempflag ? disp_del : disp_donttouch,
9395 thread, task, ignore_count, ops,
9396 from_tty, enabled, internal, flags);
9397 }
9398 else
9399 {
9400 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9401
9402 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9403 b->location = copy_event_location (location);
9404
9405 if (parse_extra)
9406 b->cond_string = NULL;
9407 else
9408 {
9409 /* Create a private copy of condition string. */
9410 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9411 b->thread = thread;
9412 }
9413
9414 /* Create a private copy of any extra string. */
9415 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9416 b->ignore_count = ignore_count;
9417 b->disposition = tempflag ? disp_del : disp_donttouch;
9418 b->condition_not_parsed = 1;
9419 b->enable_state = enabled ? bp_enabled : bp_disabled;
9420 if ((type_wanted != bp_breakpoint
9421 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9422 b->pspace = current_program_space;
9423
9424 install_breakpoint (internal, std::move (b), 0);
9425 }
9426
9427 if (canonical.lsals.size () > 1)
9428 {
9429 warning (_("Multiple breakpoints were set.\nUse the "
9430 "\"delete\" command to delete unwanted breakpoints."));
9431 prev_breakpoint_count = prev_bkpt_count;
9432 }
9433
9434 /* That's it. Discard the cleanups for data inserted into the
9435 breakpoint. */
9436 discard_cleanups (bkpt_chain);
9437
9438 /* error call may happen here - have BKPT_CHAIN already discarded. */
9439 update_global_location_list (UGLL_MAY_INSERT);
9440
9441 return 1;
9442 }
9443
9444 /* Set a breakpoint.
9445 ARG is a string describing breakpoint address,
9446 condition, and thread.
9447 FLAG specifies if a breakpoint is hardware on,
9448 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9449 and BP_TEMPFLAG. */
9450
9451 static void
9452 break_command_1 (const char *arg, int flag, int from_tty)
9453 {
9454 int tempflag = flag & BP_TEMPFLAG;
9455 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9456 ? bp_hardware_breakpoint
9457 : bp_breakpoint);
9458 struct breakpoint_ops *ops;
9459
9460 event_location_up location = string_to_event_location (&arg, current_language);
9461
9462 /* Matching breakpoints on probes. */
9463 if (location != NULL
9464 && event_location_type (location.get ()) == PROBE_LOCATION)
9465 ops = &bkpt_probe_breakpoint_ops;
9466 else
9467 ops = &bkpt_breakpoint_ops;
9468
9469 create_breakpoint (get_current_arch (),
9470 location.get (),
9471 NULL, 0, arg, 1 /* parse arg */,
9472 tempflag, type_wanted,
9473 0 /* Ignore count */,
9474 pending_break_support,
9475 ops,
9476 from_tty,
9477 1 /* enabled */,
9478 0 /* internal */,
9479 0);
9480 }
9481
9482 /* Helper function for break_command_1 and disassemble_command. */
9483
9484 void
9485 resolve_sal_pc (struct symtab_and_line *sal)
9486 {
9487 CORE_ADDR pc;
9488
9489 if (sal->pc == 0 && sal->symtab != NULL)
9490 {
9491 if (!find_line_pc (sal->symtab, sal->line, &pc))
9492 error (_("No line %d in file \"%s\"."),
9493 sal->line, symtab_to_filename_for_display (sal->symtab));
9494 sal->pc = pc;
9495
9496 /* If this SAL corresponds to a breakpoint inserted using a line
9497 number, then skip the function prologue if necessary. */
9498 if (sal->explicit_line)
9499 skip_prologue_sal (sal);
9500 }
9501
9502 if (sal->section == 0 && sal->symtab != NULL)
9503 {
9504 const struct blockvector *bv;
9505 const struct block *b;
9506 struct symbol *sym;
9507
9508 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9509 SYMTAB_COMPUNIT (sal->symtab));
9510 if (bv != NULL)
9511 {
9512 sym = block_linkage_function (b);
9513 if (sym != NULL)
9514 {
9515 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9516 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9517 sym);
9518 }
9519 else
9520 {
9521 /* It really is worthwhile to have the section, so we'll
9522 just have to look harder. This case can be executed
9523 if we have line numbers but no functions (as can
9524 happen in assembly source). */
9525
9526 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9527 switch_to_program_space_and_thread (sal->pspace);
9528
9529 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9530 if (msym.minsym)
9531 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9532 }
9533 }
9534 }
9535 }
9536
9537 void
9538 break_command (const char *arg, int from_tty)
9539 {
9540 break_command_1 (arg, 0, from_tty);
9541 }
9542
9543 void
9544 tbreak_command (const char *arg, int from_tty)
9545 {
9546 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9547 }
9548
9549 static void
9550 hbreak_command (const char *arg, int from_tty)
9551 {
9552 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9553 }
9554
9555 static void
9556 thbreak_command (const char *arg, int from_tty)
9557 {
9558 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9559 }
9560
9561 static void
9562 stop_command (const char *arg, int from_tty)
9563 {
9564 printf_filtered (_("Specify the type of breakpoint to set.\n\
9565 Usage: stop in <function | address>\n\
9566 stop at <line>\n"));
9567 }
9568
9569 static void
9570 stopin_command (const char *arg, int from_tty)
9571 {
9572 int badInput = 0;
9573
9574 if (arg == (char *) NULL)
9575 badInput = 1;
9576 else if (*arg != '*')
9577 {
9578 const char *argptr = arg;
9579 int hasColon = 0;
9580
9581 /* Look for a ':'. If this is a line number specification, then
9582 say it is bad, otherwise, it should be an address or
9583 function/method name. */
9584 while (*argptr && !hasColon)
9585 {
9586 hasColon = (*argptr == ':');
9587 argptr++;
9588 }
9589
9590 if (hasColon)
9591 badInput = (*argptr != ':'); /* Not a class::method */
9592 else
9593 badInput = isdigit (*arg); /* a simple line number */
9594 }
9595
9596 if (badInput)
9597 printf_filtered (_("Usage: stop in <function | address>\n"));
9598 else
9599 break_command_1 (arg, 0, from_tty);
9600 }
9601
9602 static void
9603 stopat_command (const char *arg, int from_tty)
9604 {
9605 int badInput = 0;
9606
9607 if (arg == (char *) NULL || *arg == '*') /* no line number */
9608 badInput = 1;
9609 else
9610 {
9611 const char *argptr = arg;
9612 int hasColon = 0;
9613
9614 /* Look for a ':'. If there is a '::' then get out, otherwise
9615 it is probably a line number. */
9616 while (*argptr && !hasColon)
9617 {
9618 hasColon = (*argptr == ':');
9619 argptr++;
9620 }
9621
9622 if (hasColon)
9623 badInput = (*argptr == ':'); /* we have class::method */
9624 else
9625 badInput = !isdigit (*arg); /* not a line number */
9626 }
9627
9628 if (badInput)
9629 printf_filtered (_("Usage: stop at <line>\n"));
9630 else
9631 break_command_1 (arg, 0, from_tty);
9632 }
9633
9634 /* The dynamic printf command is mostly like a regular breakpoint, but
9635 with a prewired command list consisting of a single output command,
9636 built from extra arguments supplied on the dprintf command
9637 line. */
9638
9639 static void
9640 dprintf_command (const char *arg, int from_tty)
9641 {
9642 event_location_up location = string_to_event_location (&arg, current_language);
9643
9644 /* If non-NULL, ARG should have been advanced past the location;
9645 the next character must be ','. */
9646 if (arg != NULL)
9647 {
9648 if (arg[0] != ',' || arg[1] == '\0')
9649 error (_("Format string required"));
9650 else
9651 {
9652 /* Skip the comma. */
9653 ++arg;
9654 }
9655 }
9656
9657 create_breakpoint (get_current_arch (),
9658 location.get (),
9659 NULL, 0, arg, 1 /* parse arg */,
9660 0, bp_dprintf,
9661 0 /* Ignore count */,
9662 pending_break_support,
9663 &dprintf_breakpoint_ops,
9664 from_tty,
9665 1 /* enabled */,
9666 0 /* internal */,
9667 0);
9668 }
9669
9670 static void
9671 agent_printf_command (const char *arg, int from_tty)
9672 {
9673 error (_("May only run agent-printf on the target"));
9674 }
9675
9676 /* Implement the "breakpoint_hit" breakpoint_ops method for
9677 ranged breakpoints. */
9678
9679 static int
9680 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9681 const address_space *aspace,
9682 CORE_ADDR bp_addr,
9683 const struct target_waitstatus *ws)
9684 {
9685 if (ws->kind != TARGET_WAITKIND_STOPPED
9686 || ws->value.sig != GDB_SIGNAL_TRAP)
9687 return 0;
9688
9689 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9690 bl->length, aspace, bp_addr);
9691 }
9692
9693 /* Implement the "resources_needed" breakpoint_ops method for
9694 ranged breakpoints. */
9695
9696 static int
9697 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9698 {
9699 return target_ranged_break_num_registers ();
9700 }
9701
9702 /* Implement the "print_it" breakpoint_ops method for
9703 ranged breakpoints. */
9704
9705 static enum print_stop_action
9706 print_it_ranged_breakpoint (bpstat bs)
9707 {
9708 struct breakpoint *b = bs->breakpoint_at;
9709 struct bp_location *bl = b->loc;
9710 struct ui_out *uiout = current_uiout;
9711
9712 gdb_assert (b->type == bp_hardware_breakpoint);
9713
9714 /* Ranged breakpoints have only one location. */
9715 gdb_assert (bl && bl->next == NULL);
9716
9717 annotate_breakpoint (b->number);
9718
9719 maybe_print_thread_hit_breakpoint (uiout);
9720
9721 if (b->disposition == disp_del)
9722 uiout->text ("Temporary ranged breakpoint ");
9723 else
9724 uiout->text ("Ranged breakpoint ");
9725 if (uiout->is_mi_like_p ())
9726 {
9727 uiout->field_string ("reason",
9728 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9729 uiout->field_string ("disp", bpdisp_text (b->disposition));
9730 }
9731 uiout->field_int ("bkptno", b->number);
9732 uiout->text (", ");
9733
9734 return PRINT_SRC_AND_LOC;
9735 }
9736
9737 /* Implement the "print_one" breakpoint_ops method for
9738 ranged breakpoints. */
9739
9740 static void
9741 print_one_ranged_breakpoint (struct breakpoint *b,
9742 struct bp_location **last_loc)
9743 {
9744 struct bp_location *bl = b->loc;
9745 struct value_print_options opts;
9746 struct ui_out *uiout = current_uiout;
9747
9748 /* Ranged breakpoints have only one location. */
9749 gdb_assert (bl && bl->next == NULL);
9750
9751 get_user_print_options (&opts);
9752
9753 if (opts.addressprint)
9754 /* We don't print the address range here, it will be printed later
9755 by print_one_detail_ranged_breakpoint. */
9756 uiout->field_skip ("addr");
9757 annotate_field (5);
9758 print_breakpoint_location (b, bl);
9759 *last_loc = bl;
9760 }
9761
9762 /* Implement the "print_one_detail" breakpoint_ops method for
9763 ranged breakpoints. */
9764
9765 static void
9766 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9767 struct ui_out *uiout)
9768 {
9769 CORE_ADDR address_start, address_end;
9770 struct bp_location *bl = b->loc;
9771 string_file stb;
9772
9773 gdb_assert (bl);
9774
9775 address_start = bl->address;
9776 address_end = address_start + bl->length - 1;
9777
9778 uiout->text ("\taddress range: ");
9779 stb.printf ("[%s, %s]",
9780 print_core_address (bl->gdbarch, address_start),
9781 print_core_address (bl->gdbarch, address_end));
9782 uiout->field_stream ("addr", stb);
9783 uiout->text ("\n");
9784 }
9785
9786 /* Implement the "print_mention" breakpoint_ops method for
9787 ranged breakpoints. */
9788
9789 static void
9790 print_mention_ranged_breakpoint (struct breakpoint *b)
9791 {
9792 struct bp_location *bl = b->loc;
9793 struct ui_out *uiout = current_uiout;
9794
9795 gdb_assert (bl);
9796 gdb_assert (b->type == bp_hardware_breakpoint);
9797
9798 if (uiout->is_mi_like_p ())
9799 return;
9800
9801 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9802 b->number, paddress (bl->gdbarch, bl->address),
9803 paddress (bl->gdbarch, bl->address + bl->length - 1));
9804 }
9805
9806 /* Implement the "print_recreate" breakpoint_ops method for
9807 ranged breakpoints. */
9808
9809 static void
9810 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9811 {
9812 fprintf_unfiltered (fp, "break-range %s, %s",
9813 event_location_to_string (b->location.get ()),
9814 event_location_to_string (b->location_range_end.get ()));
9815 print_recreate_thread (b, fp);
9816 }
9817
9818 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9819
9820 static struct breakpoint_ops ranged_breakpoint_ops;
9821
9822 /* Find the address where the end of the breakpoint range should be
9823 placed, given the SAL of the end of the range. This is so that if
9824 the user provides a line number, the end of the range is set to the
9825 last instruction of the given line. */
9826
9827 static CORE_ADDR
9828 find_breakpoint_range_end (struct symtab_and_line sal)
9829 {
9830 CORE_ADDR end;
9831
9832 /* If the user provided a PC value, use it. Otherwise,
9833 find the address of the end of the given location. */
9834 if (sal.explicit_pc)
9835 end = sal.pc;
9836 else
9837 {
9838 int ret;
9839 CORE_ADDR start;
9840
9841 ret = find_line_pc_range (sal, &start, &end);
9842 if (!ret)
9843 error (_("Could not find location of the end of the range."));
9844
9845 /* find_line_pc_range returns the start of the next line. */
9846 end--;
9847 }
9848
9849 return end;
9850 }
9851
9852 /* Implement the "break-range" CLI command. */
9853
9854 static void
9855 break_range_command (const char *arg, int from_tty)
9856 {
9857 const char *arg_start;
9858 struct linespec_result canonical_start, canonical_end;
9859 int bp_count, can_use_bp, length;
9860 CORE_ADDR end;
9861 struct breakpoint *b;
9862
9863 /* We don't support software ranged breakpoints. */
9864 if (target_ranged_break_num_registers () < 0)
9865 error (_("This target does not support hardware ranged breakpoints."));
9866
9867 bp_count = hw_breakpoint_used_count ();
9868 bp_count += target_ranged_break_num_registers ();
9869 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9870 bp_count, 0);
9871 if (can_use_bp < 0)
9872 error (_("Hardware breakpoints used exceeds limit."));
9873
9874 arg = skip_spaces (arg);
9875 if (arg == NULL || arg[0] == '\0')
9876 error(_("No address range specified."));
9877
9878 arg_start = arg;
9879 event_location_up start_location = string_to_event_location (&arg,
9880 current_language);
9881 parse_breakpoint_sals (start_location.get (), &canonical_start);
9882
9883 if (arg[0] != ',')
9884 error (_("Too few arguments."));
9885 else if (canonical_start.lsals.empty ())
9886 error (_("Could not find location of the beginning of the range."));
9887
9888 const linespec_sals &lsal_start = canonical_start.lsals[0];
9889
9890 if (canonical_start.lsals.size () > 1
9891 || lsal_start.sals.size () != 1)
9892 error (_("Cannot create a ranged breakpoint with multiple locations."));
9893
9894 const symtab_and_line &sal_start = lsal_start.sals[0];
9895 std::string addr_string_start (arg_start, arg - arg_start);
9896
9897 arg++; /* Skip the comma. */
9898 arg = skip_spaces (arg);
9899
9900 /* Parse the end location. */
9901
9902 arg_start = arg;
9903
9904 /* We call decode_line_full directly here instead of using
9905 parse_breakpoint_sals because we need to specify the start location's
9906 symtab and line as the default symtab and line for the end of the
9907 range. This makes it possible to have ranges like "foo.c:27, +14",
9908 where +14 means 14 lines from the start location. */
9909 event_location_up end_location = string_to_event_location (&arg,
9910 current_language);
9911 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9912 sal_start.symtab, sal_start.line,
9913 &canonical_end, NULL, NULL);
9914
9915 if (canonical_end.lsals.empty ())
9916 error (_("Could not find location of the end of the range."));
9917
9918 const linespec_sals &lsal_end = canonical_end.lsals[0];
9919 if (canonical_end.lsals.size () > 1
9920 || lsal_end.sals.size () != 1)
9921 error (_("Cannot create a ranged breakpoint with multiple locations."));
9922
9923 const symtab_and_line &sal_end = lsal_end.sals[0];
9924
9925 end = find_breakpoint_range_end (sal_end);
9926 if (sal_start.pc > end)
9927 error (_("Invalid address range, end precedes start."));
9928
9929 length = end - sal_start.pc + 1;
9930 if (length < 0)
9931 /* Length overflowed. */
9932 error (_("Address range too large."));
9933 else if (length == 1)
9934 {
9935 /* This range is simple enough to be handled by
9936 the `hbreak' command. */
9937 hbreak_command (&addr_string_start[0], 1);
9938
9939 return;
9940 }
9941
9942 /* Now set up the breakpoint. */
9943 b = set_raw_breakpoint (get_current_arch (), sal_start,
9944 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9945 set_breakpoint_count (breakpoint_count + 1);
9946 b->number = breakpoint_count;
9947 b->disposition = disp_donttouch;
9948 b->location = std::move (start_location);
9949 b->location_range_end = std::move (end_location);
9950 b->loc->length = length;
9951
9952 mention (b);
9953 gdb::observers::breakpoint_created.notify (b);
9954 update_global_location_list (UGLL_MAY_INSERT);
9955 }
9956
9957 /* Return non-zero if EXP is verified as constant. Returned zero
9958 means EXP is variable. Also the constant detection may fail for
9959 some constant expressions and in such case still falsely return
9960 zero. */
9961
9962 static int
9963 watchpoint_exp_is_const (const struct expression *exp)
9964 {
9965 int i = exp->nelts;
9966
9967 while (i > 0)
9968 {
9969 int oplenp, argsp;
9970
9971 /* We are only interested in the descriptor of each element. */
9972 operator_length (exp, i, &oplenp, &argsp);
9973 i -= oplenp;
9974
9975 switch (exp->elts[i].opcode)
9976 {
9977 case BINOP_ADD:
9978 case BINOP_SUB:
9979 case BINOP_MUL:
9980 case BINOP_DIV:
9981 case BINOP_REM:
9982 case BINOP_MOD:
9983 case BINOP_LSH:
9984 case BINOP_RSH:
9985 case BINOP_LOGICAL_AND:
9986 case BINOP_LOGICAL_OR:
9987 case BINOP_BITWISE_AND:
9988 case BINOP_BITWISE_IOR:
9989 case BINOP_BITWISE_XOR:
9990 case BINOP_EQUAL:
9991 case BINOP_NOTEQUAL:
9992 case BINOP_LESS:
9993 case BINOP_GTR:
9994 case BINOP_LEQ:
9995 case BINOP_GEQ:
9996 case BINOP_REPEAT:
9997 case BINOP_COMMA:
9998 case BINOP_EXP:
9999 case BINOP_MIN:
10000 case BINOP_MAX:
10001 case BINOP_INTDIV:
10002 case BINOP_CONCAT:
10003 case TERNOP_COND:
10004 case TERNOP_SLICE:
10005
10006 case OP_LONG:
10007 case OP_FLOAT:
10008 case OP_LAST:
10009 case OP_COMPLEX:
10010 case OP_STRING:
10011 case OP_ARRAY:
10012 case OP_TYPE:
10013 case OP_TYPEOF:
10014 case OP_DECLTYPE:
10015 case OP_TYPEID:
10016 case OP_NAME:
10017 case OP_OBJC_NSSTRING:
10018
10019 case UNOP_NEG:
10020 case UNOP_LOGICAL_NOT:
10021 case UNOP_COMPLEMENT:
10022 case UNOP_ADDR:
10023 case UNOP_HIGH:
10024 case UNOP_CAST:
10025
10026 case UNOP_CAST_TYPE:
10027 case UNOP_REINTERPRET_CAST:
10028 case UNOP_DYNAMIC_CAST:
10029 /* Unary, binary and ternary operators: We have to check
10030 their operands. If they are constant, then so is the
10031 result of that operation. For instance, if A and B are
10032 determined to be constants, then so is "A + B".
10033
10034 UNOP_IND is one exception to the rule above, because the
10035 value of *ADDR is not necessarily a constant, even when
10036 ADDR is. */
10037 break;
10038
10039 case OP_VAR_VALUE:
10040 /* Check whether the associated symbol is a constant.
10041
10042 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10043 possible that a buggy compiler could mark a variable as
10044 constant even when it is not, and TYPE_CONST would return
10045 true in this case, while SYMBOL_CLASS wouldn't.
10046
10047 We also have to check for function symbols because they
10048 are always constant. */
10049 {
10050 struct symbol *s = exp->elts[i + 2].symbol;
10051
10052 if (SYMBOL_CLASS (s) != LOC_BLOCK
10053 && SYMBOL_CLASS (s) != LOC_CONST
10054 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10055 return 0;
10056 break;
10057 }
10058
10059 /* The default action is to return 0 because we are using
10060 the optimistic approach here: If we don't know something,
10061 then it is not a constant. */
10062 default:
10063 return 0;
10064 }
10065 }
10066
10067 return 1;
10068 }
10069
10070 /* Watchpoint destructor. */
10071
10072 watchpoint::~watchpoint ()
10073 {
10074 xfree (this->exp_string);
10075 xfree (this->exp_string_reparse);
10076 }
10077
10078 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10079
10080 static void
10081 re_set_watchpoint (struct breakpoint *b)
10082 {
10083 struct watchpoint *w = (struct watchpoint *) b;
10084
10085 /* Watchpoint can be either on expression using entirely global
10086 variables, or it can be on local variables.
10087
10088 Watchpoints of the first kind are never auto-deleted, and even
10089 persist across program restarts. Since they can use variables
10090 from shared libraries, we need to reparse expression as libraries
10091 are loaded and unloaded.
10092
10093 Watchpoints on local variables can also change meaning as result
10094 of solib event. For example, if a watchpoint uses both a local
10095 and a global variables in expression, it's a local watchpoint,
10096 but unloading of a shared library will make the expression
10097 invalid. This is not a very common use case, but we still
10098 re-evaluate expression, to avoid surprises to the user.
10099
10100 Note that for local watchpoints, we re-evaluate it only if
10101 watchpoints frame id is still valid. If it's not, it means the
10102 watchpoint is out of scope and will be deleted soon. In fact,
10103 I'm not sure we'll ever be called in this case.
10104
10105 If a local watchpoint's frame id is still valid, then
10106 w->exp_valid_block is likewise valid, and we can safely use it.
