aa7191d785b3ec83112b30d4428e093ae7461a85
[deliverable/binutils-gdb.git] / gdb / buildsym.c
1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright (C) 1986-2018 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* This module provides subroutines used for creating and adding to
20 the symbol table. These routines are called from various symbol-
21 file-reading routines.
22
23 Routines to support specific debugging information formats (stabs,
24 DWARF, etc) belong somewhere else.
25
26 The basic way this module is used is as follows:
27
28 buildsym_init ();
29 scoped_free_pendings free_pending;
30 cust = start_symtab (...);
31 ... read debug info ...
32 cust = end_symtab (...);
33
34 The compunit symtab pointer ("cust") is returned from both start_symtab
35 and end_symtab to simplify the debug info readers.
36
37 There are minor variations on this, e.g., dwarf2read.c splits end_symtab
38 into two calls: end_symtab_get_static_block, end_symtab_from_static_block,
39 but all debug info readers follow this basic flow.
40
41 Reading DWARF Type Units is another variation:
42
43 buildsym_init ();
44 scoped_free_pendings free_pending;
45 cust = start_symtab (...);
46 ... read debug info ...
47 cust = end_expandable_symtab (...);
48
49 And then reading subsequent Type Units within the containing "Comp Unit"
50 will use a second flow:
51
52 buildsym_init ();
53 scoped_free_pendings free_pending;
54 cust = restart_symtab (...);
55 ... read debug info ...
56 cust = augment_type_symtab (...);
57
58 dbxread.c and xcoffread.c use another variation:
59
60 buildsym_init ();
61 scoped_free_pendings free_pending;
62 cust = start_symtab (...);
63 ... read debug info ...
64 cust = end_symtab (...);
65 ... start_symtab + read + end_symtab repeated ...
66 */
67
68 #include "defs.h"
69 #include "bfd.h"
70 #include "gdb_obstack.h"
71 #include "symtab.h"
72 #include "symfile.h"
73 #include "objfiles.h"
74 #include "gdbtypes.h"
75 #include "complaints.h"
76 #include "expression.h" /* For "enum exp_opcode" used by... */
77 #include "filenames.h" /* For DOSish file names. */
78 #include "macrotab.h"
79 #include "demangle.h" /* Needed by SYMBOL_INIT_DEMANGLED_NAME. */
80 #include "block.h"
81 #include "cp-support.h"
82 #include "dictionary.h"
83 #include "addrmap.h"
84 #include <algorithm>
85
86 /* Ask buildsym.h to define the vars it normally declares `extern'. */
87 #define EXTERN
88 /**/
89 #include "buildsym.h" /* Our own declarations. */
90 #undef EXTERN
91
92 /* For cleanup_undefined_stabs_types and finish_global_stabs (somewhat
93 questionable--see comment where we call them). */
94
95 #include "stabsread.h"
96
97 /* Buildsym's counterpart to struct compunit_symtab.
98 TODO(dje): Move all related global state into here. */
99
100 struct buildsym_compunit
101 {
102 /* Start recording information about a primary source file (IOW, not an
103 included source file).
104 COMP_DIR is the directory in which the compilation unit was compiled
105 (or NULL if not known). */
106
107 buildsym_compunit (struct objfile *objfile_, const char *name,
108 const char *comp_dir_, enum language language_,
109 CORE_ADDR last_addr)
110 : objfile (objfile_),
111 m_last_source_file (name == nullptr ? nullptr : xstrdup (name)),
112 comp_dir (comp_dir_ == nullptr ? nullptr : xstrdup (comp_dir_)),
113 language (language_),
114 m_last_source_start_addr (last_addr)
115 {
116 }
117
118 ~buildsym_compunit ()
119 {
120 struct subfile *subfile, *nextsub;
121
122 if (m_pending_macros != nullptr)
123 free_macro_table (m_pending_macros);
124
125 for (subfile = subfiles;
126 subfile != NULL;
127 subfile = nextsub)
128 {
129 nextsub = subfile->next;
130 xfree (subfile->name);
131 xfree (subfile->line_vector);
132 xfree (subfile);
133 }
134 }
135
136 void set_last_source_file (const char *name)
137 {
138 char *new_name = name == NULL ? NULL : xstrdup (name);
139 m_last_source_file.reset (new_name);
140 }
141
142 struct macro_table *get_macro_table ()
143 {
144 if (m_pending_macros == nullptr)
145 m_pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
146 objfile->per_bfd->macro_cache,
147 compunit_symtab);
148 return m_pending_macros;
149 }
150
151 struct macro_table *release_macros ()
152 {
153 struct macro_table *result = m_pending_macros;
154 m_pending_macros = nullptr;
155 return result;
156 }
157
158 /* The objfile we're reading debug info from. */
159 struct objfile *objfile;
160
161 /* List of subfiles (source files).
162 Files are added to the front of the list.
163 This is important mostly for the language determination hacks we use,
164 which iterate over previously added files. */
165 struct subfile *subfiles = nullptr;
166
167 /* The subfile of the main source file. */
168 struct subfile *main_subfile = nullptr;
169
170 /* Name of source file whose symbol data we are now processing. This
171 comes from a symbol of type N_SO for stabs. For DWARF it comes
172 from the DW_AT_name attribute of a DW_TAG_compile_unit DIE. */
173 gdb::unique_xmalloc_ptr<char> m_last_source_file;
174
175 /* E.g., DW_AT_comp_dir if DWARF. Space for this is malloc'd. */
176 gdb::unique_xmalloc_ptr<char> comp_dir;
177
178 /* Space for this is not malloc'd, and is assumed to have at least
179 the same lifetime as objfile. */
180 const char *producer = nullptr;
181
182 /* Space for this is not malloc'd, and is assumed to have at least
183 the same lifetime as objfile. */
184 const char *debugformat = nullptr;
185
186 /* The compunit we are building. */
187 struct compunit_symtab *compunit_symtab = nullptr;
188
189 /* Language of this compunit_symtab. */
190 enum language language;
191
192 /* The macro table for the compilation unit whose symbols we're
193 currently reading. */
194 struct macro_table *m_pending_macros = nullptr;
195
196 /* True if symtab has line number info. This prevents an otherwise
197 empty symtab from being tossed. */
198 bool m_have_line_numbers = false;
199
200 /* Core address of start of text of current source file. This too
201 comes from the N_SO symbol. For Dwarf it typically comes from the
202 DW_AT_low_pc attribute of a DW_TAG_compile_unit DIE. */
203 CORE_ADDR m_last_source_start_addr;
204
205 /* Stack of subfile names. */
206 std::vector<const char *> m_subfile_stack;
207
208 /* The "using" directives local to lexical context. */
209 struct using_direct *m_local_using_directives = nullptr;
210
211 /* Global "using" directives. */
212 struct using_direct *m_global_using_directives = nullptr;
213
214 /* The stack of contexts that are pushed by push_context and popped
215 by pop_context. */
216 std::vector<struct context_stack> m_context_stack;
217 };
218
219 /* The work-in-progress of the compunit we are building.
220 This is created first, before any subfiles by start_symtab. */
221
222 static struct buildsym_compunit *buildsym_compunit;
223
224 /* List of free `struct pending' structures for reuse. */
225
226 static struct pending *free_pendings;
227
228 /* The mutable address map for the compilation unit whose symbols
229 we're currently reading. The symtabs' shared blockvector will
230 point to a fixed copy of this. */
231 static struct addrmap *pending_addrmap;
232
233 /* The obstack on which we allocate pending_addrmap.
