gdb/
[deliverable/binutils-gdb.git] / gdb / buildsym.c
1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* This module provides subroutines used for creating and adding to
22 the symbol table. These routines are called from various symbol-
23 file-reading routines.
24
25 Routines to support specific debugging information formats (stabs,
26 DWARF, etc) belong somewhere else. */
27
28 #include "defs.h"
29 #include "bfd.h"
30 #include "gdb_obstack.h"
31 #include "symtab.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdbtypes.h"
35 #include "gdb_assert.h"
36 #include "complaints.h"
37 #include "gdb_string.h"
38 #include "expression.h" /* For "enum exp_opcode" used by... */
39 #include "bcache.h"
40 #include "filenames.h" /* For DOSish file names */
41 #include "macrotab.h"
42 #include "demangle.h" /* Needed by SYMBOL_INIT_DEMANGLED_NAME. */
43 #include "block.h"
44 #include "cp-support.h"
45 #include "dictionary.h"
46 #include "addrmap.h"
47
48 /* Ask buildsym.h to define the vars it normally declares `extern'. */
49 #define EXTERN
50 /**/
51 #include "buildsym.h" /* Our own declarations */
52 #undef EXTERN
53
54 /* For cleanup_undefined_types and finish_global_stabs (somewhat
55 questionable--see comment where we call them). */
56
57 #include "stabsread.h"
58
59 /* List of subfiles. */
60
61 static struct subfile *subfiles;
62
63 /* List of free `struct pending' structures for reuse. */
64
65 static struct pending *free_pendings;
66
67 /* Non-zero if symtab has line number info. This prevents an
68 otherwise empty symtab from being tossed. */
69
70 static int have_line_numbers;
71
72 /* The mutable address map for the compilation unit whose symbols
73 we're currently reading. The symtabs' shared blockvector will
74 point to a fixed copy of this. */
75 static struct addrmap *pending_addrmap;
76
77 /* The obstack on which we allocate pending_addrmap.
78 If pending_addrmap is NULL, this is uninitialized; otherwise, it is
79 initialized (and holds pending_addrmap). */
80 static struct obstack pending_addrmap_obstack;
81
82 /* Non-zero if we recorded any ranges in the addrmap that are
83 different from those in the blockvector already. We set this to
84 zero when we start processing a symfile, and if it's still zero at
85 the end, then we just toss the addrmap. */
86 static int pending_addrmap_interesting;
87
88 \f
89 static int compare_line_numbers (const void *ln1p, const void *ln2p);
90 \f
91
92 /* Initial sizes of data structures. These are realloc'd larger if
93 needed, and realloc'd down to the size actually used, when
94 completed. */
95
96 #define INITIAL_CONTEXT_STACK_SIZE 10
97 #define INITIAL_LINE_VECTOR_LENGTH 1000
98 \f
99
100 /* maintain the lists of symbols and blocks */
101
102 /* Add a pending list to free_pendings. */
103 void
104 add_free_pendings (struct pending *list)
105 {
106 struct pending *link = list;
107
108 if (list)
109 {
110 while (link->next) link = link->next;
111 link->next = free_pendings;
112 free_pendings = list;
113 }
114 }
115
116 /* Add a symbol to one of the lists of symbols. While we're at it, if
117 we're in the C++ case and don't have full namespace debugging info,
118 check to see if it references an anonymous namespace; if so, add an
119 appropriate using directive. */
120
121 void
122 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
123 {
124 struct pending *link;
125
126 /* If this is an alias for another symbol, don't add it. */
127 if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
128 return;
129
130 /* We keep PENDINGSIZE symbols in each link of the list. If we
131 don't have a link with room in it, add a new link. */
132 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
133 {
134 if (free_pendings)
135 {
136 link = free_pendings;
137 free_pendings = link->next;
138 }
139 else
140 {
141 link = (struct pending *) xmalloc (sizeof (struct pending));
142 }
143
144 link->next = *listhead;
145 *listhead = link;
146 link->nsyms = 0;
147 }
148
149 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
150 }
151
152 /* Find a symbol named NAME on a LIST. NAME need not be
153 '\0'-terminated; LENGTH is the length of the name. */
154
155 struct symbol *
156 find_symbol_in_list (struct pending *list, char *name, int length)
157 {
158 int j;
159 char *pp;
160
161 while (list != NULL)
162 {
163 for (j = list->nsyms; --j >= 0;)
164 {
165 pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
166 if (*pp == *name && strncmp (pp, name, length) == 0 &&
167 pp[length] == '\0')
168 {
169 return (list->symbol[j]);
170 }
171 }
172 list = list->next;
173 }
174 return (NULL);
175 }
176
