2010-12-29 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / buildsym.c
1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
4 2010 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* This module provides subroutines used for creating and adding to
22 the symbol table. These routines are called from various symbol-
23 file-reading routines.
24
25 Routines to support specific debugging information formats (stabs,
26 DWARF, etc) belong somewhere else. */
27
28 #include "defs.h"
29 #include "bfd.h"
30 #include "gdb_obstack.h"
31 #include "symtab.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdbtypes.h"
35 #include "gdb_assert.h"
36 #include "complaints.h"
37 #include "gdb_string.h"
38 #include "expression.h" /* For "enum exp_opcode" used by... */
39 #include "bcache.h"
40 #include "filenames.h" /* For DOSish file names. */
41 #include "macrotab.h"
42 #include "demangle.h" /* Needed by SYMBOL_INIT_DEMANGLED_NAME. */
43 #include "block.h"
44 #include "cp-support.h"
45 #include "dictionary.h"
46 #include "addrmap.h"
47
48 /* Ask buildsym.h to define the vars it normally declares `extern'. */
49 #define EXTERN
50 /**/
51 #include "buildsym.h" /* Our own declarations. */
52 #undef EXTERN
53
54 /* For cleanup_undefined_types and finish_global_stabs (somewhat
55 questionable--see comment where we call them). */
56
57 #include "stabsread.h"
58
59 /* List of subfiles. */
60
61 static struct subfile *subfiles;
62
63 /* List of free `struct pending' structures for reuse. */
64
65 static struct pending *free_pendings;
66
67 /* Non-zero if symtab has line number info. This prevents an
68 otherwise empty symtab from being tossed. */
69
70 static int have_line_numbers;
71
72 /* The mutable address map for the compilation unit whose symbols
73 we're currently reading. The symtabs' shared blockvector will
74 point to a fixed copy of this. */
75 static struct addrmap *pending_addrmap;
76
77 /* The obstack on which we allocate pending_addrmap.
78 If pending_addrmap is NULL, this is uninitialized; otherwise, it is
79 initialized (and holds pending_addrmap). */
80 static struct obstack pending_addrmap_obstack;
81
82 /* Non-zero if we recorded any ranges in the addrmap that are
83 different from those in the blockvector already. We set this to
84 zero when we start processing a symfile, and if it's still zero at
85 the end, then we just toss the addrmap. */
86 static int pending_addrmap_interesting;
87
88 \f
89 static int compare_line_numbers (const void *ln1p, const void *ln2p);
90 \f
91
92 /* Initial sizes of data structures. These are realloc'd larger if
93 needed, and realloc'd down to the size actually used, when
94 completed. */
95
96 #define INITIAL_CONTEXT_STACK_SIZE 10
97 #define INITIAL_LINE_VECTOR_LENGTH 1000
98 \f
99
100 /* Maintain the lists of symbols and blocks. */
101
102 /* Add a pending list to free_pendings. */
103 void
104 add_free_pendings (struct pending *list)
105 {
106 struct pending *link = list;
107
108 if (list)
109 {
110 while (link->next) link = link->next;
111 link->next = free_pendings;
112 free_pendings = list;
113 }
114 }
115
116 /* Add a symbol to one of the lists of symbols. While we're at it, if
117 we're in the C++ case and don't have full namespace debugging info,
118 check to see if it references an anonymous namespace; if so, add an
119 appropriate using directive. */
120
121 void
122 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
123 {
124 struct pending *link;
125
126 /* If this is an alias for another symbol, don't add it. */
127 if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
128 return;
129
130 /* We keep PENDINGSIZE symbols in each link of the list. If we
131 don't have a link with room in it, add a new link. */
132 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
133 {
134 if (free_pendings)
135 {
136 link = free_pendings;
137 free_pendings = link->next;
138 }
139 else
140 {
141 link = (struct pending *) xmalloc (sizeof (struct pending));
142 }
143
144 link->next = *listhead;
145 *listhead = link;
146 link->nsyms = 0;
147 }
148
149 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
150 }
151
152 /* Find a symbol named NAME on a LIST. NAME need not be
153 '\0'-terminated; LENGTH is the length of the name. */
154
155 struct symbol *
156 find_symbol_in_list (struct pending *list, char *name, int length)
157 {
158 int j;
159 char *pp;
160
161 while (list != NULL)
162 {
163 for (j = list->nsyms; --j >= 0;)
164 {
165 pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
166 if (*pp == *name && strncmp (pp, name, length) == 0
167 && pp[length] == '\0')
168 {
169 return (list->symbol[j]);
170 }
171 }
172 list = list->next;
173 }
174 return (NULL);
175 }
176
177 /* At end of reading syms, or in case of quit, really free as many
178 `struct pending's as we can easily find. */
179
180 void
181 really_free_pendings (void *dummy)
182 {
183 struct pending *next, *next1;
184
185 for (next = free_pendings; next; next = next1)
186 {
187 next1 = next->next;
188 xfree ((void *) next);
189 }
190 free_pendings = NULL;
191
192 free_pending_blocks ();
193
194 for (next = file_symbols; next != NULL; next = next1)
195 {
196 next1 = next->next;
197 xfree ((void *) next);
198 }
199 file_symbols = NULL;
200
201 for (next = global_symbols; next != NULL; next = next1)
202 {
203 next1 = next->next;
204 xfree ((void *) next);
205 }
206 global_symbols = NULL;
207
208 if (pending_macros)
