* sh-tdep.c (sh_frame_cache): Don't fetch the FPSCR register
[deliverable/binutils-gdb.git] / gdb / buildsym.c
1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* This module provides subroutines used for creating and adding to
20 the symbol table. These routines are called from various symbol-
21 file-reading routines.
22
23 Routines to support specific debugging information formats (stabs,
24 DWARF, etc) belong somewhere else. */
25
26 #include "defs.h"
27 #include "bfd.h"
28 #include "gdb_obstack.h"
29 #include "symtab.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbtypes.h"
33 #include "gdb_assert.h"
34 #include "complaints.h"
35 #include "gdb_string.h"
36 #include "expression.h" /* For "enum exp_opcode" used by... */
37 #include "bcache.h"
38 #include "filenames.h" /* For DOSish file names. */
39 #include "macrotab.h"
40 #include "demangle.h" /* Needed by SYMBOL_INIT_DEMANGLED_NAME. */
41 #include "block.h"
42 #include "cp-support.h"
43 #include "dictionary.h"
44 #include "addrmap.h"
45
46 /* Ask buildsym.h to define the vars it normally declares `extern'. */
47 #define EXTERN
48 /**/
49 #include "buildsym.h" /* Our own declarations. */
50 #undef EXTERN
51
52 /* For cleanup_undefined_types and finish_global_stabs (somewhat
53 questionable--see comment where we call them). */
54
55 #include "stabsread.h"
56
57 /* List of subfiles. */
58
59 static struct subfile *subfiles;
60
61 /* List of free `struct pending' structures for reuse. */
62
63 static struct pending *free_pendings;
64
65 /* Non-zero if symtab has line number info. This prevents an
66 otherwise empty symtab from being tossed. */
67
68 static int have_line_numbers;
69
70 /* The mutable address map for the compilation unit whose symbols
71 we're currently reading. The symtabs' shared blockvector will
72 point to a fixed copy of this. */
73 static struct addrmap *pending_addrmap;
74
75 /* The obstack on which we allocate pending_addrmap.
76 If pending_addrmap is NULL, this is uninitialized; otherwise, it is
77 initialized (and holds pending_addrmap). */
78 static struct obstack pending_addrmap_obstack;
79
80 /* Non-zero if we recorded any ranges in the addrmap that are
81 different from those in the blockvector already. We set this to
82 zero when we start processing a symfile, and if it's still zero at
83 the end, then we just toss the addrmap. */
84 static int pending_addrmap_interesting;
85
86 \f
87 static int compare_line_numbers (const void *ln1p, const void *ln2p);
88 \f
89
90 /* Initial sizes of data structures. These are realloc'd larger if
91 needed, and realloc'd down to the size actually used, when
92 completed. */
93
94 #define INITIAL_CONTEXT_STACK_SIZE 10
95 #define INITIAL_LINE_VECTOR_LENGTH 1000
96 \f
97
98 /* Maintain the lists of symbols and blocks. */
99
100 /* Add a pending list to free_pendings. */
101 void
102 add_free_pendings (struct pending *list)
103 {
104 struct pending *link = list;
105
106 if (list)
107 {
108 while (link->next) link = link->next;
109 link->next = free_pendings;
110 free_pendings = list;
111 }
112 }
113
114 /* Add a symbol to one of the lists of symbols. */
115
116 void
117 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
118 {
119 struct pending *link;
120
121 /* If this is an alias for another symbol, don't add it. */
122 if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
123 return;
124
125 /* We keep PENDINGSIZE symbols in each link of the list. If we
126 don't have a link with room in it, add a new link. */
127 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
128 {
129 if (free_pendings)
130 {
131 link = free_pendings;
132 free_pendings = link->next;
133 }
134 else
135 {
136 link = (struct pending *) xmalloc (sizeof (struct pending));
137 }
138
139 link->next = *listhead;
140 *listhead = link;
141 link->nsyms = 0;
142 }
143
144 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
145 }
146
147 /* Find a symbol named NAME on a LIST. NAME need not be
148 '\0'-terminated; LENGTH is the length of the name. */
149
150 struct symbol *
151 find_symbol_in_list (struct pending *list, char *name, int length)
152 {
153 int j;
154 const char *pp;
155
156 while (list != NULL)
157 {
158 for (j = list->nsyms; --j >= 0;)
159 {
160 pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
161 if (*pp == *name && strncmp (pp, name, length) == 0
162 && pp[length] == '\0')
163 {
164 return (list->symbol[j]);
165 }
166 }
167 list = list->next;
168 }
169 return (NULL);
170 }
171
172 /* At end of reading syms, or in case of quit, really free as many
173 `struct pending's as we can easily find. */