234 If pending_addrmap is NULL, this is uninitialized; otherwise, it is
235 initialized (and holds pending_addrmap). */
236 static struct obstack pending_addrmap_obstack;
237
238 /* Non-zero if we recorded any ranges in the addrmap that are
239 different from those in the blockvector already. We set this to
240 zero when we start processing a symfile, and if it's still zero at
241 the end, then we just toss the addrmap. */
242 static int pending_addrmap_interesting;
243
244 /* An obstack used for allocating pending blocks. */
245
246 static struct obstack pending_block_obstack;
247
248 /* List of blocks already made (lexical contexts already closed).
249 This is used at the end to make the blockvector. */
250
251 struct pending_block
252 {
253 struct pending_block *next;
254 struct block *block;
255 };
256
257 /* Pointer to the head of a linked list of symbol blocks which have
258 already been finalized (lexical contexts already closed) and which
259 are just waiting to be built into a blockvector when finalizing the
260 associated symtab. */
261
262 static struct pending_block *pending_blocks;
263
264 static void free_buildsym_compunit (void);
265
266 static int compare_line_numbers (const void *ln1p, const void *ln2p);
267
268 static void record_pending_block (struct objfile *objfile,
269 struct block *block,
270 struct pending_block *opblock);
271
272 static void free_pending_blocks ();
273
274 /* Initial sizes of data structures. These are realloc'd larger if
275 needed, and realloc'd down to the size actually used, when
276 completed. */
277
278 #define INITIAL_LINE_VECTOR_LENGTH 1000
279 \f
280
281 /* Maintain the lists of symbols and blocks. */
282
283 /* Add a symbol to one of the lists of symbols. */
284
285 void
286 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
287 {
288 struct pending *link;
289
290 /* If this is an alias for another symbol, don't add it. */
291 if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
292 return;
293
294 /* We keep PENDINGSIZE symbols in each link of the list. If we
295 don't have a link with room in it, add a new link. */
296 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
297 {
298 if (free_pendings)
299 {
300 link = free_pendings;
301 free_pendings = link->next;
302 }
303 else
304 {
305 link = XNEW (struct pending);
306 }
307
308 link->next = *listhead;
309 *listhead = link;
310 link->nsyms = 0;
311 }
312
313 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
314 }
315
316 /* Find a symbol named NAME on a LIST. NAME need not be
317 '\0'-terminated; LENGTH is the length of the name. */
318
319 struct symbol *
320 find_symbol_in_list (struct pending *list, char *name, int length)
321 {
322 int j;
323 const char *pp;
324
325 while (list != NULL)
326 {
327 for (j = list->nsyms; --j >= 0;)
328 {
329 pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
330 if (*pp == *name && strncmp (pp, name, length) == 0
331 && pp[length] == '\0')
332 {
333 return (list->symbol[j]);
334 }
335 }
336 list = list->next;
337 }
338 return (NULL);
339 }
340
341 scoped_free_pendings::scoped_free_pendings ()
342 {
343 gdb_assert (pending_blocks == nullptr);
344 }
345
346 /* At end of reading syms, or in case of quit, ensure everything
347 associated with building symtabs is freed.
348
349 N.B. This is *not* intended to be used when building psymtabs. Some debug
350 info readers call this anyway, which is harmless if confusing. */
351
352 scoped_free_pendings::~scoped_free_pendings ()
353 {
354 struct pending *next, *next1;
355
356 for (next = free_pendings; next; next = next1)
357 {
358 next1 = next->next;
359 xfree ((void *) next);
360 }
361 free_pendings = NULL;
362
363 free_pending_blocks ();
364
365 for (next = file_symbols; next != NULL; next = next1)
366 {
367 next1 = next->next;
368 xfree ((void *) next);
369 }
370 file_symbols = NULL;
371
372 for (next = global_symbols; next != NULL; next = next1)
373 {
374 next1 = next->next;
375 xfree ((void *) next);
376 }
377 global_symbols = NULL;
378
379 if (pending_addrmap)
380 obstack_free (&pending_addrmap_obstack, NULL);
381 pending_addrmap = NULL;
382
383 free_buildsym_compunit ();
384 }
385
386 /* This function is called to discard any pending blocks. */
387
388 static void
389 free_pending_blocks ()
390 {
391 if (pending_blocks != NULL)
392 {
393 obstack_free (&pending_block_obstack, NULL);
394 pending_blocks = NULL;
395 }
396 }
397
398 /* Take one of the lists of symbols and make a block from it. Keep
399 the order the symbols have in the list (reversed from the input
400 file). Put the block on the list of pending blocks. */
401
402 static struct block *
403 finish_block_internal (struct symbol *symbol,
404 struct pending **listhead,
405 struct pending_block *old_blocks,
406 const struct dynamic_prop *static_link,
407 CORE_ADDR start, CORE_ADDR end,
408 int is_global, int expandable)
409 {
410 struct objfile *objfile = buildsym_compunit->objfile;
411 struct gdbarch *gdbarch = get_objfile_arch (objfile);
412 struct pending *next, *next1;
413 struct block *block;
414 struct pending_block *pblock;
415 struct pending_block *opblock;
416
417 block = (is_global
418 ? allocate_global_block (&objfile->objfile_obstack)
419 : allocate_block (&objfile->objfile_obstack));
420
421 if (symbol)
422 {
423 BLOCK_DICT (block)
424 = dict_create_linear (&objfile->objfile_obstack,
425 buildsym_compunit->language, *listhead);
426 }
427 else
428 {
429 if (expandable)
430 {
431 BLOCK_DICT (block)
432 = dict_create_hashed_expandable (buildsym_compunit->language);
433 dict_add_pending (BLOCK_DICT (block), *listhead);
434 }
435 else
436 {
437 BLOCK_DICT (block) =
438 dict_create_hashed (&objfile->objfile_obstack,
439 buildsym_compunit->language, *listhead);
440 }
441 }
442
443 BLOCK_START (block) = start;
444 BLOCK_END (block) = end;
445
446 /* Put the block in as the value of the symbol that names it. */
447
448 if (symbol)
449 {
450 struct type *ftype = SYMBOL_TYPE (symbol);
451 struct dict_iterator iter;
452 SYMBOL_BLOCK_VALUE (symbol) = block;
453 BLOCK_FUNCTION (block) = symbol;
454
455 if (TYPE_NFIELDS (ftype) <= 0)
456 {
457 /* No parameter type information is recorded with the
458 function's type. Set that from the type of the
459 parameter symbols. */
460 int nparams = 0, iparams;
461 struct symbol *sym;
462
463 /* Here we want to directly access the dictionary, because
464 we haven't fully initialized the block yet. */
465 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
466 {
467 if (SYMBOL_IS_ARGUMENT (sym))
468 nparams++;
469 }
470 if (nparams > 0)
471 {
472 TYPE_NFIELDS (ftype) = nparams;
473 TYPE_FIELDS (ftype) = (struct field *)
474 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
475
476 iparams = 0;
477 /* Here we want to directly access the dictionary, because
478 we haven't fully initialized the block yet. */
479 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
480 {
481 if (iparams == nparams)
482 break;
483
484 if (SYMBOL_IS_ARGUMENT (sym))
485 {
486 TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
487 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
488 iparams++;
489 }
490 }
491 }
492 }
493 }
494 else
495 {
496 BLOCK_FUNCTION (block) = NULL;
497 }
498
499 if (static_link != NULL)
500 objfile_register_static_link (objfile, block, static_link);
501
502 /* Now "free" the links of the list, and empty the list. */
503
504 for (next = *listhead; next; next = next1)
505 {
506 next1 = next->next;
507 next->next = free_pendings;
508 free_pendings = next;
509 }
510 *listhead = NULL;
511
512 /* Check to be sure that the blocks have an end address that is
513 greater than starting address. */
514
515 if (BLOCK_END (block) < BLOCK_START (block))
516 {
517 if (symbol)
518 {
519 complaint (_("block end address less than block "
520 "start address in %s (patched it)"),
521 SYMBOL_PRINT_NAME (symbol));
522 }
523 else
524 {
525 complaint (_("block end address %s less than block "
526 "start address %s (patched it)"),
527 paddress (gdbarch, BLOCK_END (block)),
528 paddress (gdbarch, BLOCK_START (block)));
529 }
530 /* Better than nothing. */
531 BLOCK_END (block) = BLOCK_START (block);
532 }
533
534 /* Install this block as the superblock of all blocks made since the
535 start of this scope that don't have superblocks yet. */
536
537 opblock = NULL;
538 for (pblock = pending_blocks;
539 pblock && pblock != old_blocks;
540 pblock = pblock->next)
541 {
542 if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
543 {
544 /* Check to be sure the blocks are nested as we receive
545 them. If the compiler/assembler/linker work, this just
546 burns a small amount of time.
