1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21 /* This module provides subroutines used for creating and adding to
22 the symbol table. These routines are called from various symbol-
23 file-reading routines.
25 Routines to support specific debugging information formats (stabs,
26 DWARF, etc) belong somewhere else. */
32 #include "symfile.h" /* Needed for "struct complaint" */
34 #include "complaints.h"
37 /* Ask buildsym.h to define the vars it normally declares `extern'. */
39 #include "buildsym.h" /* Our own declarations */
43 compare_line_numbers
PARAMS ((const void *, const void *));
45 static struct blockvector
*
46 make_blockvector
PARAMS ((struct objfile
*));
49 /* Initial sizes of data structures. These are realloc'd larger if needed,
50 and realloc'd down to the size actually used, when completed. */
52 #define INITIAL_CONTEXT_STACK_SIZE 10
53 #define INITIAL_LINE_VECTOR_LENGTH 1000
56 /* Complaints about the symbols we have encountered. */
58 struct complaint innerblock_complaint
=
59 {"inner block not inside outer block in %s", 0, 0};
61 struct complaint innerblock_anon_complaint
=
62 {"inner block not inside outer block", 0, 0};
64 struct complaint blockvector_complaint
=
65 {"block at 0x%x out of order", 0, 0};
68 /* maintain the lists of symbols and blocks */
70 /* Add a symbol to one of the lists of symbols. */
73 add_symbol_to_list (symbol
, listhead
)
74 struct symbol
*symbol
;
75 struct pending
**listhead
;
77 register struct pending
*link
;
79 /* We keep PENDINGSIZE symbols in each link of the list.
80 If we don't have a link with room in it, add a new link. */
81 if (*listhead
== NULL
|| (*listhead
)->nsyms
== PENDINGSIZE
)
86 free_pendings
= link
->next
;
90 link
= (struct pending
*) xmalloc (sizeof (struct pending
));
93 link
->next
= *listhead
;
98 (*listhead
)->symbol
[(*listhead
)->nsyms
++] = symbol
;
101 /* Find a symbol on a pending list. */
104 find_symbol_in_list (list
, name
, length
)
105 struct pending
*list
;
114 for (j
= list
->nsyms
; --j
>= 0; )
116 pp
= SYMBOL_NAME (list
->symbol
[j
]);
117 if (*pp
== *name
&& strncmp (pp
, name
, length
) == 0 &&
120 return (list
->symbol
[j
]);
128 /* At end of reading syms, or in case of quit,
129 really free as many `struct pending's as we can easily find. */
133 really_free_pendings (foo
)
136 struct pending
*next
, *next1
;
138 struct pending_block
*bnext
, *bnext1
;
141 for (next
= free_pendings
; next
; next
= next1
)
146 free_pendings
= NULL
;
148 #if 0 /* Now we make the links in the symbol_obstack, so don't free them. */
149 for (bnext
= pending_blocks
; bnext
; bnext
= bnext1
)
151 bnext1
= bnext
->next
;
155 pending_blocks
= NULL
;
157 for (next
= file_symbols
; next
!= NULL
; next
= next1
)
164 for (next
= global_symbols
; next
!= NULL
; next
= next1
)
169 global_symbols
= NULL
;
172 /* Take one of the lists of symbols and make a block from it.
173 Keep the order the symbols have in the list (reversed from the input file).
174 Put the block on the list of pending blocks. */
177 finish_block (symbol
, listhead
, old_blocks
, start
, end
, objfile
)
178 struct symbol
*symbol
;
179 struct pending
**listhead
;
180 struct pending_block
*old_blocks
;
181 CORE_ADDR start
, end
;
182 struct objfile
*objfile
;
184 register struct pending
*next
, *next1
;
185 register struct block
*block
;
186 register struct pending_block
*pblock
;
187 struct pending_block
*opblock
;
191 /* Count the length of the list of symbols. */
193 for (next
= *listhead
, i
= 0;
195 i
+= next
->nsyms
, next
= next
->next
)
200 block
= (struct block
*) obstack_alloc (&objfile
-> symbol_obstack
,
201 (sizeof (struct block
) + ((i
- 1) * sizeof (struct symbol
*))));
203 /* Copy the symbols into the block. */
205 BLOCK_NSYMS (block
) = i
;
206 for (next
= *listhead
; next
; next
= next
->next
)
208 for (j
= next
->nsyms
- 1; j
>= 0; j
--)
210 BLOCK_SYM (block
, --i
) = next
->symbol
[j
];
214 BLOCK_START (block
) = start
;
215 BLOCK_END (block
) = end
;
216 /* Superblock filled in when containing block is made */
217 BLOCK_SUPERBLOCK (block
) = NULL
;
218 BLOCK_GCC_COMPILED (block
) = processing_gcc_compilation
;
220 /* Put the block in as the value of the symbol that names it. */
224 SYMBOL_BLOCK_VALUE (symbol
) = block
;
225 BLOCK_FUNCTION (block
) = symbol
;
229 BLOCK_FUNCTION (block
) = NULL
;
232 /* Now "free" the links of the list, and empty the list. */
234 for (next
= *listhead
; next
; next
= next1
)
237 next
->next
= free_pendings
;
238 free_pendings
= next
;
242 /* Install this block as the superblock
243 of all blocks made since the start of this scope
244 that don't have superblocks yet. */
247 for (pblock
= pending_blocks
; pblock
!= old_blocks
; pblock
= pblock
->next
)
249 if (BLOCK_SUPERBLOCK (pblock
->block
) == NULL
)
252 /* Check to be sure the blocks are nested as we receive them.