209 free_macro_table (pending_macros);
210
211 if (pending_addrmap)
212 {
213 obstack_free (&pending_addrmap_obstack, NULL);
214 pending_addrmap = NULL;
215 }
216 }
217
218 /* This function is called to discard any pending blocks. */
219
220 void
221 free_pending_blocks (void)
222 {
223 /* The links are made in the objfile_obstack, so we only need to
224 reset PENDING_BLOCKS. */
225 pending_blocks = NULL;
226 }
227
228 /* Take one of the lists of symbols and make a block from it. Keep
229 the order the symbols have in the list (reversed from the input
230 file). Put the block on the list of pending blocks. */
231
232 struct block *
233 finish_block (struct symbol *symbol, struct pending **listhead,
234 struct pending_block *old_blocks,
235 CORE_ADDR start, CORE_ADDR end,
236 struct objfile *objfile)
237 {
238 struct gdbarch *gdbarch = get_objfile_arch (objfile);
239 struct pending *next, *next1;
240 struct block *block;
241 struct pending_block *pblock;
242 struct pending_block *opblock;
243
244 block = allocate_block (&objfile->objfile_obstack);
245
246 if (symbol)
247 {
248 BLOCK_DICT (block) = dict_create_linear (&objfile->objfile_obstack,
249 *listhead);
250 }
251 else
252 {
253 BLOCK_DICT (block) = dict_create_hashed (&objfile->objfile_obstack,
254 *listhead);
255 }
256
257 BLOCK_START (block) = start;
258 BLOCK_END (block) = end;
259 /* Superblock filled in when containing block is made. */
260 BLOCK_SUPERBLOCK (block) = NULL;
261 BLOCK_NAMESPACE (block) = NULL;
262
263 /* Put the block in as the value of the symbol that names it. */
264
265 if (symbol)
266 {
267 struct type *ftype = SYMBOL_TYPE (symbol);
268 struct dict_iterator iter;
269 SYMBOL_BLOCK_VALUE (symbol) = block;
270 BLOCK_FUNCTION (block) = symbol;
271
272 if (TYPE_NFIELDS (ftype) <= 0)
273 {
274 /* No parameter type information is recorded with the
275 function's type. Set that from the type of the
276 parameter symbols. */
277 int nparams = 0, iparams;
278 struct symbol *sym;
279 ALL_BLOCK_SYMBOLS (block, iter, sym)
280 {
281 if (SYMBOL_IS_ARGUMENT (sym))
282 nparams++;
283 }
284 if (nparams > 0)
285 {
286 TYPE_NFIELDS (ftype) = nparams;
287 TYPE_FIELDS (ftype) = (struct field *)
288 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
289
290 iparams = 0;
291 ALL_BLOCK_SYMBOLS (block, iter, sym)
292 {
293 if (iparams == nparams)
294 break;
295
296 if (SYMBOL_IS_ARGUMENT (sym))
297 {
298 TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
299 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
300 iparams++;
301 }
302 }
303 }
304 }
305 }
306 else
307 {
308 BLOCK_FUNCTION (block) = NULL;
309 }
310
311 /* Now "free" the links of the list, and empty the list. */
312
313 for (next = *listhead; next; next = next1)
314 {
315 next1 = next->next;
316 next->next = free_pendings;
317 free_pendings = next;
318 }
319 *listhead = NULL;
320
321 /* Check to be sure that the blocks have an end address that is
322 greater than starting address. */
323
324 if (BLOCK_END (block) < BLOCK_START (block))
325 {
326 if (symbol)
327 {
328 complaint (&symfile_complaints,
329 _("block end address less than block start address in %s (patched it)"),
330 SYMBOL_PRINT_NAME (symbol));
331 }
332 else
333 {
334 complaint (&symfile_complaints,
335 _("block end address %s less than block start address %s (patched it)"),
336 paddress (gdbarch, BLOCK_END (block)),
337 paddress (gdbarch, BLOCK_START (block)));
338 }
339 /* Better than nothing. */
340 BLOCK_END (block) = BLOCK_START (block);
341 }
342
343 /* Install this block as the superblock of all blocks made since the
344 start of this scope that don't have superblocks yet. */
345
346 opblock = NULL;
347 for (pblock = pending_blocks;
348 pblock && pblock != old_blocks;
349 pblock = pblock->next)
350 {
351 if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
352 {
353 /* Check to be sure the blocks are nested as we receive
354 them. If the compiler/assembler/linker work, this just
355 burns a small amount of time.
356
357 Skip blocks which correspond to a function; they're not
358 physically nested inside this other blocks, only
359 lexically nested. */
360 if (BLOCK_FUNCTION (pblock->block) == NULL
361 && (BLOCK_START (pblock->block) < BLOCK_START (block)
362 || BLOCK_END (pblock->block) > BLOCK_END (block)))
363 {
364 if (symbol)
365 {
366 complaint (&symfile_complaints,
367 _("inner block not inside outer block in %s"),
368 SYMBOL_PRINT_NAME (symbol));
369 }
370 else
371 {
372 complaint (&symfile_complaints,
373 _("inner block (%s-%s) not inside outer block (%s-%s)"),
374 paddress (gdbarch, BLOCK_START (pblock->block)),
375 paddress (gdbarch, BLOCK_END (pblock->block)),
376 paddress (gdbarch, BLOCK_START (block)),
377 paddress (gdbarch, BLOCK_END (block)));
378 }
379 if (BLOCK_START (pblock->block) < BLOCK_START (block))
380 BLOCK_START (pblock->block) = BLOCK_START (block);
381 if (BLOCK_END (pblock->block) > BLOCK_END (block))
382 BLOCK_END (pblock->block) = BLOCK_END (block);
383 }
384 BLOCK_SUPERBLOCK (pblock->block) = block;
385 }
386 opblock = pblock;
387 }
388
389 block_set_using (block, using_directives, &objfile->objfile_obstack);
390 using_directives = NULL;
391
392 record_pending_block (objfile, block, opblock);
393
394 return block;
395 }
396
397
398 /* Record BLOCK on the list of all blocks in the file. Put it after
399 OPBLOCK, or at the beginning if opblock is NULL. This puts the
400 block in the list after all its subblocks.
