One more time...
[deliverable/binutils-gdb.git] / gdb / buildsym.c
1 /* Build symbol tables in GDB's internal format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* This module provides subroutines used for creating and adding to
21 the symbol table. These routines are called from various symbol-
22 file-reading routines.
23
24 They originated in dbxread.c of gdb-4.2, and were split out to
25 make xcoffread.c more maintainable by sharing code. */
26
27 #include "defs.h"
28 #include "obstack.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "breakpoint.h"
32 #include "gdbcore.h" /* for bfd stuff for symfile.h */
33 #include "symfile.h" /* Needed for "struct complaint" */
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
36 #include <string.h>
37 #include <ctype.h>
38
39 /* Ask buildsym.h to define the vars it normally declares `extern'. */
40 #define EXTERN /**/
41 #include "buildsym.h" /* Our own declarations */
42 #undef EXTERN
43
44 static void
45 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
46 struct objfile *));
47
48 static void
49 read_huge_number PARAMS ((char **, int, long *, int *));
50
51 struct type *
52 dbx_alloc_type PARAMS ((int [2], struct objfile *));
53
54 static int
55 compare_line_numbers PARAMS ((const void *, const void *));
56
57 static struct blockvector *
58 make_blockvector PARAMS ((struct objfile *));
59
60 static void
61 fix_common_block PARAMS ((struct symbol *, int));
62
63 static void
64 cleanup_undefined_types PARAMS ((void));
65
66 static struct type *
67 read_range_type PARAMS ((char **, int [2], struct objfile *));
68
69 static struct type *
70 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
71
72 static struct type *
73 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
74
75 static struct type *
76 read_array_type PARAMS ((char **, struct type *, struct objfile *));
77
78 static struct type **
79 read_args PARAMS ((char **, int, struct objfile *));
80
81 \f
82
83 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
84 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
85
86 /* Define this as 1 if a pcc declaration of a char or short argument
87 gives the correct address. Otherwise assume pcc gives the
88 address of the corresponding int, which is not the same on a
89 big-endian machine. */
90
91 #ifndef BELIEVE_PCC_PROMOTION
92 #define BELIEVE_PCC_PROMOTION 0
93 #endif
94
95 /* During some calls to read_type (and thus to read_range_type), this
96 contains the name of the type being defined. Range types are only
97 used in C as basic types. We use the name to distinguish the otherwise
98 identical basic types "int" and "long" and their unsigned versions.
99 FIXME, this should disappear with better type management. */
100
101 static char *long_kludge_name;
102
103 /* Make a list of forward references which haven't been defined. */
104 static struct type **undef_types;
105 static int undef_types_allocated, undef_types_length;
106
107 /* Initial sizes of data structures. These are realloc'd larger if needed,
108 and realloc'd down to the size actually used, when completed. */
109
110 #define INITIAL_CONTEXT_STACK_SIZE 10
111 #define INITIAL_TYPE_VECTOR_LENGTH 160
112 #define INITIAL_LINE_VECTOR_LENGTH 1000
113 \f
114 /* Complaints about the symbols we have encountered. */
115
116 struct complaint innerblock_complaint =
117 {"inner block not inside outer block in %s", 0, 0};
118
119 struct complaint blockvector_complaint =
120 {"block at %x out of order", 0, 0};
121
122 #if 0
123 struct complaint dbx_class_complaint =
124 {"encountered DBX-style class variable debugging information.\n\
125 You seem to have compiled your program with \
126 \"g++ -g0\" instead of \"g++ -g\".\n\
127 Therefore GDB will not know about your class variables", 0, 0};
128 #endif
129
130 struct complaint invalid_cpp_abbrev_complaint =
131 {"invalid C++ abbreviation `%s'", 0, 0};
132
133 struct complaint invalid_cpp_type_complaint =
134 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
135
136 struct complaint member_fn_complaint =
137 {"member function type missing, got '%c'", 0, 0};
138
139 struct complaint const_vol_complaint =
140 {"const/volatile indicator missing, got '%c'", 0, 0};
141
142 struct complaint error_type_complaint =
143 {"debug info mismatch between compiler and debugger", 0, 0};
144
145 struct complaint invalid_member_complaint =
146 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
147
148 struct complaint range_type_base_complaint =
149 {"base type %d of range type is not defined", 0, 0};
150
151 struct complaint reg_value_complaint =
152 {"register number too large in symbol %s", 0, 0};
153 \f
154 int
155 hashname (name)
156 char *name;
157 {
158 register char *p = name;
159 register int total = p[0];
160 register int c;
161
162 c = p[1];
163 total += c << 2;
164 if (c)
165 {
166 c = p[2];
167 total += c << 4;
168 if (c)
169 total += p[3] << 6;
170 }
171
172 /* Ensure result is positive. */
173 if (total < 0) total += (1000 << 6);
174 return total % HASHSIZE;
175 }
176
177 \f
178 /* Look up a dbx type-number pair. Return the address of the slot
179 where the type for that number-pair is stored.
180 The number-pair is in TYPENUMS.
181
182 This can be used for finding the type associated with that pair
183 or for associating a new type with the pair. */
184
185 struct type **
186 dbx_lookup_type (typenums)
187 int typenums[2];
188 {
189 register int filenum = typenums[0], index = typenums[1];
190 unsigned old_len;
191
192 if (filenum < 0 || filenum >= n_this_object_header_files)
193 error ("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
194 filenum, index, symnum);
195
196 if (filenum == 0)
197 {
198 /* Type is defined outside of header files.
199 Find it in this object file's type vector. */
200 if (index >= type_vector_length)
201 {
202 old_len = type_vector_length;
203 if (old_len == 0) {
204 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
205 type_vector = (struct type **)
206 malloc (type_vector_length * sizeof (struct type *));
207 }
208 while (index >= type_vector_length)
209 type_vector_length *= 2;
210 type_vector = (struct type **)
211 xrealloc ((char *) type_vector,
212 (type_vector_length * sizeof (struct type *)));
213 bzero (&type_vector[old_len],
214 (type_vector_length - old_len) * sizeof (struct type *));
215 }
216 return &type_vector[index];
217 }
218 else
219 {
220 register int real_filenum = this_object_header_files[filenum];
221 register struct header_file *f;
222 int f_orig_length;
223
224 if (real_filenum >= n_header_files)
225 abort ();
226
227 f = &header_files[real_filenum];
228
229 f_orig_length = f->length;
230 if (index >= f_orig_length)
231 {
232 while (index >= f->length)
233 f->length *= 2;
234 f->vector = (struct type **)
235 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
236 bzero (&f->vector[f_orig_length],
237 (f->length - f_orig_length) * sizeof (struct type *));
238 }
239 return &f->vector[index];
240 }
241 }
242
243 /* Make sure there is a type allocated for type numbers TYPENUMS
244 and return the type object.
245 This can create an empty (zeroed) type object.
246 TYPENUMS may be (-1, -1) to return a new type object that is not
247 put into the type vector, and so may not be referred to by number. */
248
249 struct type *
250 dbx_alloc_type (typenums, objfile)
251 int typenums[2];
252 struct objfile *objfile;
253 {
254 register struct type **type_addr;
255 register struct type *type;
256
257 if (typenums[0] != -1)
258 {
259 type_addr = dbx_lookup_type (typenums);
260 type = *type_addr;
261 }
262 else
263 {
264 type_addr = 0;
265 type = 0;
266 }
267
268 /* If we are referring to a type not known at all yet,
269 allocate an empty type for it.
270 We will fill it in later if we find out how. */
271 if (type == 0)
272 {
273 type = alloc_type (objfile);
274 if (type_addr)
275 *type_addr = type;
276 }
277
278 return type;
279 }
280 \f
281 /* maintain the lists of symbols and blocks */
282
283 /* Add a symbol to one of the lists of symbols. */
284 void
285 add_symbol_to_list (symbol, listhead)
286 struct symbol *symbol;
287 struct pending **listhead;
288 {
289 /* We keep PENDINGSIZE symbols in each link of the list.
290 If we don't have a link with room in it, add a new link. */
291 if (*listhead == 0 || (*listhead)->nsyms == PENDINGSIZE)
292 {
293 register struct pending *link;
294 if (free_pendings)
295 {
296 link = free_pendings;
297 free_pendings = link->next;
298 }
299 else
300 link = (struct pending *) xmalloc (sizeof (struct pending));
301
302 link->next = *listhead;
303 *listhead = link;
304 link->nsyms = 0;
305 }
306
307 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
308 }
309
310 /* Find a symbol on a pending list. */
311 struct symbol *
312 find_symbol_in_list (list, name, length)
313 struct pending *list;
314 char *name;
315 int length;
316 {
317 int j;
318
319 while (list) {
320 for (j = list->nsyms; --j >= 0; ) {
321 char *pp = SYMBOL_NAME (list->symbol[j]);
322 if (*pp == *name && strncmp (pp, name, length) == 0 && pp[length] == '\0')
323 return list->symbol[j];
324 }
325 list = list->next;
326 }
327 return NULL;
328 }
329
330 /* At end of reading syms, or in case of quit,
331 really free as many `struct pending's as we can easily find. */
332
333 /* ARGSUSED */
334 void
335 really_free_pendings (foo)
336 int foo;
337 {
338 struct pending *next, *next1;
339 #if 0
340 struct pending_block *bnext, *bnext1;
341 #endif
342
343 for (next = free_pendings; next; next = next1)
344 {
345 next1 = next->next;
346 free ((PTR)next);
347 }
348 free_pendings = 0;
349
350 #if 0 /* Now we make the links in the symbol_obstack, so don't free them. */
351 for (bnext = pending_blocks; bnext; bnext = bnext1)
352 {
353 bnext1 = bnext->next;
354 free ((PTR)bnext);
355 }
356 #endif
357 pending_blocks = 0;
358
359 for (next = file_symbols; next; next = next1)
360 {
361 next1 = next->next;
362 free ((PTR)next);
363 }
364 file_symbols = 0;
365
366 for (next = global_symbols; next; next = next1)
367 {
368 next1 = next->next;
369 free ((PTR)next);
370 }
371 global_symbols = 0;
372 }
373
374 /* Take one of the lists of symbols and make a block from it.