10107
10108 Don't do anything about disabled watchpoints, since they will be
10109 reevaluated again when enabled. */
10110 update_watchpoint (w, 1 /* reparse */);
10111 }
10112
10113 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10114
10115 static int
10116 insert_watchpoint (struct bp_location *bl)
10117 {
10118 struct watchpoint *w = (struct watchpoint *) bl->owner;
10119 int length = w->exact ? 1 : bl->length;
10120
10121 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10122 w->cond_exp.get ());
10123 }
10124
10125 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10126
10127 static int
10128 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10129 {
10130 struct watchpoint *w = (struct watchpoint *) bl->owner;
10131 int length = w->exact ? 1 : bl->length;
10132
10133 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10134 w->cond_exp.get ());
10135 }
10136
10137 static int
10138 breakpoint_hit_watchpoint (const struct bp_location *bl,
10139 const address_space *aspace, CORE_ADDR bp_addr,
10140 const struct target_waitstatus *ws)
10141 {
10142 struct breakpoint *b = bl->owner;
10143 struct watchpoint *w = (struct watchpoint *) b;
10144
10145 /* Continuable hardware watchpoints are treated as non-existent if the
10146 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10147 some data address). Otherwise gdb won't stop on a break instruction
10148 in the code (not from a breakpoint) when a hardware watchpoint has
10149 been defined. Also skip watchpoints which we know did not trigger
10150 (did not match the data address). */
10151 if (is_hardware_watchpoint (b)
10152 && w->watchpoint_triggered == watch_triggered_no)
10153 return 0;
10154
10155 return 1;
10156 }
10157
10158 static void
10159 check_status_watchpoint (bpstat bs)
10160 {
10161 gdb_assert (is_watchpoint (bs->breakpoint_at));
10162
10163 bpstat_check_watchpoint (bs);
10164 }
10165
10166 /* Implement the "resources_needed" breakpoint_ops method for
10167 hardware watchpoints. */
10168
10169 static int
10170 resources_needed_watchpoint (const struct bp_location *bl)
10171 {
10172 struct watchpoint *w = (struct watchpoint *) bl->owner;
10173 int length = w->exact? 1 : bl->length;
10174
10175 return target_region_ok_for_hw_watchpoint (bl->address, length);
10176 }
10177
10178 /* Implement the "works_in_software_mode" breakpoint_ops method for
10179 hardware watchpoints. */
10180
10181 static int
10182 works_in_software_mode_watchpoint (const struct breakpoint *b)
10183 {
10184 /* Read and access watchpoints only work with hardware support. */
10185 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10186 }
10187
10188 static enum print_stop_action
10189 print_it_watchpoint (bpstat bs)
10190 {
10191 struct breakpoint *b;
10192 enum print_stop_action result;
10193 struct watchpoint *w;
10194 struct ui_out *uiout = current_uiout;
10195
10196 gdb_assert (bs->bp_location_at != NULL);
10197
10198 b = bs->breakpoint_at;
10199 w = (struct watchpoint *) b;
10200
10201 annotate_watchpoint (b->number);
10202 maybe_print_thread_hit_breakpoint (uiout);
10203
10204 string_file stb;
10205
10206 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10207 switch (b->type)
10208 {
10209 case bp_watchpoint:
10210 case bp_hardware_watchpoint:
10211 if (uiout->is_mi_like_p ())
10212 uiout->field_string
10213 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10214 mention (b);
10215 tuple_emitter.emplace (uiout, "value");
10216 uiout->text ("\nOld value = ");
10217 watchpoint_value_print (bs->old_val.get (), &stb);
10218 uiout->field_stream ("old", stb);
10219 uiout->text ("\nNew value = ");
10220 watchpoint_value_print (w->val.get (), &stb);
10221 uiout->field_stream ("new", stb);
10222 uiout->text ("\n");
10223 /* More than one watchpoint may have been triggered. */
10224 result = PRINT_UNKNOWN;
10225 break;
10226
10227 case bp_read_watchpoint:
10228 if (uiout->is_mi_like_p ())
10229 uiout->field_string
10230 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10231 mention (b);
10232 tuple_emitter.emplace (uiout, "value");
10233 uiout->text ("\nValue = ");
10234 watchpoint_value_print (w->val.get (), &stb);
10235 uiout->field_stream ("value", stb);
10236 uiout->text ("\n");
10237 result = PRINT_UNKNOWN;
10238 break;
10239
10240 case bp_access_watchpoint:
10241 if (bs->old_val != NULL)
10242 {
10243 if (uiout->is_mi_like_p ())
10244 uiout->field_string
10245 ("reason",
10246 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10247 mention (b);
10248 tuple_emitter.emplace (uiout, "value");
10249 uiout->text ("\nOld value = ");
10250 watchpoint_value_print (bs->old_val.get (), &stb);
10251 uiout->field_stream ("old", stb);
10252 uiout->text ("\nNew value = ");
10253 }
10254 else
10255 {
10256 mention (b);
10257 if (uiout->is_mi_like_p ())
10258 uiout->field_string
10259 ("reason",
10260 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10261 tuple_emitter.emplace (uiout, "value");
10262 uiout->text ("\nValue = ");
10263 }
10264 watchpoint_value_print (w->val.get (), &stb);
10265 uiout->field_stream ("new", stb);
10266 uiout->text ("\n");
10267 result = PRINT_UNKNOWN;
10268 break;
10269 default:
10270 result = PRINT_UNKNOWN;
10271 }
10272
10273 return result;
10274 }
10275
10276 /* Implement the "print_mention" breakpoint_ops method for hardware
10277 watchpoints. */
10278
10279 static void
10280 print_mention_watchpoint (struct breakpoint *b)
10281 {
10282 struct watchpoint *w = (struct watchpoint *) b;
10283 struct ui_out *uiout = current_uiout;
10284 const char *tuple_name;
10285
10286 switch (b->type)
10287 {
10288 case bp_watchpoint:
10289 uiout->text ("Watchpoint ");
10290 tuple_name = "wpt";
10291 break;
10292 case bp_hardware_watchpoint:
10293 uiout->text ("Hardware watchpoint ");
10294 tuple_name = "wpt";
10295 break;
10296 case bp_read_watchpoint:
10297 uiout->text ("Hardware read watchpoint ");
10298 tuple_name = "hw-rwpt";
10299 break;
10300 case bp_access_watchpoint:
10301 uiout->text ("Hardware access (read/write) watchpoint ");
10302 tuple_name = "hw-awpt";
10303 break;
10304 default:
10305 internal_error (__FILE__, __LINE__,
10306 _("Invalid hardware watchpoint type."));
10307 }
10308
10309 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10310 uiout->field_int ("number", b->number);
10311 uiout->text (": ");
10312 uiout->field_string ("exp", w->exp_string);
10313 }
10314
10315 /* Implement the "print_recreate" breakpoint_ops method for
10316 watchpoints. */
10317
10318 static void
10319 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10320 {
10321 struct watchpoint *w = (struct watchpoint *) b;
10322
10323 switch (b->type)
10324 {
10325 case bp_watchpoint:
10326 case bp_hardware_watchpoint:
10327 fprintf_unfiltered (fp, "watch");
10328 break;
10329 case bp_read_watchpoint:
10330 fprintf_unfiltered (fp, "rwatch");
10331 break;
10332 case bp_access_watchpoint:
10333 fprintf_unfiltered (fp, "awatch");
10334 break;
10335 default:
10336 internal_error (__FILE__, __LINE__,
10337 _("Invalid watchpoint type."));
10338 }
10339
10340 fprintf_unfiltered (fp, " %s", w->exp_string);
10341 print_recreate_thread (b, fp);
10342 }
10343
10344 /* Implement the "explains_signal" breakpoint_ops method for
10345 watchpoints. */
10346
10347 static int
10348 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10349 {
10350 /* A software watchpoint cannot cause a signal other than
10351 GDB_SIGNAL_TRAP. */
10352 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10353 return 0;
10354
10355 return 1;
10356 }
10357
10358 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10359
10360 static struct breakpoint_ops watchpoint_breakpoint_ops;
10361
10362 /* Implement the "insert" breakpoint_ops method for
10363 masked hardware watchpoints. */
10364
10365 static int
10366 insert_masked_watchpoint (struct bp_location *bl)
10367 {
10368 struct watchpoint *w = (struct watchpoint *) bl->owner;
10369
10370 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10371 bl->watchpoint_type);
10372 }
10373
10374 /* Implement the "remove" breakpoint_ops method for
10375 masked hardware watchpoints. */
10376
10377 static int
10378 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10379 {
10380 struct watchpoint *w = (struct watchpoint *) bl->owner;
10381
10382 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10383 bl->watchpoint_type);
10384 }
10385
10386 /* Implement the "resources_needed" breakpoint_ops method for
10387 masked hardware watchpoints. */
10388
10389 static int
10390 resources_needed_masked_watchpoint (const struct bp_location *bl)
10391 {
10392 struct watchpoint *w = (struct watchpoint *) bl->owner;
10393
10394 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10395 }
10396
10397 /* Implement the "works_in_software_mode" breakpoint_ops method for
10398 masked hardware watchpoints. */
10399
10400 static int
10401 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10402 {
10403 return 0;
10404 }
10405
10406 /* Implement the "print_it" breakpoint_ops method for
10407 masked hardware watchpoints. */
10408
10409 static enum print_stop_action
10410 print_it_masked_watchpoint (bpstat bs)
10411 {
10412 struct breakpoint *b = bs->breakpoint_at;
10413 struct ui_out *uiout = current_uiout;
10414
10415 /* Masked watchpoints have only one location. */
10416 gdb_assert (b->loc && b->loc->next == NULL);
10417
10418 annotate_watchpoint (b->number);
10419 maybe_print_thread_hit_breakpoint (uiout);
10420
10421 switch (b->type)
10422 {
10423 case bp_hardware_watchpoint:
10424 if (uiout->is_mi_like_p ())
10425 uiout->field_string
10426 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10427 break;
10428
10429 case bp_read_watchpoint:
10430 if (uiout->is_mi_like_p ())
10431 uiout->field_string
10432 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10433 break;
10434
10435 case bp_access_watchpoint:
10436 if (uiout->is_mi_like_p ())
10437 uiout->field_string
10438 ("reason",
10439 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10440 break;
10441 default:
10442 internal_error (__FILE__, __LINE__,
10443 _("Invalid hardware watchpoint type."));
10444 }
10445
10446 mention (b);
10447 uiout->text (_("\n\
10448 Check the underlying instruction at PC for the memory\n\
10449 address and value which triggered this watchpoint.\n"));
10450 uiout->text ("\n");
10451
10452 /* More than one watchpoint may have been triggered. */
10453 return PRINT_UNKNOWN;
10454 }
10455
10456 /* Implement the "print_one_detail" breakpoint_ops method for
10457 masked hardware watchpoints. */
10458
10459 static void
10460 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10461 struct ui_out *uiout)
10462 {
10463 struct watchpoint *w = (struct watchpoint *) b;
10464
10465 /* Masked watchpoints have only one location. */
10466 gdb_assert (b->loc && b->loc->next == NULL);
10467
10468 uiout->text ("\tmask ");
10469 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10470 uiout->text ("\n");
10471 }
10472
10473 /* Implement the "print_mention" breakpoint_ops method for
10474 masked hardware watchpoints. */
10475
10476 static void
10477 print_mention_masked_watchpoint (struct breakpoint *b)
10478 {
10479 struct watchpoint *w = (struct watchpoint *) b;
10480 struct ui_out *uiout = current_uiout;
10481 const char *tuple_name;
10482
10483 switch (b->type)
10484 {
10485 case bp_hardware_watchpoint:
10486 uiout->text ("Masked hardware watchpoint ");
10487 tuple_name = "wpt";
10488 break;
10489 case bp_read_watchpoint:
10490 uiout->text ("Masked hardware read watchpoint ");
10491 tuple_name = "hw-rwpt";
10492 break;
10493 case bp_access_watchpoint:
10494 uiout->text ("Masked hardware access (read/write) watchpoint ");
10495 tuple_name = "hw-awpt";
10496 break;
10497 default:
10498 internal_error (__FILE__, __LINE__,
10499 _("Invalid hardware watchpoint type."));
10500 }
10501
10502 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10503 uiout->field_int ("number", b->number);
10504 uiout->text (": ");
10505 uiout->field_string ("exp", w->exp_string);
10506 }
10507
10508 /* Implement the "print_recreate" breakpoint_ops method for
10509 masked hardware watchpoints. */
10510
10511 static void
10512 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10513 {
10514 struct watchpoint *w = (struct watchpoint *) b;
10515 char tmp[40];
10516
10517 switch (b->type)
10518 {
10519 case bp_hardware_watchpoint:
10520 fprintf_unfiltered (fp, "watch");
10521 break;
10522 case bp_read_watchpoint:
10523 fprintf_unfiltered (fp, "rwatch");
10524 break;
10525 case bp_access_watchpoint:
10526 fprintf_unfiltered (fp, "awatch");
10527 break;
10528 default:
10529 internal_error (__FILE__, __LINE__,
10530 _("Invalid hardware watchpoint type."));
10531 }
10532
10533 sprintf_vma (tmp, w->hw_wp_mask);
10534 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10535 print_recreate_thread (b, fp);
10536 }
10537
10538 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10539
10540 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10541
10542 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10543
10544 static int
10545 is_masked_watchpoint (const struct breakpoint *b)
10546 {
10547 return b->ops == &masked_watchpoint_breakpoint_ops;
10548 }
10549
10550 /* accessflag: hw_write: watch write,
10551 hw_read: watch read,
10552 hw_access: watch access (read or write) */
10553 static void
10554 watch_command_1 (const char *arg, int accessflag, int from_tty,
10555 int just_location, int internal)
10556 {
10557 struct breakpoint *scope_breakpoint = NULL;
10558 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10559 struct value *mark, *result;
10560 int saved_bitpos = 0, saved_bitsize = 0;
10561 const char *exp_start = NULL;
10562 const char *exp_end = NULL;
10563 const char *tok, *end_tok;
10564 int toklen = -1;
10565 const char *cond_start = NULL;
10566 const char *cond_end = NULL;
10567 enum bptype bp_type;
10568 int thread = -1;
10569 int pc = 0;
10570 /* Flag to indicate whether we are going to use masks for
10571 the hardware watchpoint. */
10572 int use_mask = 0;
10573 CORE_ADDR mask = 0;
10574
10575 /* Make sure that we actually have parameters to parse. */
10576 if (arg != NULL && arg[0] != '\0')
10577 {
10578 const char *value_start;
10579
10580 exp_end = arg + strlen (arg);
10581
10582 /* Look for "parameter value" pairs at the end
10583 of the arguments string. */
10584 for (tok = exp_end - 1; tok > arg; tok--)
10585 {
10586 /* Skip whitespace at the end of the argument list. */
10587 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10588 tok--;
10589
10590 /* Find the beginning of the last token.
10591 This is the value of the parameter. */
10592 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10593 tok--;
10594 value_start = tok + 1;
10595
10596 /* Skip whitespace. */
10597 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10598 tok--;
10599
10600 end_tok = tok;
10601
10602 /* Find the beginning of the second to last token.
10603 This is the parameter itself. */
10604 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10605 tok--;
10606 tok++;
10607 toklen = end_tok - tok + 1;
10608
10609 if (toklen == 6 && startswith (tok, "thread"))
10610 {
10611 struct thread_info *thr;
10612 /* At this point we've found a "thread" token, which means
10613 the user is trying to set a watchpoint that triggers
10614 only in a specific thread. */
10615 const char *endp;
10616
10617 if (thread != -1)
10618 error(_("You can specify only one thread."));
10619
10620 /* Extract the thread ID from the next token. */
10621 thr = parse_thread_id (value_start, &endp);
10622
10623 /* Check if the user provided a valid thread ID. */
10624 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10625 invalid_thread_id_error (value_start);
10626
10627 thread = thr->global_num;
10628 }
10629 else if (toklen == 4 && startswith (tok, "mask"))
10630 {
10631 /* We've found a "mask" token, which means the user wants to
10632 create a hardware watchpoint that is going to have the mask
10633 facility. */
10634 struct value *mask_value, *mark;
10635
10636 if (use_mask)
10637 error(_("You can specify only one mask."));
10638
10639 use_mask = just_location = 1;
10640
10641 mark = value_mark ();
10642 mask_value = parse_to_comma_and_eval (&value_start);
10643 mask = value_as_address (mask_value);
10644 value_free_to_mark (mark);
10645 }
10646 else
10647 /* We didn't recognize what we found. We should stop here. */
10648 break;
10649
10650 /* Truncate the string and get rid of the "parameter value" pair before
10651 the arguments string is parsed by the parse_exp_1 function. */
10652 exp_end = tok;
10653 }
10654 }
10655 else
10656 exp_end = arg;
10657
10658 /* Parse the rest of the arguments. From here on out, everything
10659 is in terms of a newly allocated string instead of the original
10660 ARG. */
10661 innermost_block.reset ();
10662 std::string expression (arg, exp_end - arg);
10663 exp_start = arg = expression.c_str ();
10664 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10665 exp_end = arg;
10666 /* Remove trailing whitespace from the expression before saving it.
10667 This makes the eventual display of the expression string a bit
10668 prettier. */
10669 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10670 --exp_end;
10671
10672 /* Checking if the expression is not constant. */
10673 if (watchpoint_exp_is_const (exp.get ()))
10674 {
10675 int len;
10676
10677 len = exp_end - exp_start;
10678 while (len > 0 && isspace (exp_start[len - 1]))
10679 len--;
10680 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10681 }
10682
10683 exp_valid_block = innermost_block.block ();
10684 mark = value_mark ();
10685 struct value *val_as_value = nullptr;
10686 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10687 just_location);
10688
10689 if (val_as_value != NULL && just_location)
10690 {
10691 saved_bitpos = value_bitpos (val_as_value);
10692 saved_bitsize = value_bitsize (val_as_value);
10693 }
10694
10695 value_ref_ptr val;
10696 if (just_location)
10697 {
10698 int ret;
10699
10700 exp_valid_block = NULL;
10701 val = release_value (value_addr (result));
10702 value_free_to_mark (mark);
10703
10704 if (use_mask)
10705 {
10706 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10707 mask);
10708 if (ret == -1)
10709 error (_("This target does not support masked watchpoints."));
10710 else if (ret == -2)
10711 error (_("Invalid mask or memory region."));
10712 }
10713 }
10714 else if (val_as_value != NULL)
10715 val = release_value (val_as_value);
10716
10717 tok = skip_spaces (arg);
10718 end_tok = skip_to_space (tok);
10719
10720 toklen = end_tok - tok;
10721 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10722 {
10723 innermost_block.reset ();
10724 tok = cond_start = end_tok + 1;
10725 parse_exp_1 (&tok, 0, 0, 0);
10726
10727 /* The watchpoint expression may not be local, but the condition
10728 may still be. E.g.: `watch global if local > 0'. */
10729 cond_exp_valid_block = innermost_block.block ();
10730
10731 cond_end = tok;
10732 }
10733 if (*tok)
10734 error (_("Junk at end of command."));
10735
10736 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10737
10738 /* Save this because create_internal_breakpoint below invalidates
10739 'wp_frame'. */
10740 frame_id watchpoint_frame = get_frame_id (wp_frame);
10741
10742 /* If the expression is "local", then set up a "watchpoint scope"
10743 breakpoint at the point where we've left the scope of the watchpoint
10744 expression. Create the scope breakpoint before the watchpoint, so
10745 that we will encounter it first in bpstat_stop_status. */
10746 if (exp_valid_block != NULL && wp_frame != NULL)
10747 {
10748 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10749
10750 if (frame_id_p (caller_frame_id))
10751 {
10752 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10753 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10754
10755 scope_breakpoint
10756 = create_internal_breakpoint (caller_arch, caller_pc,
10757 bp_watchpoint_scope,
10758 &momentary_breakpoint_ops);
10759
10760 /* create_internal_breakpoint could invalidate WP_FRAME. */
10761 wp_frame = NULL;
10762
10763 scope_breakpoint->enable_state = bp_enabled;
10764
10765 /* Automatically delete the breakpoint when it hits. */
10766 scope_breakpoint->disposition = disp_del;
10767
10768 /* Only break in the proper frame (help with recursion). */
10769 scope_breakpoint->frame_id = caller_frame_id;
10770
10771 /* Set the address at which we will stop. */
10772 scope_breakpoint->loc->gdbarch = caller_arch;
10773 scope_breakpoint->loc->requested_address = caller_pc;
10774 scope_breakpoint->loc->address
10775 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10776 scope_breakpoint->loc->requested_address,
10777 scope_breakpoint->type);
10778 }
10779 }
10780
10781 /* Now set up the breakpoint. We create all watchpoints as hardware
10782 watchpoints here even if hardware watchpoints are turned off, a call
10783 to update_watchpoint later in this function will cause the type to
10784 drop back to bp_watchpoint (software watchpoint) if required. */
10785
10786 if (accessflag == hw_read)
10787 bp_type = bp_read_watchpoint;
10788 else if (accessflag == hw_access)
10789 bp_type = bp_access_watchpoint;
10790 else
10791 bp_type = bp_hardware_watchpoint;
10792
10793 std::unique_ptr<watchpoint> w (new watchpoint ());
10794
10795 if (use_mask)
10796 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10797 &masked_watchpoint_breakpoint_ops);
10798 else
10799 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10800 &watchpoint_breakpoint_ops);
10801 w->thread = thread;
10802 w->disposition = disp_donttouch;
10803 w->pspace = current_program_space;
10804 w->exp = std::move (exp);
10805 w->exp_valid_block = exp_valid_block;
10806 w->cond_exp_valid_block = cond_exp_valid_block;
10807 if (just_location)
10808 {
10809 struct type *t = value_type (val.get ());
10810 CORE_ADDR addr = value_as_address (val.get ());
10811
10812 w->exp_string_reparse
10813 = current_language->la_watch_location_expression (t, addr).release ();
10814
10815 w->exp_string = xstrprintf ("-location %.*s",
10816 (int) (exp_end - exp_start), exp_start);
10817 }
10818 else
10819 w->exp_string = savestring (exp_start, exp_end - exp_start);
10820
10821 if (use_mask)
10822 {
10823 w->hw_wp_mask = mask;
10824 }
10825 else
10826 {
10827 w->val = val;
10828 w->val_bitpos = saved_bitpos;
10829 w->val_bitsize = saved_bitsize;
10830 w->val_valid = 1;
10831 }
10832
10833 if (cond_start)
10834 w->cond_string = savestring (cond_start, cond_end - cond_start);
10835 else
10836 w->cond_string = 0;
10837
10838 if (frame_id_p (watchpoint_frame))
10839 {
10840 w->watchpoint_frame = watchpoint_frame;
10841 w->watchpoint_thread = inferior_ptid;
10842 }
10843 else
10844 {
10845 w->watchpoint_frame = null_frame_id;
10846 w->watchpoint_thread = null_ptid;
10847 }
10848
10849 if (scope_breakpoint != NULL)
10850 {
10851 /* The scope breakpoint is related to the watchpoint. We will
10852 need to act on them together. */
10853 w->related_breakpoint = scope_breakpoint;
10854 scope_breakpoint->related_breakpoint = w.get ();
10855 }
10856
10857 if (!just_location)
10858 value_free_to_mark (mark);
10859
10860 /* Finally update the new watchpoint. This creates the locations
10861 that should be inserted. */
10862 update_watchpoint (w.get (), 1);
10863
10864 install_breakpoint (internal, std::move (w), 1);
10865 }
10866
10867 /* Return count of debug registers needed to watch the given expression.
10868 If the watchpoint cannot be handled in hardware return zero. */
10869
10870 static int
10871 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10872 {
10873 int found_memory_cnt = 0;
10874
10875 /* Did the user specifically forbid us to use hardware watchpoints? */
10876 if (!can_use_hw_watchpoints)
10877 return 0;
10878
10879 gdb_assert (!vals.empty ());
10880 struct value *head = vals[0].get ();
10881
10882 /* Make sure that the value of the expression depends only upon
10883 memory contents, and values computed from them within GDB. If we
10884 find any register references or function calls, we can't use a
10885 hardware watchpoint.
10886
10887 The idea here is that evaluating an expression generates a series
10888 of values, one holding the value of every subexpression. (The
10889 expression a*b+c has five subexpressions: a, b, a*b, c, and
10890 a*b+c.) GDB's values hold almost enough information to establish
10891 the criteria given above --- they identify memory lvalues,
10892 register lvalues, computed values, etcetera. So we can evaluate
10893 the expression, and then scan the chain of values that leaves
10894 behind to decide whether we can detect any possible change to the
10895 expression's final value using only hardware watchpoints.
10896
10897 However, I don't think that the values returned by inferior
10898 function calls are special in any way. So this function may not
10899 notice that an expression involving an inferior function call
10900 can't be watched with hardware watchpoints. FIXME. */
10901 for (const value_ref_ptr &iter : vals)
10902 {
10903 struct value *v = iter.get ();
10904
10905 if (VALUE_LVAL (v) == lval_memory)
10906 {
10907 if (v != head && value_lazy (v))
10908 /* A lazy memory lvalue in the chain is one that GDB never
10909 needed to fetch; we either just used its address (e.g.,
10910 `a' in `a.b') or we never needed it at all (e.g., `a'
10911 in `a,b'). This doesn't apply to HEAD; if that is
10912 lazy then it was not readable, but watch it anyway. */
10913 ;
10914 else
10915 {
10916 /* Ahh, memory we actually used! Check if we can cover
10917 it with hardware watchpoints. */
10918 struct type *vtype = check_typedef (value_type (v));
10919
10920 /* We only watch structs and arrays if user asked for it
10921 explicitly, never if they just happen to appear in a
10922 middle of some value chain. */
10923 if (v == head
10924 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10925 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10926 {
10927 CORE_ADDR vaddr = value_address (v);
10928 int len;
10929 int num_regs;
10930
10931 len = (target_exact_watchpoints
10932 && is_scalar_type_recursive (vtype))?
10933 1 : TYPE_LENGTH (value_type (v));
10934
10935 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10936 if (!num_regs)
10937 return 0;
10938 else
10939 found_memory_cnt += num_regs;
10940 }
10941 }
10942 }
10943 else if (VALUE_LVAL (v) != not_lval
10944 && deprecated_value_modifiable (v) == 0)
10945 return 0; /* These are values from the history (e.g., $1). */
10946 else if (VALUE_LVAL (v) == lval_register)
10947 return 0; /* Cannot watch a register with a HW watchpoint. */
10948 }
10949
10950 /* The expression itself looks suitable for using a hardware
10951 watchpoint, but give the target machine a chance to reject it. */
10952 return found_memory_cnt;
10953 }
10954
10955 void
10956 watch_command_wrapper (const char *arg, int from_tty, int internal)
10957 {
10958 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10959 }
10960
10961 /* A helper function that looks for the "-location" argument and then
10962 calls watch_command_1. */
10963
10964 static void
10965 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10966 {
10967 int just_location = 0;
10968
10969 if (arg
10970 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10971 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10972 {
10973 arg = skip_spaces (arg);
10974 just_location = 1;
10975 }
10976
10977 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10978 }
10979
10980 static void
10981 watch_command (const char *arg, int from_tty)
10982 {
10983 watch_maybe_just_location (arg, hw_write, from_tty);
10984 }
10985
10986 void
10987 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10988 {
10989 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10990 }
10991
10992 static void
10993 rwatch_command (const char *arg, int from_tty)
10994 {
10995 watch_maybe_just_location (arg, hw_read, from_tty);
10996 }
10997
10998 void
10999 awatch_command_wrapper (const char *arg, int from_tty, int internal)
11000 {
11001 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11002 }
11003
11004 static void
11005 awatch_command (const char *arg, int from_tty)
11006 {
11007 watch_maybe_just_location (arg, hw_access, from_tty);
11008 }
11009 \f
11010
11011 /* Data for the FSM that manages the until(location)/advance commands
11012 in infcmd.c. Here because it uses the mechanisms of
11013 breakpoints. */
11014
11015 struct until_break_fsm
11016 {
11017 /* The base class. */
11018 struct thread_fsm thread_fsm;
11019
11020 /* The thread that as current when the command was executed. */
11021 int thread;
11022
11023 /* The breakpoint set at the destination location. */
11024 struct breakpoint *location_breakpoint;
11025
11026 /* Breakpoint set at the return address in the caller frame. May be
11027 NULL. */
11028 struct breakpoint *caller_breakpoint;
11029 };
11030
11031 static void until_break_fsm_clean_up (struct thread_fsm *self,
11032 struct thread_info *thread);
11033 static int until_break_fsm_should_stop (struct thread_fsm *self,
11034 struct thread_info *thread);
11035 static enum async_reply_reason
11036 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11037
11038 /* until_break_fsm's vtable. */
11039
11040 static struct thread_fsm_ops until_break_fsm_ops =
11041 {
11042 NULL, /* dtor */
11043 until_break_fsm_clean_up,
11044 until_break_fsm_should_stop,
11045 NULL, /* return_value */
11046 until_break_fsm_async_reply_reason,
11047 };
11048
11049 /* Allocate a new until_break_command_fsm. */
11050
11051 static struct until_break_fsm *
11052 new_until_break_fsm (struct interp *cmd_interp, int thread,
11053 breakpoint_up &&location_breakpoint,
11054 breakpoint_up &&caller_breakpoint)
11055 {
11056 struct until_break_fsm *sm;
11057
11058 sm = XCNEW (struct until_break_fsm);
11059 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11060
11061 sm->thread = thread;
11062 sm->location_breakpoint = location_breakpoint.release ();
11063 sm->caller_breakpoint = caller_breakpoint.release ();
11064
11065 return sm;
11066 }
11067
11068 /* Implementation of the 'should_stop' FSM method for the
11069 until(location)/advance commands. */
11070
11071 static int
11072 until_break_fsm_should_stop (struct thread_fsm *self,
11073 struct thread_info *tp)
11074 {
11075 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11076
11077 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11078 sm->location_breakpoint) != NULL
11079 || (sm->caller_breakpoint != NULL
11080 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11081 sm->caller_breakpoint) != NULL))
11082 thread_fsm_set_finished (self);
11083
11084 return 1;
11085 }
11086
11087 /* Implementation of the 'clean_up' FSM method for the
11088 until(location)/advance commands. */
11089
11090 static void
11091 until_break_fsm_clean_up (struct thread_fsm *self,
11092 struct thread_info *thread)
11093 {
11094 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11095
11096 /* Clean up our temporary breakpoints. */
11097 if (sm->location_breakpoint != NULL)
11098 {
11099 delete_breakpoint (sm->location_breakpoint);
11100 sm->location_breakpoint = NULL;
11101 }
11102 if (sm->caller_breakpoint != NULL)
11103 {
11104 delete_breakpoint (sm->caller_breakpoint);
11105 sm->caller_breakpoint = NULL;
11106 }
11107 delete_longjmp_breakpoint (sm->thread);
11108 }
11109
11110 /* Implementation of the 'async_reply_reason' FSM method for the
11111 until(location)/advance commands. */
11112
11113 static enum async_reply_reason
11114 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11115 {
11116 return EXEC_ASYNC_LOCATION_REACHED;
11117 }
11118
11119 void
11120 until_break_command (const char *arg, int from_tty, int anywhere)
11121 {
11122 struct frame_info *frame;
11123 struct gdbarch *frame_gdbarch;
11124 struct frame_id stack_frame_id;
11125 struct frame_id caller_frame_id;
11126 struct cleanup *old_chain;
11127 int thread;
11128 struct thread_info *tp;
11129 struct until_break_fsm *sm;
11130
11131 clear_proceed_status (0);
11132
11133 /* Set a breakpoint where the user wants it and at return from
11134 this function. */
11135
11136 event_location_up location = string_to_event_location (&arg, current_language);
11137
11138 std::vector<symtab_and_line> sals
11139 = (last_displayed_sal_is_valid ()
11140 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11141 get_last_displayed_symtab (),
11142 get_last_displayed_line ())
11143 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11144 NULL, (struct symtab *) NULL, 0));
11145
11146 if (sals.size () != 1)
11147 error (_("Couldn't get information on specified line."));
11148
11149 symtab_and_line &sal = sals[0];
11150
11151 if (*arg)
11152 error (_("Junk at end of arguments."));
11153
11154 resolve_sal_pc (&sal);
11155
11156 tp = inferior_thread ();
11157 thread = tp->global_num;
11158
11159 old_chain = make_cleanup (null_cleanup, NULL);
11160
11161 /* Note linespec handling above invalidates the frame chain.