401
402 Allocate the pending block struct in the objfile_obstack to save
403 time. This wastes a little space. FIXME: Is it worth it? */
404
405 void
406 record_pending_block (struct objfile *objfile, struct block *block,
407 struct pending_block *opblock)
408 {
409 struct pending_block *pblock;
410
411 pblock = (struct pending_block *)
412 obstack_alloc (&objfile->objfile_obstack, sizeof (struct pending_block));
413 pblock->block = block;
414 if (opblock)
415 {
416 pblock->next = opblock->next;
417 opblock->next = pblock;
418 }
419 else
420 {
421 pblock->next = pending_blocks;
422 pending_blocks = pblock;
423 }
424 }
425
426
427 /* Record that the range of addresses from START to END_INCLUSIVE
428 (inclusive, like it says) belongs to BLOCK. BLOCK's start and end
429 addresses must be set already. You must apply this function to all
430 BLOCK's children before applying it to BLOCK.
431
432 If a call to this function complicates the picture beyond that
433 already provided by BLOCK_START and BLOCK_END, then we create an
434 address map for the block. */
435 void
436 record_block_range (struct block *block,
437 CORE_ADDR start, CORE_ADDR end_inclusive)
438 {
439 /* If this is any different from the range recorded in the block's
440 own BLOCK_START and BLOCK_END, then note that the address map has
441 become interesting. Note that even if this block doesn't have
442 any "interesting" ranges, some later block might, so we still
443 need to record this block in the addrmap. */
444 if (start != BLOCK_START (block)
445 || end_inclusive + 1 != BLOCK_END (block))
446 pending_addrmap_interesting = 1;
447
448 if (! pending_addrmap)
449 {
450 obstack_init (&pending_addrmap_obstack);
451 pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack);
452 }
453
454 addrmap_set_empty (pending_addrmap, start, end_inclusive, block);
455 }
456
457
458 static struct blockvector *
459 make_blockvector (struct objfile *objfile)
460 {
461 struct pending_block *next;
462 struct blockvector *blockvector;
463 int i;
464
465 /* Count the length of the list of blocks. */
466
467 for (next = pending_blocks, i = 0; next; next = next->next, i++)
468 {;
469 }
470
471 blockvector = (struct blockvector *)
472 obstack_alloc (&objfile->objfile_obstack,
473 (sizeof (struct blockvector)
474 + (i - 1) * sizeof (struct block *)));
475
476 /* Copy the blocks into the blockvector. This is done in reverse
477 order, which happens to put the blocks into the proper order
478 (ascending starting address). finish_block has hair to insert
479 each block into the list after its subblocks in order to make
480 sure this is true. */
481
482 BLOCKVECTOR_NBLOCKS (blockvector) = i;
483 for (next = pending_blocks; next; next = next->next)
484 {
485 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
486 }
487
488 free_pending_blocks ();
489
490 /* If we needed an address map for this symtab, record it in the
491 blockvector. */
492 if (pending_addrmap && pending_addrmap_interesting)
493 BLOCKVECTOR_MAP (blockvector)
494 = addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack);
495 else
496 BLOCKVECTOR_MAP (blockvector) = 0;
497
498 /* Some compilers output blocks in the wrong order, but we depend on
499 their being in the right order so we can binary search. Check the
500 order and moan about it. */
501 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
502 {
503 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
504 {
505 if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
506 > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
507 {
508 CORE_ADDR start
509 = BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
510
511 complaint (&symfile_complaints, _("block at %s out of order"),
512 hex_string ((LONGEST) start));
513 }
514 }
515 }
516
517 return (blockvector);
518 }
519 \f
520 /* Start recording information about source code that came from an
521 included (or otherwise merged-in) source file with a different
522 name. NAME is the name of the file (cannot be NULL), DIRNAME is
523 the directory in which the file was compiled (or NULL if not
524 known). */
525
526 void
527 start_subfile (const char *name, const char *dirname)
528 {
529 struct subfile *subfile;
530
531 /* See if this subfile is already known as a subfile of the current
532 main source file. */
533
534 for (subfile = subfiles; subfile; subfile = subfile->next)
535 {
536 char *subfile_name;
537
538 /* If NAME is an absolute path, and this subfile is not, then
539 attempt to create an absolute path to compare. */
540 if (IS_ABSOLUTE_PATH (name)
541 && !IS_ABSOLUTE_PATH (subfile->name)
542 && subfile->dirname != NULL)
543 subfile_name = concat (subfile->dirname, SLASH_STRING,
544 subfile->name, (char *) NULL);
545 else
546 subfile_name = subfile->name;
547
548 if (FILENAME_CMP (subfile_name, name) == 0)
549 {
550 current_subfile = subfile;
551 if (subfile_name != subfile->name)
552 xfree (subfile_name);
553 return;
554 }
555 if (subfile_name != subfile->name)
556 xfree (subfile_name);
557 }
558
559 /* This subfile is not known. Add an entry for it. Make an entry
560 for this subfile in the list of all subfiles of the current main
561 source file. */
562
563 subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
