*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / buildsym.c
1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
4 2010 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* This module provides subroutines used for creating and adding to
22 the symbol table. These routines are called from various symbol-
23 file-reading routines.
24
25 Routines to support specific debugging information formats (stabs,
26 DWARF, etc) belong somewhere else. */
27
28 #include "defs.h"
29 #include "bfd.h"
30 #include "gdb_obstack.h"
31 #include "symtab.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdbtypes.h"
35 #include "gdb_assert.h"
36 #include "complaints.h"
37 #include "gdb_string.h"
38 #include "expression.h" /* For "enum exp_opcode" used by... */
39 #include "bcache.h"
40 #include "filenames.h" /* For DOSish file names */
41 #include "macrotab.h"
42 #include "demangle.h" /* Needed by SYMBOL_INIT_DEMANGLED_NAME. */
43 #include "block.h"
44 #include "cp-support.h"
45 #include "dictionary.h"
46 #include "addrmap.h"
47
48 /* Ask buildsym.h to define the vars it normally declares `extern'. */
49 #define EXTERN
50 /**/
51 #include "buildsym.h" /* Our own declarations */
52 #undef EXTERN
53
54 /* For cleanup_undefined_types and finish_global_stabs (somewhat
55 questionable--see comment where we call them). */
56
57 #include "stabsread.h"
58
59 /* List of subfiles. */
60
61 static struct subfile *subfiles;
62
63 /* List of free `struct pending' structures for reuse. */
64
65 static struct pending *free_pendings;
66
67 /* Non-zero if symtab has line number info. This prevents an
68 otherwise empty symtab from being tossed. */
69
70 static int have_line_numbers;
71
72 /* The mutable address map for the compilation unit whose symbols
73 we're currently reading. The symtabs' shared blockvector will
74 point to a fixed copy of this. */
75 static struct addrmap *pending_addrmap;
76
77 /* The obstack on which we allocate pending_addrmap.
78 If pending_addrmap is NULL, this is uninitialized; otherwise, it is
79 initialized (and holds pending_addrmap). */
80 static struct obstack pending_addrmap_obstack;
81
82 /* Non-zero if we recorded any ranges in the addrmap that are
83 different from those in the blockvector already. We set this to
84 zero when we start processing a symfile, and if it's still zero at
85 the end, then we just toss the addrmap. */
86 static int pending_addrmap_interesting;
87
88 \f
89 static int compare_line_numbers (const void *ln1p, const void *ln2p);
90 \f
91
92 /* Initial sizes of data structures. These are realloc'd larger if
93 needed, and realloc'd down to the size actually used, when
94 completed. */
95
96 #define INITIAL_CONTEXT_STACK_SIZE 10
97 #define INITIAL_LINE_VECTOR_LENGTH 1000
98 \f
99
100 /* maintain the lists of symbols and blocks */
101
102 /* Add a pending list to free_pendings. */
103 void
104 add_free_pendings (struct pending *list)
105 {
106 struct pending *link = list;
107
108 if (list)
109 {
110 while (link->next) link = link->next;
111 link->next = free_pendings;
112 free_pendings = list;
113 }
114 }
115
116 /* Add a symbol to one of the lists of symbols. While we're at it, if
117 we're in the C++ case and don't have full namespace debugging info,
118 check to see if it references an anonymous namespace; if so, add an
119 appropriate using directive. */
120
121 void
122 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
123 {
124 struct pending *link;
125
126 /* If this is an alias for another symbol, don't add it. */
127 if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
128 return;
129
130 /* We keep PENDINGSIZE symbols in each link of the list. If we
131 don't have a link with room in it, add a new link. */
132 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
133 {
134 if (free_pendings)
135 {
136 link = free_pendings;
137 free_pendings = link->next;
138 }
139 else
140 {
141 link = (struct pending *) xmalloc (sizeof (struct pending));
142 }
143
144 link->next = *listhead;
145 *listhead = link;
146 link->nsyms = 0;
147 }
148
149 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
150 }
151
152 /* Find a symbol named NAME on a LIST. NAME need not be
153 '\0'-terminated; LENGTH is the length of the name. */
154
155 struct symbol *
156 find_symbol_in_list (struct pending *list, char *name, int length)
157 {
158 int j;
159 char *pp;
160
161 while (list != NULL)
162 {
163 for (j = list->nsyms; --j >= 0;)
164 {
165 pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
166 if (*pp == *name && strncmp (pp, name, length) == 0
167 && pp[length] == '\0')
168 {
169 return (list->symbol[j]);
170 }
171 }
172 list = list->next;
173 }
174 return (NULL);
175 }
176