253 If the compiler/assembler/linker work, this just burns a small
255 if (BLOCK_START (pblock
->block
) < BLOCK_START (block
) ||
256 BLOCK_END (pblock
->block
) > BLOCK_END (block
))
260 complain (&innerblock_complaint
,
261 SYMBOL_SOURCE_NAME (symbol
));
265 complain (&innerblock_anon_complaint
);
267 BLOCK_START (pblock
->block
) = BLOCK_START (block
);
268 BLOCK_END (pblock
->block
) = BLOCK_END (block
);
271 BLOCK_SUPERBLOCK (pblock
->block
) = block
;
276 /* Record this block on the list of all blocks in the file.
277 Put it after opblock, or at the beginning if opblock is 0.
278 This puts the block in the list after all its subblocks. */
280 /* Allocate in the symbol_obstack to save time.
281 It wastes a little space. */
282 pblock
= (struct pending_block
*)
283 obstack_alloc (&objfile
-> symbol_obstack
,
284 sizeof (struct pending_block
));
285 pblock
->block
= block
;
288 pblock
->next
= opblock
->next
;
289 opblock
->next
= pblock
;
293 pblock
->next
= pending_blocks
;
294 pending_blocks
= pblock
;
298 static struct blockvector
*
299 make_blockvector (objfile
)
300 struct objfile
*objfile
;
302 register struct pending_block
*next
;
303 register struct blockvector
*blockvector
;
306 /* Count the length of the list of blocks. */
308 for (next
= pending_blocks
, i
= 0; next
; next
= next
->next
, i
++) {;}
310 blockvector
= (struct blockvector
*)
311 obstack_alloc (&objfile
-> symbol_obstack
,
312 (sizeof (struct blockvector
)
313 + (i
- 1) * sizeof (struct block
*)));
315 /* Copy the blocks into the blockvector.
316 This is done in reverse order, which happens to put
317 the blocks into the proper order (ascending starting address).
318 finish_block has hair to insert each block into the list
319 after its subblocks in order to make sure this is true. */
321 BLOCKVECTOR_NBLOCKS (blockvector
) = i
;
322 for (next
= pending_blocks
; next
; next
= next
->next
)
324 BLOCKVECTOR_BLOCK (blockvector
, --i
) = next
->block
;
327 #if 0 /* Now we make the links in the obstack, so don't free them. */
328 /* Now free the links of the list, and empty the list. */
330 for (next
= pending_blocks
; next
; next
= next1
)
336 pending_blocks
= NULL
;
338 #if 1 /* FIXME, shut this off after a while to speed up symbol reading. */
339 /* Some compilers output blocks in the wrong order, but we depend
340 on their being in the right order so we can binary search.
341 Check the order and moan about it. FIXME. */
342 if (BLOCKVECTOR_NBLOCKS (blockvector
) > 1)
344 for (i
= 1; i
< BLOCKVECTOR_NBLOCKS (blockvector
); i
++)
346 if (BLOCK_START(BLOCKVECTOR_BLOCK (blockvector
, i
-1))
347 > BLOCK_START(BLOCKVECTOR_BLOCK (blockvector
, i
)))
349 complain (&blockvector_complaint
,
350 BLOCK_START(BLOCKVECTOR_BLOCK (blockvector
, i
)));
356 return (blockvector
);
360 /* Start recording information about source code that came from an included
361 (or otherwise merged-in) source file with a different name. */
364 start_subfile (name
, dirname
)
368 register struct subfile
*subfile
;
370 /* See if this subfile is already known as a subfile of the
371 current main source file. */
373 for (subfile
= subfiles
; subfile
; subfile
= subfile
->next
)
375 if (STREQ (subfile
->name
, name
))
377 current_subfile
= subfile
;
382 /* This subfile is not known. Add an entry for it.