174
175 void
176 really_free_pendings (void *dummy)
177 {
178 struct pending *next, *next1;
179
180 for (next = free_pendings; next; next = next1)
181 {
182 next1 = next->next;
183 xfree ((void *) next);
184 }
185 free_pendings = NULL;
186
187 free_pending_blocks ();
188
189 for (next = file_symbols; next != NULL; next = next1)
190 {
191 next1 = next->next;
192 xfree ((void *) next);
193 }
194 file_symbols = NULL;
195
196 for (next = global_symbols; next != NULL; next = next1)
197 {
198 next1 = next->next;
199 xfree ((void *) next);
200 }
201 global_symbols = NULL;
202
203 if (pending_macros)
204 free_macro_table (pending_macros);
205
206 if (pending_addrmap)
207 {
208 obstack_free (&pending_addrmap_obstack, NULL);
209 pending_addrmap = NULL;
210 }
211 }
212
213 /* This function is called to discard any pending blocks. */
214
215 void
216 free_pending_blocks (void)
217 {
218 /* The links are made in the objfile_obstack, so we only need to
219 reset PENDING_BLOCKS. */
220 pending_blocks = NULL;
221 }
222
223 /* Take one of the lists of symbols and make a block from it. Keep
224 the order the symbols have in the list (reversed from the input
225 file). Put the block on the list of pending blocks. */
226
227 struct block *
228 finish_block (struct symbol *symbol, struct pending **listhead,
229 struct pending_block *old_blocks,
230 CORE_ADDR start, CORE_ADDR end,
231 struct objfile *objfile)
232 {
233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
234 struct pending *next, *next1;
235 struct block *block;
236 struct pending_block *pblock;
237 struct pending_block *opblock;
238
239 block = allocate_block (&objfile->objfile_obstack);
240
241 if (symbol)
242 {
243 BLOCK_DICT (block) = dict_create_linear (&objfile->objfile_obstack,
244 *listhead);
245 }
246 else
247 {
248 BLOCK_DICT (block) = dict_create_hashed (&objfile->objfile_obstack,
249 *listhead);
250 }
251
252 BLOCK_START (block) = start;
253 BLOCK_END (block) = end;
254 /* Superblock filled in when containing block is made. */
255 BLOCK_SUPERBLOCK (block) = NULL;
256 BLOCK_NAMESPACE (block) = NULL;
257
258 /* Put the block in as the value of the symbol that names it. */
259
260 if (symbol)
261 {
262 struct type *ftype = SYMBOL_TYPE (symbol);
263 struct dict_iterator iter;
264 SYMBOL_BLOCK_VALUE (symbol) = block;
265 BLOCK_FUNCTION (block) = symbol;
266
267 if (TYPE_NFIELDS (ftype) <= 0)
268 {
269 /* No parameter type information is recorded with the
270 function's type. Set that from the type of the
271 parameter symbols. */
272 int nparams = 0, iparams;
273 struct symbol *sym;
274 ALL_BLOCK_SYMBOLS (block, iter, sym)
275 {
276 if (SYMBOL_IS_ARGUMENT (sym))
277 nparams++;
278 }
279 if (nparams > 0)
280 {
281 TYPE_NFIELDS (ftype) = nparams;
282 TYPE_FIELDS (ftype) = (struct field *)
283 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
284
285 iparams = 0;
286 ALL_BLOCK_SYMBOLS (block, iter, sym)
287 {
288 if (iparams == nparams)
289 break;
290
291 if (SYMBOL_IS_ARGUMENT (sym))
292 {
293 TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
294 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
295 iparams++;
296 }
297 }
298 }
299 }
300 }
301 else
302 {
303 BLOCK_FUNCTION (block) = NULL;
304 }
305
306 /* Now "free" the links of the list, and empty the list. */
307
308 for (next = *listhead; next; next = next1)
309 {
310 next1 = next->next;
311 next->next = free_pendings;
312 free_pendings = next;
313 }
314 *listhead = NULL;
315
316 /* Check to be sure that the blocks have an end address that is
317 greater than starting address. */
318
319 if (BLOCK_END (block) < BLOCK_START (block))
320 {
321 if (symbol)
322 {
323 complaint (&symfile_complaints,
324 _("block end address less than block "
325 "start address in %s (patched it)"),
326 SYMBOL_PRINT_NAME (symbol));
327 }
328 else
329 {
330 complaint (&symfile_complaints,
331 _("block end address %s less than block "
332 "start address %s (patched it)"),
333 paddress (gdbarch, BLOCK_END (block)),
334 paddress (gdbarch, BLOCK_START (block)));
335 }
336 /* Better than nothing. */
337 BLOCK_END (block) = BLOCK_START (block);
338 }
339
340 /* Install this block as the superblock of all blocks made since the
341 start of this scope that don't have superblocks yet. */
342
343 opblock = NULL;
344 for (pblock = pending_blocks;
345 pblock && pblock != old_blocks;
346 pblock = pblock->next)
347 {
348 if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
349 {
350 /* Check to be sure the blocks are nested as we receive
351 them. If the compiler/assembler/linker work, this just
352 burns a small amount of time.