177 /* At end of reading syms, or in case of quit, really free as many
178 `struct pending's as we can easily find. */
179
180 void
181 really_free_pendings (void *dummy)
182 {
183 struct pending *next, *next1;
184
185 for (next = free_pendings; next; next = next1)
186 {
187 next1 = next->next;
188 xfree ((void *) next);
189 }
190 free_pendings = NULL;
191
192 free_pending_blocks ();
193
194 for (next = file_symbols; next != NULL; next = next1)
195 {
196 next1 = next->next;
197 xfree ((void *) next);
198 }
199 file_symbols = NULL;
200
201 for (next = global_symbols; next != NULL; next = next1)
202 {
203 next1 = next->next;
204 xfree ((void *) next);
205 }
206 global_symbols = NULL;
207
208 if (pending_macros)
209 free_macro_table (pending_macros);
210
211 if (pending_addrmap)
212 {
213 obstack_free (&pending_addrmap_obstack, NULL);
214 pending_addrmap = NULL;
215 }
216 }
217
218 /* This function is called to discard any pending blocks. */
219
220 void
221 free_pending_blocks (void)
222 {
223 /* The links are made in the objfile_obstack, so we only need to
224 reset PENDING_BLOCKS. */
225 pending_blocks = NULL;
226 }
227
228 /* Take one of the lists of symbols and make a block from it. Keep
229 the order the symbols have in the list (reversed from the input
230 file). Put the block on the list of pending blocks. */
231
232 struct block *
233 finish_block (struct symbol *symbol, struct pending **listhead,
234 struct pending_block *old_blocks,
235 CORE_ADDR start, CORE_ADDR end,
236 struct objfile *objfile)
237 {
238 struct gdbarch *gdbarch = get_objfile_arch (objfile);
239 struct pending *next, *next1;
240 struct block *block;
241 struct pending_block *pblock;
242 struct pending_block *opblock;
243
244 block = allocate_block (&objfile->objfile_obstack);
245
246 if (symbol)
247 {
248 BLOCK_DICT (block) = dict_create_linear (&objfile->objfile_obstack,
249 *listhead);
250 }
251 else
252 {
253 BLOCK_DICT (block) = dict_create_hashed (&objfile->objfile_obstack,
254 *listhead);
255 }
256
257 BLOCK_START (block) = start;
258 BLOCK_END (block) = end;
259 /* Superblock filled in when containing block is made */
260 BLOCK_SUPERBLOCK (block) = NULL;
261 BLOCK_NAMESPACE (block) = NULL;
262
263 /* Put the block in as the value of the symbol that names it. */
264
265 if (symbol)
266 {
267 struct type *ftype = SYMBOL_TYPE (symbol);
268 struct dict_iterator iter;
269 SYMBOL_BLOCK_VALUE (symbol) = block;
270 BLOCK_FUNCTION (block) = symbol;
271
272 if (TYPE_NFIELDS (ftype) <= 0)
273 {
274 /* No parameter type information is recorded with the
275 function's type. Set that from the type of the
276 parameter symbols. */
277 int nparams = 0, iparams;
278 struct symbol *sym;
279 ALL_BLOCK_SYMBOLS (block, iter, sym)
280 {
281 if (SYMBOL_IS_ARGUMENT (sym))
282 nparams++;
283 }
284 if (nparams > 0)
285 {
286 TYPE_NFIELDS (ftype) = nparams;
287 TYPE_FIELDS (ftype) = (struct field *)
288 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
289
290 iparams = 0;
291 ALL_BLOCK_SYMBOLS (block, iter, sym)
292 {
293 if (iparams == nparams)
294 break;
295
296 if (SYMBOL_IS_ARGUMENT (sym))
297 {
298 TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
299 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
300 iparams++;
301 }
302 }
303 }
304 }
305 }
306 else
307 {
308 BLOCK_FUNCTION (block) = NULL;
309 }
310
311 /* Now "free" the links of the list, and empty the list. */
312
313 for (next = *listhead; next; next = next1)
314 {
315 next1 = next->next;
316 next->next = free_pendings;
317 free_pendings = next;
318 }
319 *listhead = NULL;
320
321 /* Check to be sure that the blocks have an end address that is
322 greater than starting address */
323
324 if (BLOCK_END (block) < BLOCK_START (block))
325 {
326 if (symbol)
327 {
328 complaint (&symfile_complaints,
329 _("block end address less than block start address in %s (patched it)"),
330 SYMBOL_PRINT_NAME (symbol));
331 }
332 else
333 {
334 complaint (&symfile_complaints,
335 _("block end address %s less than block start address %s (patched it)"),
336 paddress (gdbarch, BLOCK_END (block)),
337 paddress (gdbarch, BLOCK_START (block)));
338 }
339 /* Better than nothing */
340 BLOCK_END (block) = BLOCK_START (block);
341 }
342
343 /* Install this block as the superblock of all blocks made since the
344 start of this scope that don't have superblocks yet. */
345
346 opblock = NULL;
347 for (pblock = pending_blocks;
348 pblock && pblock != old_blocks;
349 pblock = pblock->next)
350 {
351 if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
352 {
353 /* Check to be sure the blocks are nested as we receive
354 them. If the compiler/assembler/linker work, this just
355 burns a small amount of time.