177 /* At end of reading syms, or in case of quit, really free as many
178 `struct pending's as we can easily find. */
179
180 void
181 really_free_pendings (void *dummy)
182 {
183 struct pending *next, *next1;
184
185 for (next = free_pendings; next; next = next1)
186 {
187 next1 = next->next;
188 xfree ((void *) next);
189 }
190 free_pendings = NULL;
191
192 free_pending_blocks ();
193
194 for (next = file_symbols; next != NULL; next = next1)
195 {
196 next1 = next->next;
197 xfree ((void *) next);
198 }
199 file_symbols = NULL;
200
201 for (next = global_symbols; next != NULL; next = next1)
202 {
203 next1 = next->next;
204 xfree ((void *) next);
205 }
206 global_symbols = NULL;
207
208 if (pending_macros)
209 free_macro_table (pending_macros);
210
211 if (pending_addrmap)
212 {
213 obstack_free (&pending_addrmap_obstack, NULL);
214 pending_addrmap = NULL;
215 }
216 }
217
218 /* This function is called to discard any pending blocks. */
219
220 void
221 free_pending_blocks (void)
222 {
223 /* The links are made in the objfile_obstack, so we only need to
224 reset PENDING_BLOCKS. */
225 pending_blocks = NULL;
226 }
227
228 /* Take one of the lists of symbols and make a block from it. Keep
229 the order the symbols have in the list (reversed from the input
230 file). Put the block on the list of pending blocks. */
231
232 struct block *
233 finish_block (struct symbol *symbol, struct pending **listhead,
234 struct pending_block *old_blocks,
235 CORE_ADDR start, CORE_ADDR end,
236 struct objfile *objfile)
237 {
238 struct pending *next, *next1;
239 struct block *block;
240 struct pending_block *pblock;
241 struct pending_block *opblock;
242
243 block = allocate_block (&objfile->objfile_obstack);
244
245 if (symbol)
246 {
247 BLOCK_DICT (block) = dict_create_linear (&objfile->objfile_obstack,
248 *listhead);
249 }
250 else
251 {
252 BLOCK_DICT (block) = dict_create_hashed (&objfile->objfile_obstack,
253 *listhead);
254 }
255
256 BLOCK_START (block) = start;
257 BLOCK_END (block) = end;
258 /* Superblock filled in when containing block is made */
259 BLOCK_SUPERBLOCK (block) = NULL;
260 BLOCK_NAMESPACE (block) = NULL;
261
262 /* Put the block in as the value of the symbol that names it. */
263
264 if (symbol)
265 {
266 struct type *ftype = SYMBOL_TYPE (symbol);
267 struct dict_iterator iter;
268 SYMBOL_BLOCK_VALUE (symbol) = block;
269 BLOCK_FUNCTION (block) = symbol;
270
271 if (TYPE_NFIELDS (ftype) <= 0)
272 {
273 /* No parameter type information is recorded with the
274 function's type. Set that from the type of the
275 parameter symbols. */
276 int nparams = 0, iparams;
277 struct symbol *sym;
278 ALL_BLOCK_SYMBOLS (block, iter, sym)
279 {
280 if (SYMBOL_IS_ARGUMENT (sym))
281 nparams++;
282 }
283 if (nparams > 0)
284 {
285 TYPE_NFIELDS (ftype) = nparams;
286 TYPE_FIELDS (ftype) = (struct field *)
287 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
288
289 iparams = 0;
290 ALL_BLOCK_SYMBOLS (block, iter, sym)
291 {
292 if (iparams == nparams)
293 break;
294
295 if (SYMBOL_IS_ARGUMENT (sym))
296 {
297 TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
298 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
299 iparams++;
300 }
301 }
302 }
303 }
304 }
305 else
306 {
307 BLOCK_FUNCTION (block) = NULL;
308 }
309
310 /* Now "free" the links of the list, and empty the list. */
311
312 for (next = *listhead; next; next = next1)
313 {
314 next1 = next->next;
315 next->next = free_pendings;
316 free_pendings = next;
317 }
318 *listhead = NULL;
319
320 /* Check to be sure that the blocks have an end address that is
321 greater than starting address */
322
323 if (BLOCK_END (block) < BLOCK_START (block))
324 {
325 if (symbol)
326 {
327 complaint (&symfile_complaints,
328 _("block end address less than block start address in %s (patched it)"),
329 SYMBOL_PRINT_NAME (symbol));
330 }
331 else
332 {
333 complaint (&symfile_complaints,
334 _("block end address 0x%s less than block start address 0x%s (patched it)"),
335 paddr_nz (BLOCK_END (block)), paddr_nz (BLOCK_START (block)));
336 }
337 /* Better than nothing */
338 BLOCK_END (block) = BLOCK_START (block);
339 }
340
341 /* Install this block as the superblock of all blocks made since the
342 start of this scope that don't have superblocks yet. */
343
344 opblock = NULL;
345 for (pblock = pending_blocks;
346 pblock && pblock != old_blocks;
347 pblock = pblock->next)
348 {
349 if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
350 {
351 /* Check to be sure the blocks are nested as we receive
352 them. If the compiler/assembler/linker work, this just
353 burns a small amount of time.