564 memset ((char *) subfile, 0, sizeof (struct subfile));
565 subfile->next = subfiles;
566 subfiles = subfile;
567 current_subfile = subfile;
568
569 /* Save its name and compilation directory name. */
570 subfile->name = (name == NULL) ? NULL : xstrdup (name);
571 subfile->dirname = (dirname == NULL) ? NULL : xstrdup (dirname);
572
573 /* Initialize line-number recording for this subfile. */
574 subfile->line_vector = NULL;
575
576 /* Default the source language to whatever can be deduced from the
577 filename. If nothing can be deduced (such as for a C/C++ include
578 file with a ".h" extension), then inherit whatever language the
579 previous subfile had. This kludgery is necessary because there
580 is no standard way in some object formats to record the source
581 language. Also, when symtabs are allocated we try to deduce a
582 language then as well, but it is too late for us to use that
583 information while reading symbols, since symtabs aren't allocated
584 until after all the symbols have been processed for a given
585 source file. */
586
587 subfile->language = deduce_language_from_filename (subfile->name);
588 if (subfile->language == language_unknown
589 && subfile->next != NULL)
590 {
591 subfile->language = subfile->next->language;
592 }
593
594 /* Initialize the debug format string to NULL. We may supply it
595 later via a call to record_debugformat. */
596 subfile->debugformat = NULL;
597
598 /* Similarly for the producer. */
599 subfile->producer = NULL;
600
601 /* If the filename of this subfile ends in .C, then change the
602 language of any pending subfiles from C to C++. We also accept
603 any other C++ suffixes accepted by deduce_language_from_filename. */
604 /* Likewise for f2c. */
605
606 if (subfile->name)
607 {
608 struct subfile *s;
609 enum language sublang = deduce_language_from_filename (subfile->name);
610
611 if (sublang == language_cplus || sublang == language_fortran)
612 for (s = subfiles; s != NULL; s = s->next)
613 if (s->language == language_c)
614 s->language = sublang;
615 }
616
617 /* And patch up this file if necessary. */
618 if (subfile->language == language_c
619 && subfile->next != NULL
620 && (subfile->next->language == language_cplus
621 || subfile->next->language == language_fortran))
622 {
623 subfile->language = subfile->next->language;
624 }
625 }
626
627 /* For stabs readers, the first N_SO symbol is assumed to be the
628 source file name, and the subfile struct is initialized using that
629 assumption. If another N_SO symbol is later seen, immediately
630 following the first one, then the first one is assumed to be the
631 directory name and the second one is really the source file name.
632
633 So we have to patch up the subfile struct by moving the old name
634 value to dirname and remembering the new name. Some sanity
635 checking is performed to ensure that the state of the subfile
636 struct is reasonable and that the old name we are assuming to be a
637 directory name actually is (by checking for a trailing '/'). */
638
639 void
640 patch_subfile_names (struct subfile *subfile, char *name)
641 {
642 if (subfile != NULL && subfile->dirname == NULL && subfile->name != NULL
643 && subfile->name[strlen (subfile->name) - 1] == '/')
644 {
645 subfile->dirname = subfile->name;
646 subfile->name = xstrdup (name);
647 last_source_file = name;
648
649 /* Default the source language to whatever can be deduced from
650 the filename. If nothing can be deduced (such as for a C/C++
651 include file with a ".h" extension), then inherit whatever
652 language the previous subfile had. This kludgery is
653 necessary because there is no standard way in some object
654 formats to record the source language. Also, when symtabs
655 are allocated we try to deduce a language then as well, but
656 it is too late for us to use that information while reading
657 symbols, since symtabs aren't allocated until after all the
658 symbols have been processed for a given source file. */
659
660 subfile->language = deduce_language_from_filename (subfile->name);
661 if (subfile->language == language_unknown
662 && subfile->next != NULL)
663 {
664 subfile->language = subfile->next->language;
665 }
666 }
667 }
668 \f
669 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
670 switching source files (different subfiles, as we call them) within
671 one object file, but using a stack rather than in an arbitrary
672 order. */
673
674 void
675 push_subfile (void)
676 {
677 struct subfile_stack *tem
678 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
679
680 tem->next = subfile_stack;
681 subfile_stack = tem;
682 if (current_subfile == NULL || current_subfile->name == NULL)
683 {
684 internal_error (__FILE__, __LINE__,
685 _("failed internal consistency check"));
686 }
687 tem->name = current_subfile->name;
688 }
689
690 char *
691 pop_subfile (void)
692 {
693 char *name;
694 struct subfile_stack *link = subfile_stack;
695
696 if (link == NULL)
697 {
698 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
699 }
700 name = link->name;
701 subfile_stack = link->next;
702 xfree ((void *) link);
703 return (name);
704 }
705 \f
706 /* Add a linetable entry for line number LINE and address PC to the