11162 Installing a breakpoint also invalidates the frame chain (as it
11163 may need to switch threads), so do any frame handling before
11164 that. */
11165
11166 frame = get_selected_frame (NULL);
11167 frame_gdbarch = get_frame_arch (frame);
11168 stack_frame_id = get_stack_frame_id (frame);
11169 caller_frame_id = frame_unwind_caller_id (frame);
11170
11171 /* Keep within the current frame, or in frames called by the current
11172 one. */
11173
11174 breakpoint_up caller_breakpoint;
11175 if (frame_id_p (caller_frame_id))
11176 {
11177 struct symtab_and_line sal2;
11178 struct gdbarch *caller_gdbarch;
11179
11180 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11181 sal2.pc = frame_unwind_caller_pc (frame);
11182 caller_gdbarch = frame_unwind_caller_arch (frame);
11183 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11184 sal2,
11185 caller_frame_id,
11186 bp_until);
11187
11188 set_longjmp_breakpoint (tp, caller_frame_id);
11189 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11190 }
11191
11192 /* set_momentary_breakpoint could invalidate FRAME. */
11193 frame = NULL;
11194
11195 breakpoint_up location_breakpoint;
11196 if (anywhere)
11197 /* If the user told us to continue until a specified location,
11198 we don't specify a frame at which we need to stop. */
11199 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11200 null_frame_id, bp_until);
11201 else
11202 /* Otherwise, specify the selected frame, because we want to stop
11203 only at the very same frame. */
11204 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11205 stack_frame_id, bp_until);
11206
11207 sm = new_until_break_fsm (command_interp (), tp->global_num,
11208 std::move (location_breakpoint),
11209 std::move (caller_breakpoint));
11210 tp->thread_fsm = &sm->thread_fsm;
11211
11212 discard_cleanups (old_chain);
11213
11214 proceed (-1, GDB_SIGNAL_DEFAULT);
11215 }
11216
11217 /* This function attempts to parse an optional "if <cond>" clause
11218 from the arg string. If one is not found, it returns NULL.
11219
11220 Else, it returns a pointer to the condition string. (It does not
11221 attempt to evaluate the string against a particular block.) And,
11222 it updates arg to point to the first character following the parsed
11223 if clause in the arg string. */
11224
11225 const char *
11226 ep_parse_optional_if_clause (const char **arg)
11227 {
11228 const char *cond_string;
11229
11230 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11231 return NULL;
11232
11233 /* Skip the "if" keyword. */
11234 (*arg) += 2;
11235
11236 /* Skip any extra leading whitespace, and record the start of the
11237 condition string. */
11238 *arg = skip_spaces (*arg);
11239 cond_string = *arg;
11240
11241 /* Assume that the condition occupies the remainder of the arg
11242 string. */
11243 (*arg) += strlen (cond_string);
11244
11245 return cond_string;
11246 }
11247
11248 /* Commands to deal with catching events, such as signals, exceptions,
11249 process start/exit, etc. */
11250
11251 typedef enum
11252 {
11253 catch_fork_temporary, catch_vfork_temporary,
11254 catch_fork_permanent, catch_vfork_permanent
11255 }
11256 catch_fork_kind;
11257
11258 static void
11259 catch_fork_command_1 (const char *arg, int from_tty,
11260 struct cmd_list_element *command)
11261 {
11262 struct gdbarch *gdbarch = get_current_arch ();
11263 const char *cond_string = NULL;
11264 catch_fork_kind fork_kind;
11265 int tempflag;
11266
11267 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11268 tempflag = (fork_kind == catch_fork_temporary
11269 || fork_kind == catch_vfork_temporary);
11270
11271 if (!arg)
11272 arg = "";
11273 arg = skip_spaces (arg);
11274
11275 /* The allowed syntax is:
11276 catch [v]fork
11277 catch [v]fork if <cond>
11278
11279 First, check if there's an if clause. */
11280 cond_string = ep_parse_optional_if_clause (&arg);
11281
11282 if ((*arg != '\0') && !isspace (*arg))
11283 error (_("Junk at end of arguments."));
11284
11285 /* If this target supports it, create a fork or vfork catchpoint
11286 and enable reporting of such events. */
11287 switch (fork_kind)
11288 {
11289 case catch_fork_temporary:
11290 case catch_fork_permanent:
11291 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11292 &catch_fork_breakpoint_ops);
11293 break;
11294 case catch_vfork_temporary:
11295 case catch_vfork_permanent:
11296 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11297 &catch_vfork_breakpoint_ops);
11298 break;
11299 default:
11300 error (_("unsupported or unknown fork kind; cannot catch it"));
11301 break;
11302 }
11303 }
11304
11305 static void
11306 catch_exec_command_1 (const char *arg, int from_tty,
11307 struct cmd_list_element *command)
11308 {
11309 struct gdbarch *gdbarch = get_current_arch ();
11310 int tempflag;
11311 const char *cond_string = NULL;
11312
11313 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11314
11315 if (!arg)
11316 arg = "";
11317 arg = skip_spaces (arg);
11318
11319 /* The allowed syntax is:
11320 catch exec
11321 catch exec if <cond>
11322
11323 First, check if there's an if clause. */
11324 cond_string = ep_parse_optional_if_clause (&arg);
11325
11326 if ((*arg != '\0') && !isspace (*arg))
11327 error (_("Junk at end of arguments."));
11328
11329 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11330 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11331 &catch_exec_breakpoint_ops);
11332 c->exec_pathname = NULL;
11333
11334 install_breakpoint (0, std::move (c), 1);
11335 }
11336
11337 void
11338 init_ada_exception_breakpoint (struct breakpoint *b,
11339 struct gdbarch *gdbarch,
11340 struct symtab_and_line sal,
11341 const char *addr_string,
11342 const struct breakpoint_ops *ops,
11343 int tempflag,
11344 int enabled,
11345 int from_tty)
11346 {
11347 if (from_tty)
11348 {
11349 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11350 if (!loc_gdbarch)
11351 loc_gdbarch = gdbarch;
11352
11353 describe_other_breakpoints (loc_gdbarch,
11354 sal.pspace, sal.pc, sal.section, -1);
11355 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11356 version for exception catchpoints, because two catchpoints
11357 used for different exception names will use the same address.
11358 In this case, a "breakpoint ... also set at..." warning is
11359 unproductive. Besides, the warning phrasing is also a bit
11360 inappropriate, we should use the word catchpoint, and tell
11361 the user what type of catchpoint it is. The above is good
11362 enough for now, though. */
11363 }
11364
11365 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11366
11367 b->enable_state = enabled ? bp_enabled : bp_disabled;
11368 b->disposition = tempflag ? disp_del : disp_donttouch;
11369 b->location = string_to_event_location (&addr_string,
11370 language_def (language_ada));
11371 b->language = language_ada;
11372 }
11373
11374 static void
11375 catch_command (const char *arg, int from_tty)
11376 {
11377 error (_("Catch requires an event name."));
11378 }
11379 \f
11380
11381 static void
11382 tcatch_command (const char *arg, int from_tty)
11383 {
11384 error (_("Catch requires an event name."));
11385 }
11386
11387 /* Compare two breakpoints and return a strcmp-like result. */
11388
11389 static int
11390 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11391 {
11392 uintptr_t ua = (uintptr_t) a;
11393 uintptr_t ub = (uintptr_t) b;
11394
11395 if (a->number < b->number)
11396 return -1;
11397 else if (a->number > b->number)
11398 return 1;
11399
11400 /* Now sort by address, in case we see, e..g, two breakpoints with
11401 the number 0. */
11402 if (ua < ub)
11403 return -1;
11404 return ua > ub ? 1 : 0;
11405 }
11406
11407 /* Delete breakpoints by address or line. */
11408
11409 static void
11410 clear_command (const char *arg, int from_tty)
11411 {
11412 struct breakpoint *b;
11413 int default_match;
11414
11415 std::vector<symtab_and_line> decoded_sals;
11416 symtab_and_line last_sal;
11417 gdb::array_view<symtab_and_line> sals;
11418 if (arg)
11419 {
11420 decoded_sals
11421 = decode_line_with_current_source (arg,
11422 (DECODE_LINE_FUNFIRSTLINE
11423 | DECODE_LINE_LIST_MODE));
11424 default_match = 0;
11425 sals = decoded_sals;
11426 }
11427 else
11428 {
11429 /* Set sal's line, symtab, pc, and pspace to the values
11430 corresponding to the last call to print_frame_info. If the
11431 codepoint is not valid, this will set all the fields to 0. */
11432 last_sal = get_last_displayed_sal ();
11433 if (last_sal.symtab == 0)
11434 error (_("No source file specified."));
11435
11436 default_match = 1;
11437 sals = last_sal;
11438 }
11439
11440 /* We don't call resolve_sal_pc here. That's not as bad as it
11441 seems, because all existing breakpoints typically have both
11442 file/line and pc set. So, if clear is given file/line, we can
11443 match this to existing breakpoint without obtaining pc at all.
11444
11445 We only support clearing given the address explicitly
11446 present in breakpoint table. Say, we've set breakpoint
11447 at file:line. There were several PC values for that file:line,
11448 due to optimization, all in one block.
11449
11450 We've picked one PC value. If "clear" is issued with another
11451 PC corresponding to the same file:line, the breakpoint won't
11452 be cleared. We probably can still clear the breakpoint, but
11453 since the other PC value is never presented to user, user
11454 can only find it by guessing, and it does not seem important
11455 to support that. */
11456
11457 /* For each line spec given, delete bps which correspond to it. Do
11458 it in two passes, solely to preserve the current behavior that
11459 from_tty is forced true if we delete more than one
11460 breakpoint. */
11461
11462 std::vector<struct breakpoint *> found;
11463 for (const auto &sal : sals)
11464 {
11465 const char *sal_fullname;
11466
11467 /* If exact pc given, clear bpts at that pc.
11468 If line given (pc == 0), clear all bpts on specified line.
11469 If defaulting, clear all bpts on default line
11470 or at default pc.
11471
11472 defaulting sal.pc != 0 tests to do
11473
11474 0 1 pc
11475 1 1 pc _and_ line
11476 0 0 line
11477 1 0 <can't happen> */
11478
11479 sal_fullname = (sal.symtab == NULL
11480 ? NULL : symtab_to_fullname (sal.symtab));
11481
11482 /* Find all matching breakpoints and add them to 'found'. */
11483 ALL_BREAKPOINTS (b)
11484 {
11485 int match = 0;
11486 /* Are we going to delete b? */
11487 if (b->type != bp_none && !is_watchpoint (b))
11488 {
11489 struct bp_location *loc = b->loc;
11490 for (; loc; loc = loc->next)
11491 {
11492 /* If the user specified file:line, don't allow a PC
11493 match. This matches historical gdb behavior. */
11494 int pc_match = (!sal.explicit_line
11495 && sal.pc
11496 && (loc->pspace == sal.pspace)
11497 && (loc->address == sal.pc)
11498 && (!section_is_overlay (loc->section)
11499 || loc->section == sal.section));
11500 int line_match = 0;
11501
11502 if ((default_match || sal.explicit_line)
11503 && loc->symtab != NULL
11504 && sal_fullname != NULL
11505 && sal.pspace == loc->pspace
11506 && loc->line_number == sal.line
11507 && filename_cmp (symtab_to_fullname (loc->symtab),
11508 sal_fullname) == 0)
11509 line_match = 1;
11510
11511 if (pc_match || line_match)
11512 {
11513 match = 1;
11514 break;
11515 }
11516 }
11517 }
11518
11519 if (match)
11520 found.push_back (b);
11521 }
11522 }
11523
11524 /* Now go thru the 'found' chain and delete them. */
11525 if (found.empty ())
11526 {
11527 if (arg)
11528 error (_("No breakpoint at %s."), arg);
11529 else
11530 error (_("No breakpoint at this line."));
11531 }
11532
11533 /* Remove duplicates from the vec. */
11534 std::sort (found.begin (), found.end (),
11535 [] (const breakpoint *a, const breakpoint *b)
11536 {
11537 return compare_breakpoints (a, b) < 0;
11538 });
11539 found.erase (std::unique (found.begin (), found.end (),
11540 [] (const breakpoint *a, const breakpoint *b)
11541 {
11542 return compare_breakpoints (a, b) == 0;
11543 }),
11544 found.end ());
11545
11546 if (found.size () > 1)
11547 from_tty = 1; /* Always report if deleted more than one. */
11548 if (from_tty)
11549 {
11550 if (found.size () == 1)
11551 printf_unfiltered (_("Deleted breakpoint "));
11552 else
11553 printf_unfiltered (_("Deleted breakpoints "));
11554 }
11555
11556 for (breakpoint *iter : found)
11557 {
11558 if (from_tty)
11559 printf_unfiltered ("%d ", iter->number);
11560 delete_breakpoint (iter);
11561 }
11562 if (from_tty)
11563 putchar_unfiltered ('\n');
11564 }
11565 \f
11566 /* Delete breakpoint in BS if they are `delete' breakpoints and
11567 all breakpoints that are marked for deletion, whether hit or not.
11568 This is called after any breakpoint is hit, or after errors. */
11569
11570 void
11571 breakpoint_auto_delete (bpstat bs)
11572 {
11573 struct breakpoint *b, *b_tmp;
11574
11575 for (; bs; bs = bs->next)
11576 if (bs->breakpoint_at
11577 && bs->breakpoint_at->disposition == disp_del
11578 && bs->stop)
11579 delete_breakpoint (bs->breakpoint_at);
11580
11581 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11582 {
11583 if (b->disposition == disp_del_at_next_stop)
11584 delete_breakpoint (b);
11585 }
11586 }
11587
11588 /* A comparison function for bp_location AP and BP being interfaced to
11589 qsort. Sort elements primarily by their ADDRESS (no matter what
11590 does breakpoint_address_is_meaningful say for its OWNER),
11591 secondarily by ordering first permanent elements and
11592 terciarily just ensuring the array is sorted stable way despite
11593 qsort being an unstable algorithm. */
11594
11595 static int
11596 bp_locations_compare (const void *ap, const void *bp)
11597 {
11598 const struct bp_location *a = *(const struct bp_location **) ap;
11599 const struct bp_location *b = *(const struct bp_location **) bp;
11600
11601 if (a->address != b->address)
11602 return (a->address > b->address) - (a->address < b->address);
11603
11604 /* Sort locations at the same address by their pspace number, keeping
11605 locations of the same inferior (in a multi-inferior environment)
11606 grouped. */
11607
11608 if (a->pspace->num != b->pspace->num)
11609 return ((a->pspace->num > b->pspace->num)
11610 - (a->pspace->num < b->pspace->num));
11611
11612 /* Sort permanent breakpoints first. */
11613 if (a->permanent != b->permanent)
11614 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11615
11616 /* Make the internal GDB representation stable across GDB runs
11617 where A and B memory inside GDB can differ. Breakpoint locations of
11618 the same type at the same address can be sorted in arbitrary order. */
11619
11620 if (a->owner->number != b->owner->number)
11621 return ((a->owner->number > b->owner->number)
11622 - (a->owner->number < b->owner->number));
11623
11624 return (a > b) - (a < b);
11625 }
11626
11627 /* Set bp_locations_placed_address_before_address_max and
11628 bp_locations_shadow_len_after_address_max according to the current
11629 content of the bp_locations array. */
11630
11631 static void
11632 bp_locations_target_extensions_update (void)
11633 {
11634 struct bp_location *bl, **blp_tmp;
11635
11636 bp_locations_placed_address_before_address_max = 0;
11637 bp_locations_shadow_len_after_address_max = 0;
11638
11639 ALL_BP_LOCATIONS (bl, blp_tmp)
11640 {
11641 CORE_ADDR start, end, addr;
11642
11643 if (!bp_location_has_shadow (bl))
11644 continue;
11645
11646 start = bl->target_info.placed_address;
11647 end = start + bl->target_info.shadow_len;
11648
11649 gdb_assert (bl->address >= start);
11650 addr = bl->address - start;
11651 if (addr > bp_locations_placed_address_before_address_max)
11652 bp_locations_placed_address_before_address_max = addr;
11653
11654 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11655
11656 gdb_assert (bl->address < end);
11657 addr = end - bl->address;
11658 if (addr > bp_locations_shadow_len_after_address_max)
11659 bp_locations_shadow_len_after_address_max = addr;
11660 }
11661 }
11662
11663 /* Download tracepoint locations if they haven't been. */
11664
11665 static void
11666 download_tracepoint_locations (void)
11667 {
11668 struct breakpoint *b;
11669 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11670
11671 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11672
11673 ALL_TRACEPOINTS (b)
11674 {
11675 struct bp_location *bl;
11676 struct tracepoint *t;
11677 int bp_location_downloaded = 0;
11678
11679 if ((b->type == bp_fast_tracepoint
11680 ? !may_insert_fast_tracepoints
11681 : !may_insert_tracepoints))
11682 continue;
11683
11684 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11685 {
11686 if (target_can_download_tracepoint ())
11687 can_download_tracepoint = TRIBOOL_TRUE;
11688 else
11689 can_download_tracepoint = TRIBOOL_FALSE;
11690 }
11691
11692 if (can_download_tracepoint == TRIBOOL_FALSE)
11693 break;
11694
11695 for (bl = b->loc; bl; bl = bl->next)
11696 {
11697 /* In tracepoint, locations are _never_ duplicated, so
11698 should_be_inserted is equivalent to
11699 unduplicated_should_be_inserted. */
11700 if (!should_be_inserted (bl) || bl->inserted)
11701 continue;
11702
11703 switch_to_program_space_and_thread (bl->pspace);
11704
11705 target_download_tracepoint (bl);
11706
11707 bl->inserted = 1;
11708 bp_location_downloaded = 1;
11709 }
11710 t = (struct tracepoint *) b;
11711 t->number_on_target = b->number;
11712 if (bp_location_downloaded)
11713 gdb::observers::breakpoint_modified.notify (b);
11714 }
11715 }
11716
11717 /* Swap the insertion/duplication state between two locations. */
11718
11719 static void
11720 swap_insertion (struct bp_location *left, struct bp_location *right)
11721 {
11722 const int left_inserted = left->inserted;
11723 const int left_duplicate = left->duplicate;
11724 const int left_needs_update = left->needs_update;
11725 const struct bp_target_info left_target_info = left->target_info;
11726
11727 /* Locations of tracepoints can never be duplicated. */
11728 if (is_tracepoint (left->owner))
11729 gdb_assert (!left->duplicate);
11730 if (is_tracepoint (right->owner))
11731 gdb_assert (!right->duplicate);
11732
11733 left->inserted = right->inserted;
11734 left->duplicate = right->duplicate;
11735 left->needs_update = right->needs_update;
11736 left->target_info = right->target_info;
11737 right->inserted = left_inserted;
11738 right->duplicate = left_duplicate;
11739 right->needs_update = left_needs_update;
11740 right->target_info = left_target_info;
11741 }
11742
11743 /* Force the re-insertion of the locations at ADDRESS. This is called
11744 once a new/deleted/modified duplicate location is found and we are evaluating
11745 conditions on the target's side. Such conditions need to be updated on
11746 the target. */
11747
11748 static void
11749 force_breakpoint_reinsertion (struct bp_location *bl)
11750 {
11751 struct bp_location **locp = NULL, **loc2p;
11752 struct bp_location *loc;
11753 CORE_ADDR address = 0;
11754 int pspace_num;
11755
11756 address = bl->address;
11757 pspace_num = bl->pspace->num;
11758
11759 /* This is only meaningful if the target is
11760 evaluating conditions and if the user has
11761 opted for condition evaluation on the target's
11762 side. */
11763 if (gdb_evaluates_breakpoint_condition_p ()
11764 || !target_supports_evaluation_of_breakpoint_conditions ())
11765 return;
11766
11767 /* Flag all breakpoint locations with this address and
11768 the same program space as the location
11769 as "its condition has changed". We need to
11770 update the conditions on the target's side. */
11771 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11772 {
11773 loc = *loc2p;
11774
11775 if (!is_breakpoint (loc->owner)
11776 || pspace_num != loc->pspace->num)
11777 continue;
11778
11779 /* Flag the location appropriately. We use a different state to
11780 let everyone know that we already updated the set of locations
11781 with addr bl->address and program space bl->pspace. This is so
11782 we don't have to keep calling these functions just to mark locations
11783 that have already been marked. */
11784 loc->condition_changed = condition_updated;
11785
11786 /* Free the agent expression bytecode as well. We will compute
11787 it later on. */
11788 loc->cond_bytecode.reset ();
11789 }
11790 }
11791 /* Called whether new breakpoints are created, or existing breakpoints
11792 deleted, to update the global location list and recompute which
11793 locations are duplicate of which.
11794
11795 The INSERT_MODE flag determines whether locations may not, may, or
11796 shall be inserted now. See 'enum ugll_insert_mode' for more
11797 info. */
11798
11799 static void
11800 update_global_location_list (enum ugll_insert_mode insert_mode)
11801 {
11802 struct breakpoint *b;
11803 struct bp_location **locp, *loc;
11804 /* Last breakpoint location address that was marked for update. */
11805 CORE_ADDR last_addr = 0;
11806 /* Last breakpoint location program space that was marked for update. */
11807 int last_pspace_num = -1;
11808
11809 /* Used in the duplicates detection below. When iterating over all
11810 bp_locations, points to the first bp_location of a given address.
11811 Breakpoints and watchpoints of different types are never
11812 duplicates of each other. Keep one pointer for each type of
11813 breakpoint/watchpoint, so we only need to loop over all locations
11814 once. */
11815 struct bp_location *bp_loc_first; /* breakpoint */
11816 struct bp_location *wp_loc_first; /* hardware watchpoint */
11817 struct bp_location *awp_loc_first; /* access watchpoint */
11818 struct bp_location *rwp_loc_first; /* read watchpoint */
11819
11820 /* Saved former bp_locations array which we compare against the newly
11821 built bp_locations from the current state of ALL_BREAKPOINTS. */
11822 struct bp_location **old_locp;
11823 unsigned old_locations_count;
11824 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11825
11826 old_locations_count = bp_locations_count;
11827 bp_locations = NULL;
11828 bp_locations_count = 0;
11829
11830 ALL_BREAKPOINTS (b)
11831 for (loc = b->loc; loc; loc = loc->next)
11832 bp_locations_count++;
11833
11834 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11835 locp = bp_locations;
11836 ALL_BREAKPOINTS (b)
11837 for (loc = b->loc; loc; loc = loc->next)
11838 *locp++ = loc;
11839 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11840 bp_locations_compare);
11841
11842 bp_locations_target_extensions_update ();
11843
11844 /* Identify bp_location instances that are no longer present in the
11845 new list, and therefore should be freed. Note that it's not
11846 necessary that those locations should be removed from inferior --
11847 if there's another location at the same address (previously
11848 marked as duplicate), we don't need to remove/insert the
11849 location.
11850
11851 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11852 and former bp_location array state respectively. */
11853
11854 locp = bp_locations;
11855 for (old_locp = old_locations.get ();
11856 old_locp < old_locations.get () + old_locations_count;
11857 old_locp++)
11858 {
11859 struct bp_location *old_loc = *old_locp;
11860 struct bp_location **loc2p;
11861
11862 /* Tells if 'old_loc' is found among the new locations. If
11863 not, we have to free it. */
11864 int found_object = 0;
11865 /* Tells if the location should remain inserted in the target. */
11866 int keep_in_target = 0;
11867 int removed = 0;
11868
11869 /* Skip LOCP entries which will definitely never be needed.
11870 Stop either at or being the one matching OLD_LOC. */
11871 while (locp < bp_locations + bp_locations_count
11872 && (*locp)->address < old_loc->address)
11873 locp++;
11874
11875 for (loc2p = locp;
11876 (loc2p < bp_locations + bp_locations_count
11877 && (*loc2p)->address == old_loc->address);
11878 loc2p++)
11879 {
11880 /* Check if this is a new/duplicated location or a duplicated
11881 location that had its condition modified. If so, we want to send
11882 its condition to the target if evaluation of conditions is taking
11883 place there. */
11884 if ((*loc2p)->condition_changed == condition_modified
11885 && (last_addr != old_loc->address
11886 || last_pspace_num != old_loc->pspace->num))
11887 {
11888 force_breakpoint_reinsertion (*loc2p);
11889 last_pspace_num = old_loc->pspace->num;
11890 }
11891
11892 if (*loc2p == old_loc)
11893 found_object = 1;
11894 }
11895
11896 /* We have already handled this address, update it so that we don't
11897 have to go through updates again. */
11898 last_addr = old_loc->address;
11899
11900 /* Target-side condition evaluation: Handle deleted locations. */
11901 if (!found_object)
11902 force_breakpoint_reinsertion (old_loc);
11903
11904 /* If this location is no longer present, and inserted, look if
11905 there's maybe a new location at the same address. If so,
11906 mark that one inserted, and don't remove this one. This is
11907 needed so that we don't have a time window where a breakpoint
11908 at certain location is not inserted. */
11909
11910 if (old_loc->inserted)
11911 {
11912 /* If the location is inserted now, we might have to remove
11913 it. */
11914
11915 if (found_object && should_be_inserted (old_loc))
11916 {
11917 /* The location is still present in the location list,
11918 and still should be inserted. Don't do anything. */
11919 keep_in_target = 1;
11920 }
11921 else
11922 {
11923 /* This location still exists, but it won't be kept in the
11924 target since it may have been disabled. We proceed to
11925 remove its target-side condition. */
11926
11927 /* The location is either no longer present, or got
11928 disabled. See if there's another location at the
11929 same address, in which case we don't need to remove
11930 this one from the target. */
11931
11932 /* OLD_LOC comes from existing struct breakpoint. */
11933 if (breakpoint_address_is_meaningful (old_loc->owner))
11934 {
11935 for (loc2p = locp;
11936 (loc2p < bp_locations + bp_locations_count
11937 && (*loc2p)->address == old_loc->address);
11938 loc2p++)
11939 {
11940 struct bp_location *loc2 = *loc2p;
11941
11942 if (breakpoint_locations_match (loc2, old_loc))
11943 {
11944 /* Read watchpoint locations are switched to
11945 access watchpoints, if the former are not
11946 supported, but the latter are. */
11947 if (is_hardware_watchpoint (old_loc->owner))
11948 {
11949 gdb_assert (is_hardware_watchpoint (loc2->owner));
11950 loc2->watchpoint_type = old_loc->watchpoint_type;
11951 }
11952
11953 /* loc2 is a duplicated location. We need to check
11954 if it should be inserted in case it will be
11955 unduplicated. */
11956 if (loc2 != old_loc
11957 && unduplicated_should_be_inserted (loc2))
11958 {
11959 swap_insertion (old_loc, loc2);
11960 keep_in_target = 1;
11961 break;
11962 }
11963 }
11964 }
11965 }
11966 }
11967
11968 if (!keep_in_target)
11969 {
11970 if (remove_breakpoint (old_loc))
11971 {
11972 /* This is just about all we can do. We could keep
11973 this location on the global list, and try to
11974 remove it next time, but there's no particular
11975 reason why we will succeed next time.