354
355 Skip blocks which correspond to a function; they're not
356 physically nested inside this other blocks, only
357 lexically nested. */
358 if (BLOCK_FUNCTION (pblock->block) == NULL
359 && (BLOCK_START (pblock->block) < BLOCK_START (block)
360 || BLOCK_END (pblock->block) > BLOCK_END (block)))
361 {
362 if (symbol)
363 {
364 complaint (&symfile_complaints,
365 _("inner block not inside outer block in %s"),
366 SYMBOL_PRINT_NAME (symbol));
367 }
368 else
369 {
370 complaint (&symfile_complaints,
371 _("inner block (0x%s-0x%s) not inside outer block (0x%s-0x%s)"),
372 paddr_nz (BLOCK_START (pblock->block)),
373 paddr_nz (BLOCK_END (pblock->block)),
374 paddr_nz (BLOCK_START (block)),
375 paddr_nz (BLOCK_END (block)));
376 }
377 if (BLOCK_START (pblock->block) < BLOCK_START (block))
378 BLOCK_START (pblock->block) = BLOCK_START (block);
379 if (BLOCK_END (pblock->block) > BLOCK_END (block))
380 BLOCK_END (pblock->block) = BLOCK_END (block);
381 }
382 BLOCK_SUPERBLOCK (pblock->block) = block;
383 }
384 opblock = pblock;
385 }
386
387 record_pending_block (objfile, block, opblock);
388
389 return block;
390 }
391
392
393 /* Record BLOCK on the list of all blocks in the file. Put it after
394 OPBLOCK, or at the beginning if opblock is NULL. This puts the
395 block in the list after all its subblocks.
396
397 Allocate the pending block struct in the objfile_obstack to save
398 time. This wastes a little space. FIXME: Is it worth it? */
399
400 void
401 record_pending_block (struct objfile *objfile, struct block *block,
402 struct pending_block *opblock)
403 {
404 struct pending_block *pblock;
405
406 pblock = (struct pending_block *)
407 obstack_alloc (&objfile->objfile_obstack, sizeof (struct pending_block));
408 pblock->block = block;
409 if (opblock)
410 {
411 pblock->next = opblock->next;
412 opblock->next = pblock;
413 }
414 else
415 {
416 pblock->next = pending_blocks;
417 pending_blocks = pblock;
418 }
419 }
420
421
422 /* Record that the range of addresses from START to END_INCLUSIVE
423 (inclusive, like it says) belongs to BLOCK. BLOCK's start and end
424 addresses must be set already. You must apply this function to all
425 BLOCK's children before applying it to BLOCK.
426
427 If a call to this function complicates the picture beyond that
428 already provided by BLOCK_START and BLOCK_END, then we create an
429 address map for the block. */
430 void
431 record_block_range (struct block *block,
432 CORE_ADDR start, CORE_ADDR end_inclusive)
433 {
434 /* If this is any different from the range recorded in the block's
435 own BLOCK_START and BLOCK_END, then note that the address map has
436 become interesting. Note that even if this block doesn't have
437 any "interesting" ranges, some later block might, so we still
438 need to record this block in the addrmap. */
439 if (start != BLOCK_START (block)
440 || end_inclusive + 1 != BLOCK_END (block))
441 pending_addrmap_interesting = 1;
442
443 if (! pending_addrmap)
444 {
445 obstack_init (&pending_addrmap_obstack);
446 pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack);
447 }
448
449 addrmap_set_empty (pending_addrmap, start, end_inclusive, block);
450 }
451
452
453 static struct blockvector *
454 make_blockvector (struct objfile *objfile)
455 {
456 struct pending_block *next;
457 struct blockvector *blockvector;
458 int i;
459
460 /* Count the length of the list of blocks. */
461
462 for (next = pending_blocks, i = 0; next; next = next->next, i++)
463 {;
464 }
465
466 blockvector = (struct blockvector *)
467 obstack_alloc (&objfile->objfile_obstack,
468 (sizeof (struct blockvector)
469 + (i - 1) * sizeof (struct block *)));
470
471 /* Copy the blocks into the blockvector. This is done in reverse
472 order, which happens to put the blocks into the proper order
473 (ascending starting address). finish_block has hair to insert
474 each block into the list after its subblocks in order to make
475 sure this is true. */
476
477 BLOCKVECTOR_NBLOCKS (blockvector) = i;
478 for (next = pending_blocks; next; next = next->next)
479 {
480 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
481 }
482
483 free_pending_blocks ();
484
485 /* If we needed an address map for this symtab, record it in the
486 blockvector. */
487 if (pending_addrmap && pending_addrmap_interesting)
488 BLOCKVECTOR_MAP (blockvector)
489 = addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack);
490 else
491 BLOCKVECTOR_MAP (blockvector) = 0;
492
493 /* Some compilers output blocks in the wrong order, but we depend on
494 their being in the right order so we can binary search. Check the
495 order and moan about it. */
496 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
497 {
498 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
499 {
500 if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
501 > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
502 {
503 CORE_ADDR start
504 = BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
505
506 complaint (&symfile_complaints, _("block at %s out of order"),
507 hex_string ((LONGEST) start));
508 }
509 }
510 }
511
512 return (blockvector);
513 }
514 \f
515 /* Start recording information about source code that came from an
516 included (or otherwise merged-in) source file with a different
517 name. NAME is the name of the file (cannot be NULL), DIRNAME is
518 the directory in which the file was compiled (or NULL if not known). */
519
520 void
521 start_subfile (char *name, char *dirname)
522 {
523 struct subfile *subfile;
524
525 /* See if this subfile is already known as a subfile of the current
526 main source file. */
527
528 for (subfile = subfiles; subfile; subfile = subfile->next)
529 {
530 char *subfile_name;
531