383 Make an entry for this subfile in the list of all subfiles
384 of the current main source file. */
386 subfile
= (struct subfile
*) xmalloc (sizeof (struct subfile
));
387 subfile
->next
= subfiles
;
389 current_subfile
= subfile
;
391 /* Save its name and compilation directory name */
392 subfile
->name
= (name
== NULL
)? NULL
: strdup (name
);
393 subfile
->dirname
= (dirname
== NULL
) ? NULL
: strdup (dirname
);
395 /* Initialize line-number recording for this subfile. */
396 subfile
->line_vector
= NULL
;
398 /* Default the source language to whatever can be deduced from
399 the filename. If nothing can be deduced (such as for a C/C++
400 include file with a ".h" extension), then inherit whatever
401 language the previous subfile had. This kludgery is necessary
402 because there is no standard way in some object formats to
403 record the source language. Also, when symtabs are allocated
404 we try to deduce a language then as well, but it is too late
405 for us to use that information while reading symbols, since
406 symtabs aren't allocated until after all the symbols have
407 been processed for a given source file. */
409 subfile
->language
= deduce_language_from_filename (subfile
->name
);
410 if (subfile
->language
== language_unknown
&&
411 subfile
->next
!= NULL
)
413 subfile
->language
= subfile
->next
->language
;
417 /* For stabs readers, the first N_SO symbol is assumed to be the source
418 file name, and the subfile struct is initialized using that assumption.
419 If another N_SO symbol is later seen, immediately following the first
420 one, then the first one is assumed to be the directory name and the
421 second one is really the source file name.
423 So we have to patch up the subfile struct by moving the old name value to
424 dirname and remembering the new name. Some sanity checking is performed
425 to ensure that the state of the subfile struct is reasonable and that the
426 old name we are assuming to be a directory name actually is (by checking
427 for a trailing '/'). */
430 patch_subfile_names (subfile
, name
)
431 struct subfile
*subfile
;
434 if (subfile
!= NULL
&& subfile
->dirname
== NULL
&& subfile
->name
!= NULL
435 && subfile
->name
[strlen(subfile
->name
)-1] == '/')
437 subfile
->dirname
= subfile
->name
;
438 subfile
->name
= strdup (name
);
440 /* Default the source language to whatever can be deduced from
441 the filename. If nothing can be deduced (such as for a C/C++
442 include file with a ".h" extension), then inherit whatever
443 language the previous subfile had. This kludgery is necessary
444 because there is no standard way in some object formats to
445 record the source language. Also, when symtabs are allocated
446 we try to deduce a language then as well, but it is too late
447 for us to use that information while reading symbols, since
448 symtabs aren't allocated until after all the symbols have
449 been processed for a given source file. */
451 subfile
->language
= deduce_language_from_filename (subfile
->name
);
452 if (subfile
->language
== language_unknown
&&
453 subfile
->next
!= NULL
)
455 subfile
->language
= subfile
->next
->language
;
461 /* Handle the N_BINCL and N_EINCL symbol types
462 that act like N_SOL for switching source files
463 (different subfiles, as we call them) within one object file,
464 but using a stack rather than in an arbitrary order. */
469 register struct subfile_stack
*tem
470 = (struct subfile_stack
*) xmalloc (sizeof (struct subfile_stack
));
472 tem
->next
= subfile_stack
;
474 if (current_subfile
== NULL
|| current_subfile
->name
== NULL
)
478 tem
->name
= current_subfile
->name
;
485 register struct subfile_stack
*link
= subfile_stack
;
492 subfile_stack
= link
->next
;
498 /* Manage the vector of line numbers for each subfile. */
501 record_line (subfile
, line
, pc
)
502 register struct subfile
*subfile
;
506 struct linetable_entry
*e
;
507 /* Ignore the dummy line number in libg.o */
514 /* Make sure line vector exists and is big enough. */
515 if (!subfile
->line_vector
)
517 subfile
->line_vector_length
= INITIAL_LINE_VECTOR_LENGTH
;
518 subfile
->line_vector
= (struct linetable
*)
519 xmalloc (sizeof (struct linetable
)
520 + subfile
->line_vector_length
* sizeof (struct linetable_entry
));
521 subfile
->line_vector
->nitems
= 0;
524 if (subfile
->line_vector
->nitems
+ 1 >= subfile
->line_vector_length
)
526 subfile
->line_vector_length
*= 2;
527 subfile
->line_vector
= (struct linetable
*)
528 xrealloc ((char *) subfile
->line_vector
, (sizeof (struct linetable
)
529 + subfile
->line_vector_length
* sizeof (struct linetable_entry
)));
532 e
= subfile
->line_vector
->item
+ subfile
->line_vector
->nitems
++;
533 e
->line
= line
; e
->pc
= pc
;
537 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */
540 compare_line_numbers (ln1p
, ln2p
)
544 return (((struct linetable_entry
*) ln1p
) -> line
-
545 ((struct linetable_entry
*) ln2p
) -> line
);
549 /* Start a new symtab for a new source file.