375 Keep the order the symbols have in the list (reversed from the input file).
376 Put the block on the list of pending blocks. */
377
378 void
379 finish_block (symbol, listhead, old_blocks, start, end, objfile)
380 struct symbol *symbol;
381 struct pending **listhead;
382 struct pending_block *old_blocks;
383 CORE_ADDR start, end;
384 struct objfile *objfile;
385 {
386 register struct pending *next, *next1;
387 register struct block *block;
388 register struct pending_block *pblock;
389 struct pending_block *opblock;
390 register int i;
391
392 /* Count the length of the list of symbols. */
393
394 for (next = *listhead, i = 0;
395 next;
396 i += next->nsyms, next = next->next)
397 /*EMPTY*/;
398
399 block = (struct block *) obstack_alloc (&objfile -> symbol_obstack,
400 (sizeof (struct block) + ((i - 1) * sizeof (struct symbol *))));
401
402 /* Copy the symbols into the block. */
403
404 BLOCK_NSYMS (block) = i;
405 for (next = *listhead; next; next = next->next)
406 {
407 register int j;
408 for (j = next->nsyms - 1; j >= 0; j--)
409 BLOCK_SYM (block, --i) = next->symbol[j];
410 }
411
412 BLOCK_START (block) = start;
413 BLOCK_END (block) = end;
414 BLOCK_SUPERBLOCK (block) = 0; /* Filled in when containing block is made */
415 BLOCK_GCC_COMPILED (block) = processing_gcc_compilation;
416
417 /* Put the block in as the value of the symbol that names it. */
418
419 if (symbol)
420 {
421 SYMBOL_BLOCK_VALUE (symbol) = block;
422 BLOCK_FUNCTION (block) = symbol;
423 }
424 else
425 BLOCK_FUNCTION (block) = 0;
426
427 /* Now "free" the links of the list, and empty the list. */
428
429 for (next = *listhead; next; next = next1)
430 {
431 next1 = next->next;
432 next->next = free_pendings;
433 free_pendings = next;
434 }
435 *listhead = 0;
436
437 /* Install this block as the superblock
438 of all blocks made since the start of this scope
439 that don't have superblocks yet. */
440
441 opblock = 0;
442 for (pblock = pending_blocks; pblock != old_blocks; pblock = pblock->next)
443 {
444 if (BLOCK_SUPERBLOCK (pblock->block) == 0) {
445 #if 1
446 /* Check to be sure the blocks are nested as we receive them.
447 If the compiler/assembler/linker work, this just burns a small
448 amount of time. */
449 if (BLOCK_START (pblock->block) < BLOCK_START (block)
450 || BLOCK_END (pblock->block) > BLOCK_END (block)) {
451 complain(&innerblock_complaint, symbol? SYMBOL_NAME (symbol):
452 "(don't know)");
453 BLOCK_START (pblock->block) = BLOCK_START (block);
454 BLOCK_END (pblock->block) = BLOCK_END (block);
455 }
456 #endif
457 BLOCK_SUPERBLOCK (pblock->block) = block;
458 }
459 opblock = pblock;
460 }
461
462 /* Record this block on the list of all blocks in the file.
463 Put it after opblock, or at the beginning if opblock is 0.
464 This puts the block in the list after all its subblocks. */
465
466 /* Allocate in the symbol_obstack to save time.
467 It wastes a little space. */
468 pblock = (struct pending_block *)
469 obstack_alloc (&objfile -> symbol_obstack,
470 sizeof (struct pending_block));
471 pblock->block = block;
472 if (opblock)
473 {
474 pblock->next = opblock->next;
475 opblock->next = pblock;
476 }
477 else
478 {
479 pblock->next = pending_blocks;
480 pending_blocks = pblock;
481 }
482 }
483
484 static struct blockvector *
485 make_blockvector (objfile)
486 struct objfile *objfile;
487 {
488 register struct pending_block *next;
489 register struct blockvector *blockvector;
490 register int i;
491
492 /* Count the length of the list of blocks. */
493
494 for (next = pending_blocks, i = 0; next; next = next->next, i++);
495
496 blockvector = (struct blockvector *)
497 obstack_alloc (&objfile -> symbol_obstack,
498 (sizeof (struct blockvector)
499 + (i - 1) * sizeof (struct block *)));
500
501 /* Copy the blocks into the blockvector.
502 This is done in reverse order, which happens to put
503 the blocks into the proper order (ascending starting address).
504 finish_block has hair to insert each block into the list
505 after its subblocks in order to make sure this is true. */
506
507 BLOCKVECTOR_NBLOCKS (blockvector) = i;
508 for (next = pending_blocks; next; next = next->next) {
509 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
510 }
511
512 #if 0 /* Now we make the links in the obstack, so don't free them. */
513 /* Now free the links of the list, and empty the list. */
514
515 for (next = pending_blocks; next; next = next1)
516 {
517 next1 = next->next;
518 free (next);
519 }
520 #endif
521 pending_blocks = 0;
522
523 #if 1 /* FIXME, shut this off after a while to speed up symbol reading. */
524 /* Some compilers output blocks in the wrong order, but we depend
525 on their being in the right order so we can binary search.
526 Check the order and moan about it. FIXME. */
527 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
528 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++) {
529 if (BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i-1))
530 > BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i))) {
531 complain (&blockvector_complaint,
532 (char *) BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i)));
533 }
534 }
535 #endif
536
537 return blockvector;
538 }
539 \f
540 /* Start recording information about source code that came from an included
541 (or otherwise merged-in) source file with a different name. */
542
543 void
544 start_subfile (name, dirname)
545 char *name;
546 char *dirname;
547 {
548 register struct subfile *subfile;
549
550 /* See if this subfile is already known as a subfile of the
551 current main source file. */
552
553 for (subfile = subfiles; subfile; subfile = subfile->next)
554 {
555 if (!strcmp (subfile->name, name))
556 {
557 current_subfile = subfile;
558 return;
559 }
560 }
561
562 /* This subfile is not known. Add an entry for it.
563 Make an entry for this subfile in the list of all subfiles
564 of the current main source file. */
565
566 subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
567 subfile->next = subfiles;
568 subfiles = subfile;
569 current_subfile = subfile;
570
571 /* Save its name and compilation directory name */
572 subfile->name = strdup (name);
573 if (dirname == NULL)
574 subfile->dirname = NULL;
575 else
576 subfile->dirname = strdup (dirname);
577
578 /* Initialize line-number recording for this subfile. */
579 subfile->line_vector = 0;
580 }
581 \f
582 /* Handle the N_BINCL and N_EINCL symbol types
583 that act like N_SOL for switching source files
584 (different subfiles, as we call them) within one object file,
585 but using a stack rather than in an arbitrary order. */
586
587 void
588 push_subfile ()
589 {
590 register struct subfile_stack *tem
591 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
592
593 tem->next = subfile_stack;
594 subfile_stack = tem;
595 if (current_subfile == 0 || current_subfile->name == 0)
596 abort ();
597 tem->name = current_subfile->name;
598 tem->prev_index = header_file_prev_index;
599 }
600
601 char *
602 pop_subfile ()
603 {
604 register char *name;
605 register struct subfile_stack *link = subfile_stack;
606
607 if (link == 0)
608 abort ();
609
610 name = link->name;
611 subfile_stack = link->next;
612 header_file_prev_index = link->prev_index;
613 free ((PTR)link);
614
615 return name;
616 }
617 \f
618 /* Manage the vector of line numbers for each subfile. */
619
620 void
621 record_line (subfile, line, pc)
622 register struct subfile *subfile;
623 int line;
624 CORE_ADDR pc;
625 {
626 struct linetable_entry *e;
627 /* Ignore the dummy line number in libg.o */
628
629 if (line == 0xffff)
630 return;
631
632 /* Make sure line vector exists and is big enough. */
633 if (!subfile->line_vector) {
634 subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
635 subfile->line_vector = (struct linetable *)
636 xmalloc (sizeof (struct linetable)
637 + subfile->line_vector_length * sizeof (struct linetable_entry));
638 subfile->line_vector->nitems = 0;
639 }
640
641 if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
642 {
643 subfile->line_vector_length *= 2;
644 subfile->line_vector = (struct linetable *)
645 xrealloc ((char *) subfile->line_vector, (sizeof (struct linetable)
646 + subfile->line_vector_length * sizeof (struct linetable_entry)));
647 }
648
649 e = subfile->line_vector->item + subfile->line_vector->nitems++;
650 e->line = line; e->pc = pc;
651 }
652
653
654 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */
655
656 static int
657 compare_line_numbers (ln1p, ln2p)
658 const PTR ln1p;
659 const PTR ln2p;
660 {
661 return (((struct linetable_entry *) ln1p) -> line -
662 ((struct linetable_entry *) ln2p) -> line);
663 }
664
665 \f
666 /* Start a new symtab for a new source file.
667 This is called when a dbx symbol of type N_SO is seen;
668 it indicates the start of data for one original source file. */
669
670 void
671 start_symtab (name, dirname, start_addr)
672 char *name;
673 char *dirname;
674 CORE_ADDR start_addr;
675 {
676
677 last_source_file = name;
678 last_source_start_addr = start_addr;
679 file_symbols = 0;
680 global_symbols = 0;
681 global_stabs = 0; /* AIX COFF */
682 within_function = 0;
683
684 /* Context stack is initially empty. Allocate first one with room for
685 10 levels; reuse it forever afterward. */
686 if (context_stack == 0) {
687 context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
688 context_stack = (struct context_stack *)
689 xmalloc (context_stack_size * sizeof (struct context_stack));
690 }
691 context_stack_depth = 0;
692
693 /* Leave FILENUM of 0 free for builtin types and this file's types. */
694 n_this_object_header_files = 1;
695 header_file_prev_index = -1;
696
697 type_vector_length = 0;
698 type_vector = (struct type **) 0;
699
700 /* Initialize the list of sub source files with one entry
701 for this file (the top-level source file). */
702
703 subfiles = 0;
704 current_subfile = 0;
705 start_subfile (name, dirname);
706 }
707
708 /* for all the stabs in a given stab vector, build appropriate types
709 and fix their symbols in given symbol vector. */
710
711 static void
712 patch_block_stabs (symbols, stabs, objfile)
713 struct pending *symbols;
714 struct pending_stabs *stabs;
715 struct objfile *objfile;
716 {
717 int ii;
718
719 if (stabs)
720 {
721
722 /* for all the stab entries, find their corresponding symbols and
723 patch their types! */
724
725 for (ii = 0; ii < stabs->count; ++ii)
726 {
727 char *name = stabs->stab[ii];
728 char *pp = (char*) strchr (name, ':');
729 struct symbol *sym = find_symbol_in_list (symbols, name, pp-name);
730 if (!sym)
731 {
732 #ifndef IBM6000_TARGET
733 printf ("ERROR! stab symbol not found!\n"); /* FIXME */
734 #endif
735 }
736 else
737 {
738 pp += 2;
739 if (*(pp-1) == 'F' || *(pp-1) == 'f')
740 {
741 SYMBOL_TYPE (sym) =
742 lookup_function_type (read_type (&pp, objfile));
743 }
744 else
745 {
746 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
747 }
748 }
749 }
750 }
751 }
752
753 /* Finish the symbol definitions for one main source file,
754 close off all the lexical contexts for that file
755 (creating struct block's for them), then make the struct symtab
756 for that file and put it in the list of all such.