532 /* If NAME is an absolute path, and this subfile is not, then
533 attempt to create an absolute path to compare. */
534 if (IS_ABSOLUTE_PATH (name)
535 && !IS_ABSOLUTE_PATH (subfile->name)
536 && subfile->dirname != NULL)
537 subfile_name = concat (subfile->dirname, SLASH_STRING,
538 subfile->name, (char *) NULL);
539 else
540 subfile_name = subfile->name;
541
542 if (FILENAME_CMP (subfile_name, name) == 0)
543 {
544 current_subfile = subfile;
545 if (subfile_name != subfile->name)
546 xfree (subfile_name);
547 return;
548 }
549 if (subfile_name != subfile->name)
550 xfree (subfile_name);
551 }
552
553 /* This subfile is not known. Add an entry for it. Make an entry
554 for this subfile in the list of all subfiles of the current main
555 source file. */
556
557 subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
558 memset ((char *) subfile, 0, sizeof (struct subfile));
559 subfile->next = subfiles;
560 subfiles = subfile;
561 current_subfile = subfile;
562
563 /* Save its name and compilation directory name */
564 subfile->name = (name == NULL) ? NULL : xstrdup (name);
565 subfile->dirname = (dirname == NULL) ? NULL : xstrdup (dirname);
566
567 /* Initialize line-number recording for this subfile. */
568 subfile->line_vector = NULL;
569
570 /* Default the source language to whatever can be deduced from the
571 filename. If nothing can be deduced (such as for a C/C++ include
572 file with a ".h" extension), then inherit whatever language the
573 previous subfile had. This kludgery is necessary because there
574 is no standard way in some object formats to record the source
575 language. Also, when symtabs are allocated we try to deduce a
576 language then as well, but it is too late for us to use that
577 information while reading symbols, since symtabs aren't allocated
578 until after all the symbols have been processed for a given
579 source file. */
580
581 subfile->language = deduce_language_from_filename (subfile->name);
582 if (subfile->language == language_unknown &&
583 subfile->next != NULL)
584 {
585 subfile->language = subfile->next->language;
586 }
587
588 /* Initialize the debug format string to NULL. We may supply it
589 later via a call to record_debugformat. */
590 subfile->debugformat = NULL;
591
592 /* Similarly for the producer. */
593 subfile->producer = NULL;
594
595 /* If the filename of this subfile ends in .C, then change the
596 language of any pending subfiles from C to C++. We also accept
597 any other C++ suffixes accepted by deduce_language_from_filename. */
598 /* Likewise for f2c. */
599
600 if (subfile->name)
601 {
602 struct subfile *s;
603 enum language sublang = deduce_language_from_filename (subfile->name);
604
605 if (sublang == language_cplus || sublang == language_fortran)
606 for (s = subfiles; s != NULL; s = s->next)
607 if (s->language == language_c)
608 s->language = sublang;
609 }
610
611 /* And patch up this file if necessary. */
612 if (subfile->language == language_c
613 && subfile->next != NULL
614 && (subfile->next->language == language_cplus
615 || subfile->next->language == language_fortran))
616 {
617 subfile->language = subfile->next->language;
618 }
619 }
620
621 /* For stabs readers, the first N_SO symbol is assumed to be the
622 source file name, and the subfile struct is initialized using that
623 assumption. If another N_SO symbol is later seen, immediately
624 following the first one, then the first one is assumed to be the
625 directory name and the second one is really the source file name.
626
627 So we have to patch up the subfile struct by moving the old name
628 value to dirname and remembering the new name. Some sanity
629 checking is performed to ensure that the state of the subfile
630 struct is reasonable and that the old name we are assuming to be a
631 directory name actually is (by checking for a trailing '/'). */
632
633 void
634 patch_subfile_names (struct subfile *subfile, char *name)
635 {
636 if (subfile != NULL && subfile->dirname == NULL && subfile->name != NULL
637 && subfile->name[strlen (subfile->name) - 1] == '/')
638 {
639 subfile->dirname = subfile->name;
640 subfile->name = xstrdup (name);
641 last_source_file = name;
642
643 /* Default the source language to whatever can be deduced from
644 the filename. If nothing can be deduced (such as for a C/C++
645 include file with a ".h" extension), then inherit whatever
646 language the previous subfile had. This kludgery is
647 necessary because there is no standard way in some object
648 formats to record the source language. Also, when symtabs
649 are allocated we try to deduce a language then as well, but
650 it is too late for us to use that information while reading
651 symbols, since symtabs aren't allocated until after all the
652 symbols have been processed for a given source file. */
653
654 subfile->language = deduce_language_from_filename (subfile->name);
655 if (subfile->language == language_unknown &&
656 subfile->next != NULL)
657 {
658 subfile->language = subfile->next->language;
659 }
660 }
661 }
662 \f
663 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
664 switching source files (different subfiles, as we call them) within
665 one object file, but using a stack rather than in an arbitrary
666 order. */
667
668 void
669 push_subfile (void)
670 {
671 struct subfile_stack *tem
672 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
673
674 tem->next = subfile_stack;
675 subfile_stack = tem;
676 if (current_subfile == NULL || current_subfile->name == NULL)
677 {
678 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
679 }
680 tem->name = current_subfile->name;
681 }
682
683 char *
684 pop_subfile (void)
685 {
686 char *name;
687 struct subfile_stack *link = subfile_stack;