707 line vector for SUBFILE. */
708
709 void
710 record_line (struct subfile *subfile, int line, CORE_ADDR pc)
711 {
712 struct linetable_entry *e;
713
714 /* Ignore the dummy line number in libg.o */
715 if (line == 0xffff)
716 {
717 return;
718 }
719
720 /* Make sure line vector exists and is big enough. */
721 if (!subfile->line_vector)
722 {
723 subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
724 subfile->line_vector = (struct linetable *)
725 xmalloc (sizeof (struct linetable)
726 + subfile->line_vector_length * sizeof (struct linetable_entry));
727 subfile->line_vector->nitems = 0;
728 have_line_numbers = 1;
729 }
730
731 if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
732 {
733 subfile->line_vector_length *= 2;
734 subfile->line_vector = (struct linetable *)
735 xrealloc ((char *) subfile->line_vector,
736 (sizeof (struct linetable)
737 + (subfile->line_vector_length
738 * sizeof (struct linetable_entry))));
739 }
740
741 /* Normally, we treat lines as unsorted. But the end of sequence
742 marker is special. We sort line markers at the same PC by line
743 number, so end of sequence markers (which have line == 0) appear
744 first. This is right if the marker ends the previous function,
745 and there is no padding before the next function. But it is
746 wrong if the previous line was empty and we are now marking a
747 switch to a different subfile. We must leave the end of sequence
748 marker at the end of this group of lines, not sort the empty line
749 to after the marker. The easiest way to accomplish this is to
750 delete any empty lines from our table, if they are followed by
751 end of sequence markers. All we lose is the ability to set
752 breakpoints at some lines which contain no instructions
753 anyway. */
754 if (line == 0 && subfile->line_vector->nitems > 0)
755 {
756 e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
757 while (subfile->line_vector->nitems > 0 && e->pc == pc)
758 {
759 e--;
760 subfile->line_vector->nitems--;
761 }
762 }
763
764 e = subfile->line_vector->item + subfile->line_vector->nitems++;
765 e->line = line;
766 e->pc = pc;
767 }
768
769 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */
770
771 static int
772 compare_line_numbers (const void *ln1p, const void *ln2p)
773 {
774 struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
775 struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
776
777 /* Note: this code does not assume that CORE_ADDRs can fit in ints.
778 Please keep it that way. */
779 if (ln1->pc < ln2->pc)
780 return -1;
781
782 if (ln1->pc > ln2->pc)
783 return 1;
784
785 /* If pc equal, sort by line. I'm not sure whether this is optimum
786 behavior (see comment at struct linetable in symtab.h). */
787 return ln1->line - ln2->line;
788 }
789 \f
790 /* Start a new symtab for a new source file. Called, for example,
791 when a stabs symbol of type N_SO is seen, or when a DWARF
792 TAG_compile_unit DIE is seen. It indicates the start of data for
793 one original source file.
794
795 NAME is the name of the file (cannot be NULL). DIRNAME is the directory in
796 which the file was compiled (or NULL if not known). START_ADDR is the
797 lowest address of objects in the file (or 0 if not known). */
798
799 void
800 start_symtab (char *name, char *dirname, CORE_ADDR start_addr)
801 {
802 last_source_file = name;
803 last_source_start_addr = start_addr;
804 file_symbols = NULL;
805 global_symbols = NULL;
806 within_function = 0;
807 have_line_numbers = 0;
808
809 /* Context stack is initially empty. Allocate first one with room
810 for 10 levels; reuse it forever afterward. */
811 if (context_stack == NULL)
812 {
813 context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
814 context_stack = (struct context_stack *)
815 xmalloc (context_stack_size * sizeof (struct context_stack));
816 }
817 context_stack_depth = 0;
818
819 /* We shouldn't have any address map at this point. */
820 gdb_assert (! pending_addrmap);
821
822 /* Initialize the list of sub source files with one entry for this
823 file (the top-level source file). */
824
825 subfiles = NULL;
826 current_subfile = NULL;
827 start_subfile (name, dirname);
828 }
829
830 /* Subroutine of end_symtab to simplify it. Look for a subfile that
831 matches the main source file's basename. If there is only one, and
832 if the main source file doesn't have any symbol or line number
833 information, then copy this file's symtab and line_vector to the
834 main source file's subfile and discard the other subfile. This can
835 happen because of a compiler bug or from the user playing games
836 with #line or from things like a distributed build system that
837 manipulates the debug info. */
838
839 static void
840 watch_main_source_file_lossage (void)
841 {
842 struct subfile *mainsub, *subfile;
843
844 /* Find the main source file.
845 This loop could be eliminated if start_symtab saved it for us. */
846 mainsub = NULL;
847 for (subfile = subfiles; subfile; subfile = subfile->next)
848 {
849 /* The main subfile is guaranteed to be the last one. */
850 if (subfile->next == NULL)
851 mainsub = subfile;
852 }
853
854 /* If the main source file doesn't have any line number or symbol
855 info, look for an alias in another subfile.