757
758 END_ADDR is the address of the end of the file's text. */
759
760 struct symtab *
761 end_symtab (end_addr, sort_pending, sort_linevec, objfile)
762 CORE_ADDR end_addr;
763 int sort_pending;
764 int sort_linevec;
765 struct objfile *objfile;
766 {
767 register struct symtab *symtab;
768 register struct blockvector *blockvector;
769 register struct subfile *subfile;
770 struct subfile *nextsub;
771
772 /* Finish the lexical context of the last function in the file;
773 pop the context stack. */
774
775 if (context_stack_depth > 0)
776 {
777 register struct context_stack *cstk;
778 context_stack_depth--;
779 cstk = &context_stack[context_stack_depth];
780 /* Make a block for the local symbols within. */
781 finish_block (cstk->name, &local_symbols, cstk->old_blocks,
782 cstk->start_addr, end_addr, objfile);
783
784 /* Debug: if context stack still has something in it, we are in
785 trouble. */
786 if (context_stack_depth > 0)
787 abort ();
788 }
789
790 /* It is unfortunate that in aixcoff, pending blocks might not be ordered
791 in this stage. Especially, blocks for static functions will show up at
792 the end. We need to sort them, so tools like `find_pc_function' and
793 `find_pc_block' can work reliably. */
794 if (sort_pending && pending_blocks) {
795 /* FIXME! Remove this horrid bubble sort and use qsort!!! */
796 int swapped;
797 do {
798 struct pending_block *pb, *pbnext;
799
800 pb = pending_blocks, pbnext = pb->next;
801 swapped = 0;
802
803 while ( pbnext ) {
804
805 /* swap blocks if unordered! */
806
807 if (BLOCK_START(pb->block) < BLOCK_START(pbnext->block)) {
808 struct block *tmp = pb->block;
809 pb->block = pbnext->block;
810 pbnext->block = tmp;
811 swapped = 1;
812 }
813 pb = pbnext;
814 pbnext = pbnext->next;
815 }
816 } while (swapped);
817 }
818
819 /* Cleanup any undefined types that have been left hanging around
820 (this needs to be done before the finish_blocks so that
821 file_symbols is still good). */
822 cleanup_undefined_types ();
823
824 if (global_stabs) {
825 patch_block_stabs (global_symbols, global_stabs, objfile);
826 free ((PTR)global_stabs);
827 global_stabs = 0;
828 }
829
830 if (pending_blocks == 0
831 && file_symbols == 0
832 && global_symbols == 0) {
833 /* Ignore symtabs that have no functions with real debugging info */
834 blockvector = NULL;
835 } else {
836 /* Define the STATIC_BLOCK and GLOBAL_BLOCK, and build the blockvector. */
837 finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr, objfile);
838 finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr, objfile);
839 blockvector = make_blockvector (objfile);
840 }
841
842 #ifdef PROCESS_LINENUMBER_HOOK
843 PROCESS_LINENUMBER_HOOK (); /* Needed for aixcoff. */
844 #endif
845
846 /* Now create the symtab objects proper, one for each subfile. */
847 /* (The main file is the last one on the chain.) */
848
849 for (subfile = subfiles; subfile; subfile = nextsub)
850 {
851 int linetablesize;
852 /* If we have blocks of symbols, make a symtab.
853 Otherwise, just ignore this file and any line number info in it. */
854 symtab = 0;
855 if (blockvector) {
856 if (subfile->line_vector) {
857 /* First, shrink the linetable to make more memory. */
858 linetablesize = sizeof (struct linetable) +
859 subfile->line_vector->nitems * sizeof (struct linetable_entry);
860 subfile->line_vector = (struct linetable *)
861 xrealloc ((char *) subfile->line_vector, linetablesize);
862
863 if (sort_linevec)
864 qsort (subfile->line_vector->item, subfile->line_vector->nitems,
865 sizeof (struct linetable_entry), compare_line_numbers);
866 }
867
868 /* Now, allocate a symbol table. */
869 symtab = allocate_symtab (subfile->name, objfile);
870
871 /* Fill in its components. */
872 symtab->blockvector = blockvector;
873 if (subfile->line_vector)
874 {
875 /* Reallocate the line table on the symbol obstack */
876 symtab->linetable = (struct linetable *)
877 obstack_alloc (&objfile -> symbol_obstack, linetablesize);
878 memcpy (symtab->linetable, subfile->line_vector, linetablesize);
879 }
880 else
881 {
882 symtab->linetable = NULL;
883 }
884 symtab->dirname = subfile->dirname;
885 symtab->free_code = free_linetable;
886 symtab->free_ptr = 0;
887
888 #ifdef IBM6000_TARGET
889 /* In case we need to duplicate symbol tables (to represent include
890 files), and in case our system needs relocation, we want to
891 relocate the main symbol table node only (for the main file,
892 not for the include files). */
893
894 symtab->nonreloc = TRUE;
895 #endif
896 }
897 if (subfile->line_vector)
898 free ((PTR)subfile->line_vector);
899
900 nextsub = subfile->next;
901 free ((PTR)subfile);
902 }
903
904 #ifdef IBM6000_TARGET
905 /* all include symbol tables are non-relocatable, except the main source
906 file's. */
907 if (symtab)
908 symtab->nonreloc = FALSE;
909 #endif
910
911 if (type_vector)
912 free ((char *) type_vector);
913 type_vector = 0;
914 type_vector_length = 0;
915
916 last_source_file = 0;
917 current_subfile = 0;
918 previous_stab_code = 0;
919
920 return symtab;
921 }
922
923
924 /* Push a context block. Args are an identifying nesting level (checkable
925 when you pop it), and the starting PC address of this context. */
926
927 struct context_stack *
928 push_context (desc, valu)
929 int desc;
930 CORE_ADDR valu;
931 {
932 register struct context_stack *new;
933
934 if (context_stack_depth == context_stack_size)
935 {
936 context_stack_size *= 2;
937 context_stack = (struct context_stack *)
938 xrealloc ((char *) context_stack,
939 (context_stack_size * sizeof (struct context_stack)));
940 }
941
942 new = &context_stack[context_stack_depth++];
943 new->depth = desc;
944 new->locals = local_symbols;
945 new->old_blocks = pending_blocks;
946 new->start_addr = valu;
947 new->name = 0;
948
949 local_symbols = 0;
950
951 return new;
952 }
953 \f
954 /* Initialize anything that needs initializing when starting to read
955 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
956 to a psymtab. */
957
958 void
959 buildsym_init ()
960 {
961 free_pendings = 0;
962 file_symbols = 0;
963 global_symbols = 0;
964 pending_blocks = 0;
965 }
966
967 /* Initialize anything that needs initializing when a completely new
968 symbol file is specified (not just adding some symbols from another
969 file, e.g. a shared library). */
970
971 void
972 buildsym_new_init ()
973 {
974 /* Empty the hash table of global syms looking for values. */
975 bzero (global_sym_chain, sizeof global_sym_chain);
976
977 buildsym_init ();
978 }
979
980 /* Scan through all of the global symbols defined in the object file,
981 assigning values to the debugging symbols that need to be assigned
982 to. Get these symbols from the minimal symbol table. */
983
984 void
985 scan_file_globals (objfile)
986 struct objfile *objfile;
987 {
988 int hash;
989 struct minimal_symbol *msymbol;
990 struct symbol *sym, *prev;
991
992 for (msymbol = objfile -> msymbols; msymbol -> name != NULL; msymbol++)
993 {
994 QUIT;
995
996 prev = (struct symbol *) 0;
997
998 /* Get the hash index and check all the symbols
999 under that hash index. */
1000
1001 hash = hashname (msymbol -> name);
1002
1003 for (sym = global_sym_chain[hash]; sym;)
1004 {
1005 if (*(msymbol -> name) == SYMBOL_NAME (sym)[0]
1006 && !strcmp(msymbol -> name + 1, SYMBOL_NAME (sym) + 1))
1007 {
1008 /* Splice this symbol out of the hash chain and
1009 assign the value we have to it. */
1010 if (prev)
1011 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
1012 else
1013 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
1014
1015 /* Check to see whether we need to fix up a common block. */
1016 /* Note: this code might be executed several times for
1017 the same symbol if there are multiple references. */
1018 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
1019 fix_common_block (sym, msymbol -> address);
1020 else
1021 SYMBOL_VALUE_ADDRESS (sym) = msymbol -> address;
1022
1023 if (prev)
1024 sym = SYMBOL_VALUE_CHAIN (prev);
1025 else
1026 sym = global_sym_chain[hash];
1027 }
1028 else
1029 {
1030 prev = sym;
1031 sym = SYMBOL_VALUE_CHAIN (sym);
1032 }
1033 }
1034 }
1035 }
1036
1037 \f
1038 /* Read a number by which a type is referred to in dbx data,
1039 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
1040 Just a single number N is equivalent to (0,N).
1041 Return the two numbers by storing them in the vector TYPENUMS.
1042 TYPENUMS will then be used as an argument to dbx_lookup_type. */
1043
1044 void
1045 read_type_number (pp, typenums)
1046 register char **pp;
1047 register int *typenums;
1048 {
1049 if (**pp == '(')
1050 {
1051 (*pp)++;
1052 typenums[0] = read_number (pp, ',');
1053 typenums[1] = read_number (pp, ')');
1054 }
1055 else
1056 {
1057 typenums[0] = 0;
1058 typenums[1] = read_number (pp, 0);
1059 }
1060 }
1061 \f
1062 /* To handle GNU C++ typename abbreviation, we need to be able to
1063 fill in a type's name as soon as space for that type is allocated.
1064 `type_synonym_name' is the name of the type being allocated.
1065 It is cleared as soon as it is used (lest all allocated types
1066 get this name). */
1067 static char *type_synonym_name;
1068
1069 /* ARGSUSED */
1070 struct symbol *
1071 define_symbol (valu, string, desc, type, objfile)
1072 unsigned int valu;
1073 char *string;
1074 int desc;
1075 int type;
1076 struct objfile *objfile;
1077 {
1078 register struct symbol *sym;
1079 char *p = (char *) strchr (string, ':');
1080 int deftype;
1081 int synonym = 0;
1082 register int i;
1083 struct type *temptype;
1084
1085 #ifdef IBM6000_TARGET
1086 /* We would like to eliminate nameless symbols, but keep their types.
1087 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
1088 to type 2, but, should not creat a symbol to address that type. Since
1089 the symbol will be nameless, there is no way any user can refer to it. */
1090
1091 int nameless;
1092 #endif
1093
1094 /* Ignore syms with empty names. */
1095 if (string[0] == 0)
1096 return 0;
1097
1098 /* Ignore old-style symbols from cc -go */
1099 if (p == 0)
1100 return 0;
1101
1102 #ifdef IBM6000_TARGET
1103 /* If a nameless stab entry, all we need is the type, not the symbol.