688
689 if (link == NULL)
690 {
691 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
692 }
693 name = link->name;
694 subfile_stack = link->next;
695 xfree ((void *) link);
696 return (name);
697 }
698 \f
699 /* Add a linetable entry for line number LINE and address PC to the
700 line vector for SUBFILE. */
701
702 void
703 record_line (struct subfile *subfile, int line, CORE_ADDR pc)
704 {
705 struct linetable_entry *e;
706 /* Ignore the dummy line number in libg.o */
707
708 if (line == 0xffff)
709 {
710 return;
711 }
712
713 /* Make sure line vector exists and is big enough. */
714 if (!subfile->line_vector)
715 {
716 subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
717 subfile->line_vector = (struct linetable *)
718 xmalloc (sizeof (struct linetable)
719 + subfile->line_vector_length * sizeof (struct linetable_entry));
720 subfile->line_vector->nitems = 0;
721 have_line_numbers = 1;
722 }
723
724 if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
725 {
726 subfile->line_vector_length *= 2;
727 subfile->line_vector = (struct linetable *)
728 xrealloc ((char *) subfile->line_vector,
729 (sizeof (struct linetable)
730 + (subfile->line_vector_length
731 * sizeof (struct linetable_entry))));
732 }
733
734 pc = gdbarch_addr_bits_remove (current_gdbarch, pc);
735
736 /* Normally, we treat lines as unsorted. But the end of sequence
737 marker is special. We sort line markers at the same PC by line
738 number, so end of sequence markers (which have line == 0) appear
739 first. This is right if the marker ends the previous function,
740 and there is no padding before the next function. But it is
741 wrong if the previous line was empty and we are now marking a
742 switch to a different subfile. We must leave the end of sequence
743 marker at the end of this group of lines, not sort the empty line
744 to after the marker. The easiest way to accomplish this is to
745 delete any empty lines from our table, if they are followed by
746 end of sequence markers. All we lose is the ability to set
747 breakpoints at some lines which contain no instructions
748 anyway. */
749 if (line == 0 && subfile->line_vector->nitems > 0)
750 {
751 e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
752 while (subfile->line_vector->nitems > 0 && e->pc == pc)
753 {
754 e--;
755 subfile->line_vector->nitems--;
756 }
757 }
758
759 e = subfile->line_vector->item + subfile->line_vector->nitems++;
760 e->line = line;
761 e->pc = pc;
762 }
763
764 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */
765
766 static int
767 compare_line_numbers (const void *ln1p, const void *ln2p)
768 {
769 struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
770 struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
771
772 /* Note: this code does not assume that CORE_ADDRs can fit in ints.
773 Please keep it that way. */
774 if (ln1->pc < ln2->pc)
775 return -1;
776
777 if (ln1->pc > ln2->pc)
778 return 1;
779
780 /* If pc equal, sort by line. I'm not sure whether this is optimum
781 behavior (see comment at struct linetable in symtab.h). */
782 return ln1->line - ln2->line;
783 }
784 \f
785 /* Start a new symtab for a new source file. Called, for example,
786 when a stabs symbol of type N_SO is seen, or when a DWARF
787 TAG_compile_unit DIE is seen. It indicates the start of data for
788 one original source file.
789
790 NAME is the name of the file (cannot be NULL). DIRNAME is the directory in
791 which the file was compiled (or NULL if not known). START_ADDR is the
792 lowest address of objects in the file (or 0 if not known). */
793
794 void
795 start_symtab (char *name, char *dirname, CORE_ADDR start_addr)
796 {
797 last_source_file = name;
798 last_source_start_addr = start_addr;
799 file_symbols = NULL;
800 global_symbols = NULL;
801 within_function = 0;
802 have_line_numbers = 0;
803
804 /* Context stack is initially empty. Allocate first one with room
805 for 10 levels; reuse it forever afterward. */
806 if (context_stack == NULL)
807 {
808 context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
809 context_stack = (struct context_stack *)
810 xmalloc (context_stack_size * sizeof (struct context_stack));
811 }
812 context_stack_depth = 0;
813
814 /* We shouldn't have any address map at this point. */
815 gdb_assert (! pending_addrmap);
816
817 /* Set up support for C++ namespace support, in case we need it. */
818
819 cp_initialize_namespace ();
820
821 /* Initialize the list of sub source files with one entry for this
822 file (the top-level source file). */
823
824 subfiles = NULL;
825 current_subfile = NULL;
826 start_subfile (name, dirname);
827 }
828
829 /* Subroutine of end_symtab to simplify it.
830 Look for a subfile that matches the main source file's basename.
831 If there is only one, and if the main source file doesn't have any
832 symbol or line number information, then copy this file's symtab and
833 line_vector to the main source file's subfile and discard the other subfile.
834 This can happen because of a compiler bug or from the user playing games
835 with #line or from things like a distributed build system that manipulates
836 the debug info. */
837
838 static void
839 watch_main_source_file_lossage (void)
840 {
841 struct subfile *mainsub, *subfile;
842
843 /* Find the main source file.
844 This loop could be eliminated if start_symtab saved it for us. */
845 mainsub = NULL;
846 for (subfile = subfiles; subfile; subfile = subfile->next)
847 {
848 /* The main subfile is guaranteed to be the last one. */
849 if (subfile->next == NULL)
850 mainsub = subfile;
851 }
852
853 /* If the main source file doesn't have any line number or symbol info,
854 look for an alias in another subfile.