356
357 Skip blocks which correspond to a function; they're not
358 physically nested inside this other blocks, only
359 lexically nested. */
360 if (BLOCK_FUNCTION (pblock->block) == NULL
361 && (BLOCK_START (pblock->block) < BLOCK_START (block)
362 || BLOCK_END (pblock->block) > BLOCK_END (block)))
363 {
364 if (symbol)
365 {
366 complaint (&symfile_complaints,
367 _("inner block not inside outer block in %s"),
368 SYMBOL_PRINT_NAME (symbol));
369 }
370 else
371 {
372 complaint (&symfile_complaints,
373 _("inner block (%s-%s) not inside outer block (%s-%s)"),
374 paddress (gdbarch, BLOCK_START (pblock->block)),
375 paddress (gdbarch, BLOCK_END (pblock->block)),
376 paddress (gdbarch, BLOCK_START (block)),
377 paddress (gdbarch, BLOCK_END (block)));
378 }
379 if (BLOCK_START (pblock->block) < BLOCK_START (block))
380 BLOCK_START (pblock->block) = BLOCK_START (block);
381 if (BLOCK_END (pblock->block) > BLOCK_END (block))
382 BLOCK_END (pblock->block) = BLOCK_END (block);
383 }
384 BLOCK_SUPERBLOCK (pblock->block) = block;
385 }
386 opblock = pblock;
387 }
388
389 block_set_using (block, using_directives, &objfile->objfile_obstack);
390 using_directives = NULL;
391
392 record_pending_block (objfile, block, opblock);
393
394 return block;
395 }
396
397
398 /* Record BLOCK on the list of all blocks in the file. Put it after
399 OPBLOCK, or at the beginning if opblock is NULL. This puts the
400 block in the list after all its subblocks.
401
402 Allocate the pending block struct in the objfile_obstack to save
403 time. This wastes a little space. FIXME: Is it worth it? */
404
405 void
406 record_pending_block (struct objfile *objfile, struct block *block,
407 struct pending_block *opblock)
408 {
409 struct pending_block *pblock;
410
411 pblock = (struct pending_block *)
412 obstack_alloc (&objfile->objfile_obstack, sizeof (struct pending_block));
413 pblock->block = block;
414 if (opblock)
415 {
416 pblock->next = opblock->next;
417 opblock->next = pblock;
418 }
419 else
420 {
421 pblock->next = pending_blocks;
422 pending_blocks = pblock;
423 }
424 }
425
426
427 /* Record that the range of addresses from START to END_INCLUSIVE
428 (inclusive, like it says) belongs to BLOCK. BLOCK's start and end
429 addresses must be set already. You must apply this function to all
430 BLOCK's children before applying it to BLOCK.
431
432 If a call to this function complicates the picture beyond that
433 already provided by BLOCK_START and BLOCK_END, then we create an
434 address map for the block. */
435 void
436 record_block_range (struct block *block,
437 CORE_ADDR start, CORE_ADDR end_inclusive)
438 {
439 /* If this is any different from the range recorded in the block's
440 own BLOCK_START and BLOCK_END, then note that the address map has
441 become interesting. Note that even if this block doesn't have
442 any "interesting" ranges, some later block might, so we still
443 need to record this block in the addrmap. */
444 if (start != BLOCK_START (block)
445 || end_inclusive + 1 != BLOCK_END (block))
446 pending_addrmap_interesting = 1;
447
448 if (! pending_addrmap)
449 {
450 obstack_init (&pending_addrmap_obstack);
451 pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack);
452 }
453
454 addrmap_set_empty (pending_addrmap, start, end_inclusive, block);
455 }
456
457
458 static struct blockvector *
459 make_blockvector (struct objfile *objfile)
460 {
461 struct pending_block *next;
462 struct blockvector *blockvector;
463 int i;
464
465 /* Count the length of the list of blocks. */
466
467 for (next = pending_blocks, i = 0; next; next = next->next, i++)
468 {;
469 }
470
471 blockvector = (struct blockvector *)
472 obstack_alloc (&objfile->objfile_obstack,
473 (sizeof (struct blockvector)
474 + (i - 1) * sizeof (struct block *)));
475
476 /* Copy the blocks into the blockvector. This is done in reverse
477 order, which happens to put the blocks into the proper order
478 (ascending starting address). finish_block has hair to insert
479 each block into the list after its subblocks in order to make
480 sure this is true. */
481
482 BLOCKVECTOR_NBLOCKS (blockvector) = i;
483 for (next = pending_blocks; next; next = next->next)
484 {
485 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
486 }
487
488 free_pending_blocks ();
489
490 /* If we needed an address map for this symtab, record it in the
491 blockvector. */
492 if (pending_addrmap && pending_addrmap_interesting)
493 BLOCKVECTOR_MAP (blockvector)
494 = addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack);
495 else
496 BLOCKVECTOR_MAP (blockvector) = 0;
497
498 /* Some compilers output blocks in the wrong order, but we depend on
499 their being in the right order so we can binary search. Check the
500 order and moan about it. */
501 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
502 {
503 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
504 {
505 if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
506 > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
507 {
508 CORE_ADDR start
509 = BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
510
511 complaint (&symfile_complaints, _("block at %s out of order"),
512 hex_string ((LONGEST) start));
513 }
514 }
515 }
516
517 return (blockvector);
518 }
519 \f
520 /* Start recording information about source code that came from an
521 included (or otherwise merged-in) source file with a different
522 name. NAME is the name of the file (cannot be NULL), DIRNAME is
523 the directory in which the file was compiled (or NULL if not known). */
524
525 void
526 start_subfile (char *name, char *dirname)
527 {
528 struct subfile *subfile;
529
530 /* See if this subfile is already known as a subfile of the current