11976
11977 Note that at this point, old_loc->owner is still
11978 valid, as delete_breakpoint frees the breakpoint
11979 only after calling us. */
11980 printf_filtered (_("warning: Error removing "
11981 "breakpoint %d\n"),
11982 old_loc->owner->number);
11983 }
11984 removed = 1;
11985 }
11986 }
11987
11988 if (!found_object)
11989 {
11990 if (removed && target_is_non_stop_p ()
11991 && need_moribund_for_location_type (old_loc))
11992 {
11993 /* This location was removed from the target. In
11994 non-stop mode, a race condition is possible where
11995 we've removed a breakpoint, but stop events for that
11996 breakpoint are already queued and will arrive later.
11997 We apply an heuristic to be able to distinguish such
11998 SIGTRAPs from other random SIGTRAPs: we keep this
11999 breakpoint location for a bit, and will retire it
12000 after we see some number of events. The theory here
12001 is that reporting of events should, "on the average",
12002 be fair, so after a while we'll see events from all
12003 threads that have anything of interest, and no longer
12004 need to keep this breakpoint location around. We
12005 don't hold locations forever so to reduce chances of
12006 mistaking a non-breakpoint SIGTRAP for a breakpoint
12007 SIGTRAP.
12008
12009 The heuristic failing can be disastrous on
12010 decr_pc_after_break targets.
12011
12012 On decr_pc_after_break targets, like e.g., x86-linux,
12013 if we fail to recognize a late breakpoint SIGTRAP,
12014 because events_till_retirement has reached 0 too
12015 soon, we'll fail to do the PC adjustment, and report
12016 a random SIGTRAP to the user. When the user resumes
12017 the inferior, it will most likely immediately crash
12018 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12019 corrupted, because of being resumed e.g., in the
12020 middle of a multi-byte instruction, or skipped a
12021 one-byte instruction. This was actually seen happen
12022 on native x86-linux, and should be less rare on
12023 targets that do not support new thread events, like
12024 remote, due to the heuristic depending on
12025 thread_count.
12026
12027 Mistaking a random SIGTRAP for a breakpoint trap
12028 causes similar symptoms (PC adjustment applied when
12029 it shouldn't), but then again, playing with SIGTRAPs
12030 behind the debugger's back is asking for trouble.
12031
12032 Since hardware watchpoint traps are always
12033 distinguishable from other traps, so we don't need to
12034 apply keep hardware watchpoint moribund locations
12035 around. We simply always ignore hardware watchpoint
12036 traps we can no longer explain. */
12037
12038 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12039 old_loc->owner = NULL;
12040
12041 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12042 }
12043 else
12044 {
12045 old_loc->owner = NULL;
12046 decref_bp_location (&old_loc);
12047 }
12048 }
12049 }
12050
12051 /* Rescan breakpoints at the same address and section, marking the
12052 first one as "first" and any others as "duplicates". This is so
12053 that the bpt instruction is only inserted once. If we have a
12054 permanent breakpoint at the same place as BPT, make that one the
12055 official one, and the rest as duplicates. Permanent breakpoints
12056 are sorted first for the same address.
12057
12058 Do the same for hardware watchpoints, but also considering the
12059 watchpoint's type (regular/access/read) and length. */
12060
12061 bp_loc_first = NULL;
12062 wp_loc_first = NULL;
12063 awp_loc_first = NULL;
12064 rwp_loc_first = NULL;
12065 ALL_BP_LOCATIONS (loc, locp)
12066 {
12067 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12068 non-NULL. */
12069 struct bp_location **loc_first_p;
12070 b = loc->owner;
12071
12072 if (!unduplicated_should_be_inserted (loc)
12073 || !breakpoint_address_is_meaningful (b)
12074 /* Don't detect duplicate for tracepoint locations because they are
12075 never duplicated. See the comments in field `duplicate' of
12076 `struct bp_location'. */
12077 || is_tracepoint (b))
12078 {
12079 /* Clear the condition modification flag. */
12080 loc->condition_changed = condition_unchanged;
12081 continue;
12082 }
12083
12084 if (b->type == bp_hardware_watchpoint)
12085 loc_first_p = &wp_loc_first;
12086 else if (b->type == bp_read_watchpoint)
12087 loc_first_p = &rwp_loc_first;
12088 else if (b->type == bp_access_watchpoint)
12089 loc_first_p = &awp_loc_first;
12090 else
12091 loc_first_p = &bp_loc_first;
12092
12093 if (*loc_first_p == NULL
12094 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12095 || !breakpoint_locations_match (loc, *loc_first_p))
12096 {
12097 *loc_first_p = loc;
12098 loc->duplicate = 0;
12099
12100 if (is_breakpoint (loc->owner) && loc->condition_changed)
12101 {
12102 loc->needs_update = 1;
12103 /* Clear the condition modification flag. */
12104 loc->condition_changed = condition_unchanged;
12105 }
12106 continue;
12107 }
12108
12109
12110 /* This and the above ensure the invariant that the first location
12111 is not duplicated, and is the inserted one.
12112 All following are marked as duplicated, and are not inserted. */
12113 if (loc->inserted)
12114 swap_insertion (loc, *loc_first_p);
12115 loc->duplicate = 1;
12116
12117 /* Clear the condition modification flag. */
12118 loc->condition_changed = condition_unchanged;
12119 }
12120
12121 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12122 {
12123 if (insert_mode != UGLL_DONT_INSERT)
12124 insert_breakpoint_locations ();
12125 else
12126 {
12127 /* Even though the caller told us to not insert new
12128 locations, we may still need to update conditions on the
12129 target's side of breakpoints that were already inserted
12130 if the target is evaluating breakpoint conditions. We
12131 only update conditions for locations that are marked
12132 "needs_update". */
12133 update_inserted_breakpoint_locations ();
12134 }
12135 }
12136
12137 if (insert_mode != UGLL_DONT_INSERT)
12138 download_tracepoint_locations ();
12139 }
12140
12141 void
12142 breakpoint_retire_moribund (void)
12143 {
12144 struct bp_location *loc;
12145 int ix;
12146
12147 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12148 if (--(loc->events_till_retirement) == 0)
12149 {
12150 decref_bp_location (&loc);
12151 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12152 --ix;
12153 }
12154 }
12155
12156 static void
12157 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12158 {
12159
12160 TRY
12161 {
12162 update_global_location_list (insert_mode);
12163 }
12164 CATCH (e, RETURN_MASK_ERROR)
12165 {
12166 }
12167 END_CATCH
12168 }
12169
12170 /* Clear BKP from a BPS. */
12171
12172 static void
12173 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12174 {
12175 bpstat bs;
12176
12177 for (bs = bps; bs; bs = bs->next)
12178 if (bs->breakpoint_at == bpt)
12179 {
12180 bs->breakpoint_at = NULL;
12181 bs->old_val = NULL;
12182 /* bs->commands will be freed later. */
12183 }
12184 }
12185
12186 /* Callback for iterate_over_threads. */
12187 static int
12188 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12189 {
12190 struct breakpoint *bpt = (struct breakpoint *) data;
12191
12192 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12193 return 0;
12194 }
12195
12196 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12197 callbacks. */
12198
12199 static void
12200 say_where (struct breakpoint *b)
12201 {
12202 struct value_print_options opts;
12203
12204 get_user_print_options (&opts);
12205
12206 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12207 single string. */
12208 if (b->loc == NULL)
12209 {
12210 /* For pending locations, the output differs slightly based
12211 on b->extra_string. If this is non-NULL, it contains either
12212 a condition or dprintf arguments. */
12213 if (b->extra_string == NULL)
12214 {
12215 printf_filtered (_(" (%s) pending."),
12216 event_location_to_string (b->location.get ()));
12217 }
12218 else if (b->type == bp_dprintf)
12219 {
12220 printf_filtered (_(" (%s,%s) pending."),
12221 event_location_to_string (b->location.get ()),
12222 b->extra_string);
12223 }
12224 else
12225 {
12226 printf_filtered (_(" (%s %s) pending."),
12227 event_location_to_string (b->location.get ()),
12228 b->extra_string);
12229 }
12230 }
12231 else
12232 {
12233 if (opts.addressprint || b->loc->symtab == NULL)
12234 {
12235 printf_filtered (" at ");
12236 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12237 gdb_stdout);
12238 }
12239 if (b->loc->symtab != NULL)
12240 {
12241 /* If there is a single location, we can print the location
12242 more nicely. */
12243 if (b->loc->next == NULL)
12244 printf_filtered (": file %s, line %d.",
12245 symtab_to_filename_for_display (b->loc->symtab),
12246 b->loc->line_number);
12247 else
12248 /* This is not ideal, but each location may have a
12249 different file name, and this at least reflects the
12250 real situation somewhat. */
12251 printf_filtered (": %s.",
12252 event_location_to_string (b->location.get ()));
12253 }
12254
12255 if (b->loc->next)
12256 {
12257 struct bp_location *loc = b->loc;
12258 int n = 0;
12259 for (; loc; loc = loc->next)
12260 ++n;
12261 printf_filtered (" (%d locations)", n);
12262 }
12263 }
12264 }
12265
12266 /* Default bp_location_ops methods. */
12267
12268 static void
12269 bp_location_dtor (struct bp_location *self)
12270 {
12271 xfree (self->function_name);
12272 }
12273
12274 static const struct bp_location_ops bp_location_ops =
12275 {
12276 bp_location_dtor
12277 };
12278
12279 /* Destructor for the breakpoint base class. */
12280
12281 breakpoint::~breakpoint ()
12282 {
12283 xfree (this->cond_string);
12284 xfree (this->extra_string);
12285 xfree (this->filter);
12286 }
12287
12288 static struct bp_location *
12289 base_breakpoint_allocate_location (struct breakpoint *self)
12290 {
12291 return new bp_location (&bp_location_ops, self);
12292 }
12293
12294 static void
12295 base_breakpoint_re_set (struct breakpoint *b)
12296 {
12297 /* Nothing to re-set. */
12298 }
12299
12300 #define internal_error_pure_virtual_called() \
12301 gdb_assert_not_reached ("pure virtual function called")
12302
12303 static int
12304 base_breakpoint_insert_location (struct bp_location *bl)
12305 {
12306 internal_error_pure_virtual_called ();
12307 }
12308
12309 static int
12310 base_breakpoint_remove_location (struct bp_location *bl,
12311 enum remove_bp_reason reason)
12312 {
12313 internal_error_pure_virtual_called ();
12314 }
12315
12316 static int
12317 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12318 const address_space *aspace,
12319 CORE_ADDR bp_addr,
12320 const struct target_waitstatus *ws)
12321 {
12322 internal_error_pure_virtual_called ();
12323 }
12324
12325 static void
12326 base_breakpoint_check_status (bpstat bs)
12327 {
12328 /* Always stop. */
12329 }
12330
12331 /* A "works_in_software_mode" breakpoint_ops method that just internal
12332 errors. */
12333
12334 static int
12335 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12336 {
12337 internal_error_pure_virtual_called ();
12338 }
12339
12340 /* A "resources_needed" breakpoint_ops method that just internal
12341 errors. */
12342
12343 static int
12344 base_breakpoint_resources_needed (const struct bp_location *bl)
12345 {
12346 internal_error_pure_virtual_called ();
12347 }
12348
12349 static enum print_stop_action
12350 base_breakpoint_print_it (bpstat bs)
12351 {
12352 internal_error_pure_virtual_called ();
12353 }
12354
12355 static void
12356 base_breakpoint_print_one_detail (const struct breakpoint *self,
12357 struct ui_out *uiout)
12358 {
12359 /* nothing */
12360 }
12361
12362 static void
12363 base_breakpoint_print_mention (struct breakpoint *b)
12364 {
12365 internal_error_pure_virtual_called ();
12366 }
12367
12368 static void
12369 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12370 {
12371 internal_error_pure_virtual_called ();
12372 }
12373
12374 static void
12375 base_breakpoint_create_sals_from_location
12376 (const struct event_location *location,
12377 struct linespec_result *canonical,
12378 enum bptype type_wanted)
12379 {
12380 internal_error_pure_virtual_called ();
12381 }
12382
12383 static void
12384 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12385 struct linespec_result *c,
12386 gdb::unique_xmalloc_ptr<char> cond_string,
12387 gdb::unique_xmalloc_ptr<char> extra_string,
12388 enum bptype type_wanted,
12389 enum bpdisp disposition,
12390 int thread,
12391 int task, int ignore_count,
12392 const struct breakpoint_ops *o,
12393 int from_tty, int enabled,
12394 int internal, unsigned flags)
12395 {
12396 internal_error_pure_virtual_called ();
12397 }
12398
12399 static std::vector<symtab_and_line>
12400 base_breakpoint_decode_location (struct breakpoint *b,
12401 const struct event_location *location,
12402 struct program_space *search_pspace)
12403 {
12404 internal_error_pure_virtual_called ();
12405 }
12406
12407 /* The default 'explains_signal' method. */
12408
12409 static int
12410 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12411 {
12412 return 1;
12413 }
12414
12415 /* The default "after_condition_true" method. */
12416
12417 static void
12418 base_breakpoint_after_condition_true (struct bpstats *bs)
12419 {
12420 /* Nothing to do. */
12421 }
12422
12423 struct breakpoint_ops base_breakpoint_ops =
12424 {
12425 base_breakpoint_allocate_location,
12426 base_breakpoint_re_set,
12427 base_breakpoint_insert_location,
12428 base_breakpoint_remove_location,
12429 base_breakpoint_breakpoint_hit,
12430 base_breakpoint_check_status,
12431 base_breakpoint_resources_needed,
12432 base_breakpoint_works_in_software_mode,
12433 base_breakpoint_print_it,
12434 NULL,
12435 base_breakpoint_print_one_detail,
12436 base_breakpoint_print_mention,
12437 base_breakpoint_print_recreate,
12438 base_breakpoint_create_sals_from_location,
12439 base_breakpoint_create_breakpoints_sal,
12440 base_breakpoint_decode_location,
12441 base_breakpoint_explains_signal,
12442 base_breakpoint_after_condition_true,
12443 };
12444
12445 /* Default breakpoint_ops methods. */
12446
12447 static void
12448 bkpt_re_set (struct breakpoint *b)
12449 {
12450 /* FIXME: is this still reachable? */
12451 if (breakpoint_event_location_empty_p (b))
12452 {
12453 /* Anything without a location can't be re-set. */
12454 delete_breakpoint (b);
12455 return;
12456 }
12457
12458 breakpoint_re_set_default (b);
12459 }
12460
12461 static int
12462 bkpt_insert_location (struct bp_location *bl)
12463 {
12464 CORE_ADDR addr = bl->target_info.reqstd_address;
12465
12466 bl->target_info.kind = breakpoint_kind (bl, &addr);
12467 bl->target_info.placed_address = addr;
12468
12469 if (bl->loc_type == bp_loc_hardware_breakpoint)
12470 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12471 else
12472 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12473 }
12474
12475 static int
12476 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12477 {
12478 if (bl->loc_type == bp_loc_hardware_breakpoint)
12479 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12480 else
12481 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12482 }
12483
12484 static int
12485 bkpt_breakpoint_hit (const struct bp_location *bl,
12486 const address_space *aspace, CORE_ADDR bp_addr,
12487 const struct target_waitstatus *ws)
12488 {
12489 if (ws->kind != TARGET_WAITKIND_STOPPED
12490 || ws->value.sig != GDB_SIGNAL_TRAP)
12491 return 0;
12492
12493 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12494 aspace, bp_addr))
12495 return 0;
12496
12497 if (overlay_debugging /* unmapped overlay section */
12498 && section_is_overlay (bl->section)
12499 && !section_is_mapped (bl->section))
12500 return 0;
12501
12502 return 1;
12503 }
12504
12505 static int
12506 dprintf_breakpoint_hit (const struct bp_location *bl,
12507 const address_space *aspace, CORE_ADDR bp_addr,
12508 const struct target_waitstatus *ws)
12509 {
12510 if (dprintf_style == dprintf_style_agent
12511 && target_can_run_breakpoint_commands ())
12512 {
12513 /* An agent-style dprintf never causes a stop. If we see a trap
12514 for this address it must be for a breakpoint that happens to
12515 be set at the same address. */
12516 return 0;
12517 }
12518
12519 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12520 }
12521
12522 static int
12523 bkpt_resources_needed (const struct bp_location *bl)
12524 {
12525 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12526
12527 return 1;
12528 }
12529
12530 static enum print_stop_action
12531 bkpt_print_it (bpstat bs)
12532 {
12533 struct breakpoint *b;
12534 const struct bp_location *bl;
12535 int bp_temp;
12536 struct ui_out *uiout = current_uiout;
12537
12538 gdb_assert (bs->bp_location_at != NULL);
12539
12540 bl = bs->bp_location_at;
12541 b = bs->breakpoint_at;
12542
12543 bp_temp = b->disposition == disp_del;
12544 if (bl->address != bl->requested_address)
12545 breakpoint_adjustment_warning (bl->requested_address,
12546 bl->address,
12547 b->number, 1);
12548 annotate_breakpoint (b->number);
12549 maybe_print_thread_hit_breakpoint (uiout);
12550
12551 if (bp_temp)
12552 uiout->text ("Temporary breakpoint ");
12553 else
12554 uiout->text ("Breakpoint ");
12555 if (uiout->is_mi_like_p ())
12556 {
12557 uiout->field_string ("reason",
12558 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12559 uiout->field_string ("disp", bpdisp_text (b->disposition));
12560 }
12561 uiout->field_int ("bkptno", b->number);
12562 uiout->text (", ");
12563
12564 return PRINT_SRC_AND_LOC;
12565 }
12566
12567 static void
12568 bkpt_print_mention (struct breakpoint *b)
12569 {
12570 if (current_uiout->is_mi_like_p ())
12571 return;
12572
12573 switch (b->type)
12574 {
12575 case bp_breakpoint:
12576 case bp_gnu_ifunc_resolver:
12577 if (b->disposition == disp_del)
12578 printf_filtered (_("Temporary breakpoint"));
12579 else
12580 printf_filtered (_("Breakpoint"));
12581 printf_filtered (_(" %d"), b->number);
12582 if (b->type == bp_gnu_ifunc_resolver)
12583 printf_filtered (_(" at gnu-indirect-function resolver"));
12584 break;
12585 case bp_hardware_breakpoint:
12586 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12587 break;
12588 case bp_dprintf:
12589 printf_filtered (_("Dprintf %d"), b->number);
12590 break;
12591 }
12592
12593 say_where (b);
12594 }
12595
12596 static void
12597 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12598 {
12599 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12600 fprintf_unfiltered (fp, "tbreak");
12601 else if (tp->type == bp_breakpoint)
12602 fprintf_unfiltered (fp, "break");
12603 else if (tp->type == bp_hardware_breakpoint
12604 && tp->disposition == disp_del)
12605 fprintf_unfiltered (fp, "thbreak");
12606 else if (tp->type == bp_hardware_breakpoint)
12607 fprintf_unfiltered (fp, "hbreak");
12608 else
12609 internal_error (__FILE__, __LINE__,
12610 _("unhandled breakpoint type %d"), (int) tp->type);
12611
12612 fprintf_unfiltered (fp, " %s",
12613 event_location_to_string (tp->location.get ()));
12614
12615 /* Print out extra_string if this breakpoint is pending. It might
12616 contain, for example, conditions that were set by the user. */
12617 if (tp->loc == NULL && tp->extra_string != NULL)
12618 fprintf_unfiltered (fp, " %s", tp->extra_string);
12619
12620 print_recreate_thread (tp, fp);
12621 }
12622
12623 static void
12624 bkpt_create_sals_from_location (const struct event_location *location,
12625 struct linespec_result *canonical,
12626 enum bptype type_wanted)
12627 {
12628 create_sals_from_location_default (location, canonical, type_wanted);
12629 }
12630
12631 static void
12632 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12633 struct linespec_result *canonical,
12634 gdb::unique_xmalloc_ptr<char> cond_string,
12635 gdb::unique_xmalloc_ptr<char> extra_string,
12636 enum bptype type_wanted,
12637 enum bpdisp disposition,
12638 int thread,
12639 int task, int ignore_count,
12640 const struct breakpoint_ops *ops,
12641 int from_tty, int enabled,
12642 int internal, unsigned flags)
12643 {
12644 create_breakpoints_sal_default (gdbarch, canonical,
12645 std::move (cond_string),
12646 std::move (extra_string),
12647 type_wanted,
12648 disposition, thread, task,
12649 ignore_count, ops, from_tty,
12650 enabled, internal, flags);
12651 }
12652
12653 static std::vector<symtab_and_line>
12654 bkpt_decode_location (struct breakpoint *b,
12655 const struct event_location *location,
12656 struct program_space *search_pspace)
12657 {
12658 return decode_location_default (b, location, search_pspace);
12659 }
12660
12661 /* Virtual table for internal breakpoints. */
12662
12663 static void
12664 internal_bkpt_re_set (struct breakpoint *b)
12665 {
12666 switch (b->type)
12667 {
12668 /* Delete overlay event and longjmp master breakpoints; they
12669 will be reset later by breakpoint_re_set. */
12670 case bp_overlay_event:
12671 case bp_longjmp_master:
12672 case bp_std_terminate_master:
12673 case bp_exception_master:
12674 delete_breakpoint (b);
12675 break;
12676
12677 /* This breakpoint is special, it's set up when the inferior
12678 starts and we really don't want to touch it. */
12679 case bp_shlib_event:
12680
12681 /* Like bp_shlib_event, this breakpoint type is special. Once
12682 it is set up, we do not want to touch it. */
12683 case bp_thread_event:
12684 break;
12685 }
12686 }
12687
12688 static void
12689 internal_bkpt_check_status (bpstat bs)
12690 {
12691 if (bs->breakpoint_at->type == bp_shlib_event)
12692 {
12693 /* If requested, stop when the dynamic linker notifies GDB of
12694 events. This allows the user to get control and place
12695 breakpoints in initializer routines for dynamically loaded
12696 objects (among other things). */
12697 bs->stop = stop_on_solib_events;
12698 bs->print = stop_on_solib_events;
12699 }
12700 else
12701 bs->stop = 0;
12702 }
12703
12704 static enum print_stop_action
12705 internal_bkpt_print_it (bpstat bs)
12706 {
12707 struct breakpoint *b;
12708
12709 b = bs->breakpoint_at;
12710
12711 switch (b->type)
12712 {
12713 case bp_shlib_event:
12714 /* Did we stop because the user set the stop_on_solib_events
12715 variable? (If so, we report this as a generic, "Stopped due
12716 to shlib event" message.) */
12717 print_solib_event (0);
12718 break;
12719
12720 case bp_thread_event:
12721 /* Not sure how we will get here.
12722 GDB should not stop for these breakpoints. */
12723 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12724 break;
12725
12726 case bp_overlay_event:
12727 /* By analogy with the thread event, GDB should not stop for these. */
12728 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12729 break;
12730
12731 case bp_longjmp_master:
12732 /* These should never be enabled. */
12733 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12734 break;
12735
12736 case bp_std_terminate_master:
12737 /* These should never be enabled. */
12738 printf_filtered (_("std::terminate Master Breakpoint: "
12739 "gdb should not stop!\n"));
12740 break;
12741
12742 case bp_exception_master:
12743 /* These should never be enabled. */
12744 printf_filtered (_("Exception Master Breakpoint: "
12745 "gdb should not stop!\n"));
12746 break;
12747 }
12748
12749 return PRINT_NOTHING;
12750 }
12751
12752 static void
12753 internal_bkpt_print_mention (struct breakpoint *b)
12754 {
12755 /* Nothing to mention. These breakpoints are internal. */
12756 }
12757
12758 /* Virtual table for momentary breakpoints */
12759
12760 static void
12761 momentary_bkpt_re_set (struct breakpoint *b)
12762 {
12763 /* Keep temporary breakpoints, which can be encountered when we step
12764 over a dlopen call and solib_add is resetting the breakpoints.