855 We have to watch for mainsub == NULL here. It's a quirk of end_symtab,
856 it can return NULL so there may not be a main subfile. */
857
858 if (mainsub
859 && mainsub->line_vector == NULL
860 && mainsub->symtab == NULL)
861 {
862 const char *mainbase = lbasename (mainsub->name);
863 int nr_matches = 0;
864 struct subfile *prevsub;
865 struct subfile *mainsub_alias = NULL;
866 struct subfile *prev_mainsub_alias = NULL;
867
868 prevsub = NULL;
869 for (subfile = subfiles;
870 /* Stop before we get to the last one. */
871 subfile->next;
872 subfile = subfile->next)
873 {
874 if (strcmp (lbasename (subfile->name), mainbase) == 0)
875 {
876 ++nr_matches;
877 mainsub_alias = subfile;
878 prev_mainsub_alias = prevsub;
879 }
880 prevsub = subfile;
881 }
882
883 if (nr_matches == 1)
884 {
885 gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
886
887 /* Found a match for the main source file.
888 Copy its line_vector and symtab to the main subfile
889 and then discard it. */
890
891 mainsub->line_vector = mainsub_alias->line_vector;
892 mainsub->line_vector_length = mainsub_alias->line_vector_length;
893 mainsub->symtab = mainsub_alias->symtab;
894
895 if (prev_mainsub_alias == NULL)
896 subfiles = mainsub_alias->next;
897 else
898 prev_mainsub_alias->next = mainsub_alias->next;
899 xfree (mainsub_alias);
900 }
901 }
902 }
903
904 /* Finish the symbol definitions for one main source file, close off
905 all the lexical contexts for that file (creating struct block's for
906 them), then make the struct symtab for that file and put it in the
907 list of all such.
908
909 END_ADDR is the address of the end of the file's text. SECTION is
910 the section number (in objfile->section_offsets) of the blockvector
911 and linetable.
912
913 Note that it is possible for end_symtab() to return NULL. In
914 particular, for the DWARF case at least, it will return NULL when
915 it finds a compilation unit that has exactly one DIE, a
916 TAG_compile_unit DIE. This can happen when we link in an object
917 file that was compiled from an empty source file. Returning NULL
918 is probably not the correct thing to do, because then gdb will
919 never know about this empty file (FIXME). */
920
921 struct symtab *
922 end_symtab (CORE_ADDR end_addr, struct objfile *objfile, int section)
923 {
924 struct symtab *symtab = NULL;
925 struct blockvector *blockvector;
926 struct subfile *subfile;
927 struct context_stack *cstk;
928 struct subfile *nextsub;
929
930 /* Finish the lexical context of the last function in the file; pop
931 the context stack. */
932
933 if (context_stack_depth > 0)
934 {
935 cstk = pop_context ();
936 /* Make a block for the local symbols within. */
937 finish_block (cstk->name, &local_symbols, cstk->old_blocks,
938 cstk->start_addr, end_addr, objfile);
939
940 if (context_stack_depth > 0)
941 {
942 /* This is said to happen with SCO. The old coffread.c
943 code simply emptied the context stack, so we do the
944 same. FIXME: Find out why it is happening. This is not
945 believed to happen in most cases (even for coffread.c);
946 it used to be an abort(). */
947 complaint (&symfile_complaints,
948 _("Context stack not empty in end_symtab"));
949 context_stack_depth = 0;
950 }
951 }
952
953 /* Reordered executables may have out of order pending blocks; if
954 OBJF_REORDERED is true, then sort the pending blocks. */
955 if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
956 {
957 /* FIXME! Remove this horrid bubble sort and use merge sort!!! */
958 int swapped;
959 do
960 {
961 struct pending_block *pb, *pbnext;
962
963 pb = pending_blocks;
964 pbnext = pb->next;
965 swapped = 0;
966
967 while (pbnext)
968 {
969 /* swap blocks if unordered! */
970
971 if (BLOCK_START (pb->block) < BLOCK_START (pbnext->block))
972 {
973 struct block *tmp = pb->block;
974 pb->block = pbnext->block;
975 pbnext->block = tmp;
976 swapped = 1;
977 }
978 pb = pbnext;
979 pbnext = pbnext->next;
980 }
981 }
982 while (swapped);
983 }
984
985 /* Cleanup any undefined types that have been left hanging around
986 (this needs to be done before the finish_blocks so that
987 file_symbols is still good).