531 main source file. */
532
533 for (subfile = subfiles; subfile; subfile = subfile->next)
534 {
535 char *subfile_name;
536
537 /* If NAME is an absolute path, and this subfile is not, then
538 attempt to create an absolute path to compare. */
539 if (IS_ABSOLUTE_PATH (name)
540 && !IS_ABSOLUTE_PATH (subfile->name)
541 && subfile->dirname != NULL)
542 subfile_name = concat (subfile->dirname, SLASH_STRING,
543 subfile->name, (char *) NULL);
544 else
545 subfile_name = subfile->name;
546
547 if (FILENAME_CMP (subfile_name, name) == 0)
548 {
549 current_subfile = subfile;
550 if (subfile_name != subfile->name)
551 xfree (subfile_name);
552 return;
553 }
554 if (subfile_name != subfile->name)
555 xfree (subfile_name);
556 }
557
558 /* This subfile is not known. Add an entry for it. Make an entry
559 for this subfile in the list of all subfiles of the current main
560 source file. */
561
562 subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
563 memset ((char *) subfile, 0, sizeof (struct subfile));
564 subfile->next = subfiles;
565 subfiles = subfile;
566 current_subfile = subfile;
567
568 /* Save its name and compilation directory name */
569 subfile->name = (name == NULL) ? NULL : xstrdup (name);
570 subfile->dirname = (dirname == NULL) ? NULL : xstrdup (dirname);
571
572 /* Initialize line-number recording for this subfile. */
573 subfile->line_vector = NULL;
574
575 /* Default the source language to whatever can be deduced from the
576 filename. If nothing can be deduced (such as for a C/C++ include
577 file with a ".h" extension), then inherit whatever language the
578 previous subfile had. This kludgery is necessary because there
579 is no standard way in some object formats to record the source
580 language. Also, when symtabs are allocated we try to deduce a
581 language then as well, but it is too late for us to use that
582 information while reading symbols, since symtabs aren't allocated
583 until after all the symbols have been processed for a given
584 source file. */
585
586 subfile->language = deduce_language_from_filename (subfile->name);
587 if (subfile->language == language_unknown
588 && subfile->next != NULL)
589 {
590 subfile->language = subfile->next->language;
591 }
592
593 /* Initialize the debug format string to NULL. We may supply it
594 later via a call to record_debugformat. */
595 subfile->debugformat = NULL;
596
597 /* Similarly for the producer. */
598 subfile->producer = NULL;
599
600 /* If the filename of this subfile ends in .C, then change the
601 language of any pending subfiles from C to C++. We also accept
602 any other C++ suffixes accepted by deduce_language_from_filename. */
603 /* Likewise for f2c. */
604
605 if (subfile->name)
606 {
607 struct subfile *s;
608 enum language sublang = deduce_language_from_filename (subfile->name);
609
610 if (sublang == language_cplus || sublang == language_fortran)
611 for (s = subfiles; s != NULL; s = s->next)
612 if (s->language == language_c)
613 s->language = sublang;
614 }
615
616 /* And patch up this file if necessary. */
617 if (subfile->language == language_c
618 && subfile->next != NULL
619 && (subfile->next->language == language_cplus
620 || subfile->next->language == language_fortran))
621 {
622 subfile->language = subfile->next->language;
623 }
624 }
625
626 /* For stabs readers, the first N_SO symbol is assumed to be the
627 source file name, and the subfile struct is initialized using that
628 assumption. If another N_SO symbol is later seen, immediately
629 following the first one, then the first one is assumed to be the
630 directory name and the second one is really the source file name.
631
632 So we have to patch up the subfile struct by moving the old name
633 value to dirname and remembering the new name. Some sanity
634 checking is performed to ensure that the state of the subfile
635 struct is reasonable and that the old name we are assuming to be a
636 directory name actually is (by checking for a trailing '/'). */
637
638 void
639 patch_subfile_names (struct subfile *subfile, char *name)
640 {
641 if (subfile != NULL && subfile->dirname == NULL && subfile->name != NULL
642 && subfile->name[strlen (subfile->name) - 1] == '/')
643 {
644 subfile->dirname = subfile->name;
645 subfile->name = xstrdup (name);
646 last_source_file = name;
647
648 /* Default the source language to whatever can be deduced from
649 the filename. If nothing can be deduced (such as for a C/C++
650 include file with a ".h" extension), then inherit whatever
651 language the previous subfile had. This kludgery is
652 necessary because there is no standard way in some object
653 formats to record the source language. Also, when symtabs
654 are allocated we try to deduce a language then as well, but
655 it is too late for us to use that information while reading
656 symbols, since symtabs aren't allocated until after all the
657 symbols have been processed for a given source file. */
658
659 subfile->language = deduce_language_from_filename (subfile->name);
660 if (subfile->language == language_unknown
661 && subfile->next != NULL)
662 {
663 subfile->language = subfile->next->language;
664 }
665 }
666 }
667 \f
668 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
669 switching source files (different subfiles, as we call them) within
670 one object file, but using a stack rather than in an arbitrary
671 order. */
672
673 void
674 push_subfile (void)
675 {
676 struct subfile_stack *tem
677 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
678
679 tem->next = subfile_stack;
680 subfile_stack = tem;
681 if (current_subfile == NULL || current_subfile->name == NULL)
682 {
683 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