1104 e.g. ":t10=*2" */
1105 nameless = (p == string);
1106 #endif
1107
1108 sym = (struct symbol *)obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1109
1110 if (processing_gcc_compilation) {
1111 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
1112 number of bytes occupied by a type or object, which we ignore. */
1113 SYMBOL_LINE(sym) = desc;
1114 } else {
1115 SYMBOL_LINE(sym) = 0; /* unknown */
1116 }
1117
1118 if (string[0] == CPLUS_MARKER)
1119 {
1120 /* Special GNU C++ names. */
1121 switch (string[1])
1122 {
1123 case 't':
1124 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
1125 &objfile -> symbol_obstack);
1126 break;
1127 case 'v': /* $vtbl_ptr_type */
1128 /* Was: SYMBOL_NAME (sym) = "vptr"; */
1129 goto normal;
1130 case 'e':
1131 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
1132 &objfile -> symbol_obstack);
1133 break;
1134
1135 case '_':
1136 /* This was an anonymous type that was never fixed up. */
1137 goto normal;
1138
1139 default:
1140 abort ();
1141 }
1142 }
1143 else
1144 {
1145 normal:
1146 SYMBOL_NAME (sym)
1147 = (char *) obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
1148 /* Open-coded bcopy--saves function call time. */
1149 {
1150 register char *p1 = string;
1151 register char *p2 = SYMBOL_NAME (sym);
1152 while (p1 != p)
1153 *p2++ = *p1++;
1154 *p2++ = '\0';
1155 }
1156 }
1157 p++;
1158 /* Determine the type of name being defined. */
1159 /* The Acorn RISC machine's compiler can put out locals that don't
1160 start with "234=" or "(3,4)=", so assume anything other than the
1161 deftypes we know how to handle is a local. */
1162 /* (Peter Watkins @ Computervision)
1163 Handle Sun-style local fortran array types 'ar...' .
1164 (gnu@cygnus.com) -- this strchr() handles them properly?
1165 (tiemann@cygnus.com) -- 'C' is for catch. */
1166
1167 #ifdef IBM6000_TARGET
1168
1169 /* 'R' is for register parameters. */
1170
1171 if (!strchr ("cfFGpPrStTvVXCR", *p))
1172 #else
1173
1174 if (!strchr ("cfFGpPrStTvVXC", *p))
1175 #endif
1176 deftype = 'l';
1177 else
1178 deftype = *p++;
1179
1180 /* c is a special case, not followed by a type-number.
1181 SYMBOL:c=iVALUE for an integer constant symbol.
1182 SYMBOL:c=rVALUE for a floating constant symbol.
1183 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
1184 e.g. "b:c=e6,0" for "const b = blob1"
1185 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
1186 if (deftype == 'c')
1187 {
1188 if (*p++ != '=')
1189 error ("Invalid symbol data at symtab pos %d.", symnum);
1190 switch (*p++)
1191 {
1192 case 'r':
1193 {
1194 double d = atof (p);
1195 char *dbl_valu;
1196
1197 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
1198 FT_DBL_PREC_FLOAT);
1199 dbl_valu = (char *)
1200 obstack_alloc (&objfile -> type_obstack,
1201 sizeof (double));
1202 memcpy (dbl_valu, &d, sizeof (double));
1203 SWAP_TARGET_AND_HOST (dbl_valu, sizeof (double));
1204 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
1205 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
1206 }
1207 break;
1208 case 'i':
1209 {
1210 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
1211 FT_INTEGER);
1212 SYMBOL_VALUE (sym) = atoi (p);
1213 SYMBOL_CLASS (sym) = LOC_CONST;
1214 }
1215 break;
1216 case 'e':
1217 /* SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
1218 e.g. "b:c=e6,0" for "const b = blob1"
1219 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
1220 {
1221 int typenums[2];
1222
1223 read_type_number (&p, typenums);
1224 if (*p++ != ',')
1225 error ("Invalid symbol data: no comma in enum const symbol");
1226
1227 SYMBOL_TYPE (sym) = *dbx_lookup_type (typenums);
1228 SYMBOL_VALUE (sym) = atoi (p);
1229 SYMBOL_CLASS (sym) = LOC_CONST;
1230 }
1231 break;
1232 default:
1233 error ("Invalid symbol data at symtab pos %d.", symnum);
1234 }
1235 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1236 add_symbol_to_list (sym, &file_symbols);
1237 return sym;
1238 }
1239
1240 /* Now usually comes a number that says which data type,
1241 and possibly more stuff to define the type
1242 (all of which is handled by read_type) */
1243
1244 if (deftype == 'p' && *p == 'F')
1245 /* pF is a two-letter code that means a function parameter in Fortran.
1246 The type-number specifies the type of the return value.
1247 Translate it into a pointer-to-function type. */
1248 {
1249 p++;
1250 SYMBOL_TYPE (sym)
1251 = lookup_pointer_type (lookup_function_type (read_type (&p, objfile)));
1252 }
1253
1254 #ifdef IBM6000_TARGET
1255 else if (deftype == 'R')
1256 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1257 #endif
1258
1259 else
1260 {
1261 struct type *type_read;
1262 synonym = *p == 't';
1263
1264 if (synonym)
1265 {
1266 p += 1;
1267 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1268 strlen (SYMBOL_NAME (sym)),
1269 &objfile -> symbol_obstack);
1270 }
1271
1272 /* Here we save the name of the symbol for read_range_type, which
1273 ends up reading in the basic types. In stabs, unfortunately there
1274 is no distinction between "int" and "long" types except their
1275 names. Until we work out a saner type policy (eliminating most
1276 builtin types and using the names specified in the files), we
1277 save away the name so that far away from here in read_range_type,
1278 we can examine it to decide between "int" and "long". FIXME. */
1279 long_kludge_name = SYMBOL_NAME (sym);
1280 type_read = read_type (&p, objfile);
1281
1282 if ((deftype == 'F' || deftype == 'f')
1283 && TYPE_CODE (type_read) != TYPE_CODE_FUNC)
1284 {
1285 #if 0
1286 /* This code doesn't work -- it needs to realloc and can't. */
1287 struct type *new = (struct type *)
1288 obstack_alloc (&objfile -> type_obstack,
1289 sizeof (struct type));
1290
1291 /* Generate a template for the type of this function. The
1292 types of the arguments will be added as we read the symbol
1293 table. */
1294 *new = *lookup_function_type (type_read);
1295 SYMBOL_TYPE(sym) = new;
1296 TYPE_OBJFILE (new) = objfile;
1297 in_function_type = new;
1298 #else
1299 SYMBOL_TYPE (sym) = lookup_function_type (type_read);
1300 #endif
1301 }
1302 else
1303 SYMBOL_TYPE (sym) = type_read;
1304 }
1305
1306 switch (deftype)
1307 {
1308 case 'C':
1309 /* The name of a caught exception. */
1310 SYMBOL_CLASS (sym) = LOC_LABEL;
1311 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1312 SYMBOL_VALUE_ADDRESS (sym) = valu;
1313 add_symbol_to_list (sym, &local_symbols);
1314 break;
1315
1316 case 'f':
1317 SYMBOL_CLASS (sym) = LOC_BLOCK;
1318 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1319 add_symbol_to_list (sym, &file_symbols);
1320 break;
1321
1322 case 'F':
1323 SYMBOL_CLASS (sym) = LOC_BLOCK;
1324 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1325 add_symbol_to_list (sym, &global_symbols);
1326 break;
1327
1328 case 'G':
1329 /* For a class G (global) symbol, it appears that the
1330 value is not correct. It is necessary to search for the
1331 corresponding linker definition to find the value.
1332 These definitions appear at the end of the namelist. */
1333 i = hashname (SYMBOL_NAME (sym));
1334 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1335 global_sym_chain[i] = sym;
1336 SYMBOL_CLASS (sym) = LOC_STATIC;
1337 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1338 add_symbol_to_list (sym, &global_symbols);
1339 break;
1340
1341 /* This case is faked by a conditional above,
1342 when there is no code letter in the dbx data.
1343 Dbx data never actually contains 'l'. */
1344 case 'l':
1345 SYMBOL_CLASS (sym) = LOC_LOCAL;
1346 SYMBOL_VALUE (sym) = valu;
1347 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1348 add_symbol_to_list (sym, &local_symbols);
1349 break;
1350
1351 case 'p':
1352 /* Normally this is a parameter, a LOC_ARG. On the i960, it
1353 can also be a LOC_LOCAL_ARG depending on symbol type. */
1354 #ifndef DBX_PARM_SYMBOL_CLASS
1355 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
1356 #endif
1357 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
1358 SYMBOL_VALUE (sym) = valu;
1359 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1360 #if 0
1361 /* This doesn't work yet. */
1362 add_param_to_type (&in_function_type, sym);
1363 #endif
1364 add_symbol_to_list (sym, &local_symbols);
1365
1366 /* If it's gcc-compiled, if it says `short', believe it. */
1367 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
1368 break;
1369
1370 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
1371 /* This macro is defined on machines (e.g. sparc) where
1372 we should believe the type of a PCC 'short' argument,
1373 but shouldn't believe the address (the address is
1374 the address of the corresponding int). Note that
1375 this is only different from the BELIEVE_PCC_PROMOTION
1376 case on big-endian machines.
1377
1378 My guess is that this correction, as opposed to changing
1379 the parameter to an 'int' (as done below, for PCC
1380 on most machines), is the right thing to do
1381 on all machines, but I don't want to risk breaking
1382 something that already works. On most PCC machines,
1383 the sparc problem doesn't come up because the calling
1384 function has to zero the top bytes (not knowing whether
1385 the called function wants an int or a short), so there
1386 is no practical difference between an int and a short
1387 (except perhaps what happens when the GDB user types
1388 "print short_arg = 0x10000;").
1389
1390 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
1391 actually produces the correct address (we don't need to fix it
1392 up). I made this code adapt so that it will offset the symbol
1393 if it was pointing at an int-aligned location and not
1394 otherwise. This way you can use the same gdb for 4.0.x and
1395 4.1 systems.