547
548 Skip blocks which correspond to a function; they're not
549 physically nested inside this other blocks, only
550 lexically nested. */
551 if (BLOCK_FUNCTION (pblock->block) == NULL
552 && (BLOCK_START (pblock->block) < BLOCK_START (block)
553 || BLOCK_END (pblock->block) > BLOCK_END (block)))
554 {
555 if (symbol)
556 {
557 complaint (_("inner block not inside outer block in %s"),
558 SYMBOL_PRINT_NAME (symbol));
559 }
560 else
561 {
562 complaint (_("inner block (%s-%s) not "
563 "inside outer block (%s-%s)"),
564 paddress (gdbarch, BLOCK_START (pblock->block)),
565 paddress (gdbarch, BLOCK_END (pblock->block)),
566 paddress (gdbarch, BLOCK_START (block)),
567 paddress (gdbarch, BLOCK_END (block)));
568 }
569 if (BLOCK_START (pblock->block) < BLOCK_START (block))
570 BLOCK_START (pblock->block) = BLOCK_START (block);
571 if (BLOCK_END (pblock->block) > BLOCK_END (block))
572 BLOCK_END (pblock->block) = BLOCK_END (block);
573 }
574 BLOCK_SUPERBLOCK (pblock->block) = block;
575 }
576 opblock = pblock;
577 }
578
579 block_set_using (block,
580 (is_global
581 ? buildsym_compunit->m_global_using_directives
582 : buildsym_compunit->m_local_using_directives),
583 &objfile->objfile_obstack);
584 if (is_global)
585 buildsym_compunit->m_global_using_directives = NULL;
586 else
587 buildsym_compunit->m_local_using_directives = NULL;
588
589 record_pending_block (objfile, block, opblock);
590
591 return block;
592 }
593
594 struct block *
595 finish_block (struct symbol *symbol,
596 struct pending **listhead,
597 struct pending_block *old_blocks,
598 const struct dynamic_prop *static_link,
599 CORE_ADDR start, CORE_ADDR end)
600 {
601 return finish_block_internal (symbol, listhead, old_blocks, static_link,
602 start, end, 0, 0);
603 }
604
605 /* Record BLOCK on the list of all blocks in the file. Put it after
606 OPBLOCK, or at the beginning if opblock is NULL. This puts the
607 block in the list after all its subblocks.
608
609 Allocate the pending block struct in the objfile_obstack to save
610 time. This wastes a little space. FIXME: Is it worth it? */
611
612 static void
613 record_pending_block (struct objfile *objfile, struct block *block,
614 struct pending_block *opblock)
615 {
616 struct pending_block *pblock;
617
618 if (pending_blocks == NULL)
619 obstack_init (&pending_block_obstack);
620
621 pblock = XOBNEW (&pending_block_obstack, struct pending_block);
622 pblock->block = block;
623 if (opblock)
624 {
625 pblock->next = opblock->next;
626 opblock->next = pblock;
627 }
628 else
629 {
630 pblock->next = pending_blocks;
631 pending_blocks = pblock;
632 }
633 }
634
635
636 /* Record that the range of addresses from START to END_INCLUSIVE
637 (inclusive, like it says) belongs to BLOCK. BLOCK's start and end
638 addresses must be set already. You must apply this function to all
639 BLOCK's children before applying it to BLOCK.
640
641 If a call to this function complicates the picture beyond that
642 already provided by BLOCK_START and BLOCK_END, then we create an
643 address map for the block. */
644 void
645 record_block_range (struct block *block,
646 CORE_ADDR start, CORE_ADDR end_inclusive)
647 {
648 /* If this is any different from the range recorded in the block's
649 own BLOCK_START and BLOCK_END, then note that the address map has
650 become interesting. Note that even if this block doesn't have
651 any "interesting" ranges, some later block might, so we still
652 need to record this block in the addrmap. */
653 if (start != BLOCK_START (block)
654 || end_inclusive + 1 != BLOCK_END (block))
655 pending_addrmap_interesting = 1;
656
657 if (! pending_addrmap)
658 {
659 obstack_init (&pending_addrmap_obstack);
660 pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack);
661 }
662
663 addrmap_set_empty (pending_addrmap, start, end_inclusive, block);
664 }
665
666 static struct blockvector *
667 make_blockvector (void)
668 {
669 struct objfile *objfile = buildsym_compunit->objfile;
670 struct pending_block *next;
671 struct blockvector *blockvector;
672 int i;
673
674 /* Count the length of the list of blocks. */
675
676 for (next = pending_blocks, i = 0; next; next = next->next, i++)
677 {;
678 }
679
680 blockvector = (struct blockvector *)
681 obstack_alloc (&objfile->objfile_obstack,
682 (sizeof (struct blockvector)
683 + (i - 1) * sizeof (struct block *)));
684
685 /* Copy the blocks into the blockvector. This is done in reverse
686 order, which happens to put the blocks into the proper order
687 (ascending starting address). finish_block has hair to insert
688 each block into the list after its subblocks in order to make
689 sure this is true. */
690
691 BLOCKVECTOR_NBLOCKS (blockvector) = i;
692 for (next = pending_blocks; next; next = next->next)
693 {
694 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
695 }
696
697 free_pending_blocks ();
698
699 /* If we needed an address map for this symtab, record it in the
700 blockvector. */
701 if (pending_addrmap && pending_addrmap_interesting)
702 BLOCKVECTOR_MAP (blockvector)
703 = addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack);
704 else
705 BLOCKVECTOR_MAP (blockvector) = 0;
706
707 /* Some compilers output blocks in the wrong order, but we depend on
708 their being in the right order so we can binary search. Check the
709 order and moan about it.
710 Note: Remember that the first two blocks are the global and static
711 blocks. We could special case that fact and begin checking at block 2.