353
354 Skip blocks which correspond to a function; they're not
355 physically nested inside this other blocks, only
356 lexically nested. */
357 if (BLOCK_FUNCTION (pblock->block) == NULL
358 && (BLOCK_START (pblock->block) < BLOCK_START (block)
359 || BLOCK_END (pblock->block) > BLOCK_END (block)))
360 {
361 if (symbol)
362 {
363 complaint (&symfile_complaints,
364 _("inner block not inside outer block in %s"),
365 SYMBOL_PRINT_NAME (symbol));
366 }
367 else
368 {
369 complaint (&symfile_complaints,
370 _("inner block (%s-%s) not "
371 "inside outer block (%s-%s)"),
372 paddress (gdbarch, BLOCK_START (pblock->block)),
373 paddress (gdbarch, BLOCK_END (pblock->block)),
374 paddress (gdbarch, BLOCK_START (block)),
375 paddress (gdbarch, BLOCK_END (block)));
376 }
377 if (BLOCK_START (pblock->block) < BLOCK_START (block))
378 BLOCK_START (pblock->block) = BLOCK_START (block);
379 if (BLOCK_END (pblock->block) > BLOCK_END (block))
380 BLOCK_END (pblock->block) = BLOCK_END (block);
381 }
382 BLOCK_SUPERBLOCK (pblock->block) = block;
383 }
384 opblock = pblock;
385 }
386
387 block_set_using (block, using_directives, &objfile->objfile_obstack);
388 using_directives = NULL;
389
390 record_pending_block (objfile, block, opblock);
391
392 return block;
393 }
394
395
396 /* Record BLOCK on the list of all blocks in the file. Put it after
397 OPBLOCK, or at the beginning if opblock is NULL. This puts the
398 block in the list after all its subblocks.
399
400 Allocate the pending block struct in the objfile_obstack to save
401 time. This wastes a little space. FIXME: Is it worth it? */
402
403 void
404 record_pending_block (struct objfile *objfile, struct block *block,
405 struct pending_block *opblock)
406 {
407 struct pending_block *pblock;
408
409 pblock = (struct pending_block *)
410 obstack_alloc (&objfile->objfile_obstack, sizeof (struct pending_block));
411 pblock->block = block;
412 if (opblock)
413 {
414 pblock->next = opblock->next;
415 opblock->next = pblock;
416 }
417 else
418 {
419 pblock->next = pending_blocks;
420 pending_blocks = pblock;
421 }
422 }
423
424
425 /* Record that the range of addresses from START to END_INCLUSIVE
426 (inclusive, like it says) belongs to BLOCK. BLOCK's start and end
427 addresses must be set already. You must apply this function to all
428 BLOCK's children before applying it to BLOCK.
429
430 If a call to this function complicates the picture beyond that
431 already provided by BLOCK_START and BLOCK_END, then we create an
432 address map for the block. */
433 void
434 record_block_range (struct block *block,
435 CORE_ADDR start, CORE_ADDR end_inclusive)
436 {
437 /* If this is any different from the range recorded in the block's
438 own BLOCK_START and BLOCK_END, then note that the address map has
439 become interesting. Note that even if this block doesn't have
440 any "interesting" ranges, some later block might, so we still
441 need to record this block in the addrmap. */
442 if (start != BLOCK_START (block)
443 || end_inclusive + 1 != BLOCK_END (block))
444 pending_addrmap_interesting = 1;
445
446 if (! pending_addrmap)
447 {
448 obstack_init (&pending_addrmap_obstack);
449 pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack);
450 }
451
452 addrmap_set_empty (pending_addrmap, start, end_inclusive, block);
453 }
454
455
456 static struct blockvector *
457 make_blockvector (struct objfile *objfile)
458 {
459 struct pending_block *next;
460 struct blockvector *blockvector;
461 int i;
462
463 /* Count the length of the list of blocks. */
464
465 for (next = pending_blocks, i = 0; next; next = next->next, i++)
466 {;
467 }
468
469 blockvector = (struct blockvector *)
470 obstack_alloc (&objfile->objfile_obstack,
471 (sizeof (struct blockvector)
472 + (i - 1) * sizeof (struct block *)));
473
474 /* Copy the blocks into the blockvector. This is done in reverse
475 order, which happens to put the blocks into the proper order
476 (ascending starting address). finish_block has hair to insert
477 each block into the list after its subblocks in order to make
478 sure this is true. */
479
480 BLOCKVECTOR_NBLOCKS (blockvector) = i;
481 for (next = pending_blocks; next; next = next->next)
482 {
483 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
484 }
485
486 free_pending_blocks ();
487
488 /* If we needed an address map for this symtab, record it in the
489 blockvector. */
490 if (pending_addrmap && pending_addrmap_interesting)
491 BLOCKVECTOR_MAP (blockvector)
492 = addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack);
493 else
494 BLOCKVECTOR_MAP (blockvector) = 0;
495
496 /* Some compilers output blocks in the wrong order, but we depend on
497 their being in the right order so we can binary search. Check the
498 order and moan about it. */
499 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
500 {
501 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
502 {
503 if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
504 > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
505 {
506 CORE_ADDR start
507 = BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
508
509 complaint (&symfile_complaints, _("block at %s out of order"),
510 hex_string ((LONGEST) start));
511 }
512 }
513 }
514
515 return (blockvector);
516 }
517 \f
518 /* Start recording information about source code that came from an
519 included (or otherwise merged-in) source file with a different
520 name. NAME is the name of the file (cannot be NULL), DIRNAME is
521 the directory in which the file was compiled (or NULL if not
522 known). */
523
524 void
525 start_subfile (const char *name, const char *dirname)
526 {
527 struct subfile *subfile;
528
529 /* See if this subfile is already known as a subfile of the current