1396
1397 If the parameter is shorter than an int, and is integral
1398 (e.g. char, short, or unsigned equivalent), and is claimed to
1399 be passed on an integer boundary, don't believe it! Offset the
1400 parameter's address to the tail-end of that integer. */
1401
1402 temptype = lookup_fundamental_type (objfile, FT_INTEGER);
1403 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (temptype)
1404 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
1405 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (temptype))
1406 {
1407 SYMBOL_VALUE (sym) += TYPE_LENGTH (temptype)
1408 - TYPE_LENGTH (SYMBOL_TYPE (sym));
1409 }
1410 break;
1411
1412 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
1413
1414 /* If PCC says a parameter is a short or a char,
1415 it is really an int. */
1416 temptype = lookup_fundamental_type (objfile, FT_INTEGER);
1417 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (temptype)
1418 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1419 {
1420 SYMBOL_TYPE (sym) = TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1421 ? lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER)
1422 : temptype;
1423 }
1424 break;
1425
1426 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
1427
1428 case 'P':
1429 /* Parameter which is in a register. */
1430 SYMBOL_CLASS (sym) = LOC_REGPARM;
1431 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1432 if (SYMBOL_VALUE (sym) >= NUM_REGS)
1433 {
1434 complain (&reg_value_complaint, SYMBOL_NAME (sym));
1435 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1436 }
1437 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1438 add_symbol_to_list (sym, &local_symbols);
1439 break;
1440
1441 #ifdef IBM6000_TARGET
1442 case 'R':
1443 #endif
1444 case 'r':
1445 /* Register variable (either global or local). */
1446 SYMBOL_CLASS (sym) = LOC_REGISTER;
1447 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1448 if (SYMBOL_VALUE (sym) >= NUM_REGS)
1449 {
1450 complain (&reg_value_complaint, SYMBOL_NAME (sym));
1451 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1452 }
1453 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1454 if (within_function)
1455 add_symbol_to_list (sym, &local_symbols);
1456 else
1457 add_symbol_to_list (sym, &file_symbols);
1458 break;
1459
1460 case 'S':
1461 /* Static symbol at top level of file */
1462 SYMBOL_CLASS (sym) = LOC_STATIC;
1463 SYMBOL_VALUE_ADDRESS (sym) = valu;
1464 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1465 add_symbol_to_list (sym, &file_symbols);
1466 break;
1467
1468 case 't':
1469 #ifdef IBM6000_TARGET
1470 /* For a nameless type, we don't want a create a symbol, thus we
1471 did not use `sym'. Return without further processing. */
1472
1473 if (nameless) return NULL;
1474 #endif
1475 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1476 SYMBOL_VALUE (sym) = valu;
1477 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1478 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1479 TYPE_NAME (SYMBOL_TYPE (sym)) =
1480 obsavestring (SYMBOL_NAME (sym),
1481 strlen (SYMBOL_NAME (sym)),
1482 &objfile -> symbol_obstack);
1483 /* C++ vagaries: we may have a type which is derived from
1484 a base type which did not have its name defined when the
1485 derived class was output. We fill in the derived class's
1486 base part member's name here in that case. */
1487 else if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1488 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1489 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1490 {
1491 int j;
1492 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1493 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1494 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1495 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1496 }
1497
1498 add_symbol_to_list (sym, &file_symbols);
1499 break;
1500
1501 case 'T':
1502 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1503 SYMBOL_VALUE (sym) = valu;
1504 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1505 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1506 TYPE_NAME (SYMBOL_TYPE (sym))
1507 = obconcat (&objfile -> type_obstack, "",
1508 (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM
1509 ? "enum "
1510 : (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1511 ? "struct " : "union ")),
1512 SYMBOL_NAME (sym));
1513 add_symbol_to_list (sym, &file_symbols);
1514
1515 if (synonym)
1516 {
1517 register struct symbol *typedef_sym = (struct symbol *)
1518 obstack_alloc (&objfile -> type_obstack,
1519 sizeof (struct symbol));
1520 SYMBOL_NAME (typedef_sym) = SYMBOL_NAME (sym);
1521 SYMBOL_TYPE (typedef_sym) = SYMBOL_TYPE (sym);
1522
1523 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1524 SYMBOL_VALUE (typedef_sym) = valu;
1525 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1526 add_symbol_to_list (typedef_sym, &file_symbols);
1527 }
1528 break;
1529
1530 case 'V':
1531 /* Static symbol of local scope */
1532 SYMBOL_CLASS (sym) = LOC_STATIC;
1533 SYMBOL_VALUE_ADDRESS (sym) = valu;
1534 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1535 add_symbol_to_list (sym, &local_symbols);
1536 break;
1537
1538 case 'v':
1539 /* Reference parameter */
1540 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1541 SYMBOL_VALUE (sym) = valu;
1542 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1543 add_symbol_to_list (sym, &local_symbols);
1544 break;
1545
1546 case 'X':
1547 /* This is used by Sun FORTRAN for "function result value".
1548 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1549 that Pascal uses it too, but when I tried it Pascal used
1550 "x:3" (local symbol) instead. */
1551 SYMBOL_CLASS (sym) = LOC_LOCAL;
1552 SYMBOL_VALUE (sym) = valu;
1553 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1554 add_symbol_to_list (sym, &local_symbols);
1555 break;
1556
1557 default:
1558 error ("Invalid symbol data: unknown symbol-type code `%c' at symtab pos %d.", deftype, symnum);
1559 }
1560 return sym;
1561 }
1562 \f
1563 /* What about types defined as forward references inside of a small lexical
1564 scope? */
1565 /* Add a type to the list of undefined types to be checked through
1566 once this file has been read in. */
1567 void
1568 add_undefined_type (type)
1569 struct type *type;
1570 {
1571 if (undef_types_length == undef_types_allocated)
1572 {
1573 undef_types_allocated *= 2;
1574 undef_types = (struct type **)
1575 xrealloc ((char *) undef_types,
1576 undef_types_allocated * sizeof (struct type *));
1577 }
1578 undef_types[undef_types_length++] = type;
1579 }
1580
1581 /* Go through each undefined type, see if it's still undefined, and fix it
1582 up if possible. We have two kinds of undefined types:
1583
1584 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
1585 Fix: update array length using the element bounds
1586 and the target type's length.
1587 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
1588 yet defined at the time a pointer to it was made.
1589 Fix: Do a full lookup on the struct/union tag. */
1590 static void
1591 cleanup_undefined_types ()
1592 {
1593 struct type **type;
1594
1595 for (type = undef_types; type < undef_types + undef_types_length; type++) {
1596 switch (TYPE_CODE (*type)) {
1597
1598 case TYPE_CODE_STRUCT:
1599 case TYPE_CODE_UNION:
1600 case TYPE_CODE_ENUM:
1601 {
1602 /* Reasonable test to see if it's been defined since. */
1603 if (TYPE_NFIELDS (*type) == 0)
1604 {
1605 struct pending *ppt;
1606 int i;
1607 /* Name of the type, without "struct" or "union" */
1608 char *typename = TYPE_NAME (*type);
1609
1610 if (!strncmp (typename, "struct ", 7))
1611 typename += 7;
1612 if (!strncmp (typename, "union ", 6))
1613 typename += 6;
1614 if (!strncmp (typename, "enum ", 5))
1615 typename += 5;
1616
1617 for (ppt = file_symbols; ppt; ppt = ppt->next)
1618 for (i = 0; i < ppt->nsyms; i++)
1619 {
1620 struct symbol *sym = ppt->symbol[i];
1621
1622 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1623 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1624 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
1625 TYPE_CODE (*type))
1626 && !strcmp (SYMBOL_NAME (sym), typename))
1627 memcpy (*type, SYMBOL_TYPE (sym), sizeof (struct type));
1628 }
1629 }
1630 else
1631 /* It has been defined; don't mark it as a stub. */
1632 TYPE_FLAGS (*type) &= ~TYPE_FLAG_STUB;
1633 }
1634 break;
1635
1636 case TYPE_CODE_ARRAY:
1637 {
1638 struct type *range_type;
1639 int lower, upper;
1640
1641 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
1642 goto badtype;
1643 if (TYPE_NFIELDS (*type) != 1)
1644 goto badtype;
1645 range_type = TYPE_FIELD_TYPE (*type, 0);
1646 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
1647 goto badtype;
1648
1649 /* Now recompute the length of the array type, based on its
1650 number of elements and the target type's length. */
1651 lower = TYPE_FIELD_BITPOS (range_type, 0);
1652 upper = TYPE_FIELD_BITPOS (range_type, 1);
1653 TYPE_LENGTH (*type) = (upper - lower + 1)
1654 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
1655 }
1656 break;
1657
1658 default:
1659 badtype:
1660 error ("GDB internal error. cleanup_undefined_types with bad\
1661 type %d.", TYPE_CODE (*type));
1662 break;
1663 }
1664 }
1665 undef_types_length = 0;
1666 }
1667 \f
1668 /* Skip rest of this symbol and return an error type.
1669
1670 General notes on error recovery: error_type always skips to the
1671 end of the symbol (modulo cretinous dbx symbol name continuation).
1672 Thus code like this:
1673
1674 if (*(*pp)++ != ';')
1675 return error_type (pp);
1676
1677 is wrong because if *pp starts out pointing at '\0' (typically as the
1678 result of an earlier error), it will be incremented to point to the
1679 start of the next symbol, which might produce strange results, at least
1680 if you run off the end of the string table. Instead use
1681
1682 if (**pp != ';')
1683 return error_type (pp);
1684 ++*pp;
1685
1686 or
1687
1688 if (**pp != ';')
1689 foo = error_type (pp);
1690 else
1691 ++*pp;
1692
1693 And in case it isn't obvious, the point of all this hair is so the compiler
1694 can define new types and new syntaxes, and old versions of the
1695 debugger will be able to read the new symbol tables. */
1696
1697 struct type *
1698 error_type (pp)
1699 char **pp;
1700 {
1701 complain (&error_type_complaint, 0);
1702 while (1)
1703 {
1704 /* Skip to end of symbol. */
1705 while (**pp != '\0')
1706 (*pp)++;
1707
1708 /* Check for and handle cretinous dbx symbol name continuation! */
1709 if ((*pp)[-1] == '\\')
1710 *pp = next_symbol_text ();
1711 else
1712 break;
1713 }
1714 return builtin_type_error;
1715 }
1716 \f
1717 /* Read a dbx type reference or definition;
1718 return the type that is meant.
1719 This can be just a number, in which case it references
1720 a type already defined and placed in type_vector.
1721 Or the number can be followed by an =, in which case
1722 it means to define a new type according to the text that
1723 follows the =. */
1724
1725 struct type *
1726 read_type (pp, objfile)
1727 register char **pp;
1728 struct objfile *objfile;
1729 {
1730 register struct type *type = 0;
1731 struct type *type1;
1732 int typenums[2];
1733 int xtypenums[2];
1734
1735 /* Read type number if present. The type number may be omitted.