712 To avoid making that assumption we do not. */
713 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
714 {
715 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
716 {
717 if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
718 > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
719 {
720 CORE_ADDR start
721 = BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
722
723 complaint (_("block at %s out of order"),
724 hex_string ((LONGEST) start));
725 }
726 }
727 }
728
729 return (blockvector);
730 }
731 \f
732 /* Start recording information about source code that came from an
733 included (or otherwise merged-in) source file with a different
734 name. NAME is the name of the file (cannot be NULL). */
735
736 void
737 start_subfile (const char *name)
738 {
739 const char *subfile_dirname;
740 struct subfile *subfile;
741
742 gdb_assert (buildsym_compunit != NULL);
743
744 subfile_dirname = buildsym_compunit->comp_dir.get ();
745
746 /* See if this subfile is already registered. */
747
748 for (subfile = buildsym_compunit->subfiles; subfile; subfile = subfile->next)
749 {
750 char *subfile_name;
751
752 /* If NAME is an absolute path, and this subfile is not, then
753 attempt to create an absolute path to compare. */
754 if (IS_ABSOLUTE_PATH (name)
755 && !IS_ABSOLUTE_PATH (subfile->name)
756 && subfile_dirname != NULL)
757 subfile_name = concat (subfile_dirname, SLASH_STRING,
758 subfile->name, (char *) NULL);
759 else
760 subfile_name = subfile->name;
761
762 if (FILENAME_CMP (subfile_name, name) == 0)
763 {
764 current_subfile = subfile;
765 if (subfile_name != subfile->name)
766 xfree (subfile_name);
767 return;
768 }
769 if (subfile_name != subfile->name)
770 xfree (subfile_name);
771 }
772
773 /* This subfile is not known. Add an entry for it. */
774
775 subfile = XNEW (struct subfile);
776 memset (subfile, 0, sizeof (struct subfile));
777 subfile->buildsym_compunit = buildsym_compunit;
778
779 subfile->next = buildsym_compunit->subfiles;
780 buildsym_compunit->subfiles = subfile;
781
782 current_subfile = subfile;
783
784 subfile->name = xstrdup (name);
785
786 /* Initialize line-number recording for this subfile. */
787 subfile->line_vector = NULL;
788
789 /* Default the source language to whatever can be deduced from the
790 filename. If nothing can be deduced (such as for a C/C++ include
791 file with a ".h" extension), then inherit whatever language the
792 previous subfile had. This kludgery is necessary because there
793 is no standard way in some object formats to record the source
794 language. Also, when symtabs are allocated we try to deduce a
795 language then as well, but it is too late for us to use that
796 information while reading symbols, since symtabs aren't allocated
797 until after all the symbols have been processed for a given
798 source file. */
799
800 subfile->language = deduce_language_from_filename (subfile->name);
801 if (subfile->language == language_unknown
802 && subfile->next != NULL)
803 {
804 subfile->language = subfile->next->language;
805 }
806
807 /* If the filename of this subfile ends in .C, then change the
808 language of any pending subfiles from C to C++. We also accept
809 any other C++ suffixes accepted by deduce_language_from_filename. */
810 /* Likewise for f2c. */
811
812 if (subfile->name)
813 {
814 struct subfile *s;
815 enum language sublang = deduce_language_from_filename (subfile->name);
816
817 if (sublang == language_cplus || sublang == language_fortran)
818 for (s = buildsym_compunit->subfiles; s != NULL; s = s->next)
819 if (s->language == language_c)
820 s->language = sublang;
821 }
822
823 /* And patch up this file if necessary. */
824 if (subfile->language == language_c
825 && subfile->next != NULL
826 && (subfile->next->language == language_cplus
827 || subfile->next->language == language_fortran))
828 {
829 subfile->language = subfile->next->language;
830 }
831 }
832
833 /* Delete the buildsym compunit. */
834
835 static void
836 free_buildsym_compunit (void)
837 {
838 if (buildsym_compunit == NULL)
839 return;
840 delete buildsym_compunit;
841 buildsym_compunit = NULL;
842 current_subfile = NULL;
843 }
844
845 /* For stabs readers, the first N_SO symbol is assumed to be the
846 source file name, and the subfile struct is initialized using that
847 assumption. If another N_SO symbol is later seen, immediately
848 following the first one, then the first one is assumed to be the
849 directory name and the second one is really the source file name.
850
851 So we have to patch up the subfile struct by moving the old name
852 value to dirname and remembering the new name. Some sanity
853 checking is performed to ensure that the state of the subfile
854 struct is reasonable and that the old name we are assuming to be a
855 directory name actually is (by checking for a trailing '/'). */
856
857 void
858 patch_subfile_names (struct subfile *subfile, const char *name)
859 {
860 if (subfile != NULL
861 && buildsym_compunit->comp_dir == NULL
862 && subfile->name != NULL
863 && IS_DIR_SEPARATOR (subfile->name[strlen (subfile->name) - 1]))
864 {
865 buildsym_compunit->comp_dir.reset (subfile->name);
866 subfile->name = xstrdup (name);
867 set_last_source_file (name);
868
869 /* Default the source language to whatever can be deduced from
870 the filename. If nothing can be deduced (such as for a C/C++
871 include file with a ".h" extension), then inherit whatever
872 language the previous subfile had. This kludgery is
873 necessary because there is no standard way in some object
874 formats to record the source language. Also, when symtabs
875 are allocated we try to deduce a language then as well, but
876 it is too late for us to use that information while reading
877 symbols, since symtabs aren't allocated until after all the
878 symbols have been processed for a given source file. */
879
880 subfile->language = deduce_language_from_filename (subfile->name);
881 if (subfile->language == language_unknown
882 && subfile->next != NULL)
883 {
884 subfile->language = subfile->next->language;
885 }
886 }
887 }
888 \f
889 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
890 switching source files (different subfiles, as we call them) within
891 one object file, but using a stack rather than in an arbitrary
892 order. */
893
894 void
895 push_subfile ()
896 {
897 gdb_assert (buildsym_compunit != nullptr);
898 gdb_assert (current_subfile != NULL && current_subfile->name != NULL);
899 buildsym_compunit->m_subfile_stack.push_back (current_subfile->name);
900 }
901
902 const char *
903 pop_subfile ()
904 {
905 gdb_assert (buildsym_compunit != nullptr);
906 gdb_assert (!buildsym_compunit->m_subfile_stack.empty ());
907 const char *name = buildsym_compunit->m_subfile_stack.back ();
908 buildsym_compunit->m_subfile_stack.pop_back ();
909 return name;
910 }
911 \f
912 /* Add a linetable entry for line number LINE and address PC to the
913 line vector for SUBFILE. */
914
915 void
916 record_line (struct subfile *subfile, int line, CORE_ADDR pc)
917 {
918 struct linetable_entry *e;
919
920 /* Ignore the dummy line number in libg.o */
921 if (line == 0xffff)
922 {
923 return;
924 }
925
926 /* Make sure line vector exists and is big enough. */
927 if (!subfile->line_vector)
928 {
929 subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
930 subfile->line_vector = (struct linetable *)
931 xmalloc (sizeof (struct linetable)
932 + subfile->line_vector_length * sizeof (struct linetable_entry));
933 subfile->line_vector->nitems = 0;
934 buildsym_compunit->m_have_line_numbers = true;
935 }
936
937 if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
938 {
939 subfile->line_vector_length *= 2;
940 subfile->line_vector = (struct linetable *)
941 xrealloc ((char *) subfile->line_vector,
942 (sizeof (struct linetable)
943 + (subfile->line_vector_length
944 * sizeof (struct linetable_entry))));
945 }
946
947 /* Normally, we treat lines as unsorted. But the end of sequence
948 marker is special. We sort line markers at the same PC by line
949 number, so end of sequence markers (which have line == 0) appear
950 first. This is right if the marker ends the previous function,
951 and there is no padding before the next function. But it is
952 wrong if the previous line was empty and we are now marking a
953 switch to a different subfile. We must leave the end of sequence
954 marker at the end of this group of lines, not sort the empty line
955 to after the marker. The easiest way to accomplish this is to
956 delete any empty lines from our table, if they are followed by
957 end of sequence markers. All we lose is the ability to set
958 breakpoints at some lines which contain no instructions
959 anyway. */
960 if (line == 0 && subfile->line_vector->nitems > 0)
961 {
962 e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
963 while (subfile->line_vector->nitems > 0 && e->pc == pc)
964 {
965 e--;
966 subfile->line_vector->nitems--;
967 }
968 }
969
970 e = subfile->line_vector->item + subfile->line_vector->nitems++;
971 e->line = line;
972 e->pc = pc;
973 }
974
975 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */
976
977 static int
978 compare_line_numbers (const void *ln1p, const void *ln2p)
979 {
980 struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
981 struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
982
983 /* Note: this code does not assume that CORE_ADDRs can fit in ints.