550 Called, for example, when a stabs symbol of type N_SO is seen, or when
551 a DWARF TAG_compile_unit DIE is seen.
552 It indicates the start of data for one original source file. */
555 start_symtab (name
, dirname
, start_addr
)
558 CORE_ADDR start_addr
;
561 last_source_file
= name
;
562 last_source_start_addr
= start_addr
;
564 global_symbols
= NULL
;
567 /* Context stack is initially empty. Allocate first one with room for
568 10 levels; reuse it forever afterward. */
569 if (context_stack
== NULL
)
571 context_stack_size
= INITIAL_CONTEXT_STACK_SIZE
;
572 context_stack
= (struct context_stack
*)
573 xmalloc (context_stack_size
* sizeof (struct context_stack
));
575 context_stack_depth
= 0;
577 /* Initialize the list of sub source files with one entry
578 for this file (the top-level source file). */
581 current_subfile
= NULL
;
582 start_subfile (name
, dirname
);
585 /* Finish the symbol definitions for one main source file,
586 close off all the lexical contexts for that file
587 (creating struct block's for them), then make the struct symtab
588 for that file and put it in the list of all such.
590 END_ADDR is the address of the end of the file's text.
591 SECTION is the section number (in objfile->section_offsets) of
592 the blockvector and linetable.
594 Note that it is possible for end_symtab() to return NULL. In particular,
595 for the DWARF case at least, it will return NULL when it finds a
596 compilation unit that has exactly one DIE, a TAG_compile_unit DIE. This
597 can happen when we link in an object file that was compiled from an empty
598 source file. Returning NULL is probably not the correct thing to do,
599 because then gdb will never know about this empty file (FIXME). */
602 end_symtab (end_addr
, sort_pending
, sort_linevec
, objfile
, section
)
606 struct objfile
*objfile
;
609 register struct symtab
*symtab
;
610 register struct blockvector
*blockvector
;
611 register struct subfile
*subfile
;
612 register struct context_stack
*cstk
;
613 struct subfile
*nextsub
;
615 /* Finish the lexical context of the last function in the file;
616 pop the context stack. */
618 if (context_stack_depth
> 0)
620 context_stack_depth
--;
621 cstk
= &context_stack
[context_stack_depth
];
622 /* Make a block for the local symbols within. */
623 finish_block (cstk
->name
, &local_symbols
, cstk
->old_blocks
,
624 cstk
->start_addr
, end_addr
, objfile
);
626 /* Debug: if context stack still has something in it,
627 we are in trouble. */
628 if (context_stack_depth
> 0)
634 /* It is unfortunate that in xcoff, pending blocks might not be ordered
635 in this stage. Especially, blocks for static functions will show up at
636 the end. We need to sort them, so tools like `find_pc_function' and
637 `find_pc_block' can work reliably. */
639 if (sort_pending
&& pending_blocks
)
641 /* FIXME! Remove this horrid bubble sort and use qsort!!! */
645 struct pending_block
*pb
, *pbnext
;
653 /* swap blocks if unordered! */
655 if (BLOCK_START(pb
->block
) < BLOCK_START(pbnext
->block
))
657 struct block
*tmp
= pb
->block
;
658 pb
->block
= pbnext
->block
;
663 pbnext
= pbnext
->next
;
668 /* Cleanup any undefined types that have been left hanging around
669 (this needs to be done before the finish_blocks so that
670 file_symbols is still good).