1736 for instance in a two-dimensional array declared with type
1737 "ar1;1;10;ar1;1;10;4". */
1738 if ((**pp >= '0' && **pp <= '9')
1739 || **pp == '(')
1740 {
1741 read_type_number (pp, typenums);
1742
1743 /* Type is not being defined here. Either it already exists,
1744 or this is a forward reference to it. dbx_alloc_type handles
1745 both cases. */
1746 if (**pp != '=')
1747 return dbx_alloc_type (typenums, objfile);
1748
1749 /* Type is being defined here. */
1750 #if 0 /* Callers aren't prepared for a NULL result! FIXME -- metin! */
1751 {
1752 struct type *tt;
1753
1754 /* if such a type already exists, this is an unnecessary duplication
1755 of the stab string, which is common in (RS/6000) xlc generated
1756 objects. In that case, simply return NULL and let the caller take
1757 care of it. */
1758
1759 tt = *dbx_lookup_type (typenums);
1760 if (tt && tt->length && tt->code)
1761 return NULL;
1762 }
1763 #endif
1764
1765 *pp += 2;
1766 }
1767 else
1768 {
1769 /* 'typenums=' not present, type is anonymous. Read and return
1770 the definition, but don't put it in the type vector. */
1771 typenums[0] = typenums[1] = -1;
1772 *pp += 1;
1773 }
1774
1775 switch ((*pp)[-1])
1776 {
1777 case 'x':
1778 {
1779 enum type_code code;
1780
1781 /* Used to index through file_symbols. */
1782 struct pending *ppt;
1783 int i;
1784
1785 /* Name including "struct", etc. */
1786 char *type_name;
1787
1788 /* Name without "struct", etc. */
1789 char *type_name_only;
1790
1791 {
1792 char *prefix;
1793 char *from, *to;
1794
1795 /* Set the type code according to the following letter. */
1796 switch ((*pp)[0])
1797 {
1798 case 's':
1799 code = TYPE_CODE_STRUCT;
1800 prefix = "struct ";
1801 break;
1802 case 'u':
1803 code = TYPE_CODE_UNION;
1804 prefix = "union ";
1805 break;
1806 case 'e':
1807 code = TYPE_CODE_ENUM;
1808 prefix = "enum ";
1809 break;
1810 default:
1811 return error_type (pp);
1812 }
1813
1814 to = type_name = (char *)
1815 obstack_alloc (&objfile -> type_obstack,
1816 (strlen (prefix) +
1817 ((char *) strchr (*pp, ':') - (*pp)) + 1));
1818
1819 /* Copy the prefix. */
1820 from = prefix;
1821 while (*to++ = *from++)
1822 ;
1823 to--;
1824
1825 type_name_only = to;
1826
1827 /* Copy the name. */
1828 from = *pp + 1;
1829 while ((*to++ = *from++) != ':')
1830 ;
1831 *--to = '\0';
1832
1833 /* Set the pointer ahead of the name which we just read. */
1834 *pp = from;
1835
1836 #if 0
1837 /* The following hack is clearly wrong, because it doesn't
1838 check whether we are in a baseclass. I tried to reproduce
1839 the case that it is trying to fix, but I couldn't get
1840 g++ to put out a cross reference to a basetype. Perhaps
1841 it doesn't do it anymore. */
1842 /* Note: for C++, the cross reference may be to a base type which
1843 has not yet been seen. In this case, we skip to the comma,
1844 which will mark the end of the base class name. (The ':'
1845 at the end of the base class name will be skipped as well.)
1846 But sometimes (ie. when the cross ref is the last thing on
1847 the line) there will be no ','. */
1848 from = (char *) strchr (*pp, ',');
1849 if (from)
1850 *pp = from;
1851 #endif /* 0 */
1852 }
1853
1854 /* Now check to see whether the type has already been declared. */
1855 /* This is necessary at least in the case where the
1856 program says something like
1857 struct foo bar[5];
1858 The compiler puts out a cross-reference; we better find
1859 set the length of the structure correctly so we can
1860 set the length of the array. */
1861 for (ppt = file_symbols; ppt; ppt = ppt->next)
1862 for (i = 0; i < ppt->nsyms; i++)
1863 {
1864 struct symbol *sym = ppt->symbol[i];
1865
1866 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1867 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1868 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1869 && !strcmp (SYMBOL_NAME (sym), type_name_only))
1870 {
1871 obstack_free (&objfile -> type_obstack, type_name);
1872 type = SYMBOL_TYPE (sym);
1873 return type;
1874 }
1875 }
1876
1877 /* Didn't find the type to which this refers, so we must
1878 be dealing with a forward reference. Allocate a type
1879 structure for it, and keep track of it so we can
1880 fill in the rest of the fields when we get the full
1881 type. */
1882 type = dbx_alloc_type (typenums, objfile);
1883 TYPE_CODE (type) = code;
1884 TYPE_NAME (type) = type_name;
1885 INIT_CPLUS_SPECIFIC(type);
1886 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1887
1888 add_undefined_type (type);
1889 return type;
1890 }
1891
1892 case '-': /* RS/6000 built-in type */
1893 (*pp)--;
1894 type = builtin_type (pp); /* (in xcoffread.c) */
1895 goto after_digits;
1896
1897 case '0':
1898 case '1':
1899 case '2':
1900 case '3':
1901 case '4':
1902 case '5':
1903 case '6':
1904 case '7':
1905 case '8':
1906 case '9':
1907 case '(':
1908 (*pp)--;
1909 read_type_number (pp, xtypenums);
1910 type = *dbx_lookup_type (xtypenums);
1911 /* fall through */
1912
1913 after_digits:
1914 if (type == 0)
1915 type = lookup_fundamental_type (objfile, FT_VOID);
1916 if (typenums[0] != -1)
1917 *dbx_lookup_type (typenums) = type;
1918 break;
1919
1920 case '*':
1921 type1 = read_type (pp, objfile);
1922 /* FIXME -- we should be doing smash_to_XXX types here. */
1923 #ifdef IBM6000_TARGET
1924 /* postponed type decoration should be allowed. */
1925 if (typenums[1] > 0 && typenums[1] < type_vector_length &&
1926 (type = type_vector[typenums[1]])) {
1927 smash_to_pointer_type (type, type1);
1928 break;
1929 }
1930 #endif
1931 type = lookup_pointer_type (type1);
1932 if (typenums[0] != -1)
1933 *dbx_lookup_type (typenums) = type;
1934 break;
1935
1936 case '@':
1937 {
1938 struct type *domain = read_type (pp, objfile);
1939 struct type *memtype;
1940
1941 if (**pp != ',')
1942 /* Invalid member type data format. */
1943 return error_type (pp);
1944 ++*pp;
1945
1946 memtype = read_type (pp, objfile);
1947 type = dbx_alloc_type (typenums, objfile);
1948 smash_to_member_type (type, domain, memtype);
1949 }
1950 break;
1951
1952 case '#':
1953 if ((*pp)[0] == '#')
1954 {
1955 /* We'll get the parameter types from the name. */
1956 struct type *return_type;
1957
1958 *pp += 1;
1959 return_type = read_type (pp, objfile);
1960 if (*(*pp)++ != ';')
1961 complain (&invalid_member_complaint, (char *) symnum);
1962 type = allocate_stub_method (return_type);
1963 if (typenums[0] != -1)
1964 *dbx_lookup_type (typenums) = type;
1965 }
1966 else
1967 {
1968 struct type *domain = read_type (pp, objfile);
1969 struct type *return_type;
1970 struct type **args;
1971
1972 if (*(*pp)++ != ',')
1973 error ("invalid member type data format, at symtab pos %d.",
1974 symnum);
1975
1976 return_type = read_type (pp, objfile);
1977 args = read_args (pp, ';', objfile);
1978 type = dbx_alloc_type (typenums, objfile);
1979 smash_to_method_type (type, domain, return_type, args);
1980 }
1981 break;
1982
1983 case '&':
1984 type1 = read_type (pp, objfile);
1985 type = lookup_reference_type (type1);
1986 if (typenums[0] != -1)
1987 *dbx_lookup_type (typenums) = type;
1988 break;
1989
1990 case 'f':
1991 type1 = read_type (pp, objfile);
1992 type = lookup_function_type (type1);
1993 if (typenums[0] != -1)
1994 *dbx_lookup_type (typenums) = type;
1995 break;
1996
1997 case 'r':
1998 type = read_range_type (pp, typenums, objfile);
1999 if (typenums[0] != -1)
2000 *dbx_lookup_type (typenums) = type;
2001 break;
2002
2003 case 'e':
2004 type = dbx_alloc_type (typenums, objfile);
2005 type = read_enum_type (pp, type, objfile);
2006 *dbx_lookup_type (typenums) = type;
2007 break;
2008
2009 case 's':
2010 type = dbx_alloc_type (typenums, objfile);
2011 if (!TYPE_NAME (type))
2012 TYPE_NAME (type) = type_synonym_name;
2013 type_synonym_name = 0;
2014 type = read_struct_type (pp, type, objfile);
2015 break;
2016
2017 case 'u':
2018 type = dbx_alloc_type (typenums, objfile);
2019 if (!TYPE_NAME (type))
2020 TYPE_NAME (type) = type_synonym_name;
2021 type_synonym_name = 0;
2022 type = read_struct_type (pp, type, objfile);
2023 TYPE_CODE (type) = TYPE_CODE_UNION;
2024 break;
2025
2026 case 'a':
2027 if (**pp != 'r')
2028 return error_type (pp);
2029 ++*pp;
2030
2031 type = dbx_alloc_type (typenums, objfile);
2032 type = read_array_type (pp, type, objfile);
2033 break;
2034
2035 default:
2036 --*pp; /* Go back to the symbol in error */
2037 /* Particularly important if it was \0! */
2038 return error_type (pp);
2039 }
2040
2041 if (type == 0)
2042 abort ();
2043
2044 #if 0
2045 /* If this is an overriding temporary alteration for a header file's
2046 contents, and this type number is unknown in the global definition,
2047 put this type into the global definition at this type number. */
2048 if (header_file_prev_index >= 0)
2049 {
2050 register struct type **tp
2051 = explicit_lookup_type (header_file_prev_index, typenums[1]);
2052 if (*tp == 0)
2053 *tp = type;
2054 }
2055 #endif
2056 return type;
2057 }
2058 \f
2059 /* This page contains subroutines of read_type. */
2060
2061 /* Read the description of a structure (or union type)
2062 and return an object describing the type. */
2063
2064 static struct type *
2065 read_struct_type (pp, type, objfile)
2066 char **pp;
2067 register struct type *type;
2068 struct objfile *objfile;
2069 {
2070 /* Total number of methods defined in this class.