530 main source file. */
531
532 for (subfile = subfiles; subfile; subfile = subfile->next)
533 {
534 char *subfile_name;
535
536 /* If NAME is an absolute path, and this subfile is not, then
537 attempt to create an absolute path to compare. */
538 if (IS_ABSOLUTE_PATH (name)
539 && !IS_ABSOLUTE_PATH (subfile->name)
540 && subfile->dirname != NULL)
541 subfile_name = concat (subfile->dirname, SLASH_STRING,
542 subfile->name, (char *) NULL);
543 else
544 subfile_name = subfile->name;
545
546 if (FILENAME_CMP (subfile_name, name) == 0)
547 {
548 current_subfile = subfile;
549 if (subfile_name != subfile->name)
550 xfree (subfile_name);
551 return;
552 }
553 if (subfile_name != subfile->name)
554 xfree (subfile_name);
555 }
556
557 /* This subfile is not known. Add an entry for it. Make an entry
558 for this subfile in the list of all subfiles of the current main
559 source file. */
560
561 subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
562 memset ((char *) subfile, 0, sizeof (struct subfile));
563 subfile->next = subfiles;
564 subfiles = subfile;
565 current_subfile = subfile;
566
567 /* Save its name and compilation directory name. */
568 subfile->name = (name == NULL) ? NULL : xstrdup (name);
569 subfile->dirname = (dirname == NULL) ? NULL : xstrdup (dirname);
570
571 /* Initialize line-number recording for this subfile. */
572 subfile->line_vector = NULL;
573
574 /* Default the source language to whatever can be deduced from the
575 filename. If nothing can be deduced (such as for a C/C++ include
576 file with a ".h" extension), then inherit whatever language the
577 previous subfile had. This kludgery is necessary because there
578 is no standard way in some object formats to record the source
579 language. Also, when symtabs are allocated we try to deduce a
580 language then as well, but it is too late for us to use that
581 information while reading symbols, since symtabs aren't allocated
582 until after all the symbols have been processed for a given
583 source file. */
584
585 subfile->language = deduce_language_from_filename (subfile->name);
586 if (subfile->language == language_unknown
587 && subfile->next != NULL)
588 {
589 subfile->language = subfile->next->language;
590 }
591
592 /* Initialize the debug format string to NULL. We may supply it
593 later via a call to record_debugformat. */
594 subfile->debugformat = NULL;
595
596 /* Similarly for the producer. */
597 subfile->producer = NULL;
598
599 /* If the filename of this subfile ends in .C, then change the
600 language of any pending subfiles from C to C++. We also accept
601 any other C++ suffixes accepted by deduce_language_from_filename. */
602 /* Likewise for f2c. */
603
604 if (subfile->name)
605 {
606 struct subfile *s;
607 enum language sublang = deduce_language_from_filename (subfile->name);
608
609 if (sublang == language_cplus || sublang == language_fortran)
610 for (s = subfiles; s != NULL; s = s->next)
611 if (s->language == language_c)
612 s->language = sublang;
613 }
614
615 /* And patch up this file if necessary. */
616 if (subfile->language == language_c
617 && subfile->next != NULL
618 && (subfile->next->language == language_cplus
619 || subfile->next->language == language_fortran))
620 {
621 subfile->language = subfile->next->language;
622 }
623 }
624
625 /* For stabs readers, the first N_SO symbol is assumed to be the
626 source file name, and the subfile struct is initialized using that
627 assumption. If another N_SO symbol is later seen, immediately
628 following the first one, then the first one is assumed to be the
629 directory name and the second one is really the source file name.
630
631 So we have to patch up the subfile struct by moving the old name
632 value to dirname and remembering the new name. Some sanity
633 checking is performed to ensure that the state of the subfile
634 struct is reasonable and that the old name we are assuming to be a
635 directory name actually is (by checking for a trailing '/'). */
636
637 void
638 patch_subfile_names (struct subfile *subfile, char *name)
639 {
640 if (subfile != NULL && subfile->dirname == NULL && subfile->name != NULL
641 && IS_DIR_SEPARATOR (subfile->name[strlen (subfile->name) - 1]))
642 {
643 subfile->dirname = subfile->name;
644 subfile->name = xstrdup (name);
645 last_source_file = name;
646
647 /* Default the source language to whatever can be deduced from
648 the filename. If nothing can be deduced (such as for a C/C++
649 include file with a ".h" extension), then inherit whatever
650 language the previous subfile had. This kludgery is
651 necessary because there is no standard way in some object
652 formats to record the source language. Also, when symtabs
653 are allocated we try to deduce a language then as well, but
654 it is too late for us to use that information while reading
655 symbols, since symtabs aren't allocated until after all the
656 symbols have been processed for a given source file. */
657
658 subfile->language = deduce_language_from_filename (subfile->name);
659 if (subfile->language == language_unknown
660 && subfile->next != NULL)
661 {
662 subfile->language = subfile->next->language;
663 }
664 }
665 }
666 \f
667 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
668 switching source files (different subfiles, as we call them) within
669 one object file, but using a stack rather than in an arbitrary
670 order. */
671
672 void
673 push_subfile (void)
674 {
675 struct subfile_stack *tem
676 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
677
678 tem->next = subfile_stack;
679 subfile_stack = tem;
680 if (current_subfile == NULL || current_subfile->name == NULL)
681 {
682 internal_error (__FILE__, __LINE__,
683 _("failed internal consistency check"));