984 Please keep it that way. */
985 if (ln1->pc < ln2->pc)
986 return -1;
987
988 if (ln1->pc > ln2->pc)
989 return 1;
990
991 /* If pc equal, sort by line. I'm not sure whether this is optimum
992 behavior (see comment at struct linetable in symtab.h). */
993 return ln1->line - ln2->line;
994 }
995 \f
996 /* See buildsym.h. */
997
998 struct compunit_symtab *
999 buildsym_compunit_symtab (void)
1000 {
1001 gdb_assert (buildsym_compunit != NULL);
1002
1003 return buildsym_compunit->compunit_symtab;
1004 }
1005
1006 /* See buildsym.h. */
1007
1008 struct macro_table *
1009 get_macro_table (void)
1010 {
1011 struct objfile *objfile;
1012
1013 gdb_assert (buildsym_compunit != NULL);
1014 return buildsym_compunit->get_macro_table ();
1015 }
1016 \f
1017 /* Init state to prepare for building a symtab.
1018 Note: This can't be done in buildsym_init because dbxread.c and xcoffread.c
1019 can call start_symtab+end_symtab multiple times after one call to
1020 buildsym_init. */
1021
1022 static void
1023 prepare_for_building ()
1024 {
1025 local_symbols = NULL;
1026
1027 /* These should have been reset either by successful completion of building
1028 a symtab, or by the scoped_free_pendings destructor. */
1029 gdb_assert (file_symbols == NULL);
1030 gdb_assert (global_symbols == NULL);
1031 gdb_assert (pending_addrmap == NULL);
1032 gdb_assert (current_subfile == NULL);
1033 gdb_assert (buildsym_compunit == nullptr);
1034 }
1035
1036 /* Start a new symtab for a new source file in OBJFILE. Called, for example,
1037 when a stabs symbol of type N_SO is seen, or when a DWARF
1038 TAG_compile_unit DIE is seen. It indicates the start of data for
1039 one original source file.
1040
1041 NAME is the name of the file (cannot be NULL). COMP_DIR is the
1042 directory in which the file was compiled (or NULL if not known).
1043 START_ADDR is the lowest address of objects in the file (or 0 if
1044 not known). LANGUAGE is the language of the source file, or
1045 language_unknown if not known, in which case it'll be deduced from
1046 the filename. */
1047
1048 struct compunit_symtab *
1049 start_symtab (struct objfile *objfile, const char *name, const char *comp_dir,
1050 CORE_ADDR start_addr, enum language language)
1051 {
1052 prepare_for_building ();
1053
1054 buildsym_compunit = new struct buildsym_compunit (objfile, name, comp_dir,
1055 language, start_addr);
1056
1057 /* Allocate the compunit symtab now. The caller needs it to allocate
1058 non-primary symtabs. It is also needed by get_macro_table. */
1059 buildsym_compunit->compunit_symtab = allocate_compunit_symtab (objfile,
1060 name);
1061
1062 /* Build the subfile for NAME (the main source file) so that we can record
1063 a pointer to it for later.
1064 IMPORTANT: Do not allocate a struct symtab for NAME here.
1065 It can happen that the debug info provides a different path to NAME than
1066 DIRNAME,NAME. We cope with this in watch_main_source_file_lossage but
1067 that only works if the main_subfile doesn't have a symtab yet. */
1068 start_subfile (name);
1069 /* Save this so that we don't have to go looking for it at the end
1070 of the subfiles list. */
1071 buildsym_compunit->main_subfile = current_subfile;
1072
1073 return buildsym_compunit->compunit_symtab;
1074 }
1075
1076 /* Restart compilation for a symtab.
1077 CUST is the result of end_expandable_symtab.
1078 NAME, START_ADDR are the source file we are resuming with.
1079
1080 This is used when a symtab is built from multiple sources.
1081 The symtab is first built with start_symtab/end_expandable_symtab
1082 and then for each additional piece call restart_symtab/augment_*_symtab.
1083 Note: At the moment there is only augment_type_symtab. */
1084
1085 void
1086 restart_symtab (struct compunit_symtab *cust,
1087 const char *name, CORE_ADDR start_addr)
1088 {
1089 prepare_for_building ();
1090
1091 buildsym_compunit
1092 = new struct buildsym_compunit (COMPUNIT_OBJFILE (cust),
1093 name,
1094 COMPUNIT_DIRNAME (cust),
1095 compunit_language (cust),
1096 start_addr);
1097 buildsym_compunit->compunit_symtab = cust;
1098 }
1099
1100 /* Subroutine of end_symtab to simplify it. Look for a subfile that
1101 matches the main source file's basename. If there is only one, and
1102 if the main source file doesn't have any symbol or line number
1103 information, then copy this file's symtab and line_vector to the
1104 main source file's subfile and discard the other subfile. This can
1105 happen because of a compiler bug or from the user playing games
1106 with #line or from things like a distributed build system that
1107 manipulates the debug info. This can also happen from an innocent
1108 symlink in the paths, we don't canonicalize paths here. */
1109
1110 static void
1111 watch_main_source_file_lossage (void)
1112 {
1113 struct subfile *mainsub, *subfile;
1114
1115 /* We have to watch for buildsym_compunit == NULL here. It's a quirk of
1116 end_symtab, it can return NULL so there may not be a main subfile. */
1117 if (buildsym_compunit == NULL)
1118 return;
1119
1120 /* Get the main source file. */
1121 mainsub = buildsym_compunit->main_subfile;
1122
1123 /* If the main source file doesn't have any line number or symbol
1124 info, look for an alias in another subfile. */
1125
1126 if (mainsub->line_vector == NULL
1127 && mainsub->symtab == NULL)
1128 {
1129 const char *mainbase = lbasename (mainsub->name);
1130 int nr_matches = 0;
1131 struct subfile *prevsub;
1132 struct subfile *mainsub_alias = NULL;
1133 struct subfile *prev_mainsub_alias = NULL;
1134
1135 prevsub = NULL;
1136 for (subfile = buildsym_compunit->subfiles;
1137 subfile != NULL;
1138 subfile = subfile->next)
1139 {
1140 if (subfile == mainsub)
1141 continue;
1142 if (filename_cmp (lbasename (subfile->name), mainbase) == 0)
1143 {
1144 ++nr_matches;
1145 mainsub_alias = subfile;
1146 prev_mainsub_alias = prevsub;
1147 }
1148 prevsub = subfile;
1149 }
1150
1151 if (nr_matches == 1)
1152 {
1153 gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
1154
1155 /* Found a match for the main source file.