12765 Otherwise these should have been blown away via the cleanup chain
12766 or by breakpoint_init_inferior when we rerun the executable. */
12767 }
12768
12769 static void
12770 momentary_bkpt_check_status (bpstat bs)
12771 {
12772 /* Nothing. The point of these breakpoints is causing a stop. */
12773 }
12774
12775 static enum print_stop_action
12776 momentary_bkpt_print_it (bpstat bs)
12777 {
12778 return PRINT_UNKNOWN;
12779 }
12780
12781 static void
12782 momentary_bkpt_print_mention (struct breakpoint *b)
12783 {
12784 /* Nothing to mention. These breakpoints are internal. */
12785 }
12786
12787 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12788
12789 It gets cleared already on the removal of the first one of such placed
12790 breakpoints. This is OK as they get all removed altogether. */
12791
12792 longjmp_breakpoint::~longjmp_breakpoint ()
12793 {
12794 thread_info *tp = find_thread_global_id (this->thread);
12795
12796 if (tp != NULL)
12797 tp->initiating_frame = null_frame_id;
12798 }
12799
12800 /* Specific methods for probe breakpoints. */
12801
12802 static int
12803 bkpt_probe_insert_location (struct bp_location *bl)
12804 {
12805 int v = bkpt_insert_location (bl);
12806
12807 if (v == 0)
12808 {
12809 /* The insertion was successful, now let's set the probe's semaphore
12810 if needed. */
12811 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12812 }
12813
12814 return v;
12815 }
12816
12817 static int
12818 bkpt_probe_remove_location (struct bp_location *bl,
12819 enum remove_bp_reason reason)
12820 {
12821 /* Let's clear the semaphore before removing the location. */
12822 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12823
12824 return bkpt_remove_location (bl, reason);
12825 }
12826
12827 static void
12828 bkpt_probe_create_sals_from_location (const struct event_location *location,
12829 struct linespec_result *canonical,
12830 enum bptype type_wanted)
12831 {
12832 struct linespec_sals lsal;
12833
12834 lsal.sals = parse_probes (location, NULL, canonical);
12835 lsal.canonical
12836 = xstrdup (event_location_to_string (canonical->location.get ()));
12837 canonical->lsals.push_back (std::move (lsal));
12838 }
12839
12840 static std::vector<symtab_and_line>
12841 bkpt_probe_decode_location (struct breakpoint *b,
12842 const struct event_location *location,
12843 struct program_space *search_pspace)
12844 {
12845 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12846 if (sals.empty ())
12847 error (_("probe not found"));
12848 return sals;
12849 }
12850
12851 /* The breakpoint_ops structure to be used in tracepoints. */
12852
12853 static void
12854 tracepoint_re_set (struct breakpoint *b)
12855 {
12856 breakpoint_re_set_default (b);
12857 }
12858
12859 static int
12860 tracepoint_breakpoint_hit (const struct bp_location *bl,
12861 const address_space *aspace, CORE_ADDR bp_addr,
12862 const struct target_waitstatus *ws)
12863 {
12864 /* By definition, the inferior does not report stops at
12865 tracepoints. */
12866 return 0;
12867 }
12868
12869 static void
12870 tracepoint_print_one_detail (const struct breakpoint *self,
12871 struct ui_out *uiout)
12872 {
12873 struct tracepoint *tp = (struct tracepoint *) self;
12874 if (!tp->static_trace_marker_id.empty ())
12875 {
12876 gdb_assert (self->type == bp_static_tracepoint);
12877
12878 uiout->text ("\tmarker id is ");
12879 uiout->field_string ("static-tracepoint-marker-string-id",
12880 tp->static_trace_marker_id);
12881 uiout->text ("\n");
12882 }
12883 }
12884
12885 static void
12886 tracepoint_print_mention (struct breakpoint *b)
12887 {
12888 if (current_uiout->is_mi_like_p ())
12889 return;
12890
12891 switch (b->type)
12892 {
12893 case bp_tracepoint:
12894 printf_filtered (_("Tracepoint"));
12895 printf_filtered (_(" %d"), b->number);
12896 break;
12897 case bp_fast_tracepoint:
12898 printf_filtered (_("Fast tracepoint"));
12899 printf_filtered (_(" %d"), b->number);
12900 break;
12901 case bp_static_tracepoint:
12902 printf_filtered (_("Static tracepoint"));
12903 printf_filtered (_(" %d"), b->number);
12904 break;
12905 default:
12906 internal_error (__FILE__, __LINE__,
12907 _("unhandled tracepoint type %d"), (int) b->type);
12908 }
12909
12910 say_where (b);
12911 }
12912
12913 static void
12914 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12915 {
12916 struct tracepoint *tp = (struct tracepoint *) self;
12917
12918 if (self->type == bp_fast_tracepoint)
12919 fprintf_unfiltered (fp, "ftrace");
12920 else if (self->type == bp_static_tracepoint)
12921 fprintf_unfiltered (fp, "strace");
12922 else if (self->type == bp_tracepoint)
12923 fprintf_unfiltered (fp, "trace");
12924 else
12925 internal_error (__FILE__, __LINE__,
12926 _("unhandled tracepoint type %d"), (int) self->type);
12927
12928 fprintf_unfiltered (fp, " %s",
12929 event_location_to_string (self->location.get ()));
12930 print_recreate_thread (self, fp);
12931
12932 if (tp->pass_count)
12933 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12934 }
12935
12936 static void
12937 tracepoint_create_sals_from_location (const struct event_location *location,
12938 struct linespec_result *canonical,
12939 enum bptype type_wanted)
12940 {
12941 create_sals_from_location_default (location, canonical, type_wanted);
12942 }
12943
12944 static void
12945 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12946 struct linespec_result *canonical,
12947 gdb::unique_xmalloc_ptr<char> cond_string,
12948 gdb::unique_xmalloc_ptr<char> extra_string,
12949 enum bptype type_wanted,
12950 enum bpdisp disposition,
12951 int thread,
12952 int task, int ignore_count,
12953 const struct breakpoint_ops *ops,
12954 int from_tty, int enabled,
12955 int internal, unsigned flags)
12956 {
12957 create_breakpoints_sal_default (gdbarch, canonical,
12958 std::move (cond_string),
12959 std::move (extra_string),
12960 type_wanted,
12961 disposition, thread, task,
12962 ignore_count, ops, from_tty,
12963 enabled, internal, flags);
12964 }
12965
12966 static std::vector<symtab_and_line>
12967 tracepoint_decode_location (struct breakpoint *b,
12968 const struct event_location *location,
12969 struct program_space *search_pspace)
12970 {
12971 return decode_location_default (b, location, search_pspace);
12972 }
12973
12974 struct breakpoint_ops tracepoint_breakpoint_ops;
12975
12976 /* The breakpoint_ops structure to be use on tracepoints placed in a
12977 static probe. */
12978
12979 static void
12980 tracepoint_probe_create_sals_from_location
12981 (const struct event_location *location,
12982 struct linespec_result *canonical,
12983 enum bptype type_wanted)
12984 {
12985 /* We use the same method for breakpoint on probes. */
12986 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12987 }
12988
12989 static std::vector<symtab_and_line>
12990 tracepoint_probe_decode_location (struct breakpoint *b,
12991 const struct event_location *location,
12992 struct program_space *search_pspace)
12993 {
12994 /* We use the same method for breakpoint on probes. */
12995 return bkpt_probe_decode_location (b, location, search_pspace);
12996 }
12997
12998 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12999
13000 /* Dprintf breakpoint_ops methods. */
13001
13002 static void
13003 dprintf_re_set (struct breakpoint *b)
13004 {
13005 breakpoint_re_set_default (b);
13006
13007 /* extra_string should never be non-NULL for dprintf. */
13008 gdb_assert (b->extra_string != NULL);
13009
13010 /* 1 - connect to target 1, that can run breakpoint commands.
13011 2 - create a dprintf, which resolves fine.
13012 3 - disconnect from target 1
13013 4 - connect to target 2, that can NOT run breakpoint commands.
13014
13015 After steps #3/#4, you'll want the dprintf command list to
13016 be updated, because target 1 and 2 may well return different
13017 answers for target_can_run_breakpoint_commands().
13018 Given absence of finer grained resetting, we get to do
13019 it all the time. */
13020 if (b->extra_string != NULL)
13021 update_dprintf_command_list (b);
13022 }
13023
13024 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13025
13026 static void
13027 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13028 {
13029 fprintf_unfiltered (fp, "dprintf %s,%s",
13030 event_location_to_string (tp->location.get ()),
13031 tp->extra_string);
13032 print_recreate_thread (tp, fp);
13033 }
13034
13035 /* Implement the "after_condition_true" breakpoint_ops method for
13036 dprintf.
13037
13038 dprintf's are implemented with regular commands in their command
13039 list, but we run the commands here instead of before presenting the
13040 stop to the user, as dprintf's don't actually cause a stop. This
13041 also makes it so that the commands of multiple dprintfs at the same
13042 address are all handled. */
13043
13044 static void
13045 dprintf_after_condition_true (struct bpstats *bs)
13046 {
13047 struct bpstats tmp_bs;
13048 struct bpstats *tmp_bs_p = &tmp_bs;
13049
13050 /* dprintf's never cause a stop. This wasn't set in the
13051 check_status hook instead because that would make the dprintf's
13052 condition not be evaluated. */
13053 bs->stop = 0;
13054
13055 /* Run the command list here. Take ownership of it instead of
13056 copying. We never want these commands to run later in
13057 bpstat_do_actions, if a breakpoint that causes a stop happens to
13058 be set at same address as this dprintf, or even if running the
13059 commands here throws. */
13060 tmp_bs.commands = bs->commands;
13061 bs->commands = NULL;
13062
13063 bpstat_do_actions_1 (&tmp_bs_p);
13064
13065 /* 'tmp_bs.commands' will usually be NULL by now, but
13066 bpstat_do_actions_1 may return early without processing the whole
13067 list. */
13068 }
13069
13070 /* The breakpoint_ops structure to be used on static tracepoints with
13071 markers (`-m'). */
13072
13073 static void
13074 strace_marker_create_sals_from_location (const struct event_location *location,
13075 struct linespec_result *canonical,
13076 enum bptype type_wanted)
13077 {
13078 struct linespec_sals lsal;
13079 const char *arg_start, *arg;
13080
13081 arg = arg_start = get_linespec_location (location)->spec_string;
13082 lsal.sals = decode_static_tracepoint_spec (&arg);
13083
13084 std::string str (arg_start, arg - arg_start);
13085 const char *ptr = str.c_str ();
13086 canonical->location
13087 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13088
13089 lsal.canonical
13090 = xstrdup (event_location_to_string (canonical->location.get ()));
13091 canonical->lsals.push_back (std::move (lsal));
13092 }
13093
13094 static void
13095 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13096 struct linespec_result *canonical,
13097 gdb::unique_xmalloc_ptr<char> cond_string,
13098 gdb::unique_xmalloc_ptr<char> extra_string,
13099 enum bptype type_wanted,
13100 enum bpdisp disposition,
13101 int thread,
13102 int task, int ignore_count,
13103 const struct breakpoint_ops *ops,
13104 int from_tty, int enabled,
13105 int internal, unsigned flags)
13106 {
13107 const linespec_sals &lsal = canonical->lsals[0];
13108
13109 /* If the user is creating a static tracepoint by marker id
13110 (strace -m MARKER_ID), then store the sals index, so that
13111 breakpoint_re_set can try to match up which of the newly
13112 found markers corresponds to this one, and, don't try to
13113 expand multiple locations for each sal, given than SALS
13114 already should contain all sals for MARKER_ID. */
13115
13116 for (size_t i = 0; i < lsal.sals.size (); i++)
13117 {
13118 event_location_up location
13119 = copy_event_location (canonical->location.get ());
13120
13121 std::unique_ptr<tracepoint> tp (new tracepoint ());
13122 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13123 std::move (location), NULL,
13124 std::move (cond_string),
13125 std::move (extra_string),
13126 type_wanted, disposition,
13127 thread, task, ignore_count, ops,
13128 from_tty, enabled, internal, flags,
13129 canonical->special_display);
13130 /* Given that its possible to have multiple markers with
13131 the same string id, if the user is creating a static
13132 tracepoint by marker id ("strace -m MARKER_ID"), then
13133 store the sals index, so that breakpoint_re_set can
13134 try to match up which of the newly found markers
13135 corresponds to this one */
13136 tp->static_trace_marker_id_idx = i;
13137
13138 install_breakpoint (internal, std::move (tp), 0);
13139 }
13140 }
13141
13142 static std::vector<symtab_and_line>
13143 strace_marker_decode_location (struct breakpoint *b,
13144 const struct event_location *location,
13145 struct program_space *search_pspace)
13146 {
13147 struct tracepoint *tp = (struct tracepoint *) b;
13148 const char *s = get_linespec_location (location)->spec_string;
13149
13150 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13151 if (sals.size () > tp->static_trace_marker_id_idx)
13152 {
13153 sals[0] = sals[tp->static_trace_marker_id_idx];
13154 sals.resize (1);
13155 return sals;
13156 }
13157 else
13158 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13159 }
13160
13161 static struct breakpoint_ops strace_marker_breakpoint_ops;
13162
13163 static int
13164 strace_marker_p (struct breakpoint *b)
13165 {
13166 return b->ops == &strace_marker_breakpoint_ops;
13167 }
13168
13169 /* Delete a breakpoint and clean up all traces of it in the data
13170 structures. */
13171
13172 void
13173 delete_breakpoint (struct breakpoint *bpt)
13174 {
13175 struct breakpoint *b;
13176
13177 gdb_assert (bpt != NULL);
13178
13179 /* Has this bp already been deleted? This can happen because
13180 multiple lists can hold pointers to bp's. bpstat lists are
13181 especial culprits.
13182
13183 One example of this happening is a watchpoint's scope bp. When
13184 the scope bp triggers, we notice that the watchpoint is out of
13185 scope, and delete it. We also delete its scope bp. But the
13186 scope bp is marked "auto-deleting", and is already on a bpstat.
13187 That bpstat is then checked for auto-deleting bp's, which are
13188 deleted.
13189
13190 A real solution to this problem might involve reference counts in
13191 bp's, and/or giving them pointers back to their referencing
13192 bpstat's, and teaching delete_breakpoint to only free a bp's
13193 storage when no more references were extent. A cheaper bandaid
13194 was chosen. */
13195 if (bpt->type == bp_none)
13196 return;
13197
13198 /* At least avoid this stale reference until the reference counting
13199 of breakpoints gets resolved. */
13200 if (bpt->related_breakpoint != bpt)
13201 {
13202 struct breakpoint *related;
13203 struct watchpoint *w;
13204
13205 if (bpt->type == bp_watchpoint_scope)
13206 w = (struct watchpoint *) bpt->related_breakpoint;
13207 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13208 w = (struct watchpoint *) bpt;
13209 else
13210 w = NULL;
13211 if (w != NULL)
13212 watchpoint_del_at_next_stop (w);
13213
13214 /* Unlink bpt from the bpt->related_breakpoint ring. */
13215 for (related = bpt; related->related_breakpoint != bpt;
13216 related = related->related_breakpoint);
13217 related->related_breakpoint = bpt->related_breakpoint;
13218 bpt->related_breakpoint = bpt;
13219 }
13220
13221 /* watch_command_1 creates a watchpoint but only sets its number if
13222 update_watchpoint succeeds in creating its bp_locations. If there's
13223 a problem in that process, we'll be asked to delete the half-created
13224 watchpoint. In that case, don't announce the deletion. */
13225 if (bpt->number)
13226 gdb::observers::breakpoint_deleted.notify (bpt);
13227
13228 if (breakpoint_chain == bpt)
13229 breakpoint_chain = bpt->next;
13230
13231 ALL_BREAKPOINTS (b)
13232 if (b->next == bpt)
13233 {
13234 b->next = bpt->next;
13235 break;
13236 }
13237
13238 /* Be sure no bpstat's are pointing at the breakpoint after it's
13239 been freed. */
13240 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13241 in all threads for now. Note that we cannot just remove bpstats
13242 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13243 commands are associated with the bpstat; if we remove it here,
13244 then the later call to bpstat_do_actions (&stop_bpstat); in
13245 event-top.c won't do anything, and temporary breakpoints with
13246 commands won't work. */
13247
13248 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13249
13250 /* Now that breakpoint is removed from breakpoint list, update the
13251 global location list. This will remove locations that used to
13252 belong to this breakpoint. Do this before freeing the breakpoint
13253 itself, since remove_breakpoint looks at location's owner. It
13254 might be better design to have location completely
13255 self-contained, but it's not the case now. */
13256 update_global_location_list (UGLL_DONT_INSERT);
13257
13258 /* On the chance that someone will soon try again to delete this
13259 same bp, we mark it as deleted before freeing its storage. */
13260 bpt->type = bp_none;
13261 delete bpt;
13262 }
13263
13264 /* Iterator function to call a user-provided callback function once
13265 for each of B and its related breakpoints. */
13266
13267 static void
13268 iterate_over_related_breakpoints (struct breakpoint *b,
13269 gdb::function_view<void (breakpoint *)> function)
13270 {
13271 struct breakpoint *related;
13272
13273 related = b;
13274 do
13275 {
13276 struct breakpoint *next;
13277
13278 /* FUNCTION may delete RELATED. */
13279 next = related->related_breakpoint;
13280
13281 if (next == related)
13282 {
13283 /* RELATED is the last ring entry. */
13284 function (related);
13285
13286 /* FUNCTION may have deleted it, so we'd never reach back to
13287 B. There's nothing left to do anyway, so just break
13288 out. */
13289 break;
13290 }
13291 else
13292 function (related);
13293
13294 related = next;
13295 }
13296 while (related != b);
13297 }
13298
13299 static void
13300 delete_command (const char *arg, int from_tty)
13301 {
13302 struct breakpoint *b, *b_tmp;
13303
13304 dont_repeat ();
13305
13306 if (arg == 0)
13307 {
13308 int breaks_to_delete = 0;
13309
13310 /* Delete all breakpoints if no argument. Do not delete
13311 internal breakpoints, these have to be deleted with an
13312 explicit breakpoint number argument. */
13313 ALL_BREAKPOINTS (b)
13314 if (user_breakpoint_p (b))
13315 {
13316 breaks_to_delete = 1;
13317 break;
13318 }
13319
13320 /* Ask user only if there are some breakpoints to delete. */
13321 if (!from_tty
13322 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13323 {
13324 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13325 if (user_breakpoint_p (b))
13326 delete_breakpoint (b);
13327 }
13328 }
13329 else
13330 map_breakpoint_numbers
13331 (arg, [&] (breakpoint *b)
13332 {
13333 iterate_over_related_breakpoints (b, delete_breakpoint);
13334 });
13335 }
13336
13337 /* Return true if all locations of B bound to PSPACE are pending. If
13338 PSPACE is NULL, all locations of all program spaces are
13339 considered. */
13340
13341 static int
13342 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13343 {
13344 struct bp_location *loc;
13345
13346 for (loc = b->loc; loc != NULL; loc = loc->next)
13347 if ((pspace == NULL
13348 || loc->pspace == pspace)
13349 && !loc->shlib_disabled
13350 && !loc->pspace->executing_startup)
13351 return 0;
13352 return 1;
13353 }
13354
13355 /* Subroutine of update_breakpoint_locations to simplify it.
13356 Return non-zero if multiple fns in list LOC have the same name.
13357 Null names are ignored. */
13358
13359 static int
13360 ambiguous_names_p (struct bp_location *loc)
13361 {
13362 struct bp_location *l;
13363 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13364 xcalloc, xfree);
13365
13366 for (l = loc; l != NULL; l = l->next)
13367 {
13368 const char **slot;
13369 const char *name = l->function_name;
13370
13371 /* Allow for some names to be NULL, ignore them. */
13372 if (name == NULL)
13373 continue;
13374
13375 slot = (const char **) htab_find_slot (htab, (const void *) name,
13376 INSERT);
13377 /* NOTE: We can assume slot != NULL here because xcalloc never
13378 returns NULL. */
13379 if (*slot != NULL)
13380 {
13381 htab_delete (htab);
13382 return 1;
13383 }
13384 *slot = name;
13385 }
13386
13387 htab_delete (htab);
13388 return 0;
13389 }
13390
13391 /* When symbols change, it probably means the sources changed as well,
13392 and it might mean the static tracepoint markers are no longer at
13393 the same address or line numbers they used to be at last we
13394 checked. Losing your static tracepoints whenever you rebuild is
13395 undesirable. This function tries to resync/rematch gdb static
13396 tracepoints with the markers on the target, for static tracepoints
13397 that have not been set by marker id. Static tracepoint that have
13398 been set by marker id are reset by marker id in breakpoint_re_set.
13399 The heuristic is:
13400
13401 1) For a tracepoint set at a specific address, look for a marker at
13402 the old PC. If one is found there, assume to be the same marker.
13403 If the name / string id of the marker found is different from the
13404 previous known name, assume that means the user renamed the marker
13405 in the sources, and output a warning.
13406
13407 2) For a tracepoint set at a given line number, look for a marker
13408 at the new address of the old line number. If one is found there,
13409 assume to be the same marker. If the name / string id of the
13410 marker found is different from the previous known name, assume that
13411 means the user renamed the marker in the sources, and output a
13412 warning.
13413
13414 3) If a marker is no longer found at the same address or line, it
13415 may mean the marker no longer exists. But it may also just mean
13416 the code changed a bit. Maybe the user added a few lines of code
13417 that made the marker move up or down (in line number terms). Ask
13418 the target for info about the marker with the string id as we knew
13419 it. If found, update line number and address in the matching
13420 static tracepoint. This will get confused if there's more than one
13421 marker with the same ID (possible in UST, although unadvised
13422 precisely because it confuses tools). */
13423
13424 static struct symtab_and_line
13425 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13426 {
13427 struct tracepoint *tp = (struct tracepoint *) b;
13428 struct static_tracepoint_marker marker;
13429 CORE_ADDR pc;
13430
13431 pc = sal.pc;
13432 if (sal.line)
13433 find_line_pc (sal.symtab, sal.line, &pc);
13434
13435 if (target_static_tracepoint_marker_at (pc, &marker))
13436 {
13437 if (tp->static_trace_marker_id != marker.str_id)
13438 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13439 b->number, tp->static_trace_marker_id.c_str (),
13440 marker.str_id.c_str ());
13441
13442 tp->static_trace_marker_id = std::move (marker.str_id);
13443
13444 return sal;
13445 }
13446
13447 /* Old marker wasn't found on target at lineno. Try looking it up
13448 by string ID. */
13449 if (!sal.explicit_pc
13450 && sal.line != 0
13451 && sal.symtab != NULL
13452 && !tp->static_trace_marker_id.empty ())
13453 {
13454 std::vector<static_tracepoint_marker> markers
13455 = target_static_tracepoint_markers_by_strid
13456 (tp->static_trace_marker_id.c_str ());
13457
13458 if (!markers.empty ())
13459 {
13460 struct symbol *sym;
13461 struct static_tracepoint_marker *tpmarker;
13462 struct ui_out *uiout = current_uiout;
13463 struct explicit_location explicit_loc;
13464
13465 tpmarker = &markers[0];
13466
13467 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13468
13469 warning (_("marker for static tracepoint %d (%s) not "
13470 "found at previous line number"),
13471 b->number, tp->static_trace_marker_id.c_str ());
13472
13473 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13474 sym = find_pc_sect_function (tpmarker->address, NULL);
13475 uiout->text ("Now in ");
13476 if (sym)
13477 {
13478 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13479 uiout->text (" at ");
13480 }
13481 uiout->field_string ("file",
13482 symtab_to_filename_for_display (sal2.symtab));
13483 uiout->text (":");
13484
13485 if (uiout->is_mi_like_p ())
13486 {
13487 const char *fullname = symtab_to_fullname (sal2.symtab);
13488
13489 uiout->field_string ("fullname", fullname);
13490 }
13491
13492 uiout->field_int ("line", sal2.line);
13493 uiout->text ("\n");
13494
13495 b->loc->line_number = sal2.line;
13496 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13497
13498 b->location.reset (NULL);
13499 initialize_explicit_location (&explicit_loc);
13500 explicit_loc.source_filename
13501 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13502 explicit_loc.line_offset.offset = b->loc->line_number;
13503 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13504 b->location = new_explicit_location (&explicit_loc);
13505
13506 /* Might be nice to check if function changed, and warn if
13507 so. */
13508 }
13509 }
13510 return sal;
13511 }
13512
13513 /* Returns 1 iff locations A and B are sufficiently same that
13514 we don't need to report breakpoint as changed. */
13515
13516 static int
13517 locations_are_equal (struct bp_location *a, struct bp_location *b)
13518 {
13519 while (a && b)
13520 {
13521 if (a->address != b->address)
13522 return 0;
13523
13524 if (a->shlib_disabled != b->shlib_disabled)
13525 return 0;
13526
13527 if (a->enabled != b->enabled)
13528 return 0;
13529
13530 a = a->next;
13531 b = b->next;
13532 }
13533
13534 if ((a == NULL) != (b == NULL))
13535 return 0;
13536
13537 return 1;
13538 }
13539
13540 /* Split all locations of B that are bound to PSPACE out of B's
13541 location list to a separate list and return that list's head. If
13542 PSPACE is NULL, hoist out all locations of B. */
13543
13544 static struct bp_location *
13545 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13546 {
13547 struct bp_location head;
13548 struct bp_location *i = b->loc;
13549 struct bp_location **i_link = &b->loc;
13550 struct bp_location *hoisted = &head;
13551
13552 if (pspace == NULL)
13553 {
13554 i = b->loc;
13555 b->loc = NULL;
13556 return i;
13557 }
13558
13559 head.next = NULL;
13560
13561 while (i != NULL)
13562 {
13563 if (i->pspace == pspace)
13564 {
13565 *i_link = i->next;
13566 i->next = NULL;
13567 hoisted->next = i;
13568 hoisted = i;
13569 }
13570 else
13571 i_link = &i->next;
13572 i = *i_link;
13573 }
13574
13575 return head.next;
13576 }
13577
13578 /* Create new breakpoint locations for B (a hardware or software
13579 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13580 zero, then B is a ranged breakpoint. Only recreates locations for
13581 FILTER_PSPACE. Locations of other program spaces are left
13582 untouched. */
13583
13584 void
13585 update_breakpoint_locations (struct breakpoint *b,
13586 struct program_space *filter_pspace,
13587 gdb::array_view<const symtab_and_line> sals,
13588 gdb::array_view<const symtab_and_line> sals_end)
13589 {
13590 struct bp_location *existing_locations;
13591
13592 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13593 {
13594 /* Ranged breakpoints have only one start location and one end
13595 location. */
13596 b->enable_state = bp_disabled;
13597 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13598 "multiple locations found\n"),
13599 b->number);
13600 return;
13601 }
13602
13603 /* If there's no new locations, and all existing locations are
13604 pending, don't do anything. This optimizes the common case where
13605 all locations are in the same shared library, that was unloaded.
13606 We'd like to retain the location, so that when the library is
13607 loaded again, we don't loose the enabled/disabled status of the
13608 individual locations. */
13609 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13610 return;
13611
13612 existing_locations = hoist_existing_locations (b, filter_pspace);
13613
13614 for (const auto &sal : sals)
13615 {
13616 struct bp_location *new_loc;
13617
13618 switch_to_program_space_and_thread (sal.pspace);
13619
13620 new_loc = add_location_to_breakpoint (b, &sal);
13621
13622 /* Reparse conditions, they might contain references to the
13623 old symtab. */
13624 if (b->cond_string != NULL)
13625 {
13626 const char *s;
13627
13628 s = b->cond_string;
13629 TRY
13630 {
13631 new_loc->cond = parse_exp_1 (&s, sal.pc,
13632 block_for_pc (sal.pc),
13633 0);
13634 }
13635 CATCH (e, RETURN_MASK_ERROR)
13636 {
13637 warning (_("failed to reevaluate condition "
13638 "for breakpoint %d: %s"),
13639 b->number, e.message);
13640 new_loc->enabled = 0;
13641 }
13642 END_CATCH
13643 }
13644
13645 if (!sals_end.empty ())
13646 {
13647 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13648
13649 new_loc->length = end - sals[0].pc + 1;
13650 }
13651 }
13652
13653 /* If possible, carry over 'disable' status from existing
13654 breakpoints. */
13655 {
13656 struct bp_location *e = existing_locations;
13657 /* If there are multiple breakpoints with the same function name,
13658 e.g. for inline functions, comparing function names won't work.