684 }
685 tem->name = current_subfile->name;
686 }
687
688 char *
689 pop_subfile (void)
690 {
691 char *name;
692 struct subfile_stack *link = subfile_stack;
693
694 if (link == NULL)
695 {
696 internal_error (__FILE__, __LINE__,
697 _("failed internal consistency check"));
698 }
699 name = link->name;
700 subfile_stack = link->next;
701 xfree ((void *) link);
702 return (name);
703 }
704 \f
705 /* Add a linetable entry for line number LINE and address PC to the
706 line vector for SUBFILE. */
707
708 void
709 record_line (struct subfile *subfile, int line, CORE_ADDR pc)
710 {
711 struct linetable_entry *e;
712
713 /* Ignore the dummy line number in libg.o */
714 if (line == 0xffff)
715 {
716 return;
717 }
718
719 /* Make sure line vector exists and is big enough. */
720 if (!subfile->line_vector)
721 {
722 subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
723 subfile->line_vector = (struct linetable *)
724 xmalloc (sizeof (struct linetable)
725 + subfile->line_vector_length * sizeof (struct linetable_entry));
726 subfile->line_vector->nitems = 0;
727 have_line_numbers = 1;
728 }
729
730 if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
731 {
732 subfile->line_vector_length *= 2;
733 subfile->line_vector = (struct linetable *)
734 xrealloc ((char *) subfile->line_vector,
735 (sizeof (struct linetable)
736 + (subfile->line_vector_length
737 * sizeof (struct linetable_entry))));
738 }
739
740 /* Normally, we treat lines as unsorted. But the end of sequence
741 marker is special. We sort line markers at the same PC by line
742 number, so end of sequence markers (which have line == 0) appear
743 first. This is right if the marker ends the previous function,
744 and there is no padding before the next function. But it is
745 wrong if the previous line was empty and we are now marking a
746 switch to a different subfile. We must leave the end of sequence
747 marker at the end of this group of lines, not sort the empty line
748 to after the marker. The easiest way to accomplish this is to
749 delete any empty lines from our table, if they are followed by
750 end of sequence markers. All we lose is the ability to set
751 breakpoints at some lines which contain no instructions
752 anyway. */
753 if (line == 0 && subfile->line_vector->nitems > 0)
754 {
755 e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
756 while (subfile->line_vector->nitems > 0 && e->pc == pc)
757 {
758 e--;
759 subfile->line_vector->nitems--;
760 }
761 }
762
763 e = subfile->line_vector->item + subfile->line_vector->nitems++;
764 e->line = line;
765 e->pc = pc;
766 }
767
768 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */
769
770 static int
771 compare_line_numbers (const void *ln1p, const void *ln2p)
772 {
773 struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
774 struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
775
776 /* Note: this code does not assume that CORE_ADDRs can fit in ints.
777 Please keep it that way. */
778 if (ln1->pc < ln2->pc)
779 return -1;
780
781 if (ln1->pc > ln2->pc)
782 return 1;
783
784 /* If pc equal, sort by line. I'm not sure whether this is optimum
785 behavior (see comment at struct linetable in symtab.h). */
786 return ln1->line - ln2->line;
787 }
788 \f
789 /* Start a new symtab for a new source file. Called, for example,
790 when a stabs symbol of type N_SO is seen, or when a DWARF
791 TAG_compile_unit DIE is seen. It indicates the start of data for
792 one original source file.
793
794 NAME is the name of the file (cannot be NULL). DIRNAME is the directory in
795 which the file was compiled (or NULL if not known). START_ADDR is the
796 lowest address of objects in the file (or 0 if not known). */
797
798 void
799 start_symtab (char *name, char *dirname, CORE_ADDR start_addr)
800 {
801 last_source_file = name;
802 last_source_start_addr = start_addr;
803 file_symbols = NULL;
804 global_symbols = NULL;
805 within_function = 0;
806 have_line_numbers = 0;
807
808 /* Context stack is initially empty. Allocate first one with room
809 for 10 levels; reuse it forever afterward. */
810 if (context_stack == NULL)
811 {
812 context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
813 context_stack = (struct context_stack *)
814 xmalloc (context_stack_size * sizeof (struct context_stack));
815 }
816 context_stack_depth = 0;
817
818 /* We shouldn't have any address map at this point. */
819 gdb_assert (! pending_addrmap);
820
821 /* Initialize the list of sub source files with one entry for this
822 file (the top-level source file). */
823
824 subfiles = NULL;
825 current_subfile = NULL;
826 start_subfile (name, dirname);
827 }
828
829 /* Subroutine of end_symtab to simplify it. Look for a subfile that
830 matches the main source file's basename. If there is only one, and
831 if the main source file doesn't have any symbol or line number
832 information, then copy this file's symtab and line_vector to the
833 main source file's subfile and discard the other subfile. This can
834 happen because of a compiler bug or from the user playing games
835 with #line or from things like a distributed build system that
836 manipulates the debug info. */
837
838 static void
839 watch_main_source_file_lossage (void)
840 {
841 struct subfile *mainsub, *subfile;
842
843 /* Find the main source file.
844 This loop could be eliminated if start_symtab saved it for us. */
845 mainsub = NULL;
846 for (subfile = subfiles; subfile; subfile = subfile->next)
847 {
848 /* The main subfile is guaranteed to be the last one. */
849 if (subfile->next == NULL)
850 mainsub = subfile;
851 }
852
853 /* If the main source file doesn't have any line number or symbol
854 info, look for an alias in another subfile.