2071 If the class defines two `f' methods, and one `g' method,
2072 then this will have the value 3. */
2073 int total_length = 0;
2074
2075 struct nextfield
2076 {
2077 struct nextfield *next;
2078 int visibility; /* 0=public, 1=protected, 2=public */
2079 struct field field;
2080 };
2081
2082 struct next_fnfield
2083 {
2084 struct next_fnfield *next;
2085 struct fn_field fn_field;
2086 };
2087
2088 struct next_fnfieldlist
2089 {
2090 struct next_fnfieldlist *next;
2091 struct fn_fieldlist fn_fieldlist;
2092 };
2093
2094 register struct nextfield *list = 0;
2095 struct nextfield *new;
2096 register char *p;
2097 int nfields = 0;
2098 int non_public_fields = 0;
2099 register int n;
2100
2101 register struct next_fnfieldlist *mainlist = 0;
2102 int nfn_fields = 0;
2103
2104 TYPE_CODE (type) = TYPE_CODE_STRUCT;
2105 INIT_CPLUS_SPECIFIC(type);
2106
2107 /* First comes the total size in bytes. */
2108
2109 TYPE_LENGTH (type) = read_number (pp, 0);
2110
2111 /* C++: Now, if the class is a derived class, then the next character
2112 will be a '!', followed by the number of base classes derived from.
2113 Each element in the list contains visibility information,
2114 the offset of this base class in the derived structure,
2115 and then the base type. */
2116 if (**pp == '!')
2117 {
2118 int i, n_baseclasses, offset;
2119 struct type *baseclass;
2120 int via_public;
2121
2122 /* Nonzero if it is a virtual baseclass, i.e.,
2123
2124 struct A{};
2125 struct B{};
2126 struct C : public B, public virtual A {};
2127
2128 B is a baseclass of C; A is a virtual baseclass for C. This is a C++
2129 2.0 language feature. */
2130 int via_virtual;
2131
2132 *pp += 1;
2133
2134 ALLOCATE_CPLUS_STRUCT_TYPE(type);
2135
2136 n_baseclasses = read_number (pp, ',');
2137 TYPE_FIELD_VIRTUAL_BITS (type) =
2138 (B_TYPE *) obstack_alloc (&objfile -> type_obstack,
2139 B_BYTES (n_baseclasses));
2140 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), n_baseclasses);
2141
2142 for (i = 0; i < n_baseclasses; i++)
2143 {
2144 if (**pp == '\\')
2145 *pp = next_symbol_text ();
2146
2147 switch (**pp)
2148 {
2149 case '0':
2150 via_virtual = 0;
2151 break;
2152 case '1':
2153 via_virtual = 1;
2154 break;
2155 default:
2156 /* Bad visibility format. */
2157 return error_type (pp);
2158 }
2159 ++*pp;
2160
2161 switch (**pp)
2162 {
2163 case '0':
2164 via_public = 0;
2165 non_public_fields++;
2166 break;
2167 case '2':
2168 via_public = 2;
2169 break;
2170 default:
2171 /* Bad visibility format. */
2172 return error_type (pp);
2173 }
2174 if (via_virtual)
2175 SET_TYPE_FIELD_VIRTUAL (type, i);
2176 ++*pp;
2177
2178 /* Offset of the portion of the object corresponding to
2179 this baseclass. Always zero in the absence of
2180 multiple inheritance. */
2181 offset = read_number (pp, ',');
2182 baseclass = read_type (pp, objfile);
2183 *pp += 1; /* skip trailing ';' */
2184
2185 /* Make this baseclass visible for structure-printing purposes. */
2186 new = (struct nextfield *) alloca (sizeof (struct nextfield));
2187 new->next = list;
2188 list = new;
2189 list->visibility = via_public;
2190 list->field.type = baseclass;
2191 list->field.name = type_name_no_tag (baseclass);
2192 list->field.bitpos = offset;
2193 list->field.bitsize = 0; /* this should be an unpacked field! */
2194 nfields++;
2195 }
2196 TYPE_N_BASECLASSES (type) = n_baseclasses;
2197 }
2198
2199 /* Now come the fields, as NAME:?TYPENUM,BITPOS,BITSIZE; for each one.
2200 At the end, we see a semicolon instead of a field.
2201
2202 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2203 a static field.
2204
2205 The `?' is a placeholder for one of '/2' (public visibility),
2206 '/1' (protected visibility), '/0' (private visibility), or nothing
2207 (C style symbol table, public visibility). */
2208
2209 /* We better set p right now, in case there are no fields at all... */
2210 p = *pp;
2211
2212 while (**pp != ';')
2213 {
2214 /* Check for and handle cretinous dbx symbol name continuation! */
2215 if (**pp == '\\') *pp = next_symbol_text ();
2216
2217 /* Get space to record the next field's data. */
2218 new = (struct nextfield *) alloca (sizeof (struct nextfield));
2219 new->next = list;
2220 list = new;
2221
2222 /* Get the field name. */
2223 p = *pp;
2224 if (*p == CPLUS_MARKER)
2225 {
2226 /* Special GNU C++ name. */
2227 if (*++p == 'v')
2228 {
2229 const char *prefix;
2230 char *name = 0;
2231 struct type *context;
2232
2233 switch (*++p)
2234 {
2235 case 'f':
2236 prefix = vptr_name;
2237 break;
2238 case 'b':
2239 prefix = vb_name;
2240 break;
2241 default:
2242 complain (&invalid_cpp_abbrev_complaint, *pp);
2243 prefix = "INVALID_C++_ABBREV";
2244 break;
2245 }
2246 *pp = p + 1;
2247 context = read_type (pp, objfile);
2248 name = type_name_no_tag (context);
2249 if (name == 0)
2250 {
2251 complain (&invalid_cpp_type_complaint, (char *) symnum);
2252 name = "FOO";
2253 }
2254 list->field.name = obconcat (&objfile -> type_obstack,
2255 prefix, name, "");
2256 p = ++(*pp);
2257 if (p[-1] != ':')
2258 complain (&invalid_cpp_abbrev_complaint, *pp);
2259 list->field.type = read_type (pp, objfile);
2260 (*pp)++; /* Skip the comma. */
2261 list->field.bitpos = read_number (pp, ';');
2262 /* This field is unpacked. */
2263 list->field.bitsize = 0;
2264 list->visibility = 0; /* private */
2265 non_public_fields++;
2266 }
2267 /* GNU C++ anonymous type. */
2268 else if (*p == '_')
2269 break;
2270 else
2271 complain (&invalid_cpp_abbrev_complaint, *pp);
2272
2273 nfields++;
2274 continue;
2275 }
2276
2277 while (*p != ':') p++;
2278 list->field.name = obsavestring (*pp, p - *pp,
2279 &objfile -> type_obstack);
2280
2281 /* C++: Check to see if we have hit the methods yet. */
2282 if (p[1] == ':')
2283 break;
2284
2285 *pp = p + 1;
2286
2287 /* This means we have a visibility for a field coming. */
2288 if (**pp == '/')
2289 {
2290 switch (*++*pp)
2291 {
2292 case '0':
2293 list->visibility = 0; /* private */
2294 non_public_fields++;
2295 *pp += 1;
2296 break;
2297
2298 case '1':
2299 list->visibility = 1; /* protected */
2300 non_public_fields++;
2301 *pp += 1;
2302 break;
2303
2304 case '2':
2305 list->visibility = 2; /* public */
2306 *pp += 1;
2307 break;
2308 }
2309 }
2310 else /* normal dbx-style format. */
2311 list->visibility = 2; /* public */
2312
2313 list->field.type = read_type (pp, objfile);
2314 if (**pp == ':')
2315 {
2316 /* Static class member. */
2317 list->field.bitpos = (long)-1;
2318 p = ++(*pp);
2319 while (*p != ';') p++;
2320 list->field.bitsize = (long) savestring (*pp, p - *pp);
2321 *pp = p + 1;
2322 nfields++;
2323 continue;
2324 }
2325 else if (**pp != ',')
2326 /* Bad structure-type format. */
2327 return error_type (pp);
2328
2329 (*pp)++; /* Skip the comma. */
2330 list->field.bitpos = read_number (pp, ',');
2331 list->field.bitsize = read_number (pp, ';');
2332
2333 #if 0
2334 /* FIXME-tiemann: Can't the compiler put out something which
2335 lets us distinguish these? (or maybe just not put out anything
2336 for the field). What is the story here? What does the compiler
2337 really do? Also, patch gdb.texinfo for this case; I document
2338 it as a possible problem there. Search for "DBX-style". */
2339
2340 /* This is wrong because this is identical to the symbols
2341 produced for GCC 0-size arrays. For example:
2342 typedef union {
2343 int num;
2344 char str[0];
2345 } foo;
2346 The code which dumped core in such circumstances should be
2347 fixed not to dump core. */
2348
2349 /* g++ -g0 can put out bitpos & bitsize zero for a static
2350 field. This does not give us any way of getting its
2351 class, so we can't know its name. But we can just
2352 ignore the field so we don't dump core and other nasty
2353 stuff. */
2354 if (list->field.bitpos == 0
2355 && list->field.bitsize == 0)
2356 {
2357 complain (&dbx_class_complaint, 0);
2358 /* Ignore this field. */
2359 list = list->next;
2360 }
2361 else
2362 #endif /* 0 */
2363 {
2364 /* Detect an unpacked field and mark it as such.
2365 dbx gives a bit size for all fields.
2366 Note that forward refs cannot be packed,
2367 and treat enums as if they had the width of ints. */
2368 if (TYPE_CODE (list->field.type) != TYPE_CODE_INT
2369 && TYPE_CODE (list->field.type) != TYPE_CODE_ENUM)
2370 list->field.bitsize = 0;
2371 if ((list->field.bitsize == 8 * TYPE_LENGTH (list->field.type)
2372 || (TYPE_CODE (list->field.type) == TYPE_CODE_ENUM
2373 && (list->field.bitsize
2374 == 8 * TYPE_LENGTH (lookup_fundamental_type (objfile, FT_INTEGER)))
2375 )
2376 )
2377 &&
2378 list->field.bitpos % 8 == 0)
2379 list->field.bitsize = 0;
2380 nfields++;
2381 }
2382 }
2383
2384 if (p[1] == ':')
2385 /* chill the list of fields: the last entry (at the head)
2386 is a partially constructed entry which we now scrub. */
2387 list = list->next;
2388
2389 /* Now create the vector of fields, and record how big it is.