1156 Copy its line_vector and symtab to the main subfile
1157 and then discard it. */
1158
1159 mainsub->line_vector = mainsub_alias->line_vector;
1160 mainsub->line_vector_length = mainsub_alias->line_vector_length;
1161 mainsub->symtab = mainsub_alias->symtab;
1162
1163 if (prev_mainsub_alias == NULL)
1164 buildsym_compunit->subfiles = mainsub_alias->next;
1165 else
1166 prev_mainsub_alias->next = mainsub_alias->next;
1167 xfree (mainsub_alias->name);
1168 xfree (mainsub_alias);
1169 }
1170 }
1171 }
1172
1173 /* Reset state after a successful building of a symtab.
1174 This exists because dbxread.c and xcoffread.c can call
1175 start_symtab+end_symtab multiple times after one call to buildsym_init,
1176 and before the scoped_free_pendings destructor is called.
1177 We keep the free_pendings list around for dbx/xcoff sake. */
1178
1179 static void
1180 reset_symtab_globals (void)
1181 {
1182 local_symbols = NULL;
1183 file_symbols = NULL;
1184 global_symbols = NULL;
1185
1186 if (pending_addrmap)
1187 obstack_free (&pending_addrmap_obstack, NULL);
1188 pending_addrmap = NULL;
1189
1190 free_buildsym_compunit ();
1191 }
1192
1193 /* Implementation of the first part of end_symtab. It allows modifying
1194 STATIC_BLOCK before it gets finalized by end_symtab_from_static_block.
1195 If the returned value is NULL there is no blockvector created for
1196 this symtab (you still must call end_symtab_from_static_block).
1197
1198 END_ADDR is the same as for end_symtab: the address of the end of the
1199 file's text.
1200
1201 If EXPANDABLE is non-zero the STATIC_BLOCK dictionary is made
1202 expandable.
1203
1204 If REQUIRED is non-zero, then a symtab is created even if it does
1205 not contain any symbols. */
1206
1207 struct block *
1208 end_symtab_get_static_block (CORE_ADDR end_addr, int expandable, int required)
1209 {
1210 struct objfile *objfile = buildsym_compunit->objfile;
1211
1212 /* Finish the lexical context of the last function in the file; pop
1213 the context stack. */
1214
1215 if (!buildsym_compunit->m_context_stack.empty ())
1216 {
1217 struct context_stack cstk = pop_context ();
1218
1219 /* Make a block for the local symbols within. */
1220 finish_block (cstk.name, &local_symbols, cstk.old_blocks, NULL,
1221 cstk.start_addr, end_addr);
1222
1223 if (!buildsym_compunit->m_context_stack.empty ())
1224 {
1225 /* This is said to happen with SCO. The old coffread.c
1226 code simply emptied the context stack, so we do the
1227 same. FIXME: Find out why it is happening. This is not
1228 believed to happen in most cases (even for coffread.c);
1229 it used to be an abort(). */
1230 complaint (_("Context stack not empty in end_symtab"));
1231 buildsym_compunit->m_context_stack.clear ();
1232 }
1233 }
1234
1235 /* Reordered executables may have out of order pending blocks; if
1236 OBJF_REORDERED is true, then sort the pending blocks. */
1237
1238 if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
1239 {
1240 struct pending_block *pb;
1241
1242 std::vector<block *> barray;
1243
1244 for (pb = pending_blocks; pb != NULL; pb = pb->next)
1245 barray.push_back (pb->block);
1246
1247 /* Sort blocks by start address in descending order. Blocks with the
1248 same start address must remain in the original order to preserve
1249 inline function caller/callee relationships. */
1250 std::stable_sort (barray.begin (), barray.end (),
1251 [] (const block *a, const block *b)
1252 {
1253 return BLOCK_START (a) > BLOCK_START (b);
1254 });
1255
1256 int i = 0;
1257 for (pb = pending_blocks; pb != NULL; pb = pb->next)
1258 pb->block = barray[i++];
1259 }
1260
1261 /* Cleanup any undefined types that have been left hanging around
1262 (this needs to be done before the finish_blocks so that
1263 file_symbols is still good).
1264
1265 Both cleanup_undefined_stabs_types and finish_global_stabs are stabs
1266 specific, but harmless for other symbol readers, since on gdb
1267 startup or when finished reading stabs, the state is set so these
1268 are no-ops. FIXME: Is this handled right in case of QUIT? Can
1269 we make this cleaner? */
1270
1271 cleanup_undefined_stabs_types (objfile);
1272 finish_global_stabs (objfile);
1273
1274 if (!required
1275 && pending_blocks == NULL
1276 && file_symbols == NULL
1277 && global_symbols == NULL
1278 && !buildsym_compunit->m_have_line_numbers
1279 && buildsym_compunit->m_pending_macros == NULL
1280 && buildsym_compunit->m_global_using_directives == NULL)
1281 {
1282 /* Ignore symtabs that have no functions with real debugging info. */
1283 return NULL;
1284 }
1285 else
1286 {
1287 /* Define the STATIC_BLOCK. */
1288 return finish_block_internal (NULL, &file_symbols, NULL, NULL,
1289 buildsym_compunit->m_last_source_start_addr,
1290 end_addr, 0, expandable);
1291 }
1292 }
1293
1294 /* Subroutine of end_symtab_from_static_block to simplify it.
1295 Handle the "have blockvector" case.
1296 See end_symtab_from_static_block for a description of the arguments. */
1297
1298 static struct compunit_symtab *
1299 end_symtab_with_blockvector (struct block *static_block,
1300 int section, int expandable)
1301 {
1302 struct objfile *objfile = buildsym_compunit->objfile;
1303 struct compunit_symtab *cu = buildsym_compunit->compunit_symtab;
1304 struct symtab *symtab;
1305 struct blockvector *blockvector;
1306 struct subfile *subfile;
1307 CORE_ADDR end_addr;
1308
1309 gdb_assert (static_block != NULL);
1310 gdb_assert (buildsym_compunit != NULL);
1311 gdb_assert (buildsym_compunit->subfiles != NULL);
1312
1313 end_addr = BLOCK_END (static_block);
1314
1315 /* Create the GLOBAL_BLOCK and build the blockvector. */
1316 finish_block_internal (NULL, &global_symbols, NULL, NULL,
1317 buildsym_compunit->m_last_source_start_addr, end_addr,
1318 1, expandable);
1319 blockvector = make_blockvector ();
1320
1321 /* Read the line table if it has to be read separately.