855
856 We have to watch for mainsub == NULL here. It's a quirk of
857 end_symtab, it can return NULL so there may not be a main
858 subfile. */
859
860 if (mainsub
861 && mainsub->line_vector == NULL
862 && mainsub->symtab == NULL)
863 {
864 const char *mainbase = lbasename (mainsub->name);
865 int nr_matches = 0;
866 struct subfile *prevsub;
867 struct subfile *mainsub_alias = NULL;
868 struct subfile *prev_mainsub_alias = NULL;
869
870 prevsub = NULL;
871 for (subfile = subfiles;
872 /* Stop before we get to the last one. */
873 subfile->next;
874 subfile = subfile->next)
875 {
876 if (filename_cmp (lbasename (subfile->name), mainbase) == 0)
877 {
878 ++nr_matches;
879 mainsub_alias = subfile;
880 prev_mainsub_alias = prevsub;
881 }
882 prevsub = subfile;
883 }
884
885 if (nr_matches == 1)
886 {
887 gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
888
889 /* Found a match for the main source file.
890 Copy its line_vector and symtab to the main subfile
891 and then discard it. */
892
893 mainsub->line_vector = mainsub_alias->line_vector;
894 mainsub->line_vector_length = mainsub_alias->line_vector_length;
895 mainsub->symtab = mainsub_alias->symtab;
896
897 if (prev_mainsub_alias == NULL)
898 subfiles = mainsub_alias->next;
899 else
900 prev_mainsub_alias->next = mainsub_alias->next;
901 xfree (mainsub_alias);
902 }
903 }
904 }
905
906 /* Helper function for qsort. Parametes are `struct block *' pointers,
907 function sorts them in descending order by their BLOCK_START. */
908
909 static int
910 block_compar (const void *ap, const void *bp)
911 {
912 const struct block *a = *(const struct block **) ap;
913 const struct block *b = *(const struct block **) bp;
914
915 return ((BLOCK_START (b) > BLOCK_START (a))
916 - (BLOCK_START (b) < BLOCK_START (a)));
917 }
918
919 /* Finish the symbol definitions for one main source file, close off
920 all the lexical contexts for that file (creating struct block's for
921 them), then make the struct symtab for that file and put it in the
922 list of all such.
923
924 END_ADDR is the address of the end of the file's text. SECTION is
925 the section number (in objfile->section_offsets) of the blockvector
926 and linetable.
927
928 Note that it is possible for end_symtab() to return NULL. In
929 particular, for the DWARF case at least, it will return NULL when
930 it finds a compilation unit that has exactly one DIE, a
931 TAG_compile_unit DIE. This can happen when we link in an object
932 file that was compiled from an empty source file. Returning NULL
933 is probably not the correct thing to do, because then gdb will
934 never know about this empty file (FIXME). */
935
936 struct symtab *
937 end_symtab (CORE_ADDR end_addr, struct objfile *objfile, int section)
938 {
939 struct symtab *symtab = NULL;
940 struct blockvector *blockvector;
941 struct subfile *subfile;
942 struct context_stack *cstk;
943 struct subfile *nextsub;
944
945 /* Finish the lexical context of the last function in the file; pop
946 the context stack. */
947
948 if (context_stack_depth > 0)
949 {
950 cstk = pop_context ();
951 /* Make a block for the local symbols within. */
952 finish_block (cstk->name, &local_symbols, cstk->old_blocks,
953 cstk->start_addr, end_addr, objfile);
954
955 if (context_stack_depth > 0)
956 {
957 /* This is said to happen with SCO. The old coffread.c
958 code simply emptied the context stack, so we do the
959 same. FIXME: Find out why it is happening. This is not
960 believed to happen in most cases (even for coffread.c);
961 it used to be an abort(). */
962 complaint (&symfile_complaints,
963 _("Context stack not empty in end_symtab"));
964 context_stack_depth = 0;
965 }
966 }
967
968 /* Reordered executables may have out of order pending blocks; if
969 OBJF_REORDERED is true, then sort the pending blocks. */
970 if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
971 {
972 unsigned count = 0;
973 struct pending_block *pb;
974 struct block **barray, **bp;
975 struct cleanup *back_to;
976
977 for (pb = pending_blocks; pb != NULL; pb = pb->next)
978 count++;
979
980 barray = xmalloc (sizeof (*barray) * count);
981 back_to = make_cleanup (xfree, barray);
982
983 bp = barray;
984 for (pb = pending_blocks; pb != NULL; pb = pb->next)
985 *bp++ = pb->block;
986
987 qsort (barray, count, sizeof (*barray), block_compar);
988
989 bp = barray;
990 for (pb = pending_blocks; pb != NULL; pb = pb->next)
991 pb->block = *bp++;
992
993 do_cleanups (back_to);
994 }
995
996 /* Cleanup any undefined types that have been left hanging around
997 (this needs to be done before the finish_blocks so that
998 file_symbols is still good).