13659 Instead compare pc addresses; this is just a heuristic as things
13660 may have moved, but in practice it gives the correct answer
13661 often enough until a better solution is found. */
13662 int have_ambiguous_names = ambiguous_names_p (b->loc);
13663
13664 for (; e; e = e->next)
13665 {
13666 if (!e->enabled && e->function_name)
13667 {
13668 struct bp_location *l = b->loc;
13669 if (have_ambiguous_names)
13670 {
13671 for (; l; l = l->next)
13672 if (breakpoint_locations_match (e, l))
13673 {
13674 l->enabled = 0;
13675 break;
13676 }
13677 }
13678 else
13679 {
13680 for (; l; l = l->next)
13681 if (l->function_name
13682 && strcmp (e->function_name, l->function_name) == 0)
13683 {
13684 l->enabled = 0;
13685 break;
13686 }
13687 }
13688 }
13689 }
13690 }
13691
13692 if (!locations_are_equal (existing_locations, b->loc))
13693 gdb::observers::breakpoint_modified.notify (b);
13694 }
13695
13696 /* Find the SaL locations corresponding to the given LOCATION.
13697 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13698
13699 static std::vector<symtab_and_line>
13700 location_to_sals (struct breakpoint *b, struct event_location *location,
13701 struct program_space *search_pspace, int *found)
13702 {
13703 struct gdb_exception exception = exception_none;
13704
13705 gdb_assert (b->ops != NULL);
13706
13707 std::vector<symtab_and_line> sals;
13708
13709 TRY
13710 {
13711 sals = b->ops->decode_location (b, location, search_pspace);
13712 }
13713 CATCH (e, RETURN_MASK_ERROR)
13714 {
13715 int not_found_and_ok = 0;
13716
13717 exception = e;
13718
13719 /* For pending breakpoints, it's expected that parsing will
13720 fail until the right shared library is loaded. User has
13721 already told to create pending breakpoints and don't need
13722 extra messages. If breakpoint is in bp_shlib_disabled
13723 state, then user already saw the message about that
13724 breakpoint being disabled, and don't want to see more
13725 errors. */
13726 if (e.error == NOT_FOUND_ERROR
13727 && (b->condition_not_parsed
13728 || (b->loc != NULL
13729 && search_pspace != NULL
13730 && b->loc->pspace != search_pspace)
13731 || (b->loc && b->loc->shlib_disabled)
13732 || (b->loc && b->loc->pspace->executing_startup)
13733 || b->enable_state == bp_disabled))
13734 not_found_and_ok = 1;
13735
13736 if (!not_found_and_ok)
13737 {
13738 /* We surely don't want to warn about the same breakpoint
13739 10 times. One solution, implemented here, is disable
13740 the breakpoint on error. Another solution would be to
13741 have separate 'warning emitted' flag. Since this
13742 happens only when a binary has changed, I don't know
13743 which approach is better. */
13744 b->enable_state = bp_disabled;
13745 throw_exception (e);
13746 }
13747 }
13748 END_CATCH
13749
13750 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13751 {
13752 for (auto &sal : sals)
13753 resolve_sal_pc (&sal);
13754 if (b->condition_not_parsed && b->extra_string != NULL)
13755 {
13756 char *cond_string, *extra_string;
13757 int thread, task;
13758
13759 find_condition_and_thread (b->extra_string, sals[0].pc,
13760 &cond_string, &thread, &task,
13761 &extra_string);
13762 gdb_assert (b->cond_string == NULL);
13763 if (cond_string)
13764 b->cond_string = cond_string;
13765 b->thread = thread;
13766 b->task = task;
13767 if (extra_string)
13768 {
13769 xfree (b->extra_string);
13770 b->extra_string = extra_string;
13771 }
13772 b->condition_not_parsed = 0;
13773 }
13774
13775 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13776 sals[0] = update_static_tracepoint (b, sals[0]);
13777
13778 *found = 1;
13779 }
13780 else
13781 *found = 0;
13782
13783 return sals;
13784 }
13785
13786 /* The default re_set method, for typical hardware or software
13787 breakpoints. Reevaluate the breakpoint and recreate its
13788 locations. */
13789
13790 static void
13791 breakpoint_re_set_default (struct breakpoint *b)
13792 {
13793 struct program_space *filter_pspace = current_program_space;
13794 std::vector<symtab_and_line> expanded, expanded_end;
13795
13796 int found;
13797 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13798 filter_pspace, &found);
13799 if (found)
13800 expanded = std::move (sals);
13801
13802 if (b->location_range_end != NULL)
13803 {
13804 std::vector<symtab_and_line> sals_end
13805 = location_to_sals (b, b->location_range_end.get (),
13806 filter_pspace, &found);
13807 if (found)
13808 expanded_end = std::move (sals_end);
13809 }
13810
13811 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13812 }
13813
13814 /* Default method for creating SALs from an address string. It basically
13815 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13816
13817 static void
13818 create_sals_from_location_default (const struct event_location *location,
13819 struct linespec_result *canonical,
13820 enum bptype type_wanted)
13821 {
13822 parse_breakpoint_sals (location, canonical);
13823 }
13824
13825 /* Call create_breakpoints_sal for the given arguments. This is the default
13826 function for the `create_breakpoints_sal' method of
13827 breakpoint_ops. */
13828
13829 static void
13830 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13831 struct linespec_result *canonical,
13832 gdb::unique_xmalloc_ptr<char> cond_string,
13833 gdb::unique_xmalloc_ptr<char> extra_string,
13834 enum bptype type_wanted,
13835 enum bpdisp disposition,
13836 int thread,
13837 int task, int ignore_count,
13838 const struct breakpoint_ops *ops,
13839 int from_tty, int enabled,
13840 int internal, unsigned flags)
13841 {
13842 create_breakpoints_sal (gdbarch, canonical,
13843 std::move (cond_string),
13844 std::move (extra_string),
13845 type_wanted, disposition,
13846 thread, task, ignore_count, ops, from_tty,
13847 enabled, internal, flags);
13848 }
13849
13850 /* Decode the line represented by S by calling decode_line_full. This is the
13851 default function for the `decode_location' method of breakpoint_ops. */
13852
13853 static std::vector<symtab_and_line>
13854 decode_location_default (struct breakpoint *b,
13855 const struct event_location *location,
13856 struct program_space *search_pspace)
13857 {
13858 struct linespec_result canonical;
13859
13860 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13861 (struct symtab *) NULL, 0,
13862 &canonical, multiple_symbols_all,
13863 b->filter);
13864
13865 /* We should get 0 or 1 resulting SALs. */
13866 gdb_assert (canonical.lsals.size () < 2);
13867
13868 if (!canonical.lsals.empty ())
13869 {
13870 const linespec_sals &lsal = canonical.lsals[0];
13871 return std::move (lsal.sals);
13872 }
13873 return {};
13874 }
13875
13876 /* Reset a breakpoint. */
13877
13878 static void
13879 breakpoint_re_set_one (breakpoint *b)
13880 {
13881 input_radix = b->input_radix;
13882 set_language (b->language);
13883
13884 b->ops->re_set (b);
13885 }
13886
13887 /* Re-set breakpoint locations for the current program space.
13888 Locations bound to other program spaces are left untouched. */
13889
13890 void
13891 breakpoint_re_set (void)
13892 {
13893 struct breakpoint *b, *b_tmp;
13894
13895 {
13896 scoped_restore_current_language save_language;
13897 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13898 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13899
13900 /* Note: we must not try to insert locations until after all
13901 breakpoints have been re-set. Otherwise, e.g., when re-setting
13902 breakpoint 1, we'd insert the locations of breakpoint 2, which
13903 hadn't been re-set yet, and thus may have stale locations. */
13904
13905 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13906 {
13907 TRY
13908 {
13909 breakpoint_re_set_one (b);
13910 }
13911 CATCH (ex, RETURN_MASK_ALL)
13912 {
13913 exception_fprintf (gdb_stderr, ex,
13914 "Error in re-setting breakpoint %d: ",
13915 b->number);
13916 }
13917 END_CATCH
13918 }
13919
13920 jit_breakpoint_re_set ();
13921 }
13922
13923 create_overlay_event_breakpoint ();
13924 create_longjmp_master_breakpoint ();
13925 create_std_terminate_master_breakpoint ();
13926 create_exception_master_breakpoint ();
13927
13928 /* Now we can insert. */
13929 update_global_location_list (UGLL_MAY_INSERT);
13930 }
13931 \f
13932 /* Reset the thread number of this breakpoint:
13933
13934 - If the breakpoint is for all threads, leave it as-is.
13935 - Else, reset it to the current thread for inferior_ptid. */
13936 void
13937 breakpoint_re_set_thread (struct breakpoint *b)
13938 {
13939 if (b->thread != -1)
13940 {
13941 if (in_thread_list (inferior_ptid))
13942 b->thread = ptid_to_global_thread_id (inferior_ptid);
13943
13944 /* We're being called after following a fork. The new fork is
13945 selected as current, and unless this was a vfork will have a
13946 different program space from the original thread. Reset that
13947 as well. */
13948 b->loc->pspace = current_program_space;
13949 }
13950 }
13951
13952 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13953 If from_tty is nonzero, it prints a message to that effect,
13954 which ends with a period (no newline). */
13955
13956 void
13957 set_ignore_count (int bptnum, int count, int from_tty)
13958 {
13959 struct breakpoint *b;
13960
13961 if (count < 0)
13962 count = 0;
13963
13964 ALL_BREAKPOINTS (b)
13965 if (b->number == bptnum)
13966 {
13967 if (is_tracepoint (b))
13968 {
13969 if (from_tty && count != 0)
13970 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13971 bptnum);
13972 return;
13973 }
13974
13975 b->ignore_count = count;
13976 if (from_tty)
13977 {
13978 if (count == 0)
13979 printf_filtered (_("Will stop next time "
13980 "breakpoint %d is reached."),
13981 bptnum);
13982 else if (count == 1)
13983 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13984 bptnum);
13985 else
13986 printf_filtered (_("Will ignore next %d "
13987 "crossings of breakpoint %d."),
13988 count, bptnum);
13989 }
13990 gdb::observers::breakpoint_modified.notify (b);
13991 return;
13992 }
13993
13994 error (_("No breakpoint number %d."), bptnum);
13995 }
13996
13997 /* Command to set ignore-count of breakpoint N to COUNT. */
13998
13999 static void
14000 ignore_command (const char *args, int from_tty)
14001 {
14002 const char *p = args;
14003 int num;
14004
14005 if (p == 0)
14006 error_no_arg (_("a breakpoint number"));
14007
14008 num = get_number (&p);
14009 if (num == 0)
14010 error (_("bad breakpoint number: '%s'"), args);
14011 if (*p == 0)
14012 error (_("Second argument (specified ignore-count) is missing."));
14013
14014 set_ignore_count (num,
14015 longest_to_int (value_as_long (parse_and_eval (p))),
14016 from_tty);
14017 if (from_tty)
14018 printf_filtered ("\n");
14019 }
14020 \f
14021
14022 /* Call FUNCTION on each of the breakpoints with numbers in the range
14023 defined by BP_NUM_RANGE (an inclusive range). */
14024
14025 static void
14026 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14027 gdb::function_view<void (breakpoint *)> function)
14028 {
14029 if (bp_num_range.first == 0)
14030 {
14031 warning (_("bad breakpoint number at or near '%d'"),
14032 bp_num_range.first);
14033 }
14034 else
14035 {
14036 struct breakpoint *b, *tmp;
14037
14038 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14039 {
14040 bool match = false;
14041
14042 ALL_BREAKPOINTS_SAFE (b, tmp)
14043 if (b->number == i)
14044 {
14045 match = true;
14046 function (b);
14047 break;
14048 }
14049 if (!match)
14050 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14051 }
14052 }
14053 }
14054
14055 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14056 ARGS. */
14057
14058 static void
14059 map_breakpoint_numbers (const char *args,
14060 gdb::function_view<void (breakpoint *)> function)
14061 {
14062 if (args == NULL || *args == '\0')
14063 error_no_arg (_("one or more breakpoint numbers"));
14064
14065 number_or_range_parser parser (args);
14066
14067 while (!parser.finished ())
14068 {
14069 int num = parser.get_number ();
14070 map_breakpoint_number_range (std::make_pair (num, num), function);
14071 }
14072 }
14073
14074 /* Return the breakpoint location structure corresponding to the
14075 BP_NUM and LOC_NUM values. */
14076
14077 static struct bp_location *
14078 find_location_by_number (int bp_num, int loc_num)
14079 {
14080 struct breakpoint *b;
14081
14082 ALL_BREAKPOINTS (b)
14083 if (b->number == bp_num)
14084 {
14085 break;
14086 }
14087
14088 if (!b || b->number != bp_num)
14089 error (_("Bad breakpoint number '%d'"), bp_num);
14090
14091 if (loc_num == 0)
14092 error (_("Bad breakpoint location number '%d'"), loc_num);
14093
14094 int n = 0;
14095 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14096 if (++n == loc_num)
14097 return loc;
14098
14099 error (_("Bad breakpoint location number '%d'"), loc_num);
14100 }
14101
14102 /* Modes of operation for extract_bp_num. */
14103 enum class extract_bp_kind
14104 {
14105 /* Extracting a breakpoint number. */
14106 bp,
14107
14108 /* Extracting a location number. */
14109 loc,
14110 };
14111
14112 /* Extract a breakpoint or location number (as determined by KIND)
14113 from the string starting at START. TRAILER is a character which
14114 can be found after the number. If you don't want a trailer, use
14115 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14116 string. This always returns a positive integer. */
14117
14118 static int
14119 extract_bp_num (extract_bp_kind kind, const char *start,
14120 int trailer, const char **end_out = NULL)
14121 {
14122 const char *end = start;
14123 int num = get_number_trailer (&end, trailer);
14124 if (num < 0)
14125 error (kind == extract_bp_kind::bp
14126 ? _("Negative breakpoint number '%.*s'")
14127 : _("Negative breakpoint location number '%.*s'"),
14128 int (end - start), start);
14129 if (num == 0)
14130 error (kind == extract_bp_kind::bp
14131 ? _("Bad breakpoint number '%.*s'")
14132 : _("Bad breakpoint location number '%.*s'"),
14133 int (end - start), start);
14134
14135 if (end_out != NULL)
14136 *end_out = end;
14137 return num;
14138 }
14139
14140 /* Extract a breakpoint or location range (as determined by KIND) in
14141 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14142 representing the (inclusive) range. The returned pair's elements
14143 are always positive integers. */
14144
14145 static std::pair<int, int>
14146 extract_bp_or_bp_range (extract_bp_kind kind,
14147 const std::string &arg,
14148 std::string::size_type arg_offset)
14149 {
14150 std::pair<int, int> range;
14151 const char *bp_loc = &arg[arg_offset];
14152 std::string::size_type dash = arg.find ('-', arg_offset);
14153 if (dash != std::string::npos)
14154 {
14155 /* bp_loc is a range (x-z). */
14156 if (arg.length () == dash + 1)
14157 error (kind == extract_bp_kind::bp
14158 ? _("Bad breakpoint number at or near: '%s'")
14159 : _("Bad breakpoint location number at or near: '%s'"),
14160 bp_loc);
14161
14162 const char *end;
14163 const char *start_first = bp_loc;
14164 const char *start_second = &arg[dash + 1];
14165 range.first = extract_bp_num (kind, start_first, '-');
14166 range.second = extract_bp_num (kind, start_second, '\0', &end);
14167
14168 if (range.first > range.second)
14169 error (kind == extract_bp_kind::bp
14170 ? _("Inverted breakpoint range at '%.*s'")
14171 : _("Inverted breakpoint location range at '%.*s'"),
14172 int (end - start_first), start_first);
14173 }
14174 else
14175 {
14176 /* bp_loc is a single value. */
14177 range.first = extract_bp_num (kind, bp_loc, '\0');
14178 range.second = range.first;
14179 }
14180 return range;
14181 }
14182
14183 /* Extract the breakpoint/location range specified by ARG. Returns
14184 the breakpoint range in BP_NUM_RANGE, and the location range in
14185 BP_LOC_RANGE.
14186
14187 ARG may be in any of the following forms:
14188
14189 x where 'x' is a breakpoint number.
14190 x-y where 'x' and 'y' specify a breakpoint numbers range.
14191 x.y where 'x' is a breakpoint number and 'y' a location number.
14192 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14193 location number range.
14194 */
14195
14196 static void
14197 extract_bp_number_and_location (const std::string &arg,
14198 std::pair<int, int> &bp_num_range,
14199 std::pair<int, int> &bp_loc_range)
14200 {
14201 std::string::size_type dot = arg.find ('.');
14202
14203 if (dot != std::string::npos)
14204 {
14205 /* Handle 'x.y' and 'x.y-z' cases. */
14206
14207 if (arg.length () == dot + 1 || dot == 0)
14208 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14209
14210 bp_num_range.first
14211 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14212 bp_num_range.second = bp_num_range.first;
14213
14214 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14215 arg, dot + 1);
14216 }
14217 else
14218 {
14219 /* Handle x and x-y cases. */
14220
14221 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14222 bp_loc_range.first = 0;
14223 bp_loc_range.second = 0;
14224 }
14225 }
14226
14227 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14228 specifies whether to enable or disable. */
14229
14230 static void
14231 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14232 {
14233 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14234 if (loc != NULL)
14235 {
14236 if (loc->enabled != enable)
14237 {
14238 loc->enabled = enable;
14239 mark_breakpoint_location_modified (loc);
14240 }
14241 if (target_supports_enable_disable_tracepoint ()
14242 && current_trace_status ()->running && loc->owner
14243 && is_tracepoint (loc->owner))
14244 target_disable_tracepoint (loc);
14245 }
14246 update_global_location_list (UGLL_DONT_INSERT);
14247 }
14248
14249 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14250 number of the breakpoint, and BP_LOC_RANGE specifies the
14251 (inclusive) range of location numbers of that breakpoint to
14252 enable/disable. ENABLE specifies whether to enable or disable the
14253 location. */
14254
14255 static void
14256 enable_disable_breakpoint_location_range (int bp_num,
14257 std::pair<int, int> &bp_loc_range,
14258 bool enable)
14259 {
14260 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14261 enable_disable_bp_num_loc (bp_num, i, enable);
14262 }
14263
14264 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14265 If from_tty is nonzero, it prints a message to that effect,
14266 which ends with a period (no newline). */
14267
14268 void
14269 disable_breakpoint (struct breakpoint *bpt)
14270 {
14271 /* Never disable a watchpoint scope breakpoint; we want to
14272 hit them when we leave scope so we can delete both the
14273 watchpoint and its scope breakpoint at that time. */
14274 if (bpt->type == bp_watchpoint_scope)
14275 return;
14276
14277 bpt->enable_state = bp_disabled;
14278
14279 /* Mark breakpoint locations modified. */
14280 mark_breakpoint_modified (bpt);
14281
14282 if (target_supports_enable_disable_tracepoint ()
14283 && current_trace_status ()->running && is_tracepoint (bpt))
14284 {
14285 struct bp_location *location;
14286
14287 for (location = bpt->loc; location; location = location->next)
14288 target_disable_tracepoint (location);
14289 }
14290
14291 update_global_location_list (UGLL_DONT_INSERT);
14292
14293 gdb::observers::breakpoint_modified.notify (bpt);
14294 }
14295
14296 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14297 specified in ARGS. ARGS may be in any of the formats handled by
14298 extract_bp_number_and_location. ENABLE specifies whether to enable
14299 or disable the breakpoints/locations. */
14300
14301 static void
14302 enable_disable_command (const char *args, int from_tty, bool enable)
14303 {
14304 if (args == 0)
14305 {
14306 struct breakpoint *bpt;
14307
14308 ALL_BREAKPOINTS (bpt)
14309 if (user_breakpoint_p (bpt))
14310 {
14311 if (enable)
14312 enable_breakpoint (bpt);
14313 else
14314 disable_breakpoint (bpt);
14315 }
14316 }
14317 else
14318 {
14319 std::string num = extract_arg (&args);
14320
14321 while (!num.empty ())
14322 {
14323 std::pair<int, int> bp_num_range, bp_loc_range;
14324
14325 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14326
14327 if (bp_loc_range.first == bp_loc_range.second
14328 && bp_loc_range.first == 0)
14329 {
14330 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14331 map_breakpoint_number_range (bp_num_range,
14332 enable
14333 ? enable_breakpoint
14334 : disable_breakpoint);
14335 }
14336 else
14337 {
14338 /* Handle breakpoint ids with formats 'x.y' or
14339 'x.y-z'. */
14340 enable_disable_breakpoint_location_range
14341 (bp_num_range.first, bp_loc_range, enable);
14342 }
14343 num = extract_arg (&args);
14344 }
14345 }
14346 }
14347
14348 /* The disable command disables the specified breakpoints/locations
14349 (or all defined breakpoints) so they're no longer effective in
14350 stopping the inferior. ARGS may be in any of the forms defined in
14351 extract_bp_number_and_location. */
14352
14353 static void
14354 disable_command (const char *args, int from_tty)
14355 {
14356 enable_disable_command (args, from_tty, false);
14357 }
14358
14359 static void
14360 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14361 int count)
14362 {
14363 int target_resources_ok;
14364
14365 if (bpt->type == bp_hardware_breakpoint)
14366 {
14367 int i;
14368 i = hw_breakpoint_used_count ();
14369 target_resources_ok =
14370 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14371 i + 1, 0);
14372 if (target_resources_ok == 0)
14373 error (_("No hardware breakpoint support in the target."));
14374 else if (target_resources_ok < 0)
14375 error (_("Hardware breakpoints used exceeds limit."));
14376 }
14377
14378 if (is_watchpoint (bpt))
14379 {
14380 /* Initialize it just to avoid a GCC false warning. */
14381 enum enable_state orig_enable_state = bp_disabled;
14382
14383 TRY
14384 {
14385 struct watchpoint *w = (struct watchpoint *) bpt;
14386
14387 orig_enable_state = bpt->enable_state;
14388 bpt->enable_state = bp_enabled;
14389 update_watchpoint (w, 1 /* reparse */);
14390 }
14391 CATCH (e, RETURN_MASK_ALL)
14392 {
14393 bpt->enable_state = orig_enable_state;
14394 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14395 bpt->number);
14396 return;
14397 }
14398 END_CATCH
14399 }
14400
14401 bpt->enable_state = bp_enabled;
14402
14403 /* Mark breakpoint locations modified. */
14404 mark_breakpoint_modified (bpt);
14405
14406 if (target_supports_enable_disable_tracepoint ()
14407 && current_trace_status ()->running && is_tracepoint (bpt))
14408 {
14409 struct bp_location *location;
14410
14411 for (location = bpt->loc; location; location = location->next)
14412 target_enable_tracepoint (location);
14413 }
14414
14415 bpt->disposition = disposition;
14416 bpt->enable_count = count;
14417 update_global_location_list (UGLL_MAY_INSERT);
14418
14419 gdb::observers::breakpoint_modified.notify (bpt);