856
857 We have to watch for mainsub == NULL here. It's a quirk of
858 end_symtab, it can return NULL so there may not be a main
859 subfile. */
860
861 if (mainsub
862 && mainsub->line_vector == NULL
863 && mainsub->symtab == NULL)
864 {
865 const char *mainbase = lbasename (mainsub->name);
866 int nr_matches = 0;
867 struct subfile *prevsub;
868 struct subfile *mainsub_alias = NULL;
869 struct subfile *prev_mainsub_alias = NULL;
870
871 prevsub = NULL;
872 for (subfile = subfiles;
873 /* Stop before we get to the last one. */
874 subfile->next;
875 subfile = subfile->next)
876 {
877 if (strcmp (lbasename (subfile->name), mainbase) == 0)
878 {
879 ++nr_matches;
880 mainsub_alias = subfile;
881 prev_mainsub_alias = prevsub;
882 }
883 prevsub = subfile;
884 }
885
886 if (nr_matches == 1)
887 {
888 gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
889
890 /* Found a match for the main source file.
891 Copy its line_vector and symtab to the main subfile
892 and then discard it. */
893
894 mainsub->line_vector = mainsub_alias->line_vector;
895 mainsub->line_vector_length = mainsub_alias->line_vector_length;
896 mainsub->symtab = mainsub_alias->symtab;
897
898 if (prev_mainsub_alias == NULL)
899 subfiles = mainsub_alias->next;
900 else
901 prev_mainsub_alias->next = mainsub_alias->next;
902 xfree (mainsub_alias);
903 }
904 }
905 }
906
907 /* Helper function for qsort. Parametes are `struct block *' pointers,
908 function sorts them in descending order by their BLOCK_START. */
909
910 static int
911 block_compar (const void *ap, const void *bp)
912 {
913 const struct block *a = *(const struct block **) ap;
914 const struct block *b = *(const struct block **) bp;
915
916 return ((BLOCK_START (b) > BLOCK_START (a))
917 - (BLOCK_START (b) < BLOCK_START (a)));
918 }
919
920 /* Finish the symbol definitions for one main source file, close off
921 all the lexical contexts for that file (creating struct block's for
922 them), then make the struct symtab for that file and put it in the
923 list of all such.
924
925 END_ADDR is the address of the end of the file's text. SECTION is
926 the section number (in objfile->section_offsets) of the blockvector
927 and linetable.
928
929 Note that it is possible for end_symtab() to return NULL. In
930 particular, for the DWARF case at least, it will return NULL when
931 it finds a compilation unit that has exactly one DIE, a
932 TAG_compile_unit DIE. This can happen when we link in an object
933 file that was compiled from an empty source file. Returning NULL
934 is probably not the correct thing to do, because then gdb will
935 never know about this empty file (FIXME). */
936
937 struct symtab *
938 end_symtab (CORE_ADDR end_addr, struct objfile *objfile, int section)
939 {
940 struct symtab *symtab = NULL;
941 struct blockvector *blockvector;
942 struct subfile *subfile;
943 struct context_stack *cstk;
944 struct subfile *nextsub;
945
946 /* Finish the lexical context of the last function in the file; pop
947 the context stack. */
948
949 if (context_stack_depth > 0)
950 {
951 cstk = pop_context ();
952 /* Make a block for the local symbols within. */
953 finish_block (cstk->name, &local_symbols, cstk->old_blocks,
954 cstk->start_addr, end_addr, objfile);
955
956 if (context_stack_depth > 0)
957 {
958 /* This is said to happen with SCO. The old coffread.c
959 code simply emptied the context stack, so we do the
960 same. FIXME: Find out why it is happening. This is not
961 believed to happen in most cases (even for coffread.c);
962 it used to be an abort(). */
963 complaint (&symfile_complaints,
964 _("Context stack not empty in end_symtab"));
965 context_stack_depth = 0;
966 }
967 }
968
969 /* Reordered executables may have out of order pending blocks; if
970 OBJF_REORDERED is true, then sort the pending blocks. */
971 if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
972 {
973 unsigned count = 0;
974 struct pending_block *pb;
975 struct block **barray, **bp;
976 struct cleanup *back_to;
977
978 for (pb = pending_blocks; pb != NULL; pb = pb->next)
979 count++;
980
981 barray = xmalloc (sizeof (*barray) * count);
982 back_to = make_cleanup (xfree, barray);
983
984 bp = barray;
985 for (pb = pending_blocks; pb != NULL; pb = pb->next)
986 *bp++ = pb->block;
987
988 qsort (barray, count, sizeof (*barray), block_compar);
989
990 bp = barray;
991 for (pb = pending_blocks; pb != NULL; pb = pb->next)
992 pb->block = *bp++;
993
994 do_cleanups (back_to);
995 }
996
997 /* Cleanup any undefined types that have been left hanging around
998 (this needs to be done before the finish_blocks so that
999 file_symbols is still good).