671 FIXME: Stabs specific. */
672 cleanup_undefined_types ();
673 finish_global_stabs (objfile
);
675 if (pending_blocks
== NULL
676 && file_symbols
== NULL
677 && global_symbols
== NULL
)
679 /* Ignore symtabs that have no functions with real debugging info */
684 /* Define the STATIC_BLOCK & GLOBAL_BLOCK, and build the blockvector. */
685 finish_block (0, &file_symbols
, 0, last_source_start_addr
, end_addr
,
687 finish_block (0, &global_symbols
, 0, last_source_start_addr
, end_addr
,
689 blockvector
= make_blockvector (objfile
);
692 #ifdef PROCESS_LINENUMBER_HOOK
693 PROCESS_LINENUMBER_HOOK (); /* Needed for xcoff. */
696 /* Now create the symtab objects proper, one for each subfile. */
697 /* (The main file is the last one on the chain.) */
699 for (subfile
= subfiles
; subfile
; subfile
= nextsub
)
702 /* If we have blocks of symbols, make a symtab.
703 Otherwise, just ignore this file and any line number info in it. */
707 if (subfile
->line_vector
)
709 /* First, shrink the linetable to make more memory. */
710 linetablesize
= sizeof (struct linetable
) +
711 subfile
->line_vector
->nitems
* sizeof (struct linetable_entry
);
712 subfile
->line_vector
= (struct linetable
*)
713 xrealloc ((char *) subfile
->line_vector
, linetablesize
);
716 qsort (subfile
->line_vector
->item
,
717 subfile
->line_vector
->nitems
,
718 sizeof (struct linetable_entry
), compare_line_numbers
);
721 /* Now, allocate a symbol table. */
722 symtab
= allocate_symtab (subfile
->name
, objfile
);
724 /* Fill in its components. */
725 symtab
->blockvector
= blockvector
;
726 if (subfile
->line_vector
)
728 /* Reallocate the line table on the symbol obstack */
729 symtab
->linetable
= (struct linetable
*)
730 obstack_alloc (&objfile
-> symbol_obstack
, linetablesize
);
731 memcpy (symtab
->linetable
, subfile
->line_vector
, linetablesize
);
735 symtab
->linetable
= NULL
;
737 symtab
->block_line_section
= section
;
738 if (subfile
->dirname
)
740 /* Reallocate the dirname on the symbol obstack */
741 symtab
->dirname
= (char *)
742 obstack_alloc (&objfile
-> symbol_obstack
,
743 strlen (subfile
-> dirname
) + 1);
744 strcpy (symtab
->dirname
, subfile
->dirname
);
748 symtab
->dirname
= NULL
;
750 symtab
->free_code
= free_linetable
;
751 symtab
->free_ptr
= NULL
;
753 /* Use whatever language we have been using for this subfile,
754 not the one that was deduced in allocate_symtab from the
755 filename. We already did our own deducing when we created
756 the subfile, and we may have altered our opinion of what
757 language it is from things we found in the symbols. */
758 symtab
->language
= subfile
->language
;
760 /* All symtabs for the main file and the subfiles share a
761 blockvector, so we need to clear primary for everything but
766 if (subfile
->name
!= NULL
)
768 free ((PTR
) subfile
->name
);
770 if (subfile
->dirname
!= NULL
)
772 free ((PTR
) subfile
->dirname
);
774 if (subfile
->line_vector
!= NULL
)
776 free ((PTR
) subfile
->line_vector
);
779 nextsub
= subfile
->next
;
783 /* Set this for the main source file. */
789 last_source_file
= NULL
;
790 current_subfile
= NULL
;
796 /* Push a context block. Args are an identifying nesting level (checkable
797 when you pop it), and the starting PC address of this context. */
799 struct context_stack
*
800 push_context (desc
, valu
)
804 register struct context_stack
*new;
806 if (context_stack_depth
== context_stack_size
)
808 context_stack_size
*= 2;
809 context_stack
= (struct context_stack
*)
810 xrealloc ((char *) context_stack
,
811 (context_stack_size
* sizeof (struct context_stack
)));
814 new = &context_stack
[context_stack_depth
++];
816 new->locals
= local_symbols
;
817 new->old_blocks
= pending_blocks
;
818 new->start_addr
= valu
;
821 local_symbols
= NULL
;
827 /* Initialize anything that needs initializing when starting to read
828 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
834 free_pendings
= NULL
;
836 global_symbols
= NULL
;
837 pending_blocks
= NULL
;
840 /* Initialize anything that needs initializing when a completely new
841 symbol file is specified (not just adding some symbols from another
842 file, e.g. a shared library). */
850 /* Initializer for this module */
853 _initialize_buildsym ()