14420 }
14421
14422
14423 void
14424 enable_breakpoint (struct breakpoint *bpt)
14425 {
14426 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14427 }
14428
14429 /* The enable command enables the specified breakpoints/locations (or
14430 all defined breakpoints) so they once again become (or continue to
14431 be) effective in stopping the inferior. ARGS may be in any of the
14432 forms defined in extract_bp_number_and_location. */
14433
14434 static void
14435 enable_command (const char *args, int from_tty)
14436 {
14437 enable_disable_command (args, from_tty, true);
14438 }
14439
14440 static void
14441 enable_once_command (const char *args, int from_tty)
14442 {
14443 map_breakpoint_numbers
14444 (args, [&] (breakpoint *b)
14445 {
14446 iterate_over_related_breakpoints
14447 (b, [&] (breakpoint *bpt)
14448 {
14449 enable_breakpoint_disp (bpt, disp_disable, 1);
14450 });
14451 });
14452 }
14453
14454 static void
14455 enable_count_command (const char *args, int from_tty)
14456 {
14457 int count;
14458
14459 if (args == NULL)
14460 error_no_arg (_("hit count"));
14461
14462 count = get_number (&args);
14463
14464 map_breakpoint_numbers
14465 (args, [&] (breakpoint *b)
14466 {
14467 iterate_over_related_breakpoints
14468 (b, [&] (breakpoint *bpt)
14469 {
14470 enable_breakpoint_disp (bpt, disp_disable, count);
14471 });
14472 });
14473 }
14474
14475 static void
14476 enable_delete_command (const char *args, int from_tty)
14477 {
14478 map_breakpoint_numbers
14479 (args, [&] (breakpoint *b)
14480 {
14481 iterate_over_related_breakpoints
14482 (b, [&] (breakpoint *bpt)
14483 {
14484 enable_breakpoint_disp (bpt, disp_del, 1);
14485 });
14486 });
14487 }
14488 \f
14489 static void
14490 set_breakpoint_cmd (const char *args, int from_tty)
14491 {
14492 }
14493
14494 static void
14495 show_breakpoint_cmd (const char *args, int from_tty)
14496 {
14497 }
14498
14499 /* Invalidate last known value of any hardware watchpoint if
14500 the memory which that value represents has been written to by
14501 GDB itself. */
14502
14503 static void
14504 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14505 CORE_ADDR addr, ssize_t len,
14506 const bfd_byte *data)
14507 {
14508 struct breakpoint *bp;
14509
14510 ALL_BREAKPOINTS (bp)
14511 if (bp->enable_state == bp_enabled
14512 && bp->type == bp_hardware_watchpoint)
14513 {
14514 struct watchpoint *wp = (struct watchpoint *) bp;
14515
14516 if (wp->val_valid && wp->val != nullptr)
14517 {
14518 struct bp_location *loc;
14519
14520 for (loc = bp->loc; loc != NULL; loc = loc->next)
14521 if (loc->loc_type == bp_loc_hardware_watchpoint
14522 && loc->address + loc->length > addr
14523 && addr + len > loc->address)
14524 {
14525 wp->val = NULL;
14526 wp->val_valid = 0;
14527 }
14528 }
14529 }
14530 }
14531
14532 /* Create and insert a breakpoint for software single step. */
14533
14534 void
14535 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14536 const address_space *aspace,
14537 CORE_ADDR next_pc)
14538 {
14539 struct thread_info *tp = inferior_thread ();
14540 struct symtab_and_line sal;
14541 CORE_ADDR pc = next_pc;
14542
14543 if (tp->control.single_step_breakpoints == NULL)
14544 {
14545 tp->control.single_step_breakpoints
14546 = new_single_step_breakpoint (tp->global_num, gdbarch);
14547 }
14548
14549 sal = find_pc_line (pc, 0);
14550 sal.pc = pc;
14551 sal.section = find_pc_overlay (pc);
14552 sal.explicit_pc = 1;
14553 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14554
14555 update_global_location_list (UGLL_INSERT);
14556 }
14557
14558 /* Insert single step breakpoints according to the current state. */
14559
14560 int
14561 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14562 {
14563 struct regcache *regcache = get_current_regcache ();
14564 std::vector<CORE_ADDR> next_pcs;
14565
14566 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14567
14568 if (!next_pcs.empty ())
14569 {
14570 struct frame_info *frame = get_current_frame ();
14571 const address_space *aspace = get_frame_address_space (frame);
14572
14573 for (CORE_ADDR pc : next_pcs)
14574 insert_single_step_breakpoint (gdbarch, aspace, pc);
14575
14576 return 1;
14577 }
14578 else
14579 return 0;
14580 }
14581
14582 /* See breakpoint.h. */
14583
14584 int
14585 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14586 const address_space *aspace,
14587 CORE_ADDR pc)
14588 {
14589 struct bp_location *loc;
14590
14591 for (loc = bp->loc; loc != NULL; loc = loc->next)
14592 if (loc->inserted
14593 && breakpoint_location_address_match (loc, aspace, pc))
14594 return 1;
14595
14596 return 0;
14597 }
14598
14599 /* Check whether a software single-step breakpoint is inserted at
14600 PC. */
14601
14602 int
14603 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14604 CORE_ADDR pc)
14605 {
14606 struct breakpoint *bpt;
14607
14608 ALL_BREAKPOINTS (bpt)
14609 {
14610 if (bpt->type == bp_single_step
14611 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14612 return 1;
14613 }
14614 return 0;
14615 }
14616
14617 /* Tracepoint-specific operations. */
14618
14619 /* Set tracepoint count to NUM. */
14620 static void
14621 set_tracepoint_count (int num)
14622 {
14623 tracepoint_count = num;
14624 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14625 }
14626
14627 static void
14628 trace_command (const char *arg, int from_tty)
14629 {
14630 struct breakpoint_ops *ops;
14631
14632 event_location_up location = string_to_event_location (&arg,
14633 current_language);
14634 if (location != NULL
14635 && event_location_type (location.get ()) == PROBE_LOCATION)
14636 ops = &tracepoint_probe_breakpoint_ops;
14637 else
14638 ops = &tracepoint_breakpoint_ops;
14639
14640 create_breakpoint (get_current_arch (),
14641 location.get (),
14642 NULL, 0, arg, 1 /* parse arg */,
14643 0 /* tempflag */,
14644 bp_tracepoint /* type_wanted */,
14645 0 /* Ignore count */,
14646 pending_break_support,
14647 ops,
14648 from_tty,
14649 1 /* enabled */,
14650 0 /* internal */, 0);
14651 }
14652
14653 static void
14654 ftrace_command (const char *arg, int from_tty)
14655 {
14656 event_location_up location = string_to_event_location (&arg,
14657 current_language);
14658 create_breakpoint (get_current_arch (),
14659 location.get (),
14660 NULL, 0, arg, 1 /* parse arg */,
14661 0 /* tempflag */,
14662 bp_fast_tracepoint /* type_wanted */,
14663 0 /* Ignore count */,
14664 pending_break_support,
14665 &tracepoint_breakpoint_ops,
14666 from_tty,
14667 1 /* enabled */,
14668 0 /* internal */, 0);
14669 }
14670
14671 /* strace command implementation. Creates a static tracepoint. */
14672
14673 static void
14674 strace_command (const char *arg, int from_tty)
14675 {
14676 struct breakpoint_ops *ops;
14677 event_location_up location;
14678
14679 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14680 or with a normal static tracepoint. */
14681 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14682 {
14683 ops = &strace_marker_breakpoint_ops;
14684 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14685 }
14686 else
14687 {
14688 ops = &tracepoint_breakpoint_ops;
14689 location = string_to_event_location (&arg, current_language);
14690 }
14691
14692 create_breakpoint (get_current_arch (),
14693 location.get (),
14694 NULL, 0, arg, 1 /* parse arg */,
14695 0 /* tempflag */,
14696 bp_static_tracepoint /* type_wanted */,
14697 0 /* Ignore count */,
14698 pending_break_support,
14699 ops,
14700 from_tty,
14701 1 /* enabled */,
14702 0 /* internal */, 0);
14703 }
14704
14705 /* Set up a fake reader function that gets command lines from a linked
14706 list that was acquired during tracepoint uploading. */
14707
14708 static struct uploaded_tp *this_utp;
14709 static int next_cmd;
14710
14711 static char *
14712 read_uploaded_action (void)
14713 {
14714 char *rslt = nullptr;
14715
14716 if (next_cmd < this_utp->cmd_strings.size ())
14717 {
14718 rslt = this_utp->cmd_strings[next_cmd];
14719 next_cmd++;
14720 }
14721
14722 return rslt;
14723 }
14724
14725 /* Given information about a tracepoint as recorded on a target (which
14726 can be either a live system or a trace file), attempt to create an
14727 equivalent GDB tracepoint. This is not a reliable process, since
14728 the target does not necessarily have all the information used when
14729 the tracepoint was originally defined. */
14730
14731 struct tracepoint *
14732 create_tracepoint_from_upload (struct uploaded_tp *utp)
14733 {
14734 const char *addr_str;
14735 char small_buf[100];
14736 struct tracepoint *tp;
14737
14738 if (utp->at_string)
14739 addr_str = utp->at_string;
14740 else
14741 {
14742 /* In the absence of a source location, fall back to raw
14743 address. Since there is no way to confirm that the address
14744 means the same thing as when the trace was started, warn the
14745 user. */
14746 warning (_("Uploaded tracepoint %d has no "
14747 "source location, using raw address"),
14748 utp->number);
14749 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14750 addr_str = small_buf;
14751 }
14752
14753 /* There's not much we can do with a sequence of bytecodes. */
14754 if (utp->cond && !utp->cond_string)
14755 warning (_("Uploaded tracepoint %d condition "
14756 "has no source form, ignoring it"),
14757 utp->number);
14758
14759 event_location_up location = string_to_event_location (&addr_str,
14760 current_language);
14761 if (!create_breakpoint (get_current_arch (),
14762 location.get (),
14763 utp->cond_string, -1, addr_str,
14764 0 /* parse cond/thread */,
14765 0 /* tempflag */,
14766 utp->type /* type_wanted */,
14767 0 /* Ignore count */,
14768 pending_break_support,
14769 &tracepoint_breakpoint_ops,
14770 0 /* from_tty */,
14771 utp->enabled /* enabled */,
14772 0 /* internal */,
14773 CREATE_BREAKPOINT_FLAGS_INSERTED))
14774 return NULL;
14775
14776 /* Get the tracepoint we just created. */
14777 tp = get_tracepoint (tracepoint_count);
14778 gdb_assert (tp != NULL);
14779
14780 if (utp->pass > 0)
14781 {
14782 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14783 tp->number);
14784
14785 trace_pass_command (small_buf, 0);
14786 }
14787
14788 /* If we have uploaded versions of the original commands, set up a
14789 special-purpose "reader" function and call the usual command line
14790 reader, then pass the result to the breakpoint command-setting
14791 function. */
14792 if (!utp->cmd_strings.empty ())
14793 {
14794 command_line_up cmd_list;
14795
14796 this_utp = utp;
14797 next_cmd = 0;
14798
14799 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
14800
14801 breakpoint_set_commands (tp, std::move (cmd_list));
14802 }
14803 else if (!utp->actions.empty ()
14804 || !utp->step_actions.empty ())
14805 warning (_("Uploaded tracepoint %d actions "
14806 "have no source form, ignoring them"),
14807 utp->number);
14808
14809 /* Copy any status information that might be available. */
14810 tp->hit_count = utp->hit_count;
14811 tp->traceframe_usage = utp->traceframe_usage;
14812
14813 return tp;
14814 }
14815
14816 /* Print information on tracepoint number TPNUM_EXP, or all if
14817 omitted. */
14818
14819 static void
14820 info_tracepoints_command (const char *args, int from_tty)
14821 {
14822 struct ui_out *uiout = current_uiout;
14823 int num_printed;
14824
14825 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14826
14827 if (num_printed == 0)
14828 {
14829 if (args == NULL || *args == '\0')
14830 uiout->message ("No tracepoints.\n");
14831 else
14832 uiout->message ("No tracepoint matching '%s'.\n", args);
14833 }
14834
14835 default_collect_info ();
14836 }
14837
14838 /* The 'enable trace' command enables tracepoints.
14839 Not supported by all targets. */
14840 static void
14841 enable_trace_command (const char *args, int from_tty)
14842 {
14843 enable_command (args, from_tty);
14844 }
14845
14846 /* The 'disable trace' command disables tracepoints.
14847 Not supported by all targets. */
14848 static void
14849 disable_trace_command (const char *args, int from_tty)
14850 {
14851 disable_command (args, from_tty);
14852 }
14853
14854 /* Remove a tracepoint (or all if no argument). */
14855 static void
14856 delete_trace_command (const char *arg, int from_tty)
14857 {
14858 struct breakpoint *b, *b_tmp;
14859
14860 dont_repeat ();
14861
14862 if (arg == 0)
14863 {
14864 int breaks_to_delete = 0;
14865
14866 /* Delete all breakpoints if no argument.
14867 Do not delete internal or call-dummy breakpoints, these
14868 have to be deleted with an explicit breakpoint number
14869 argument. */
14870 ALL_TRACEPOINTS (b)
14871 if (is_tracepoint (b) && user_breakpoint_p (b))
14872 {
14873 breaks_to_delete = 1;
14874 break;
14875 }
14876
14877 /* Ask user only if there are some breakpoints to delete. */
14878 if (!from_tty
14879 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14880 {
14881 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14882 if (is_tracepoint (b) && user_breakpoint_p (b))
14883 delete_breakpoint (b);
14884 }
14885 }
14886 else
14887 map_breakpoint_numbers
14888 (arg, [&] (breakpoint *b)
14889 {
14890 iterate_over_related_breakpoints (b, delete_breakpoint);
14891 });
14892 }
14893
14894 /* Helper function for trace_pass_command. */
14895
14896 static void
14897 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14898 {
14899 tp->pass_count = count;
14900 gdb::observers::breakpoint_modified.notify (tp);
14901 if (from_tty)
14902 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14903 tp->number, count);
14904 }
14905
14906 /* Set passcount for tracepoint.
14907
14908 First command argument is passcount, second is tracepoint number.
14909 If tracepoint number omitted, apply to most recently defined.
14910 Also accepts special argument "all". */
14911
14912 static void
14913 trace_pass_command (const char *args, int from_tty)
14914 {
14915 struct tracepoint *t1;
14916 ULONGEST count;
14917
14918 if (args == 0 || *args == 0)
14919 error (_("passcount command requires an "
14920 "argument (count + optional TP num)"));
14921
14922 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14923
14924 args = skip_spaces (args);
14925 if (*args && strncasecmp (args, "all", 3) == 0)
14926 {
14927 struct breakpoint *b;
14928
14929 args += 3; /* Skip special argument "all". */
14930 if (*args)
14931 error (_("Junk at end of arguments."));
14932
14933 ALL_TRACEPOINTS (b)
14934 {
14935 t1 = (struct tracepoint *) b;
14936 trace_pass_set_count (t1, count, from_tty);
14937 }
14938 }
14939 else if (*args == '\0')
14940 {
14941 t1 = get_tracepoint_by_number (&args, NULL);
14942 if (t1)
14943 trace_pass_set_count (t1, count, from_tty);
14944 }
14945 else
14946 {
14947 number_or_range_parser parser (args);
14948 while (!parser.finished ())
14949 {
14950 t1 = get_tracepoint_by_number (&args, &parser);
14951 if (t1)
14952 trace_pass_set_count (t1, count, from_tty);
14953 }
14954 }
14955 }
14956
14957 struct tracepoint *
14958 get_tracepoint (int num)
14959 {
14960 struct breakpoint *t;
14961
14962 ALL_TRACEPOINTS (t)
14963 if (t->number == num)
14964 return (struct tracepoint *) t;
14965
14966 return NULL;
14967 }
14968
14969 /* Find the tracepoint with the given target-side number (which may be
14970 different from the tracepoint number after disconnecting and
14971 reconnecting). */
14972
14973 struct tracepoint *
14974 get_tracepoint_by_number_on_target (int num)
14975 {
14976 struct breakpoint *b;
14977
14978 ALL_TRACEPOINTS (b)
14979 {
14980 struct tracepoint *t = (struct tracepoint *) b;
14981
14982 if (t->number_on_target == num)
14983 return t;
14984 }
14985
14986 return NULL;
14987 }
14988
14989 /* Utility: parse a tracepoint number and look it up in the list.
14990 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14991 If the argument is missing, the most recent tracepoint
14992 (tracepoint_count) is returned. */
14993
14994 struct tracepoint *
14995 get_tracepoint_by_number (const char **arg,
14996 number_or_range_parser *parser)
14997 {
14998 struct breakpoint *t;
14999 int tpnum;
15000 const char *instring = arg == NULL ? NULL : *arg;
15001
15002 if (parser != NULL)
15003 {
15004 gdb_assert (!parser->finished ());
15005 tpnum = parser->get_number ();
15006 }
15007 else if (arg == NULL || *arg == NULL || ! **arg)
15008 tpnum = tracepoint_count;
15009 else
15010 tpnum = get_number (arg);
15011
15012 if (tpnum <= 0)
15013 {
15014 if (instring && *instring)
15015 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15016 instring);
15017 else
15018 printf_filtered (_("No previous tracepoint\n"));
15019 return NULL;
15020 }
15021
15022 ALL_TRACEPOINTS (t)
15023 if (t->number == tpnum)
15024 {
15025 return (struct tracepoint *) t;
15026 }
15027
15028 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15029 return NULL;
15030 }
15031
15032 void
15033 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15034 {
15035 if (b->thread != -1)
15036 fprintf_unfiltered (fp, " thread %d", b->thread);
15037
15038 if (b->task != 0)
15039 fprintf_unfiltered (fp, " task %d", b->task);
15040
15041 fprintf_unfiltered (fp, "\n");
15042 }
15043
15044 /* Save information on user settable breakpoints (watchpoints, etc) to
15045 a new script file named FILENAME. If FILTER is non-NULL, call it
15046 on each breakpoint and only include the ones for which it returns
15047 non-zero. */
15048
15049 static void
15050 save_breakpoints (const char *filename, int from_tty,
15051 int (*filter) (const struct breakpoint *))
15052 {
15053 struct breakpoint *tp;
15054 int any = 0;
15055 int extra_trace_bits = 0;
15056
15057 if (filename == 0 || *filename == 0)
15058 error (_("Argument required (file name in which to save)"));
15059
15060 /* See if we have anything to save. */
15061 ALL_BREAKPOINTS (tp)
15062 {
15063 /* Skip internal and momentary breakpoints. */
15064 if (!user_breakpoint_p (tp))
15065 continue;
15066
15067 /* If we have a filter, only save the breakpoints it accepts. */
15068 if (filter && !filter (tp))
15069 continue;
15070
15071 any = 1;
15072
15073 if (is_tracepoint (tp))
15074 {
15075 extra_trace_bits = 1;
15076
15077 /* We can stop searching. */
15078 break;
15079 }
15080 }
15081
15082 if (!any)
15083 {
15084 warning (_("Nothing to save."));
15085 return;
15086 }
15087
15088 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15089
15090 stdio_file fp;
15091
15092 if (!fp.open (expanded_filename.get (), "w"))
15093 error (_("Unable to open file '%s' for saving (%s)"),
15094 expanded_filename.get (), safe_strerror (errno));
15095
15096 if (extra_trace_bits)
15097 save_trace_state_variables (&fp);
15098
15099 ALL_BREAKPOINTS (tp)
15100 {
15101 /* Skip internal and momentary breakpoints. */
15102 if (!user_breakpoint_p (tp))
15103 continue;
15104
15105 /* If we have a filter, only save the breakpoints it accepts. */
15106 if (filter && !filter (tp))
15107 continue;
15108
15109 tp->ops->print_recreate (tp, &fp);
15110
15111 /* Note, we can't rely on tp->number for anything, as we can't
15112 assume the recreated breakpoint numbers will match. Use $bpnum
15113 instead. */
15114
15115 if (tp->cond_string)
15116 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15117
15118 if (tp->ignore_count)
15119 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15120
15121 if (tp->type != bp_dprintf && tp->commands)
15122 {
15123 fp.puts (" commands\n");
15124
15125 current_uiout->redirect (&fp);
15126 TRY
15127 {
15128 print_command_lines (current_uiout, tp->commands.get (), 2);
15129 }
15130 CATCH (ex, RETURN_MASK_ALL)
15131 {
15132 current_uiout->redirect (NULL);
15133 throw_exception (ex);
15134 }
15135 END_CATCH
15136
15137 current_uiout->redirect (NULL);
15138 fp.puts (" end\n");
15139 }
15140
15141 if (tp->enable_state == bp_disabled)
15142 fp.puts ("disable $bpnum\n");
15143
15144 /* If this is a multi-location breakpoint, check if the locations
15145 should be individually disabled. Watchpoint locations are
15146 special, and not user visible. */
15147 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15148 {
15149 struct bp_location *loc;
15150 int n = 1;
15151
15152 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15153 if (!loc->enabled)
15154 fp.printf ("disable $bpnum.%d\n", n);
15155 }
15156 }
15157
15158 if (extra_trace_bits && *default_collect)
15159 fp.printf ("set default-collect %s\n", default_collect);
15160
15161 if (from_tty)
15162 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15163 }
15164
15165 /* The `save breakpoints' command. */
15166
15167 static void
15168 save_breakpoints_command (const char *args, int from_tty)
15169 {
15170 save_breakpoints (args, from_tty, NULL);
15171 }
15172
15173 /* The `save tracepoints' command. */
15174
15175 static void
15176 save_tracepoints_command (const char *args, int from_tty)
15177 {
15178 save_breakpoints (args, from_tty, is_tracepoint);
15179 }
15180
15181 /* Create a vector of all tracepoints. */
15182
15183 VEC(breakpoint_p) *
15184 all_tracepoints (void)
15185 {
15186 VEC(breakpoint_p) *tp_vec = 0;
15187 struct breakpoint *tp;
15188
15189 ALL_TRACEPOINTS (tp)
15190 {
15191 VEC_safe_push (breakpoint_p, tp_vec, tp);
15192 }
15193
15194 return tp_vec;
15195 }
15196
15197 \f
15198 /* This help string is used to consolidate all the help string for specifying
15199 locations used by several commands. */
15200
15201 #define LOCATION_HELP_STRING \
15202 "Linespecs are colon-separated lists of location parameters, such as\n\
15203 source filename, function name, label name, and line number.\n\
15204 Example: To specify the start of a label named \"the_top\" in the\n\
15205 function \"fact\" in the file \"factorial.c\", use\n\
15206 \"factorial.c:fact:the_top\".\n\
15207 \n\
15208 Address locations begin with \"*\" and specify an exact address in the\n\
15209 program. Example: To specify the fourth byte past the start function\n\
15210 \"main\", use \"*main + 4\".\n\
15211 \n\
15212 Explicit locations are similar to linespecs but use an option/argument\n\
15213 syntax to specify location parameters.\n\
15214 Example: To specify the start of the label named \"the_top\" in the\n\
15215 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15216 -function fact -label the_top\".\n\
15217 \n\
15218 By default, a specified function is matched against the program's\n\
15219 functions in all scopes. For C++, this means in all namespaces and\n\
15220 classes. For Ada, this means in all packages. E.g., in C++,\n\
15221 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15222 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15223 specified name as a complete fully-qualified name instead.\n"
15224
15225 /* This help string is used for the break, hbreak, tbreak and thbreak
15226 commands. It is defined as a macro to prevent duplication.