988
989 Both cleanup_undefined_types and finish_global_stabs are stabs
990 specific, but harmless for other symbol readers, since on gdb
991 startup or when finished reading stabs, the state is set so these
992 are no-ops. FIXME: Is this handled right in case of QUIT? Can
993 we make this cleaner? */
994
995 cleanup_undefined_types ();
996 finish_global_stabs (objfile);
997
998 if (pending_blocks == NULL
999 && file_symbols == NULL
1000 && global_symbols == NULL
1001 && have_line_numbers == 0
1002 && pending_macros == NULL)
1003 {
1004 /* Ignore symtabs that have no functions with real debugging
1005 info. */
1006 blockvector = NULL;
1007 }
1008 else
1009 {
1010 /* Define the STATIC_BLOCK & GLOBAL_BLOCK, and build the
1011 blockvector. */
1012 finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr,
1013 objfile);
1014 finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr,
1015 objfile);
1016 blockvector = make_blockvector (objfile);
1017 cp_finalize_namespace (BLOCKVECTOR_BLOCK (blockvector, STATIC_BLOCK),
1018 &objfile->objfile_obstack);
1019 }
1020
1021 /* Read the line table if it has to be read separately. */
1022 if (objfile->sf->sym_read_linetable != NULL)
1023 objfile->sf->sym_read_linetable ();
1024
1025 /* Handle the case where the debug info specifies a different path
1026 for the main source file. It can cause us to lose track of its
1027 line number information. */
1028 watch_main_source_file_lossage ();
1029
1030 /* Now create the symtab objects proper, one for each subfile. */
1031 /* (The main file is the last one on the chain.) */
1032
1033 for (subfile = subfiles; subfile; subfile = nextsub)
1034 {
1035 int linetablesize = 0;
1036 symtab = NULL;
1037
1038 /* If we have blocks of symbols, make a symtab. Otherwise, just
1039 ignore this file and any line number info in it. */
1040 if (blockvector)
1041 {
1042 if (subfile->line_vector)
1043 {
1044 linetablesize = sizeof (struct linetable) +
1045 subfile->line_vector->nitems * sizeof (struct linetable_entry);
1046
1047 /* Like the pending blocks, the line table may be
1048 scrambled in reordered executables. Sort it if
1049 OBJF_REORDERED is true. */
1050 if (objfile->flags & OBJF_REORDERED)
1051 qsort (subfile->line_vector->item,
1052 subfile->line_vector->nitems,
1053 sizeof (struct linetable_entry), compare_line_numbers);
1054 }
1055
1056 /* Now, allocate a symbol table. */
1057 if (subfile->symtab == NULL)
1058 symtab = allocate_symtab (subfile->name, objfile);
1059 else
1060 symtab = subfile->symtab;
1061
1062 /* Fill in its components. */
1063 symtab->blockvector = blockvector;
1064 symtab->macro_table = pending_macros;
1065 if (subfile->line_vector)
1066 {
1067 /* Reallocate the line table on the symbol obstack */
1068 symtab->linetable = (struct linetable *)
1069 obstack_alloc (&objfile->objfile_obstack, linetablesize);
1070 memcpy (symtab->linetable, subfile->line_vector, linetablesize);
1071 }
1072 else
1073 {
1074 symtab->linetable = NULL;
1075 }
1076 symtab->block_line_section = section;
1077 if (subfile->dirname)
1078 {
1079 /* Reallocate the dirname on the symbol obstack */
1080 symtab->dirname = (char *)
1081 obstack_alloc (&objfile->objfile_obstack,
1082 strlen (subfile->dirname) + 1);
1083 strcpy (symtab->dirname, subfile->dirname);
1084 }
1085 else
1086 {
1087 symtab->dirname = NULL;
1088 }
1089 symtab->free_code = free_linetable;
1090 symtab->free_func = NULL;
1091
1092 /* Use whatever language we have been using for this
1093 subfile, not the one that was deduced in allocate_symtab
1094 from the filename. We already did our own deducing when
1095 we created the subfile, and we may have altered our
1096 opinion of what language it is from things we found in
1097 the symbols. */
1098 symtab->language = subfile->language;
1099
1100 /* Save the debug format string (if any) in the symtab */
1101 if (subfile->debugformat != NULL)
1102 {
1103 symtab->debugformat = obsavestring (subfile->debugformat,
1104 strlen (subfile->debugformat),
1105 &objfile->objfile_obstack);
1106 }
1107
1108 /* Similarly for the producer. */
1109 if (subfile->producer != NULL)
1110 symtab->producer = obsavestring (subfile->producer,
1111 strlen (subfile->producer),
1112 &objfile->objfile_obstack);
1113
1114 /* All symtabs for the main file and the subfiles share a
1115 blockvector, so we need to clear primary for everything
1116 but the main file. */
1117
1118 symtab->primary = 0;
1119 }
1120 else
1121 {
1122 if (subfile->symtab)
1123 {
1124 /* Since we are ignoring that subfile, we also need
1125 to unlink the associated empty symtab that we created.
1126 Otherwise, we can into trouble because various parts
1127 such as the block-vector are uninitialized whereas
1128 the rest of the code assumes that they are.