684 }
685 tem->name = current_subfile->name;
686 }
687
688 char *
689 pop_subfile (void)
690 {
691 char *name;
692 struct subfile_stack *link = subfile_stack;
693
694 if (link == NULL)
695 {
696 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
697 }
698 name = link->name;
699 subfile_stack = link->next;
700 xfree ((void *) link);
701 return (name);
702 }
703 \f
704 /* Add a linetable entry for line number LINE and address PC to the
705 line vector for SUBFILE. */
706
707 void
708 record_line (struct subfile *subfile, int line, CORE_ADDR pc)
709 {
710 struct linetable_entry *e;
711
712 /* Ignore the dummy line number in libg.o */
713 if (line == 0xffff)
714 {
715 return;
716 }
717
718 /* Make sure line vector exists and is big enough. */
719 if (!subfile->line_vector)
720 {
721 subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
722 subfile->line_vector = (struct linetable *)
723 xmalloc (sizeof (struct linetable)
724 + subfile->line_vector_length * sizeof (struct linetable_entry));
725 subfile->line_vector->nitems = 0;
726 have_line_numbers = 1;
727 }
728
729 if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
730 {
731 subfile->line_vector_length *= 2;
732 subfile->line_vector = (struct linetable *)
733 xrealloc ((char *) subfile->line_vector,
734 (sizeof (struct linetable)
735 + (subfile->line_vector_length
736 * sizeof (struct linetable_entry))));
737 }
738
739 /* Normally, we treat lines as unsorted. But the end of sequence
740 marker is special. We sort line markers at the same PC by line
741 number, so end of sequence markers (which have line == 0) appear
742 first. This is right if the marker ends the previous function,
743 and there is no padding before the next function. But it is
744 wrong if the previous line was empty and we are now marking a
745 switch to a different subfile. We must leave the end of sequence
746 marker at the end of this group of lines, not sort the empty line
747 to after the marker. The easiest way to accomplish this is to
748 delete any empty lines from our table, if they are followed by
749 end of sequence markers. All we lose is the ability to set
750 breakpoints at some lines which contain no instructions
751 anyway. */
752 if (line == 0 && subfile->line_vector->nitems > 0)
753 {
754 e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
755 while (subfile->line_vector->nitems > 0 && e->pc == pc)
756 {
757 e--;
758 subfile->line_vector->nitems--;
759 }
760 }
761
762 e = subfile->line_vector->item + subfile->line_vector->nitems++;
763 e->line = line;
764 e->pc = pc;
765 }
766
767 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */
768
769 static int
770 compare_line_numbers (const void *ln1p, const void *ln2p)
771 {
772 struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
773 struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
774
775 /* Note: this code does not assume that CORE_ADDRs can fit in ints.
776 Please keep it that way. */
777 if (ln1->pc < ln2->pc)
778 return -1;
779
780 if (ln1->pc > ln2->pc)
781 return 1;
782
783 /* If pc equal, sort by line. I'm not sure whether this is optimum
784 behavior (see comment at struct linetable in symtab.h). */
785 return ln1->line - ln2->line;
786 }
787 \f
788 /* Start a new symtab for a new source file. Called, for example,
789 when a stabs symbol of type N_SO is seen, or when a DWARF
790 TAG_compile_unit DIE is seen. It indicates the start of data for
791 one original source file.
792
793 NAME is the name of the file (cannot be NULL). DIRNAME is the directory in
794 which the file was compiled (or NULL if not known). START_ADDR is the
795 lowest address of objects in the file (or 0 if not known). */
796
797 void
798 start_symtab (char *name, char *dirname, CORE_ADDR start_addr)
799 {
800 last_source_file = name;
801 last_source_start_addr = start_addr;
802 file_symbols = NULL;
803 global_symbols = NULL;
804 within_function = 0;
805 have_line_numbers = 0;
806
807 /* Context stack is initially empty. Allocate first one with room
808 for 10 levels; reuse it forever afterward. */
809 if (context_stack == NULL)
810 {
811 context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
812 context_stack = (struct context_stack *)
813 xmalloc (context_stack_size * sizeof (struct context_stack));
814 }
815 context_stack_depth = 0;
816
817 /* We shouldn't have any address map at this point. */
818 gdb_assert (! pending_addrmap);
819
820 /* Initialize the list of sub source files with one entry for this
821 file (the top-level source file). */
822
823 subfiles = NULL;
824 current_subfile = NULL;
825 start_subfile (name, dirname);
826 }
827
828 /* Subroutine of end_symtab to simplify it.
829 Look for a subfile that matches the main source file's basename.
830 If there is only one, and if the main source file doesn't have any
831 symbol or line number information, then copy this file's symtab and
832 line_vector to the main source file's subfile and discard the other subfile.
833 This can happen because of a compiler bug or from the user playing games
834 with #line or from things like a distributed build system that manipulates
835 the debug info. */
836
837 static void
838 watch_main_source_file_lossage (void)
839 {
840 struct subfile *mainsub, *subfile;
841
842 /* Find the main source file.
843 This loop could be eliminated if start_symtab saved it for us. */
844 mainsub = NULL;
845 for (subfile = subfiles; subfile; subfile = subfile->next)
846 {
847 /* The main subfile is guaranteed to be the last one. */
848 if (subfile->next == NULL)
849 mainsub = subfile;
850 }
851
852 /* If the main source file doesn't have any line number or symbol info,
853 look for an alias in another subfile.