999
1000 Both cleanup_undefined_types and finish_global_stabs are stabs
1001 specific, but harmless for other symbol readers, since on gdb
1002 startup or when finished reading stabs, the state is set so these
1003 are no-ops. FIXME: Is this handled right in case of QUIT? Can
1004 we make this cleaner? */
1005
1006 cleanup_undefined_types (objfile);
1007 finish_global_stabs (objfile);
1008
1009 if (pending_blocks == NULL
1010 && file_symbols == NULL
1011 && global_symbols == NULL
1012 && have_line_numbers == 0
1013 && pending_macros == NULL)
1014 {
1015 /* Ignore symtabs that have no functions with real debugging
1016 info. */
1017 blockvector = NULL;
1018 }
1019 else
1020 {
1021 /* Define the STATIC_BLOCK & GLOBAL_BLOCK, and build the
1022 blockvector. */
1023 finish_block (0, &file_symbols, 0, last_source_start_addr,
1024 end_addr, objfile);
1025 finish_block (0, &global_symbols, 0, last_source_start_addr,
1026 end_addr, objfile);
1027 blockvector = make_blockvector (objfile);
1028 }
1029
1030 /* Read the line table if it has to be read separately. */
1031 if (objfile->sf->sym_read_linetable != NULL)
1032 objfile->sf->sym_read_linetable ();
1033
1034 /* Handle the case where the debug info specifies a different path
1035 for the main source file. It can cause us to lose track of its
1036 line number information. */
1037 watch_main_source_file_lossage ();
1038
1039 /* Now create the symtab objects proper, one for each subfile. */
1040 /* (The main file is the last one on the chain.) */
1041
1042 for (subfile = subfiles; subfile; subfile = nextsub)
1043 {
1044 int linetablesize = 0;
1045 symtab = NULL;
1046
1047 /* If we have blocks of symbols, make a symtab. Otherwise, just
1048 ignore this file and any line number info in it. */
1049 if (blockvector)
1050 {
1051 if (subfile->line_vector)
1052 {
1053 linetablesize = sizeof (struct linetable) +
1054 subfile->line_vector->nitems * sizeof (struct linetable_entry);
1055
1056 /* Like the pending blocks, the line table may be
1057 scrambled in reordered executables. Sort it if
1058 OBJF_REORDERED is true. */
1059 if (objfile->flags & OBJF_REORDERED)
1060 qsort (subfile->line_vector->item,
1061 subfile->line_vector->nitems,
1062 sizeof (struct linetable_entry), compare_line_numbers);
1063 }
1064
1065 /* Now, allocate a symbol table. */
1066 if (subfile->symtab == NULL)
1067 symtab = allocate_symtab (subfile->name, objfile);
1068 else
1069 symtab = subfile->symtab;
1070
1071 /* Fill in its components. */
1072 symtab->blockvector = blockvector;
1073 symtab->macro_table = pending_macros;
1074 if (subfile->line_vector)
1075 {
1076 /* Reallocate the line table on the symbol obstack. */
1077 symtab->linetable = (struct linetable *)
1078 obstack_alloc (&objfile->objfile_obstack, linetablesize);
1079 memcpy (symtab->linetable, subfile->line_vector, linetablesize);
1080 }
1081 else
1082 {
1083 symtab->linetable = NULL;
1084 }
1085 symtab->block_line_section = section;
1086 if (subfile->dirname)
1087 {
1088 /* Reallocate the dirname on the symbol obstack. */
1089 symtab->dirname = (char *)
1090 obstack_alloc (&objfile->objfile_obstack,
1091 strlen (subfile->dirname) + 1);
1092 strcpy (symtab->dirname, subfile->dirname);
1093 }
1094 else
1095 {
1096 symtab->dirname = NULL;
1097 }
1098
1099 /* Use whatever language we have been using for this
1100 subfile, not the one that was deduced in allocate_symtab
1101 from the filename. We already did our own deducing when
1102 we created the subfile, and we may have altered our
1103 opinion of what language it is from things we found in
1104 the symbols. */
1105 symtab->language = subfile->language;
1106
1107 /* Save the debug format string (if any) in the symtab. */
1108 symtab->debugformat = subfile->debugformat;
1109
1110 /* Similarly for the producer. */
1111 symtab->producer = subfile->producer;
1112
1113 /* All symtabs for the main file and the subfiles share a
1114 blockvector, so we need to clear primary for everything
1115 but the main file. */
1116
1117 symtab->primary = 0;
1118 }
1119 else
1120 {
1121 if (subfile->symtab)
1122 {
1123 /* Since we are ignoring that subfile, we also need
1124 to unlink the associated empty symtab that we created.
1125 Otherwise, we can into trouble because various parts
1126 such as the block-vector are uninitialized whereas
1127 the rest of the code assumes that they are.