1129
1130 We can only unlink the symtab because it was allocated
1131 on the objfile obstack. */
1132 struct symtab *s;
1133
1134 if (objfile->symtabs == subfile->symtab)
1135 objfile->symtabs = objfile->symtabs->next;
1136 else
1137 ALL_OBJFILE_SYMTABS (objfile, s)
1138 if (s->next == subfile->symtab)
1139 {
1140 s->next = s->next->next;
1141 break;
1142 }
1143 subfile->symtab = NULL;
1144 }
1145 }
1146 if (subfile->name != NULL)
1147 {
1148 xfree ((void *) subfile->name);
1149 }
1150 if (subfile->dirname != NULL)
1151 {
1152 xfree ((void *) subfile->dirname);
1153 }
1154 if (subfile->line_vector != NULL)
1155 {
1156 xfree ((void *) subfile->line_vector);
1157 }
1158 if (subfile->debugformat != NULL)
1159 {
1160 xfree ((void *) subfile->debugformat);
1161 }
1162 if (subfile->producer != NULL)
1163 xfree (subfile->producer);
1164
1165 nextsub = subfile->next;
1166 xfree ((void *) subfile);
1167 }
1168
1169 /* Set this for the main source file. */
1170 if (symtab)
1171 {
1172 symtab->primary = 1;
1173 }
1174
1175 /* Default any symbols without a specified symtab to the primary
1176 symtab. */
1177 if (blockvector)
1178 {
1179 int block_i;
1180
1181 for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1182 {
1183 struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1184 struct symbol *sym;
1185 struct dict_iterator iter;
1186
1187 for (sym = dict_iterator_first (BLOCK_DICT (block), &iter);
1188 sym != NULL;
1189 sym = dict_iterator_next (&iter))
1190 if (SYMBOL_SYMTAB (sym) == NULL)
1191 SYMBOL_SYMTAB (sym) = symtab;
1192 }
1193 }
1194
1195 last_source_file = NULL;
1196 current_subfile = NULL;
1197 pending_macros = NULL;
1198 if (pending_addrmap)
1199 {
1200 obstack_free (&pending_addrmap_obstack, NULL);
1201 pending_addrmap = NULL;
1202 }
1203
1204 return symtab;
1205 }
1206
1207 /* Push a context block. Args are an identifying nesting level
1208 (checkable when you pop it), and the starting PC address of this
1209 context. */
1210
1211 struct context_stack *
1212 push_context (int desc, CORE_ADDR valu)
1213 {
1214 struct context_stack *new;
1215
1216 if (context_stack_depth == context_stack_size)
1217 {
1218 context_stack_size *= 2;
1219 context_stack = (struct context_stack *)
1220 xrealloc ((char *) context_stack,
1221 (context_stack_size * sizeof (struct context_stack)));
1222 }
1223
1224 new = &context_stack[context_stack_depth++];
1225 new->depth = desc;
1226 new->locals = local_symbols;
1227 new->params = param_symbols;
1228 new->old_blocks = pending_blocks;
1229 new->start_addr = valu;
1230 new->name = NULL;
1231
1232 local_symbols = NULL;
1233 param_symbols = NULL;
1234
1235 return new;
1236 }
1237
1238 /* Pop a context block. Returns the address of the context block just
1239 popped. */
1240
1241 struct context_stack *
1242 pop_context (void)
1243 {
1244 gdb_assert (context_stack_depth > 0);
1245 return (&context_stack[--context_stack_depth]);
1246 }
1247
1248 \f
1249
1250 /* Compute a small integer hash code for the given name. */
1251
1252 int
1253 hashname (char *name)
1254 {
1255 return (hash(name,strlen(name)) % HASHSIZE);
1256 }
1257 \f
1258
1259 void
1260 record_debugformat (char *format)
1261 {
1262 current_subfile->debugformat = xstrdup (format);
1263 }
1264
1265 void
1266 record_producer (const char *producer)
1267 {
1268 /* The producer is not always provided in the debugging info.
1269 Do nothing if PRODUCER is NULL. */
1270 if (producer == NULL)
1271 return;
1272
1273 current_subfile->producer = xstrdup (producer);
1274 }
1275
1276 /* Merge the first symbol list SRCLIST into the second symbol list
1277 TARGETLIST by repeated calls to add_symbol_to_list(). This
1278 procedure "frees" each link of SRCLIST by adding it to the
1279 free_pendings list. Caller must set SRCLIST to a null list after
1280 calling this function.
1281
1282 Void return. */
1283
1284 void
1285 merge_symbol_lists (struct pending **srclist, struct pending **targetlist)
1286 {
1287 int i;
1288
1289 if (!srclist || !*srclist)
1290 return;
1291
1292 /* Merge in elements from current link. */
1293 for (i = 0; i < (*srclist)->nsyms; i++)
1294 add_symbol_to_list ((*srclist)->symbol[i], targetlist);
1295
1296 /* Recurse on next. */
1297 merge_symbol_lists (&(*srclist)->next, targetlist);
1298
1299 /* "Free" the current link. */
1300 (*srclist)->next = free_pendings;
1301 free_pendings = (*srclist);
1302 }
1303 \f
1304 /* Initialize anything that needs initializing when starting to read a
1305 fresh piece of a symbol file, e.g. reading in the stuff
1306 corresponding to a psymtab. */
1307
1308 void
1309 buildsym_init (void)
1310 {
1311 free_pendings = NULL;
1312 file_symbols = NULL;
1313 global_symbols = NULL;
1314 pending_blocks = NULL;
1315 pending_macros = NULL;
1316
1317 /* We shouldn't have any address map at this point. */
1318 gdb_assert (! pending_addrmap);
1319 pending_addrmap_interesting = 0;
1320 }
1321
1322 /* Initialize anything that needs initializing when a completely new
1323 symbol file is specified (not just adding some symbols from another
1324 file, e.g. a shared library). */
1325
1326 void
1327 buildsym_new_init (void)
1328 {
1329 buildsym_init ();
1330 }
This page took 0.118957 seconds and 4 git commands to generate.