854 We have to watch for mainsub == NULL here. It's a quirk of end_symtab,
855 it can return NULL so there may not be a main subfile. */
856
857 if (mainsub
858 && mainsub->line_vector == NULL
859 && mainsub->symtab == NULL)
860 {
861 const char *mainbase = lbasename (mainsub->name);
862 int nr_matches = 0;
863 struct subfile *prevsub;
864 struct subfile *mainsub_alias = NULL;
865 struct subfile *prev_mainsub_alias = NULL;
866
867 prevsub = NULL;
868 for (subfile = subfiles;
869 /* Stop before we get to the last one. */
870 subfile->next;
871 subfile = subfile->next)
872 {
873 if (strcmp (lbasename (subfile->name), mainbase) == 0)
874 {
875 ++nr_matches;
876 mainsub_alias = subfile;
877 prev_mainsub_alias = prevsub;
878 }
879 prevsub = subfile;
880 }
881
882 if (nr_matches == 1)
883 {
884 gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
885
886 /* Found a match for the main source file.
887 Copy its line_vector and symtab to the main subfile
888 and then discard it. */
889
890 mainsub->line_vector = mainsub_alias->line_vector;
891 mainsub->line_vector_length = mainsub_alias->line_vector_length;
892 mainsub->symtab = mainsub_alias->symtab;
893
894 if (prev_mainsub_alias == NULL)
895 subfiles = mainsub_alias->next;
896 else
897 prev_mainsub_alias->next = mainsub_alias->next;
898 xfree (mainsub_alias);
899 }
900 }
901 }
902
903 /* Helper function for qsort. Parametes are `struct block *' pointers,
904 function sorts them in descending order by their BLOCK_START. */
905
906 static int
907 block_compar (const void *ap, const void *bp)
908 {
909 const struct block *a = *(const struct block **) ap;
910 const struct block *b = *(const struct block **) bp;
911
912 return ((BLOCK_START (b) > BLOCK_START (a))
913 - (BLOCK_START (b) < BLOCK_START (a)));
914 }
915
916 /* Finish the symbol definitions for one main source file, close off
917 all the lexical contexts for that file (creating struct block's for
918 them), then make the struct symtab for that file and put it in the
919 list of all such.
920
921 END_ADDR is the address of the end of the file's text. SECTION is
922 the section number (in objfile->section_offsets) of the blockvector
923 and linetable.
924
925 Note that it is possible for end_symtab() to return NULL. In
926 particular, for the DWARF case at least, it will return NULL when
927 it finds a compilation unit that has exactly one DIE, a
928 TAG_compile_unit DIE. This can happen when we link in an object
929 file that was compiled from an empty source file. Returning NULL
930 is probably not the correct thing to do, because then gdb will
931 never know about this empty file (FIXME). */
932
933 struct symtab *
934 end_symtab (CORE_ADDR end_addr, struct objfile *objfile, int section)
935 {
936 struct symtab *symtab = NULL;
937 struct blockvector *blockvector;
938 struct subfile *subfile;
939 struct context_stack *cstk;
940 struct subfile *nextsub;
941
942 /* Finish the lexical context of the last function in the file; pop
943 the context stack. */
944
945 if (context_stack_depth > 0)
946 {
947 cstk = pop_context ();
948 /* Make a block for the local symbols within. */
949 finish_block (cstk->name, &local_symbols, cstk->old_blocks,
950 cstk->start_addr, end_addr, objfile);
951
952 if (context_stack_depth > 0)
953 {
954 /* This is said to happen with SCO. The old coffread.c
955 code simply emptied the context stack, so we do the
956 same. FIXME: Find out why it is happening. This is not
957 believed to happen in most cases (even for coffread.c);
958 it used to be an abort(). */
959 complaint (&symfile_complaints,
960 _("Context stack not empty in end_symtab"));
961 context_stack_depth = 0;
962 }
963 }
964
965 /* Reordered executables may have out of order pending blocks; if
966 OBJF_REORDERED is true, then sort the pending blocks. */
967 if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
968 {
969 unsigned count = 0;
970 struct pending_block *pb;
971 struct block **barray, **bp;
972 struct cleanup *back_to;
973
974 for (pb = pending_blocks; pb != NULL; pb = pb->next)
975 count++;
976
977 barray = xmalloc (sizeof (*barray) * count);
978 back_to = make_cleanup (xfree, barray);
979
980 bp = barray;
981 for (pb = pending_blocks; pb != NULL; pb = pb->next)
982 *bp++ = pb->block;
983
984 qsort (barray, count, sizeof (*barray), block_compar);
985
986 bp = barray;
987 for (pb = pending_blocks; pb != NULL; pb = pb->next)
988 pb->block = *bp++;
989
990 do_cleanups (back_to);
991 }
992
993 /* Cleanup any undefined types that have been left hanging around
994 (this needs to be done before the finish_blocks so that
995 file_symbols is still good).