1000
1001 Both cleanup_undefined_types and finish_global_stabs are stabs
1002 specific, but harmless for other symbol readers, since on gdb
1003 startup or when finished reading stabs, the state is set so these
1004 are no-ops. FIXME: Is this handled right in case of QUIT? Can
1005 we make this cleaner? */
1006
1007 cleanup_undefined_types (objfile);
1008 finish_global_stabs (objfile);
1009
1010 if (pending_blocks == NULL
1011 && file_symbols == NULL
1012 && global_symbols == NULL
1013 && have_line_numbers == 0
1014 && pending_macros == NULL)
1015 {
1016 /* Ignore symtabs that have no functions with real debugging
1017 info. */
1018 blockvector = NULL;
1019 }
1020 else
1021 {
1022 /* Define the STATIC_BLOCK & GLOBAL_BLOCK, and build the
1023 blockvector. */
1024 finish_block (0, &file_symbols, 0, last_source_start_addr,
1025 end_addr, objfile);
1026 finish_block (0, &global_symbols, 0, last_source_start_addr,
1027 end_addr, objfile);
1028 blockvector = make_blockvector (objfile);
1029 }
1030
1031 /* Read the line table if it has to be read separately. */
1032 if (objfile->sf->sym_read_linetable != NULL)
1033 objfile->sf->sym_read_linetable ();
1034
1035 /* Handle the case where the debug info specifies a different path
1036 for the main source file. It can cause us to lose track of its
1037 line number information. */
1038 watch_main_source_file_lossage ();
1039
1040 /* Now create the symtab objects proper, one for each subfile. */
1041 /* (The main file is the last one on the chain.) */
1042
1043 for (subfile = subfiles; subfile; subfile = nextsub)
1044 {
1045 int linetablesize = 0;
1046 symtab = NULL;
1047
1048 /* If we have blocks of symbols, make a symtab. Otherwise, just
1049 ignore this file and any line number info in it. */
1050 if (blockvector)
1051 {
1052 if (subfile->line_vector)
1053 {
1054 linetablesize = sizeof (struct linetable) +
1055 subfile->line_vector->nitems * sizeof (struct linetable_entry);
1056
1057 /* Like the pending blocks, the line table may be
1058 scrambled in reordered executables. Sort it if
1059 OBJF_REORDERED is true. */
1060 if (objfile->flags & OBJF_REORDERED)
1061 qsort (subfile->line_vector->item,
1062 subfile->line_vector->nitems,
1063 sizeof (struct linetable_entry), compare_line_numbers);
1064 }
1065
1066 /* Now, allocate a symbol table. */
1067 if (subfile->symtab == NULL)
1068 symtab = allocate_symtab (subfile->name, objfile);
1069 else
1070 symtab = subfile->symtab;
1071
1072 /* Fill in its components. */
1073 symtab->blockvector = blockvector;
1074 symtab->macro_table = pending_macros;
1075 if (subfile->line_vector)
1076 {
1077 /* Reallocate the line table on the symbol obstack. */
1078 symtab->linetable = (struct linetable *)
1079 obstack_alloc (&objfile->objfile_obstack, linetablesize);
1080 memcpy (symtab->linetable, subfile->line_vector, linetablesize);
1081 }
1082 else
1083 {
1084 symtab->linetable = NULL;
1085 }
1086 symtab->block_line_section = section;
1087 if (subfile->dirname)
1088 {
1089 /* Reallocate the dirname on the symbol obstack. */
1090 symtab->dirname = (char *)
1091 obstack_alloc (&objfile->objfile_obstack,
1092 strlen (subfile->dirname) + 1);
1093 strcpy (symtab->dirname, subfile->dirname);
1094 }
1095 else
1096 {
1097 symtab->dirname = NULL;
1098 }
1099 symtab->free_code = free_linetable;
1100 symtab->free_func = NULL;
1101
1102 /* Use whatever language we have been using for this
1103 subfile, not the one that was deduced in allocate_symtab
1104 from the filename. We already did our own deducing when
1105 we created the subfile, and we may have altered our
1106 opinion of what language it is from things we found in
1107 the symbols. */
1108 symtab->language = subfile->language;
1109
1110 /* Save the debug format string (if any) in the symtab. */
1111 if (subfile->debugformat != NULL)
1112 {
1113 symtab->debugformat = obsavestring (subfile->debugformat,
1114 strlen (subfile->debugformat),
1115 &objfile->objfile_obstack);
1116 }
1117
1118 /* Similarly for the producer. */
1119 if (subfile->producer != NULL)
1120 symtab->producer = obsavestring (subfile->producer,
1121 strlen (subfile->producer),
1122 &objfile->objfile_obstack);
1123
1124 /* All symtabs for the main file and the subfiles share a
1125 blockvector, so we need to clear primary for everything
1126 but the main file. */
1127
1128 symtab->primary = 0;
1129 }
1130 else
1131 {
1132 if (subfile->symtab)
1133 {
1134 /* Since we are ignoring that subfile, we also need
1135 to unlink the associated empty symtab that we created.
1136 Otherwise, we can into trouble because various parts
1137 such as the block-vector are uninitialized whereas
1138 the rest of the code assumes that they are.