15227 COMMAND should be a string constant containing the name of the
15228 command. */
15229
15230 #define BREAK_ARGS_HELP(command) \
15231 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15232 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15233 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15234 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15235 `-probe-dtrace' (for a DTrace probe).\n\
15236 LOCATION may be a linespec, address, or explicit location as described\n\
15237 below.\n\
15238 \n\
15239 With no LOCATION, uses current execution address of the selected\n\
15240 stack frame. This is useful for breaking on return to a stack frame.\n\
15241 \n\
15242 THREADNUM is the number from \"info threads\".\n\
15243 CONDITION is a boolean expression.\n\
15244 \n" LOCATION_HELP_STRING "\n\
15245 Multiple breakpoints at one place are permitted, and useful if their\n\
15246 conditions are different.\n\
15247 \n\
15248 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15249
15250 /* List of subcommands for "catch". */
15251 static struct cmd_list_element *catch_cmdlist;
15252
15253 /* List of subcommands for "tcatch". */
15254 static struct cmd_list_element *tcatch_cmdlist;
15255
15256 void
15257 add_catch_command (const char *name, const char *docstring,
15258 cmd_const_sfunc_ftype *sfunc,
15259 completer_ftype *completer,
15260 void *user_data_catch,
15261 void *user_data_tcatch)
15262 {
15263 struct cmd_list_element *command;
15264
15265 command = add_cmd (name, class_breakpoint, docstring,
15266 &catch_cmdlist);
15267 set_cmd_sfunc (command, sfunc);
15268 set_cmd_context (command, user_data_catch);
15269 set_cmd_completer (command, completer);
15270
15271 command = add_cmd (name, class_breakpoint, docstring,
15272 &tcatch_cmdlist);
15273 set_cmd_sfunc (command, sfunc);
15274 set_cmd_context (command, user_data_tcatch);
15275 set_cmd_completer (command, completer);
15276 }
15277
15278 static void
15279 save_command (const char *arg, int from_tty)
15280 {
15281 printf_unfiltered (_("\"save\" must be followed by "
15282 "the name of a save subcommand.\n"));
15283 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15284 }
15285
15286 struct breakpoint *
15287 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15288 void *data)
15289 {
15290 struct breakpoint *b, *b_tmp;
15291
15292 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15293 {
15294 if ((*callback) (b, data))
15295 return b;
15296 }
15297
15298 return NULL;
15299 }
15300
15301 /* Zero if any of the breakpoint's locations could be a location where
15302 functions have been inlined, nonzero otherwise. */
15303
15304 static int
15305 is_non_inline_function (struct breakpoint *b)
15306 {
15307 /* The shared library event breakpoint is set on the address of a
15308 non-inline function. */
15309 if (b->type == bp_shlib_event)
15310 return 1;
15311
15312 return 0;
15313 }
15314
15315 /* Nonzero if the specified PC cannot be a location where functions
15316 have been inlined. */
15317
15318 int
15319 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15320 const struct target_waitstatus *ws)
15321 {
15322 struct breakpoint *b;
15323 struct bp_location *bl;
15324
15325 ALL_BREAKPOINTS (b)
15326 {
15327 if (!is_non_inline_function (b))
15328 continue;
15329
15330 for (bl = b->loc; bl != NULL; bl = bl->next)
15331 {
15332 if (!bl->shlib_disabled
15333 && bpstat_check_location (bl, aspace, pc, ws))
15334 return 1;
15335 }
15336 }
15337
15338 return 0;
15339 }
15340
15341 /* Remove any references to OBJFILE which is going to be freed. */
15342
15343 void
15344 breakpoint_free_objfile (struct objfile *objfile)
15345 {
15346 struct bp_location **locp, *loc;
15347
15348 ALL_BP_LOCATIONS (loc, locp)
15349 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15350 loc->symtab = NULL;
15351 }
15352
15353 void
15354 initialize_breakpoint_ops (void)
15355 {
15356 static int initialized = 0;
15357
15358 struct breakpoint_ops *ops;
15359
15360 if (initialized)
15361 return;
15362 initialized = 1;
15363
15364 /* The breakpoint_ops structure to be inherit by all kinds of
15365 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15366 internal and momentary breakpoints, etc.). */
15367 ops = &bkpt_base_breakpoint_ops;
15368 *ops = base_breakpoint_ops;
15369 ops->re_set = bkpt_re_set;
15370 ops->insert_location = bkpt_insert_location;
15371 ops->remove_location = bkpt_remove_location;
15372 ops->breakpoint_hit = bkpt_breakpoint_hit;
15373 ops->create_sals_from_location = bkpt_create_sals_from_location;
15374 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15375 ops->decode_location = bkpt_decode_location;
15376
15377 /* The breakpoint_ops structure to be used in regular breakpoints. */
15378 ops = &bkpt_breakpoint_ops;
15379 *ops = bkpt_base_breakpoint_ops;
15380 ops->re_set = bkpt_re_set;
15381 ops->resources_needed = bkpt_resources_needed;
15382 ops->print_it = bkpt_print_it;
15383 ops->print_mention = bkpt_print_mention;
15384 ops->print_recreate = bkpt_print_recreate;
15385
15386 /* Ranged breakpoints. */
15387 ops = &ranged_breakpoint_ops;
15388 *ops = bkpt_breakpoint_ops;
15389 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15390 ops->resources_needed = resources_needed_ranged_breakpoint;
15391 ops->print_it = print_it_ranged_breakpoint;
15392 ops->print_one = print_one_ranged_breakpoint;
15393 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15394 ops->print_mention = print_mention_ranged_breakpoint;
15395 ops->print_recreate = print_recreate_ranged_breakpoint;
15396
15397 /* Internal breakpoints. */
15398 ops = &internal_breakpoint_ops;
15399 *ops = bkpt_base_breakpoint_ops;
15400 ops->re_set = internal_bkpt_re_set;
15401 ops->check_status = internal_bkpt_check_status;
15402 ops->print_it = internal_bkpt_print_it;
15403 ops->print_mention = internal_bkpt_print_mention;
15404
15405 /* Momentary breakpoints. */
15406 ops = &momentary_breakpoint_ops;
15407 *ops = bkpt_base_breakpoint_ops;
15408 ops->re_set = momentary_bkpt_re_set;
15409 ops->check_status = momentary_bkpt_check_status;
15410 ops->print_it = momentary_bkpt_print_it;
15411 ops->print_mention = momentary_bkpt_print_mention;
15412
15413 /* Probe breakpoints. */
15414 ops = &bkpt_probe_breakpoint_ops;
15415 *ops = bkpt_breakpoint_ops;
15416 ops->insert_location = bkpt_probe_insert_location;
15417 ops->remove_location = bkpt_probe_remove_location;
15418 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15419 ops->decode_location = bkpt_probe_decode_location;
15420
15421 /* Watchpoints. */
15422 ops = &watchpoint_breakpoint_ops;
15423 *ops = base_breakpoint_ops;
15424 ops->re_set = re_set_watchpoint;
15425 ops->insert_location = insert_watchpoint;
15426 ops->remove_location = remove_watchpoint;
15427 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15428 ops->check_status = check_status_watchpoint;
15429 ops->resources_needed = resources_needed_watchpoint;
15430 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15431 ops->print_it = print_it_watchpoint;
15432 ops->print_mention = print_mention_watchpoint;
15433 ops->print_recreate = print_recreate_watchpoint;
15434 ops->explains_signal = explains_signal_watchpoint;
15435
15436 /* Masked watchpoints. */
15437 ops = &masked_watchpoint_breakpoint_ops;
15438 *ops = watchpoint_breakpoint_ops;
15439 ops->insert_location = insert_masked_watchpoint;
15440 ops->remove_location = remove_masked_watchpoint;
15441 ops->resources_needed = resources_needed_masked_watchpoint;
15442 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15443 ops->print_it = print_it_masked_watchpoint;
15444 ops->print_one_detail = print_one_detail_masked_watchpoint;
15445 ops->print_mention = print_mention_masked_watchpoint;
15446 ops->print_recreate = print_recreate_masked_watchpoint;
15447
15448 /* Tracepoints. */
15449 ops = &tracepoint_breakpoint_ops;
15450 *ops = base_breakpoint_ops;
15451 ops->re_set = tracepoint_re_set;
15452 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15453 ops->print_one_detail = tracepoint_print_one_detail;
15454 ops->print_mention = tracepoint_print_mention;
15455 ops->print_recreate = tracepoint_print_recreate;
15456 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15457 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15458 ops->decode_location = tracepoint_decode_location;
15459
15460 /* Probe tracepoints. */
15461 ops = &tracepoint_probe_breakpoint_ops;
15462 *ops = tracepoint_breakpoint_ops;
15463 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15464 ops->decode_location = tracepoint_probe_decode_location;
15465
15466 /* Static tracepoints with marker (`-m'). */
15467 ops = &strace_marker_breakpoint_ops;
15468 *ops = tracepoint_breakpoint_ops;
15469 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15470 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15471 ops->decode_location = strace_marker_decode_location;
15472
15473 /* Fork catchpoints. */
15474 ops = &catch_fork_breakpoint_ops;
15475 *ops = base_breakpoint_ops;
15476 ops->insert_location = insert_catch_fork;
15477 ops->remove_location = remove_catch_fork;
15478 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15479 ops->print_it = print_it_catch_fork;
15480 ops->print_one = print_one_catch_fork;
15481 ops->print_mention = print_mention_catch_fork;
15482 ops->print_recreate = print_recreate_catch_fork;
15483
15484 /* Vfork catchpoints. */
15485 ops = &catch_vfork_breakpoint_ops;
15486 *ops = base_breakpoint_ops;
15487 ops->insert_location = insert_catch_vfork;
15488 ops->remove_location = remove_catch_vfork;
15489 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15490 ops->print_it = print_it_catch_vfork;
15491 ops->print_one = print_one_catch_vfork;
15492 ops->print_mention = print_mention_catch_vfork;
15493 ops->print_recreate = print_recreate_catch_vfork;
15494
15495 /* Exec catchpoints. */
15496 ops = &catch_exec_breakpoint_ops;
15497 *ops = base_breakpoint_ops;
15498 ops->insert_location = insert_catch_exec;
15499 ops->remove_location = remove_catch_exec;
15500 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15501 ops->print_it = print_it_catch_exec;
15502 ops->print_one = print_one_catch_exec;
15503 ops->print_mention = print_mention_catch_exec;
15504 ops->print_recreate = print_recreate_catch_exec;
15505
15506 /* Solib-related catchpoints. */
15507 ops = &catch_solib_breakpoint_ops;
15508 *ops = base_breakpoint_ops;
15509 ops->insert_location = insert_catch_solib;
15510 ops->remove_location = remove_catch_solib;
15511 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15512 ops->check_status = check_status_catch_solib;
15513 ops->print_it = print_it_catch_solib;
15514 ops->print_one = print_one_catch_solib;
15515 ops->print_mention = print_mention_catch_solib;
15516 ops->print_recreate = print_recreate_catch_solib;
15517
15518 ops = &dprintf_breakpoint_ops;
15519 *ops = bkpt_base_breakpoint_ops;
15520 ops->re_set = dprintf_re_set;
15521 ops->resources_needed = bkpt_resources_needed;
15522 ops->print_it = bkpt_print_it;
15523 ops->print_mention = bkpt_print_mention;
15524 ops->print_recreate = dprintf_print_recreate;
15525 ops->after_condition_true = dprintf_after_condition_true;
15526 ops->breakpoint_hit = dprintf_breakpoint_hit;
15527 }
15528
15529 /* Chain containing all defined "enable breakpoint" subcommands. */
15530
15531 static struct cmd_list_element *enablebreaklist = NULL;
15532
15533 void
15534 _initialize_breakpoint (void)
15535 {
15536 struct cmd_list_element *c;
15537
15538 initialize_breakpoint_ops ();
15539
15540 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15541 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15542 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15543
15544 breakpoint_objfile_key
15545 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15546
15547 breakpoint_chain = 0;
15548 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15549 before a breakpoint is set. */
15550 breakpoint_count = 0;
15551
15552 tracepoint_count = 0;
15553
15554 add_com ("ignore", class_breakpoint, ignore_command, _("\
15555 Set ignore-count of breakpoint number N to COUNT.\n\
15556 Usage is `ignore N COUNT'."));
15557
15558 add_com ("commands", class_breakpoint, commands_command, _("\
15559 Set commands to be executed when the given breakpoints are hit.\n\
15560 Give a space-separated breakpoint list as argument after \"commands\".\n\
15561 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15562 (e.g. `5-7').\n\
15563 With no argument, the targeted breakpoint is the last one set.\n\
15564 The commands themselves follow starting on the next line.\n\
15565 Type a line containing \"end\" to indicate the end of them.\n\
15566 Give \"silent\" as the first line to make the breakpoint silent;\n\
15567 then no output is printed when it is hit, except what the commands print."));
15568
15569 c = add_com ("condition", class_breakpoint, condition_command, _("\
15570 Specify breakpoint number N to break only if COND is true.\n\
15571 Usage is `condition N COND', where N is an integer and COND is an\n\
15572 expression to be evaluated whenever breakpoint N is reached."));
15573 set_cmd_completer (c, condition_completer);
15574
15575 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15576 Set a temporary breakpoint.\n\
15577 Like \"break\" except the breakpoint is only temporary,\n\
15578 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15579 by using \"enable delete\" on the breakpoint number.\n\
15580 \n"
15581 BREAK_ARGS_HELP ("tbreak")));
15582 set_cmd_completer (c, location_completer);
15583
15584 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15585 Set a hardware assisted breakpoint.\n\
15586 Like \"break\" except the breakpoint requires hardware support,\n\
15587 some target hardware may not have this support.\n\
15588 \n"
15589 BREAK_ARGS_HELP ("hbreak")));
15590 set_cmd_completer (c, location_completer);
15591
15592 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15593 Set a temporary hardware assisted breakpoint.\n\
15594 Like \"hbreak\" except the breakpoint is only temporary,\n\
15595 so it will be deleted when hit.\n\
15596 \n"
15597 BREAK_ARGS_HELP ("thbreak")));
15598 set_cmd_completer (c, location_completer);
15599
15600 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15601 Enable some breakpoints.\n\
15602 Give breakpoint numbers (separated by spaces) as arguments.\n\
15603 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15604 This is used to cancel the effect of the \"disable\" command.\n\
15605 With a subcommand you can enable temporarily."),
15606 &enablelist, "enable ", 1, &cmdlist);
15607
15608 add_com_alias ("en", "enable", class_breakpoint, 1);
15609
15610 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15611 Enable some breakpoints.\n\
15612 Give breakpoint numbers (separated by spaces) as arguments.\n\
15613 This is used to cancel the effect of the \"disable\" command.\n\
15614 May be abbreviated to simply \"enable\".\n"),
15615 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15616
15617 add_cmd ("once", no_class, enable_once_command, _("\
15618 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15619 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15620 &enablebreaklist);
15621
15622 add_cmd ("delete", no_class, enable_delete_command, _("\
15623 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15624 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15625 &enablebreaklist);
15626
15627 add_cmd ("count", no_class, enable_count_command, _("\
15628 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15629 If a breakpoint is hit while enabled in this fashion,\n\
15630 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15631 &enablebreaklist);
15632
15633 add_cmd ("delete", no_class, enable_delete_command, _("\
15634 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15635 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15636 &enablelist);
15637
15638 add_cmd ("once", no_class, enable_once_command, _("\
15639 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15640 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15641 &enablelist);
15642
15643 add_cmd ("count", no_class, enable_count_command, _("\
15644 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15645 If a breakpoint is hit while enabled in this fashion,\n\
15646 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15647 &enablelist);
15648
15649 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15650 Disable some breakpoints.\n\
15651 Arguments are breakpoint numbers with spaces in between.\n\
15652 To disable all breakpoints, give no argument.\n\
15653 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15654 &disablelist, "disable ", 1, &cmdlist);
15655 add_com_alias ("dis", "disable", class_breakpoint, 1);
15656 add_com_alias ("disa", "disable", class_breakpoint, 1);
15657
15658 add_cmd ("breakpoints", class_alias, disable_command, _("\
15659 Disable some breakpoints.\n\
15660 Arguments are breakpoint numbers with spaces in between.\n\
15661 To disable all breakpoints, give no argument.\n\
15662 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15663 This command may be abbreviated \"disable\"."),
15664 &disablelist);
15665
15666 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15667 Delete some breakpoints or auto-display expressions.\n\
15668 Arguments are breakpoint numbers with spaces in between.\n\
15669 To delete all breakpoints, give no argument.\n\
15670 \n\
15671 Also a prefix command for deletion of other GDB objects.\n\
15672 The \"unset\" command is also an alias for \"delete\"."),
15673 &deletelist, "delete ", 1, &cmdlist);
15674 add_com_alias ("d", "delete", class_breakpoint, 1);
15675 add_com_alias ("del", "delete", class_breakpoint, 1);
15676
15677 add_cmd ("breakpoints", class_alias, delete_command, _("\
15678 Delete some breakpoints or auto-display expressions.\n\
15679 Arguments are breakpoint numbers with spaces in between.\n\
15680 To delete all breakpoints, give no argument.\n\
15681 This command may be abbreviated \"delete\"."),
15682 &deletelist);
15683
15684 add_com ("clear", class_breakpoint, clear_command, _("\
15685 Clear breakpoint at specified location.\n\
15686 Argument may be a linespec, explicit, or address location as described below.\n\
15687 \n\
15688 With no argument, clears all breakpoints in the line that the selected frame\n\
15689 is executing in.\n"
15690 "\n" LOCATION_HELP_STRING "\n\
15691 See also the \"delete\" command which clears breakpoints by number."));
15692 add_com_alias ("cl", "clear", class_breakpoint, 1);
15693
15694 c = add_com ("break", class_breakpoint, break_command, _("\
15695 Set breakpoint at specified location.\n"
15696 BREAK_ARGS_HELP ("break")));
15697 set_cmd_completer (c, location_completer);
15698
15699 add_com_alias ("b", "break", class_run, 1);
15700 add_com_alias ("br", "break", class_run, 1);
15701 add_com_alias ("bre", "break", class_run, 1);
15702 add_com_alias ("brea", "break", class_run, 1);
15703
15704 if (dbx_commands)
15705 {
15706 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15707 Break in function/address or break at a line in the current file."),
15708 &stoplist, "stop ", 1, &cmdlist);
15709 add_cmd ("in", class_breakpoint, stopin_command,
15710 _("Break in function or address."), &stoplist);
15711 add_cmd ("at", class_breakpoint, stopat_command,
15712 _("Break at a line in the current file."), &stoplist);
15713 add_com ("status", class_info, info_breakpoints_command, _("\
15714 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15715 The \"Type\" column indicates one of:\n\
15716 \tbreakpoint - normal breakpoint\n\
15717 \twatchpoint - watchpoint\n\
15718 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15719 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15720 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15721 address and file/line number respectively.\n\
15722 \n\
15723 Convenience variable \"$_\" and default examine address for \"x\"\n\
15724 are set to the address of the last breakpoint listed unless the command\n\
15725 is prefixed with \"server \".\n\n\
15726 Convenience variable \"$bpnum\" contains the number of the last\n\
15727 breakpoint set."));
15728 }
15729
15730 add_info ("breakpoints", info_breakpoints_command, _("\
15731 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15732 The \"Type\" column indicates one of:\n\
15733 \tbreakpoint - normal breakpoint\n\
15734 \twatchpoint - watchpoint\n\
15735 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15736 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15737 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15738 address and file/line number respectively.\n\
15739 \n\
15740 Convenience variable \"$_\" and default examine address for \"x\"\n\
15741 are set to the address of the last breakpoint listed unless the command\n\
15742 is prefixed with \"server \".\n\n\
15743 Convenience variable \"$bpnum\" contains the number of the last\n\
15744 breakpoint set."));
15745
15746 add_info_alias ("b", "breakpoints", 1);
15747
15748 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15749 Status of all breakpoints, or breakpoint number NUMBER.\n\
15750 The \"Type\" column indicates one of:\n\
15751 \tbreakpoint - normal breakpoint\n\
15752 \twatchpoint - watchpoint\n\
15753 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15754 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15755 \tuntil - internal breakpoint used by the \"until\" command\n\
15756 \tfinish - internal breakpoint used by the \"finish\" command\n\
15757 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15758 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15759 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15760 address and file/line number respectively.\n\
15761 \n\
15762 Convenience variable \"$_\" and default examine address for \"x\"\n\
15763 are set to the address of the last breakpoint listed unless the command\n\
15764 is prefixed with \"server \".\n\n\
15765 Convenience variable \"$bpnum\" contains the number of the last\n\
15766 breakpoint set."),
15767 &maintenanceinfolist);
15768
15769 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15770 Set catchpoints to catch events."),
15771 &catch_cmdlist, "catch ",
15772 0/*allow-unknown*/, &cmdlist);
15773
15774 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15775 Set temporary catchpoints to catch events."),
15776 &tcatch_cmdlist, "tcatch ",
15777 0/*allow-unknown*/, &cmdlist);
15778
15779 add_catch_command ("fork", _("Catch calls to fork."),
15780 catch_fork_command_1,
15781 NULL,
15782 (void *) (uintptr_t) catch_fork_permanent,
15783 (void *) (uintptr_t) catch_fork_temporary);
15784 add_catch_command ("vfork", _("Catch calls to vfork."),
15785 catch_fork_command_1,
15786 NULL,
15787 (void *) (uintptr_t) catch_vfork_permanent,
15788 (void *) (uintptr_t) catch_vfork_temporary);
15789 add_catch_command ("exec", _("Catch calls to exec."),
15790 catch_exec_command_1,
15791 NULL,
15792 CATCH_PERMANENT,
15793 CATCH_TEMPORARY);
15794 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15795 Usage: catch load [REGEX]\n\
15796 If REGEX is given, only stop for libraries matching the regular expression."),
15797 catch_load_command_1,
15798 NULL,
15799 CATCH_PERMANENT,
15800 CATCH_TEMPORARY);
15801 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15802 Usage: catch unload [REGEX]\n\
15803 If REGEX is given, only stop for libraries matching the regular expression."),
15804 catch_unload_command_1,
15805 NULL,
15806 CATCH_PERMANENT,
15807 CATCH_TEMPORARY);
15808
15809 c = add_com ("watch", class_breakpoint, watch_command, _("\
15810 Set a watchpoint for an expression.\n\
15811 Usage: watch [-l|-location] EXPRESSION\n\
15812 A watchpoint stops execution of your program whenever the value of\n\
15813 an expression changes.\n\
15814 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15815 the memory to which it refers."));
15816 set_cmd_completer (c, expression_completer);
15817
15818 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15819 Set a read watchpoint for an expression.\n\
15820 Usage: rwatch [-l|-location] EXPRESSION\n\
15821 A watchpoint stops execution of your program whenever the value of\n\
15822 an expression is read.\n\
15823 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15824 the memory to which it refers."));
15825 set_cmd_completer (c, expression_completer);
15826
15827 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15828 Set a watchpoint for an expression.\n\
15829 Usage: awatch [-l|-location] EXPRESSION\n\
15830 A watchpoint stops execution of your program whenever the value of\n\
15831 an expression is either read or written.\n\
15832 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15833 the memory to which it refers."));
15834 set_cmd_completer (c, expression_completer);
15835
15836 add_info ("watchpoints", info_watchpoints_command, _("\
15837 Status of specified watchpoints (all watchpoints if no argument)."));
15838
15839 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15840 respond to changes - contrary to the description. */
15841 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15842 &can_use_hw_watchpoints, _("\
15843 Set debugger's willingness to use watchpoint hardware."), _("\
15844 Show debugger's willingness to use watchpoint hardware."), _("\
15845 If zero, gdb will not use hardware for new watchpoints, even if\n\
15846 such is available. (However, any hardware watchpoints that were\n\
15847 created before setting this to nonzero, will continue to use watchpoint\n\
15848 hardware.)"),
15849 NULL,
15850 show_can_use_hw_watchpoints,
15851 &setlist, &showlist);
15852
15853 can_use_hw_watchpoints = 1;
15854
15855 /* Tracepoint manipulation commands. */
15856
15857 c = add_com ("trace", class_breakpoint, trace_command, _("\
15858 Set a tracepoint at specified location.\n\
15859 \n"
15860 BREAK_ARGS_HELP ("trace") "\n\
15861 Do \"help tracepoints\" for info on other tracepoint commands."));
15862 set_cmd_completer (c, location_completer);
15863
15864 add_com_alias ("tp", "trace", class_alias, 0);
15865 add_com_alias ("tr", "trace", class_alias, 1);
15866 add_com_alias ("tra", "trace", class_alias, 1);
15867 add_com_alias ("trac", "trace", class_alias, 1);
15868
15869 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15870 Set a fast tracepoint at specified location.\n\
15871 \n"
15872 BREAK_ARGS_HELP ("ftrace") "\n\
15873 Do \"help tracepoints\" for info on other tracepoint commands."));
15874 set_cmd_completer (c, location_completer);
15875
15876 c = add_com ("strace", class_breakpoint, strace_command, _("\
15877 Set a static tracepoint at location or marker.\n\
15878 \n\
15879 strace [LOCATION] [if CONDITION]\n\
15880 LOCATION may be a linespec, explicit, or address location (described below) \n\
15881 or -m MARKER_ID.\n\n\
15882 If a marker id is specified, probe the marker with that name. With\n\
15883 no LOCATION, uses current execution address of the selected stack frame.\n\
15884 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15885 This collects arbitrary user data passed in the probe point call to the\n\
15886 tracing library. You can inspect it when analyzing the trace buffer,\n\
15887 by printing the $_sdata variable like any other convenience variable.\n\
15888 \n\
15889 CONDITION is a boolean expression.\n\
15890 \n" LOCATION_HELP_STRING "\n\
15891 Multiple tracepoints at one place are permitted, and useful if their\n\
15892 conditions are different.\n\
15893 \n\
15894 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15895 Do \"help tracepoints\" for info on other tracepoint commands."));
15896 set_cmd_completer (c, location_completer);
15897
15898 add_info ("tracepoints", info_tracepoints_command, _("\
15899 Status of specified tracepoints (all tracepoints if no argument).\n\
15900 Convenience variable \"$tpnum\" contains the number of the\n\
15901 last tracepoint set."));
15902
15903 add_info_alias ("tp", "tracepoints", 1);
15904
15905 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15906 Delete specified tracepoints.\n\
15907 Arguments are tracepoint numbers, separated by spaces.\n\
15908 No argument means delete all tracepoints."),
15909 &deletelist);
15910 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15911
15912 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15913 Disable specified tracepoints.\n\
15914 Arguments are tracepoint numbers, separated by spaces.\n\
15915 No argument means disable all tracepoints."),
15916 &disablelist);
15917 deprecate_cmd (c, "disable");
15918
15919 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15920 Enable specified tracepoints.\n\
15921 Arguments are tracepoint numbers, separated by spaces.\n\
15922 No argument means enable all tracepoints."),
15923 &enablelist);
15924 deprecate_cmd (c, "enable");
15925
15926 add_com ("passcount", class_trace, trace_pass_command, _("\
15927 Set the passcount for a tracepoint.\n\
15928 The trace will end when the tracepoint has been passed 'count' times.\n\
15929 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15930 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15931
15932 add_prefix_cmd ("save", class_breakpoint, save_command,
15933 _("Save breakpoint definitions as a script."),
15934 &save_cmdlist, "save ",
15935 0/*allow-unknown*/, &cmdlist);
15936
15937 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15938 Save current breakpoint definitions as a script.\n\
15939 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15940 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15941 session to restore them."),
15942 &save_cmdlist);
15943 set_cmd_completer (c, filename_completer);
15944
15945 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15946 Save current tracepoint definitions as a script.\n\
15947 Use the 'source' command in another debug session to restore them."),
15948 &save_cmdlist);
15949 set_cmd_completer (c, filename_completer);
15950
15951 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15952 deprecate_cmd (c, "save tracepoints");
15953
15954 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15955 Breakpoint specific settings\n\
15956 Configure various breakpoint-specific variables such as\n\
15957 pending breakpoint behavior"),
15958 &breakpoint_set_cmdlist, "set breakpoint ",
15959 0/*allow-unknown*/, &setlist);
15960 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15961 Breakpoint specific settings\n\
15962 Configure various breakpoint-specific variables such as\n\
15963 pending breakpoint behavior"),
15964 &breakpoint_show_cmdlist, "show breakpoint ",
15965 0/*allow-unknown*/, &showlist);
15966
15967 add_setshow_auto_boolean_cmd ("pending", no_class,
15968 &pending_break_support, _("\
15969 Set debugger's behavior regarding pending breakpoints."), _("\
15970 Show debugger's behavior regarding pending breakpoints."), _("\
15971 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15972 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15973 an error. If auto, an unrecognized breakpoint location results in a\n\
15974 user-query to see if a pending breakpoint should be created."),
15975 NULL,
15976 show_pending_break_support,
15977 &breakpoint_set_cmdlist,
15978 &breakpoint_show_cmdlist);
15979
15980 pending_break_support = AUTO_BOOLEAN_AUTO;
15981
15982 add_setshow_boolean_cmd ("auto-hw", no_class,
15983 &automatic_hardware_breakpoints, _("\
15984 Set automatic usage of hardware breakpoints."), _("\
15985 Show automatic usage of hardware breakpoints."), _("\
15986 If set, the debugger will automatically use hardware breakpoints for\n\
15987 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15988 a warning will be emitted for such breakpoints."),
15989 NULL,
15990 show_automatic_hardware_breakpoints,
15991 &breakpoint_set_cmdlist,
15992 &breakpoint_show_cmdlist);
15993
15994 add_setshow_boolean_cmd ("always-inserted", class_support,
15995 &always_inserted_mode, _("\
15996 Set mode for inserting breakpoints."), _("\
15997 Show mode for inserting breakpoints."), _("\
15998 When this mode is on, breakpoints are inserted immediately as soon as\n\
15999 they're created, kept inserted even when execution stops, and removed\n\
16000 only when the user deletes them. When this mode is off (the default),\n\
16001 breakpoints are inserted only when execution continues, and removed\n\
16002 when execution stops."),
16003 NULL,
16004 &show_always_inserted_mode,
16005 &breakpoint_set_cmdlist,
16006 &breakpoint_show_cmdlist);
16007
16008 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16009 condition_evaluation_enums,
16010 &condition_evaluation_mode_1, _("\
16011 Set mode of breakpoint condition evaluation."), _("\
16012 Show mode of breakpoint condition evaluation."), _("\
16013 When this is set to \"host\", breakpoint conditions will be\n\
16014 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16015 breakpoint conditions will be downloaded to the target (if the target\n\
16016 supports such feature) and conditions will be evaluated on the target's side.\n\
16017 If this is set to \"auto\" (default), this will be automatically set to\n\
16018 \"target\" if it supports condition evaluation, otherwise it will\n\
16019 be set to \"gdb\""),
16020 &set_condition_evaluation_mode,
16021 &show_condition_evaluation_mode,
16022 &breakpoint_set_cmdlist,
16023 &breakpoint_show_cmdlist);
16024
16025 add_com ("break-range", class_breakpoint, break_range_command, _("\
16026 Set a breakpoint for an address range.\n\
16027 break-range START-LOCATION, END-LOCATION\n\
16028 where START-LOCATION and END-LOCATION can be one of the following:\n\
16029 LINENUM, for that line in the current file,\n\
16030 FILE:LINENUM, for that line in that file,\n\
16031 +OFFSET, for that number of lines after the current line\n\
16032 or the start of the range\n\
16033 FUNCTION, for the first line in that function,\n\
16034 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16035 *ADDRESS, for the instruction at that address.\n\
16036 \n\
16037 The breakpoint will stop execution of the inferior whenever it executes\n\
16038 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16039 range (including START-LOCATION and END-LOCATION)."));
16040
16041 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16042 Set a dynamic printf at specified location.\n\
16043 dprintf location,format string,arg1,arg2,...\n\
16044 location may be a linespec, explicit, or address location.\n"
16045 "\n" LOCATION_HELP_STRING));
16046 set_cmd_completer (c, location_completer);
16047
16048 add_setshow_enum_cmd ("dprintf-style", class_support,
16049 dprintf_style_enums, &dprintf_style, _("\
16050 Set the style of usage for dynamic printf."), _("\
16051 Show the style of usage for dynamic printf."), _("\
16052 This setting chooses how GDB will do a dynamic printf.\n\
16053 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16054 console, as with the \"printf\" command.\n\
16055 If the value is \"call\", the print is done by calling a function in your\n\
16056 program; by default printf(), but you can choose a different function or\n\
16057 output stream by setting dprintf-function and dprintf-channel."),
16058 update_dprintf_commands, NULL,
16059 &setlist, &showlist);
16060
16061 dprintf_function = xstrdup ("printf");
16062 add_setshow_string_cmd ("dprintf-function", class_support,
16063 &dprintf_function, _("\
16064 Set the function to use for dynamic printf"), _("\
16065 Show the function to use for dynamic printf"), NULL,
16066 update_dprintf_commands, NULL,
16067 &setlist, &showlist);
16068
16069 dprintf_channel = xstrdup ("");
16070 add_setshow_string_cmd ("dprintf-channel", class_support,
16071 &dprintf_channel, _("\
16072 Set the channel to use for dynamic printf"), _("\
16073 Show the channel to use for dynamic printf"), NULL,
16074 update_dprintf_commands, NULL,
16075 &setlist, &showlist);
16076
16077 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16078 &disconnected_dprintf, _("\
16079 Set whether dprintf continues after GDB disconnects."), _("\
16080 Show whether dprintf continues after GDB disconnects."), _("\
16081 Use this to let dprintf commands continue to hit and produce output\n\
16082 even if GDB disconnects or detaches from the target."),
16083 NULL,
16084 NULL,
16085 &setlist, &showlist);
16086
16087 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16088 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16089 (target agent only) This is useful for formatted output in user-defined commands."));
16090
16091 automatic_hardware_breakpoints = 1;
16092
16093 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16094 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16095 }
This page took 0.746978 seconds and 5 git commands to generate.