996
997 Both cleanup_undefined_types and finish_global_stabs are stabs
998 specific, but harmless for other symbol readers, since on gdb
999 startup or when finished reading stabs, the state is set so these
1000 are no-ops. FIXME: Is this handled right in case of QUIT? Can
1001 we make this cleaner? */
1002
1003 cleanup_undefined_types (objfile);
1004 finish_global_stabs (objfile);
1005
1006 if (pending_blocks == NULL
1007 && file_symbols == NULL
1008 && global_symbols == NULL
1009 && have_line_numbers == 0
1010 && pending_macros == NULL)
1011 {
1012 /* Ignore symtabs that have no functions with real debugging
1013 info. */
1014 blockvector = NULL;
1015 }
1016 else
1017 {
1018 /* Define the STATIC_BLOCK & GLOBAL_BLOCK, and build the
1019 blockvector. */
1020 finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr,
1021 objfile);
1022 finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr,
1023 objfile);
1024 blockvector = make_blockvector (objfile);
1025 }
1026
1027 /* Read the line table if it has to be read separately. */
1028 if (objfile->sf->sym_read_linetable != NULL)
1029 objfile->sf->sym_read_linetable ();
1030
1031 /* Handle the case where the debug info specifies a different path
1032 for the main source file. It can cause us to lose track of its
1033 line number information. */
1034 watch_main_source_file_lossage ();
1035
1036 /* Now create the symtab objects proper, one for each subfile. */
1037 /* (The main file is the last one on the chain.) */
1038
1039 for (subfile = subfiles; subfile; subfile = nextsub)
1040 {
1041 int linetablesize = 0;
1042 symtab = NULL;
1043
1044 /* If we have blocks of symbols, make a symtab. Otherwise, just
1045 ignore this file and any line number info in it. */
1046 if (blockvector)
1047 {
1048 if (subfile->line_vector)
1049 {
1050 linetablesize = sizeof (struct linetable) +
1051 subfile->line_vector->nitems * sizeof (struct linetable_entry);
1052
1053 /* Like the pending blocks, the line table may be
1054 scrambled in reordered executables. Sort it if
1055 OBJF_REORDERED is true. */
1056 if (objfile->flags & OBJF_REORDERED)
1057 qsort (subfile->line_vector->item,
1058 subfile->line_vector->nitems,
1059 sizeof (struct linetable_entry), compare_line_numbers);
1060 }
1061
1062 /* Now, allocate a symbol table. */
1063 if (subfile->symtab == NULL)
1064 symtab = allocate_symtab (subfile->name, objfile);
1065 else
1066 symtab = subfile->symtab;
1067
1068 /* Fill in its components. */
1069 symtab->blockvector = blockvector;
1070 symtab->macro_table = pending_macros;
1071 if (subfile->line_vector)
1072 {
1073 /* Reallocate the line table on the symbol obstack */
1074 symtab->linetable = (struct linetable *)
1075 obstack_alloc (&objfile->objfile_obstack, linetablesize);
1076 memcpy (symtab->linetable, subfile->line_vector, linetablesize);
1077 }
1078 else
1079 {
1080 symtab->linetable = NULL;
1081 }
1082 symtab->block_line_section = section;
1083 if (subfile->dirname)
1084 {
1085 /* Reallocate the dirname on the symbol obstack */
1086 symtab->dirname = (char *)
1087 obstack_alloc (&objfile->objfile_obstack,
1088 strlen (subfile->dirname) + 1);
1089 strcpy (symtab->dirname, subfile->dirname);
1090 }
1091 else
1092 {
1093 symtab->dirname = NULL;
1094 }
1095 symtab->free_code = free_linetable;
1096 symtab->free_func = NULL;
1097
1098 /* Use whatever language we have been using for this
1099 subfile, not the one that was deduced in allocate_symtab
1100 from the filename. We already did our own deducing when
1101 we created the subfile, and we may have altered our
1102 opinion of what language it is from things we found in
1103 the symbols. */
1104 symtab->language = subfile->language;
1105
1106 /* Save the debug format string (if any) in the symtab */
1107 if (subfile->debugformat != NULL)
1108 {
1109 symtab->debugformat = obsavestring (subfile->debugformat,
1110 strlen (subfile->debugformat),
1111 &objfile->objfile_obstack);
1112 }
1113
1114 /* Similarly for the producer. */
1115 if (subfile->producer != NULL)
1116 symtab->producer = obsavestring (subfile->producer,
1117 strlen (subfile->producer),
1118 &objfile->objfile_obstack);
1119
1120 /* All symtabs for the main file and the subfiles share a
1121 blockvector, so we need to clear primary for everything
1122 but the main file. */
1123
1124 symtab->primary = 0;
1125 }
1126 else
1127 {
1128 if (subfile->symtab)
1129 {
1130 /* Since we are ignoring that subfile, we also need
1131 to unlink the associated empty symtab that we created.
1132 Otherwise, we can into trouble because various parts
1133 such as the block-vector are uninitialized whereas
1134 the rest of the code assumes that they are.