1322 This is only used by xcoffread.c. */
1323 if (objfile->sf->sym_read_linetable != NULL)
1324 objfile->sf->sym_read_linetable (objfile);
1325
1326 /* Handle the case where the debug info specifies a different path
1327 for the main source file. It can cause us to lose track of its
1328 line number information. */
1329 watch_main_source_file_lossage ();
1330
1331 /* Now create the symtab objects proper, if not already done,
1332 one for each subfile. */
1333
1334 for (subfile = buildsym_compunit->subfiles;
1335 subfile != NULL;
1336 subfile = subfile->next)
1337 {
1338 int linetablesize = 0;
1339
1340 if (subfile->line_vector)
1341 {
1342 linetablesize = sizeof (struct linetable) +
1343 subfile->line_vector->nitems * sizeof (struct linetable_entry);
1344
1345 /* Like the pending blocks, the line table may be
1346 scrambled in reordered executables. Sort it if
1347 OBJF_REORDERED is true. */
1348 if (objfile->flags & OBJF_REORDERED)
1349 qsort (subfile->line_vector->item,
1350 subfile->line_vector->nitems,
1351 sizeof (struct linetable_entry), compare_line_numbers);
1352 }
1353
1354 /* Allocate a symbol table if necessary. */
1355 if (subfile->symtab == NULL)
1356 subfile->symtab = allocate_symtab (cu, subfile->name);
1357 symtab = subfile->symtab;
1358
1359 /* Fill in its components. */
1360
1361 if (subfile->line_vector)
1362 {
1363 /* Reallocate the line table on the symbol obstack. */
1364 SYMTAB_LINETABLE (symtab) = (struct linetable *)
1365 obstack_alloc (&objfile->objfile_obstack, linetablesize);
1366 memcpy (SYMTAB_LINETABLE (symtab), subfile->line_vector,
1367 linetablesize);
1368 }
1369 else
1370 {
1371 SYMTAB_LINETABLE (symtab) = NULL;
1372 }
1373
1374 /* Use whatever language we have been using for this
1375 subfile, not the one that was deduced in allocate_symtab
1376 from the filename. We already did our own deducing when
1377 we created the subfile, and we may have altered our
1378 opinion of what language it is from things we found in
1379 the symbols. */
1380 symtab->language = subfile->language;
1381 }
1382
1383 /* Make sure the symtab of main_subfile is the first in its list. */
1384 {
1385 struct symtab *main_symtab, *prev_symtab;
1386
1387 main_symtab = buildsym_compunit->main_subfile->symtab;
1388 prev_symtab = NULL;
1389 ALL_COMPUNIT_FILETABS (cu, symtab)
1390 {
1391 if (symtab == main_symtab)
1392 {
1393 if (prev_symtab != NULL)
1394 {
1395 prev_symtab->next = main_symtab->next;
1396 main_symtab->next = COMPUNIT_FILETABS (cu);
1397 COMPUNIT_FILETABS (cu) = main_symtab;
1398 }
1399 break;
1400 }
1401 prev_symtab = symtab;
1402 }
1403 gdb_assert (main_symtab == COMPUNIT_FILETABS (cu));
1404 }
1405
1406 /* Fill out the compunit symtab. */
1407
1408 if (buildsym_compunit->comp_dir != NULL)
1409 {
1410 /* Reallocate the dirname on the symbol obstack. */
1411 const char *comp_dir = buildsym_compunit->comp_dir.get ();
1412 COMPUNIT_DIRNAME (cu)
1413 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
1414 comp_dir, strlen (comp_dir));
1415 }
1416
1417 /* Save the debug format string (if any) in the symtab. */
1418 COMPUNIT_DEBUGFORMAT (cu) = buildsym_compunit->debugformat;
1419
1420 /* Similarly for the producer. */
1421 COMPUNIT_PRODUCER (cu) = buildsym_compunit->producer;
1422
1423 COMPUNIT_BLOCKVECTOR (cu) = blockvector;
1424 {
1425 struct block *b = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1426
1427 set_block_compunit_symtab (b, cu);
1428 }
1429
1430 COMPUNIT_BLOCK_LINE_SECTION (cu) = section;
1431
1432 COMPUNIT_MACRO_TABLE (cu) = buildsym_compunit->release_macros ();
1433
1434 /* Default any symbols without a specified symtab to the primary symtab. */
1435 {
1436 int block_i;
1437
1438 /* The main source file's symtab. */
1439 symtab = COMPUNIT_FILETABS (cu);
1440
1441 for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1442 {
1443 struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1444 struct symbol *sym;
1445 struct dict_iterator iter;
1446
1447 /* Inlined functions may have symbols not in the global or
1448 static symbol lists. */
1449 if (BLOCK_FUNCTION (block) != NULL)
1450 if (symbol_symtab (BLOCK_FUNCTION (block)) == NULL)
1451 symbol_set_symtab (BLOCK_FUNCTION (block), symtab);
1452
1453 /* Note that we only want to fix up symbols from the local
1454 blocks, not blocks coming from included symtabs. That is why
1455 we use ALL_DICT_SYMBOLS here and not ALL_BLOCK_SYMBOLS. */
1456 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
1457 if (symbol_symtab (sym) == NULL)
1458 symbol_set_symtab (sym, symtab);
1459 }
1460 }
1461
1462 add_compunit_symtab_to_objfile (cu);
1463
1464 return cu;
1465 }
1466
1467 /* Implementation of the second part of end_symtab. Pass STATIC_BLOCK
1468 as value returned by end_symtab_get_static_block.
1469
1470 SECTION is the same as for end_symtab: the section number
1471 (in objfile->section_offsets) of the blockvector and linetable.
1472
1473 If EXPANDABLE is non-zero the GLOBAL_BLOCK dictionary is made
1474 expandable. */
1475
1476 struct compunit_symtab *
1477 end_symtab_from_static_block (struct block *static_block,
1478 int section, int expandable)
1479 {
1480 struct compunit_symtab *cu;
1481
1482 if (static_block == NULL)
1483 {
1484 /* Handle the "no blockvector" case.
1485 When this happens there is nothing to record, so there's nothing
1486 to do: memory will be freed up later.
1487
1488 Note: We won't be adding a compunit to the objfile's list of
1489 compunits, so there's nothing to unchain. However, since each symtab
1490 is added to the objfile's obstack we can't free that space.
1491 We could do better, but this is believed to be a sufficiently rare
1492 event. */
1493 cu = NULL;
1494 }
1495 else
1496 cu = end_symtab_with_blockvector (static_block, section, expandable);
1497
1498 reset_symtab_globals ();
1499
1500 return cu;
1501 }
1502
1503 /* Finish the symbol definitions for one main source file, close off
1504 all the lexical contexts for that file (creating struct block's for
1505 them), then make the struct symtab for that file and put it in the
1506 list of all such.
1507
1508 END_ADDR is the address of the end of the file's text. SECTION is
1509 the section number (in objfile->section_offsets) of the blockvector
1510 and linetable.
1511
1512 Note that it is possible for end_symtab() to return NULL. In
1513 particular, for the DWARF case at least, it will return NULL when
1514 it finds a compilation unit that has exactly one DIE, a
1515 TAG_compile_unit DIE. This can happen when we link in an object
1516 file that was compiled from an empty source file. Returning NULL
1517 is probably not the correct thing to do, because then gdb will
1518 never know about this empty file (FIXME).
1519
1520 If you need to modify STATIC_BLOCK before it is finalized you should
1521 call end_symtab_get_static_block and end_symtab_from_static_block
1522 yourself. */
1523
1524 struct compunit_symtab *
1525 end_symtab (CORE_ADDR end_addr, int section)
1526 {
1527 struct block *static_block;
1528
1529 static_block = end_symtab_get_static_block (end_addr, 0, 0);
1530 return end_symtab_from_static_block (static_block, section, 0);
1531 }
1532
1533 /* Same as end_symtab except create a symtab that can be later added to. */
1534
1535 struct compunit_symtab *
1536 end_expandable_symtab (CORE_ADDR end_addr, int section)
1537 {
1538 struct block *static_block;
1539
1540 static_block = end_symtab_get_static_block (end_addr, 1, 0);
1541 return end_symtab_from_static_block (static_block, section, 1);
1542 }
1543
1544 /* Subroutine of augment_type_symtab to simplify it.