1139
1140 We can only unlink the symtab because it was allocated
1141 on the objfile obstack. */
1142 struct symtab *s;
1143
1144 if (objfile->symtabs == subfile->symtab)
1145 objfile->symtabs = objfile->symtabs->next;
1146 else
1147 ALL_OBJFILE_SYMTABS (objfile, s)
1148 if (s->next == subfile->symtab)
1149 {
1150 s->next = s->next->next;
1151 break;
1152 }
1153 subfile->symtab = NULL;
1154 }
1155 }
1156 if (subfile->name != NULL)
1157 {
1158 xfree ((void *) subfile->name);
1159 }
1160 if (subfile->dirname != NULL)
1161 {
1162 xfree ((void *) subfile->dirname);
1163 }
1164 if (subfile->line_vector != NULL)
1165 {
1166 xfree ((void *) subfile->line_vector);
1167 }
1168 if (subfile->debugformat != NULL)
1169 {
1170 xfree ((void *) subfile->debugformat);
1171 }
1172 if (subfile->producer != NULL)
1173 xfree (subfile->producer);
1174
1175 nextsub = subfile->next;
1176 xfree ((void *) subfile);
1177 }
1178
1179 /* Set this for the main source file. */
1180 if (symtab)
1181 {
1182 symtab->primary = 1;
1183 }
1184
1185 /* Default any symbols without a specified symtab to the primary
1186 symtab. */
1187 if (blockvector)
1188 {
1189 int block_i;
1190
1191 for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1192 {
1193 struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1194 struct symbol *sym;
1195 struct dict_iterator iter;
1196
1197 /* Inlined functions may have symbols not in the global or
1198 static symbol lists. */
1199 if (BLOCK_FUNCTION (block) != NULL)
1200 if (SYMBOL_SYMTAB (BLOCK_FUNCTION (block)) == NULL)
1201 SYMBOL_SYMTAB (BLOCK_FUNCTION (block)) = symtab;
1202
1203 for (sym = dict_iterator_first (BLOCK_DICT (block), &iter);
1204 sym != NULL;
1205 sym = dict_iterator_next (&iter))
1206 if (SYMBOL_SYMTAB (sym) == NULL)
1207 SYMBOL_SYMTAB (sym) = symtab;
1208 }
1209 }
1210
1211 last_source_file = NULL;
1212 current_subfile = NULL;
1213 pending_macros = NULL;
1214 if (pending_addrmap)
1215 {
1216 obstack_free (&pending_addrmap_obstack, NULL);
1217 pending_addrmap = NULL;
1218 }
1219
1220 return symtab;
1221 }
1222
1223 /* Push a context block. Args are an identifying nesting level
1224 (checkable when you pop it), and the starting PC address of this
1225 context. */
1226
1227 struct context_stack *
1228 push_context (int desc, CORE_ADDR valu)
1229 {
1230 struct context_stack *new;
1231
1232 if (context_stack_depth == context_stack_size)
1233 {
1234 context_stack_size *= 2;
1235 context_stack = (struct context_stack *)
1236 xrealloc ((char *) context_stack,
1237 (context_stack_size * sizeof (struct context_stack)));
1238 }
1239
1240 new = &context_stack[context_stack_depth++];
1241 new->depth = desc;
1242 new->locals = local_symbols;
1243 new->params = param_symbols;
1244 new->old_blocks = pending_blocks;
1245 new->start_addr = valu;
1246 new->using_directives = using_directives;
1247 new->name = NULL;
1248
1249 local_symbols = NULL;
1250 param_symbols = NULL;
1251 using_directives = NULL;
1252
1253 return new;
1254 }
1255
1256 /* Pop a context block. Returns the address of the context block just
1257 popped. */
1258
1259 struct context_stack *
1260 pop_context (void)
1261 {
1262 gdb_assert (context_stack_depth > 0);
1263 return (&context_stack[--context_stack_depth]);
1264 }
1265
1266 \f
1267
1268 /* Compute a small integer hash code for the given name. */
1269
1270 int
1271 hashname (char *name)
1272 {
1273 return (hash(name,strlen(name)) % HASHSIZE);
1274 }
1275 \f
1276
1277 void
1278 record_debugformat (char *format)
1279 {
1280 current_subfile->debugformat = xstrdup (format);
1281 }
1282
1283 void
1284 record_producer (const char *producer)
1285 {
1286 /* The producer is not always provided in the debugging info.
1287 Do nothing if PRODUCER is NULL. */
1288 if (producer == NULL)
1289 return;
1290
1291 current_subfile->producer = xstrdup (producer);
1292 }
1293
1294 /* Merge the first symbol list SRCLIST into the second symbol list
1295 TARGETLIST by repeated calls to add_symbol_to_list(). This
1296 procedure "frees" each link of SRCLIST by adding it to the
1297 free_pendings list. Caller must set SRCLIST to a null list after
1298 calling this function.
1299
1300 Void return. */
1301
1302 void
1303 merge_symbol_lists (struct pending **srclist, struct pending **targetlist)
1304 {
1305 int i;
1306
1307 if (!srclist || !*srclist)
1308 return;
1309
1310 /* Merge in elements from current link. */
1311 for (i = 0; i < (*srclist)->nsyms; i++)
1312 add_symbol_to_list ((*srclist)->symbol[i], targetlist);
1313
1314 /* Recurse on next. */
1315 merge_symbol_lists (&(*srclist)->next, targetlist);
1316
1317 /* "Free" the current link. */
1318 (*srclist)->next = free_pendings;
1319 free_pendings = (*srclist);
1320 }
1321 \f
1322 /* Initialize anything that needs initializing when starting to read a
1323 fresh piece of a symbol file, e.g. reading in the stuff
1324 corresponding to a psymtab. */
1325
1326 void
1327 buildsym_init (void)
1328 {
1329 free_pendings = NULL;
1330 file_symbols = NULL;
1331 global_symbols = NULL;
1332 pending_blocks = NULL;
1333 pending_macros = NULL;
1334
1335 /* We shouldn't have any address map at this point. */
1336 gdb_assert (! pending_addrmap);
1337 pending_addrmap_interesting = 0;
1338 }
1339
1340 /* Initialize anything that needs initializing when a completely new
1341 symbol file is specified (not just adding some symbols from another
1342 file, e.g. a shared library). */
1343
1344 void
1345 buildsym_new_init (void)
1346 {
1347 buildsym_init ();
1348 }
This page took 0.076497 seconds and 4 git commands to generate.