1128
1129 We can only unlink the symtab because it was allocated
1130 on the objfile obstack. */
1131 struct symtab *s;
1132
1133 if (objfile->symtabs == subfile->symtab)
1134 objfile->symtabs = objfile->symtabs->next;
1135 else
1136 ALL_OBJFILE_SYMTABS (objfile, s)
1137 if (s->next == subfile->symtab)
1138 {
1139 s->next = s->next->next;
1140 break;
1141 }
1142 subfile->symtab = NULL;
1143 }
1144 }
1145 if (subfile->name != NULL)
1146 {
1147 xfree ((void *) subfile->name);
1148 }
1149 if (subfile->dirname != NULL)
1150 {
1151 xfree ((void *) subfile->dirname);
1152 }
1153 if (subfile->line_vector != NULL)
1154 {
1155 xfree ((void *) subfile->line_vector);
1156 }
1157
1158 nextsub = subfile->next;
1159 xfree ((void *) subfile);
1160 }
1161
1162 /* Set this for the main source file. */
1163 if (symtab)
1164 {
1165 symtab->primary = 1;
1166 }
1167
1168 /* Default any symbols without a specified symtab to the primary
1169 symtab. */
1170 if (blockvector)
1171 {
1172 int block_i;
1173
1174 for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1175 {
1176 struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1177 struct symbol *sym;
1178 struct dict_iterator iter;
1179
1180 /* Inlined functions may have symbols not in the global or
1181 static symbol lists. */
1182 if (BLOCK_FUNCTION (block) != NULL)
1183 if (SYMBOL_SYMTAB (BLOCK_FUNCTION (block)) == NULL)
1184 SYMBOL_SYMTAB (BLOCK_FUNCTION (block)) = symtab;
1185
1186 for (sym = dict_iterator_first (BLOCK_DICT (block), &iter);
1187 sym != NULL;
1188 sym = dict_iterator_next (&iter))
1189 if (SYMBOL_SYMTAB (sym) == NULL)
1190 SYMBOL_SYMTAB (sym) = symtab;
1191 }
1192 }
1193
1194 last_source_file = NULL;
1195 current_subfile = NULL;
1196 pending_macros = NULL;
1197 if (pending_addrmap)
1198 {
1199 obstack_free (&pending_addrmap_obstack, NULL);
1200 pending_addrmap = NULL;
1201 }
1202
1203 return symtab;
1204 }
1205
1206 /* Push a context block. Args are an identifying nesting level
1207 (checkable when you pop it), and the starting PC address of this
1208 context. */
1209
1210 struct context_stack *
1211 push_context (int desc, CORE_ADDR valu)
1212 {
1213 struct context_stack *new;
1214
1215 if (context_stack_depth == context_stack_size)
1216 {
1217 context_stack_size *= 2;
1218 context_stack = (struct context_stack *)
1219 xrealloc ((char *) context_stack,
1220 (context_stack_size * sizeof (struct context_stack)));
1221 }
1222
1223 new = &context_stack[context_stack_depth++];
1224 new->depth = desc;
1225 new->locals = local_symbols;
1226 new->params = param_symbols;
1227 new->old_blocks = pending_blocks;
1228 new->start_addr = valu;
1229 new->using_directives = using_directives;
1230 new->name = NULL;
1231
1232 local_symbols = NULL;
1233 param_symbols = NULL;
1234 using_directives = NULL;
1235
1236 return new;
1237 }
1238
1239 /* Pop a context block. Returns the address of the context block just
1240 popped. */
1241
1242 struct context_stack *
1243 pop_context (void)
1244 {
1245 gdb_assert (context_stack_depth > 0);
1246 return (&context_stack[--context_stack_depth]);
1247 }
1248
1249 \f
1250
1251 /* Compute a small integer hash code for the given name. */
1252
1253 int
1254 hashname (const char *name)
1255 {
1256 return (hash(name,strlen(name)) % HASHSIZE);
1257 }
1258 \f
1259
1260 void
1261 record_debugformat (const char *format)
1262 {
1263 current_subfile->debugformat = format;
1264 }
1265
1266 void
1267 record_producer (const char *producer)
1268 {
1269 current_subfile->producer = producer;
1270 }
1271
1272 /* Merge the first symbol list SRCLIST into the second symbol list
1273 TARGETLIST by repeated calls to add_symbol_to_list(). This
1274 procedure "frees" each link of SRCLIST by adding it to the
1275 free_pendings list. Caller must set SRCLIST to a null list after
1276 calling this function.
1277
1278 Void return. */
1279
1280 void
1281 merge_symbol_lists (struct pending **srclist, struct pending **targetlist)
1282 {
1283 int i;
1284
1285 if (!srclist || !*srclist)
1286 return;
1287
1288 /* Merge in elements from current link. */
1289 for (i = 0; i < (*srclist)->nsyms; i++)
1290 add_symbol_to_list ((*srclist)->symbol[i], targetlist);
1291
1292 /* Recurse on next. */
1293 merge_symbol_lists (&(*srclist)->next, targetlist);
1294
1295 /* "Free" the current link. */
1296 (*srclist)->next = free_pendings;
1297 free_pendings = (*srclist);
1298 }
1299 \f
1300 /* Initialize anything that needs initializing when starting to read a
1301 fresh piece of a symbol file, e.g. reading in the stuff
1302 corresponding to a psymtab. */
1303
1304 void
1305 buildsym_init (void)
1306 {
1307 free_pendings = NULL;
1308 file_symbols = NULL;
1309 global_symbols = NULL;
1310 pending_blocks = NULL;
1311 pending_macros = NULL;
1312
1313 /* We shouldn't have any address map at this point. */
1314 gdb_assert (! pending_addrmap);
1315 pending_addrmap_interesting = 0;
1316 }
1317
1318 /* Initialize anything that needs initializing when a completely new
1319 symbol file is specified (not just adding some symbols from another
1320 file, e.g. a shared library). */
1321
1322 void
1323 buildsym_new_init (void)
1324 {
1325 buildsym_init ();
1326 }
This page took 0.057841 seconds and 4 git commands to generate.