1545 Attach the main source file's symtab to all symbols in PENDING_LIST that
1546 don't have one. */
1547
1548 static void
1549 set_missing_symtab (struct pending *pending_list,
1550 struct compunit_symtab *cu)
1551 {
1552 struct pending *pending;
1553 int i;
1554
1555 for (pending = pending_list; pending != NULL; pending = pending->next)
1556 {
1557 for (i = 0; i < pending->nsyms; ++i)
1558 {
1559 if (symbol_symtab (pending->symbol[i]) == NULL)
1560 symbol_set_symtab (pending->symbol[i], COMPUNIT_FILETABS (cu));
1561 }
1562 }
1563 }
1564
1565 /* Same as end_symtab, but for the case where we're adding more symbols
1566 to an existing symtab that is known to contain only type information.
1567 This is the case for DWARF4 Type Units. */
1568
1569 void
1570 augment_type_symtab (void)
1571 {
1572 struct compunit_symtab *cust = buildsym_compunit->compunit_symtab;
1573 const struct blockvector *blockvector = COMPUNIT_BLOCKVECTOR (cust);
1574
1575 if (!buildsym_compunit->m_context_stack.empty ())
1576 complaint (_("Context stack not empty in augment_type_symtab"));
1577 if (pending_blocks != NULL)
1578 complaint (_("Blocks in a type symtab"));
1579 if (buildsym_compunit->m_pending_macros != NULL)
1580 complaint (_("Macro in a type symtab"));
1581 if (buildsym_compunit->m_have_line_numbers)
1582 complaint (_("Line numbers recorded in a type symtab"));
1583
1584 if (file_symbols != NULL)
1585 {
1586 struct block *block = BLOCKVECTOR_BLOCK (blockvector, STATIC_BLOCK);
1587
1588 /* First mark any symbols without a specified symtab as belonging
1589 to the primary symtab. */
1590 set_missing_symtab (file_symbols, cust);
1591
1592 dict_add_pending (BLOCK_DICT (block), file_symbols);
1593 }
1594
1595 if (global_symbols != NULL)
1596 {
1597 struct block *block = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1598
1599 /* First mark any symbols without a specified symtab as belonging
1600 to the primary symtab. */
1601 set_missing_symtab (global_symbols, cust);
1602
1603 dict_add_pending (BLOCK_DICT (block), global_symbols);
1604 }
1605
1606 reset_symtab_globals ();
1607 }
1608
1609 /* Push a context block. Args are an identifying nesting level
1610 (checkable when you pop it), and the starting PC address of this
1611 context. */
1612
1613 struct context_stack *
1614 push_context (int desc, CORE_ADDR valu)
1615 {
1616 gdb_assert (buildsym_compunit != nullptr);
1617
1618 buildsym_compunit->m_context_stack.emplace_back ();
1619 struct context_stack *newobj = &buildsym_compunit->m_context_stack.back ();
1620
1621 newobj->depth = desc;
1622 newobj->locals = local_symbols;
1623 newobj->old_blocks = pending_blocks;
1624 newobj->start_addr = valu;
1625 newobj->local_using_directives
1626 = buildsym_compunit->m_local_using_directives;
1627 newobj->name = NULL;
1628
1629 local_symbols = NULL;
1630 buildsym_compunit->m_local_using_directives = NULL;
1631
1632 return newobj;
1633 }
1634
1635 /* Pop a context block. Returns the address of the context block just
1636 popped. */
1637
1638 struct context_stack
1639 pop_context ()
1640 {
1641 gdb_assert (buildsym_compunit != nullptr);
1642 gdb_assert (!buildsym_compunit->m_context_stack.empty ());
1643 struct context_stack result = buildsym_compunit->m_context_stack.back ();
1644 buildsym_compunit->m_context_stack.pop_back ();
1645 return result;
1646 }
1647
1648 \f
1649
1650 void
1651 record_debugformat (const char *format)
1652 {
1653 buildsym_compunit->debugformat = format;
1654 }
1655
1656 void
1657 record_producer (const char *producer)
1658 {
1659 buildsym_compunit->producer = producer;
1660 }
1661
1662 \f
1663
1664 /* See buildsym.h. */
1665
1666 void
1667 set_last_source_file (const char *name)
1668 {
1669 gdb_assert (buildsym_compunit != nullptr || name == nullptr);
1670 if (buildsym_compunit != nullptr)
1671 buildsym_compunit->set_last_source_file (name);
1672 }
1673
1674 /* See buildsym.h. */
1675
1676 const char *
1677 get_last_source_file (void)
1678 {
1679 if (buildsym_compunit == nullptr)
1680 return nullptr;
1681 return buildsym_compunit->m_last_source_file.get ();
1682 }
1683
1684 /* See buildsym.h. */
1685
1686 void
1687 set_last_source_start_addr (CORE_ADDR addr)
1688 {
1689 gdb_assert (buildsym_compunit != nullptr);
1690 buildsym_compunit->m_last_source_start_addr = addr;
1691 }
1692
1693 /* See buildsym.h. */
1694
1695 CORE_ADDR
1696 get_last_source_start_addr ()
1697 {
1698 gdb_assert (buildsym_compunit != nullptr);
1699 return buildsym_compunit->m_last_source_start_addr;
1700 }
1701
1702 /* See buildsym.h. */
1703
1704 struct using_direct **
1705 get_local_using_directives ()
1706 {
1707 gdb_assert (buildsym_compunit != nullptr);
1708 return &buildsym_compunit->m_local_using_directives;
1709 }
1710
1711 /* See buildsym.h. */
1712
1713 void
1714 set_local_using_directives (struct using_direct *new_local)
1715 {
1716 gdb_assert (buildsym_compunit != nullptr);
1717 buildsym_compunit->m_local_using_directives = new_local;
1718 }
1719
1720 /* See buildsym.h. */
1721
1722 struct using_direct **
1723 get_global_using_directives ()
1724 {
1725 gdb_assert (buildsym_compunit != nullptr);
1726 return &buildsym_compunit->m_global_using_directives;
1727 }
1728
1729 /* See buildsym.h. */
1730
1731 bool
1732 outermost_context_p ()
1733 {
1734 gdb_assert (buildsym_compunit != nullptr);
1735 return buildsym_compunit->m_context_stack.empty ();
1736 }
1737
1738 /* See buildsym.h. */
1739
1740 struct context_stack *
1741 get_current_context_stack ()
1742 {
1743 gdb_assert (buildsym_compunit != nullptr);
1744 if (buildsym_compunit->m_context_stack.empty ())
1745 return nullptr;
1746 return &buildsym_compunit->m_context_stack.back ();
1747 }
1748
1749 /* See buildsym.h. */
1750
1751 int
1752 get_context_stack_depth ()
1753 {
1754 gdb_assert (buildsym_compunit != nullptr);
1755 return buildsym_compunit->m_context_stack.size ();
1756 }
1757
1758 \f
1759
1760 /* Initialize anything that needs initializing when starting to read a
1761 fresh piece of a symbol file, e.g. reading in the stuff
1762 corresponding to a psymtab. */
1763
1764 void
1765 buildsym_init ()
1766 {
1767 pending_addrmap_interesting = 0;
1768
1769 /* Ensure the scoped_free_pendings destructor was called after
1770 the last time. */
1771 gdb_assert (free_pendings == NULL);
1772 gdb_assert (pending_blocks == NULL);
1773 gdb_assert (file_symbols == NULL);
1774 gdb_assert (global_symbols == NULL);
1775 gdb_assert (pending_addrmap == NULL);
1776 gdb_assert (buildsym_compunit == NULL);
1777 }
This page took 0.075816 seconds and 4 git commands to generate.