1135
1136 We can only unlink the symtab because it was allocated
1137 on the objfile obstack. */
1138 struct symtab *s;
1139
1140 if (objfile->symtabs == subfile->symtab)
1141 objfile->symtabs = objfile->symtabs->next;
1142 else
1143 ALL_OBJFILE_SYMTABS (objfile, s)
1144 if (s->next == subfile->symtab)
1145 {
1146 s->next = s->next->next;
1147 break;
1148 }
1149 subfile->symtab = NULL;
1150 }
1151 }
1152 if (subfile->name != NULL)
1153 {
1154 xfree ((void *) subfile->name);
1155 }
1156 if (subfile->dirname != NULL)
1157 {
1158 xfree ((void *) subfile->dirname);
1159 }
1160 if (subfile->line_vector != NULL)
1161 {
1162 xfree ((void *) subfile->line_vector);
1163 }
1164 if (subfile->debugformat != NULL)
1165 {
1166 xfree ((void *) subfile->debugformat);
1167 }
1168 if (subfile->producer != NULL)
1169 xfree (subfile->producer);
1170
1171 nextsub = subfile->next;
1172 xfree ((void *) subfile);
1173 }
1174
1175 /* Set this for the main source file. */
1176 if (symtab)
1177 {
1178 symtab->primary = 1;
1179 }
1180
1181 /* Default any symbols without a specified symtab to the primary
1182 symtab. */
1183 if (blockvector)
1184 {
1185 int block_i;
1186
1187 for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1188 {
1189 struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1190 struct symbol *sym;
1191 struct dict_iterator iter;
1192
1193 /* Inlined functions may have symbols not in the global or static
1194 symbol lists. */
1195 if (BLOCK_FUNCTION (block) != NULL)
1196 if (SYMBOL_SYMTAB (BLOCK_FUNCTION (block)) == NULL)
1197 SYMBOL_SYMTAB (BLOCK_FUNCTION (block)) = symtab;
1198
1199 for (sym = dict_iterator_first (BLOCK_DICT (block), &iter);
1200 sym != NULL;
1201 sym = dict_iterator_next (&iter))
1202 if (SYMBOL_SYMTAB (sym) == NULL)
1203 SYMBOL_SYMTAB (sym) = symtab;
1204 }
1205 }
1206
1207 last_source_file = NULL;
1208 current_subfile = NULL;
1209 pending_macros = NULL;
1210 if (pending_addrmap)
1211 {
1212 obstack_free (&pending_addrmap_obstack, NULL);
1213 pending_addrmap = NULL;
1214 }
1215
1216 return symtab;
1217 }
1218
1219 /* Push a context block. Args are an identifying nesting level
1220 (checkable when you pop it), and the starting PC address of this
1221 context. */
1222
1223 struct context_stack *
1224 push_context (int desc, CORE_ADDR valu)
1225 {
1226 struct context_stack *new;
1227
1228 if (context_stack_depth == context_stack_size)
1229 {
1230 context_stack_size *= 2;
1231 context_stack = (struct context_stack *)
1232 xrealloc ((char *) context_stack,
1233 (context_stack_size * sizeof (struct context_stack)));
1234 }
1235
1236 new = &context_stack[context_stack_depth++];
1237 new->depth = desc;
1238 new->locals = local_symbols;
1239 new->params = param_symbols;
1240 new->old_blocks = pending_blocks;
1241 new->start_addr = valu;
1242 new->using_directives = using_directives;
1243 new->name = NULL;
1244
1245 local_symbols = NULL;
1246 param_symbols = NULL;
1247 using_directives = NULL;
1248
1249 return new;
1250 }
1251
1252 /* Pop a context block. Returns the address of the context block just
1253 popped. */
1254
1255 struct context_stack *
1256 pop_context (void)
1257 {
1258 gdb_assert (context_stack_depth > 0);
1259 return (&context_stack[--context_stack_depth]);
1260 }
1261
1262 \f
1263
1264 /* Compute a small integer hash code for the given name. */
1265
1266 int
1267 hashname (char *name)
1268 {
1269 return (hash(name,strlen(name)) % HASHSIZE);
1270 }
1271 \f
1272
1273 void
1274 record_debugformat (char *format)
1275 {
1276 current_subfile->debugformat = xstrdup (format);
1277 }
1278
1279 void
1280 record_producer (const char *producer)
1281 {
1282 /* The producer is not always provided in the debugging info.
1283 Do nothing if PRODUCER is NULL. */
1284 if (producer == NULL)
1285 return;
1286
1287 current_subfile->producer = xstrdup (producer);
1288 }
1289
1290 /* Merge the first symbol list SRCLIST into the second symbol list
1291 TARGETLIST by repeated calls to add_symbol_to_list(). This
1292 procedure "frees" each link of SRCLIST by adding it to the
1293 free_pendings list. Caller must set SRCLIST to a null list after
1294 calling this function.
1295
1296 Void return. */
1297
1298 void
1299 merge_symbol_lists (struct pending **srclist, struct pending **targetlist)
1300 {
1301 int i;
1302
1303 if (!srclist || !*srclist)
1304 return;
1305
1306 /* Merge in elements from current link. */
1307 for (i = 0; i < (*srclist)->nsyms; i++)
1308 add_symbol_to_list ((*srclist)->symbol[i], targetlist);
1309
1310 /* Recurse on next. */
1311 merge_symbol_lists (&(*srclist)->next, targetlist);
1312
1313 /* "Free" the current link. */
1314 (*srclist)->next = free_pendings;
1315 free_pendings = (*srclist);
1316 }
1317 \f
1318 /* Initialize anything that needs initializing when starting to read a
1319 fresh piece of a symbol file, e.g. reading in the stuff
1320 corresponding to a psymtab. */
1321
1322 void
1323 buildsym_init (void)
1324 {
1325 free_pendings = NULL;
1326 file_symbols = NULL;
1327 global_symbols = NULL;
1328 pending_blocks = NULL;
1329 pending_macros = NULL;
1330
1331 /* We shouldn't have any address map at this point. */
1332 gdb_assert (! pending_addrmap);
1333 pending_addrmap_interesting = 0;
1334 }
1335
1336 /* Initialize anything that needs initializing when a completely new
1337 symbol file is specified (not just adding some symbols from another
1338 file, e.g. a shared library). */
1339
1340 void
1341 buildsym_new_init (void)
1342 {
1343 buildsym_init ();
1344 }
This page took 0.058829 seconds and 4 git commands to generate.