2390 We need this info to record proper virtual function table information
2391 for this class's virtual functions. */
2392
2393 TYPE_NFIELDS (type) = nfields;
2394 TYPE_FIELDS (type) = (struct field *)
2395 obstack_alloc (&objfile -> type_obstack, sizeof (struct field) * nfields);
2396
2397 if (non_public_fields)
2398 {
2399 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2400
2401 TYPE_FIELD_PRIVATE_BITS (type) =
2402 (B_TYPE *) obstack_alloc (&objfile -> type_obstack,
2403 B_BYTES (nfields));
2404 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2405
2406 TYPE_FIELD_PROTECTED_BITS (type) =
2407 (B_TYPE *) obstack_alloc (&objfile -> type_obstack,
2408 B_BYTES (nfields));
2409 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2410 }
2411
2412 /* Copy the saved-up fields into the field vector. */
2413
2414 for (n = nfields; list; list = list->next)
2415 {
2416 n -= 1;
2417 TYPE_FIELD (type, n) = list->field;
2418 if (list->visibility == 0)
2419 SET_TYPE_FIELD_PRIVATE (type, n);
2420 else if (list->visibility == 1)
2421 SET_TYPE_FIELD_PROTECTED (type, n);
2422 }
2423
2424 /* Now come the method fields, as NAME::methods
2425 where each method is of the form TYPENUM,ARGS,...:PHYSNAME;
2426 At the end, we see a semicolon instead of a field.
2427
2428 For the case of overloaded operators, the format is
2429 op$::*.methods, where $ is the CPLUS_MARKER (usually '$'),
2430 `*' holds the place for an operator name (such as `+=')
2431 and `.' marks the end of the operator name. */
2432 if (p[1] == ':')
2433 {
2434 /* Now, read in the methods. To simplify matters, we
2435 "unread" the name that has been read, so that we can
2436 start from the top. */
2437
2438 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2439 /* For each list of method lists... */
2440 do
2441 {
2442 int i;
2443 struct next_fnfield *sublist = 0;
2444 struct type *look_ahead_type = NULL;
2445 int length = 0;
2446 struct next_fnfieldlist *new_mainlist =
2447 (struct next_fnfieldlist *)alloca (sizeof (struct next_fnfieldlist));
2448 char *main_fn_name;
2449
2450 p = *pp;
2451
2452 /* read in the name. */
2453 while (*p != ':') p++;
2454 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
2455 {
2456 /* This is a completely wierd case. In order to stuff in the
2457 names that might contain colons (the usual name delimiter),
2458 Mike Tiemann defined a different name format which is
2459 signalled if the identifier is "op$". In that case, the
2460 format is "op$::XXXX." where XXXX is the name. This is
2461 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2462 /* This lets the user type "break operator+".
2463 We could just put in "+" as the name, but that wouldn't
2464 work for "*". */
2465 static char opname[32] = {'o', 'p', CPLUS_MARKER};
2466 char *o = opname + 3;
2467
2468 /* Skip past '::'. */
2469 *pp = p + 2;
2470 if (**pp == '\\') *pp = next_symbol_text ();
2471 p = *pp;
2472 while (*p != '.')
2473 *o++ = *p++;
2474 main_fn_name = savestring (opname, o - opname);
2475 /* Skip past '.' */
2476 *pp = p + 1;
2477 }
2478 else
2479 {
2480 main_fn_name = savestring (*pp, p - *pp);
2481 /* Skip past '::'. */
2482 *pp = p + 2;
2483 }
2484 new_mainlist->fn_fieldlist.name = main_fn_name;
2485
2486 do
2487 {
2488 struct next_fnfield *new_sublist =
2489 (struct next_fnfield *)alloca (sizeof (struct next_fnfield));
2490
2491 /* Check for and handle cretinous dbx symbol name continuation! */
2492 if (look_ahead_type == NULL) /* Normal case. */
2493 {
2494 if (**pp == '\\') *pp = next_symbol_text ();
2495
2496 new_sublist->fn_field.type = read_type (pp, objfile);
2497 if (**pp != ':')
2498 /* Invalid symtab info for method. */
2499 return error_type (pp);
2500 }
2501 else
2502 { /* g++ version 1 kludge */
2503 new_sublist->fn_field.type = look_ahead_type;
2504 look_ahead_type = NULL;
2505 }
2506
2507 *pp += 1;
2508 p = *pp;
2509 while (*p != ';') p++;
2510
2511 /* If this is just a stub, then we don't have the
2512 real name here. */
2513 if (TYPE_FLAGS (new_sublist->fn_field.type) & TYPE_FLAG_STUB)
2514 new_sublist->fn_field.is_stub = 1;
2515 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2516 *pp = p + 1;
2517
2518 /* Set this method's visibility fields. */
2519 switch (*(*pp)++ - '0')
2520 {
2521 case 0:
2522 new_sublist->fn_field.is_private = 1;
2523 break;
2524 case 1:
2525 new_sublist->fn_field.is_protected = 1;
2526 break;
2527 }
2528
2529 if (**pp == '\\') *pp = next_symbol_text ();
2530 switch (**pp)
2531 {
2532 case 'A': /* Normal functions. */
2533 new_sublist->fn_field.is_const = 0;
2534 new_sublist->fn_field.is_volatile = 0;
2535 (*pp)++;
2536 break;
2537 case 'B': /* `const' member functions. */
2538 new_sublist->fn_field.is_const = 1;
2539 new_sublist->fn_field.is_volatile = 0;
2540 (*pp)++;
2541 break;
2542 case 'C': /* `volatile' member function. */
2543 new_sublist->fn_field.is_const = 0;
2544 new_sublist->fn_field.is_volatile = 1;
2545 (*pp)++;
2546 break;
2547 case 'D': /* `const volatile' member function. */
2548 new_sublist->fn_field.is_const = 1;
2549 new_sublist->fn_field.is_volatile = 1;
2550 (*pp)++;
2551 break;
2552 case '*': /* File compiled with g++ version 1 -- no info */
2553 case '?':
2554 case '.':
2555 break;
2556 default:
2557 complain (&const_vol_complaint, (char *) (long) **pp);
2558 break;
2559 }
2560
2561 switch (*(*pp)++)
2562 {
2563 case '*':
2564 /* virtual member function, followed by index. */
2565 /* The sign bit is set to distinguish pointers-to-methods
2566 from virtual function indicies. Since the array is
2567 in words, the quantity must be shifted left by 1
2568 on 16 bit machine, and by 2 on 32 bit machine, forcing
2569 the sign bit out, and usable as a valid index into
2570 the array. Remove the sign bit here. */
2571 new_sublist->fn_field.voffset =
2572 (0x7fffffff & read_number (pp, ';')) + 2;
2573
2574 if (**pp == '\\') *pp = next_symbol_text ();
2575
2576 if (**pp == ';' || **pp == '\0')
2577 /* Must be g++ version 1. */
2578 new_sublist->fn_field.fcontext = 0;
2579 else
2580 {
2581 /* Figure out from whence this virtual function came.
2582 It may belong to virtual function table of
2583 one of its baseclasses. */
2584 look_ahead_type = read_type (pp, objfile);
2585 if (**pp == ':')
2586 { /* g++ version 1 overloaded methods. */ }
2587 else
2588 {
2589 new_sublist->fn_field.fcontext = look_ahead_type;
2590 if (**pp != ';')
2591 return error_type (pp);
2592 else
2593 ++*pp;
2594 look_ahead_type = NULL;
2595 }
2596 }
2597 break;
2598
2599 case '?':
2600 /* static member function. */
2601 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2602 if (strncmp (new_sublist->fn_field.physname,
2603 main_fn_name, strlen (main_fn_name)))
2604 new_sublist->fn_field.is_stub = 1;
2605 break;
2606
2607 default:
2608 /* error */
2609 complain (&member_fn_complaint, (char *) (long) (*pp)[-1]);
2610 /* Fall through into normal member function. */
2611
2612 case '.':
2613 /* normal member function. */
2614 new_sublist->fn_field.voffset = 0;
2615 new_sublist->fn_field.fcontext = 0;
2616 break;
2617 }
2618
2619 new_sublist->next = sublist;
2620 sublist = new_sublist;
2621 length++;
2622 if (**pp == '\\') *pp = next_symbol_text ();
2623 }
2624 while (**pp != ';' && **pp != '\0');
2625
2626 *pp += 1;
2627
2628 new_mainlist->fn_fieldlist.fn_fields =
2629 (struct fn_field *) obstack_alloc (&objfile -> type_obstack,
2630 sizeof (struct fn_field) * length);
2631 for (i = length; (i--, sublist); sublist = sublist->next)
2632 new_mainlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2633
2634 new_mainlist->fn_fieldlist.length = length;
2635 new_mainlist->next = mainlist;
2636 mainlist = new_mainlist;
2637 nfn_fields++;
2638 total_length += length;
2639 if (**pp == '\\') *pp = next_symbol_text ();
2640 }
2641 while (**pp != ';');
2642 }
2643
2644 *pp += 1;
2645
2646
2647 if (nfn_fields)
2648 {
2649 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2650 obstack_alloc (&objfile -> type_obstack,
2651 sizeof (struct fn_fieldlist) * nfn_fields);
2652 TYPE_NFN_FIELDS (type) = nfn_fields;
2653 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2654 }
2655
2656 {
2657 int i;
2658 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
2659 TYPE_NFN_FIELDS_TOTAL (type) +=
2660 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, i));
2661 }
2662
2663 for (n = nfn_fields; mainlist; mainlist = mainlist->next) {
2664 --n; /* Circumvent Sun3 compiler bug */
2665 TYPE_FN_FIELDLISTS (type)[n] = mainlist->fn_fieldlist;
2666 }
2667
2668 if (**pp == '~')
2669 {
2670 *pp += 1;
2671
2672 if (**pp == '=' || **pp == '+' || **pp == '-')
2673 {
2674 /* Obsolete flags that used to indicate the presence
2675 of constructors and/or destructors. */
2676 *pp += 1;
2677 }
2678
2679 /* Read either a '%' or the final ';'. */
2680 if (*(*pp)++ == '%')
2681 {
2682 /* We'd like to be able to derive the vtable pointer field
2683 from the type information, but when it's inherited, that's
2684 hard. A reason it's hard is because we may read in the
2685 info about a derived class before we read in info about
2686 the base class that provides the vtable pointer field.
2687 Once the base info has been read, we could fill in the info
2688 for the derived classes, but for the fact that by then,
2689 we don't remember who needs what. */
2690
2691 #if 0
2692 int predicted_fieldno = -1;
2693 #endif
2694
2695 /* Now we must record the virtual function table pointer's
2696 field information. */
2697
2698 struct type *t;
2699 int i;
2700
2701
2702 #if 0
2703 {
2704 /* In version 2, we derive the vfield ourselves. */
2705 for (n = 0; n < nfields; n++)
2706 {
2707 if (! strncmp (TYPE_FIELD_NAME (type, n), vptr_name,
2708 sizeof (vptr_name) -1))
2709 {
2710 predicted_fieldno = n;
2711 break;
2712 }
2713 }
2714 if (predicted_fieldno < 0)
2715 for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
2716 if (! TYPE_FIELD_VIRTUAL (type, n)
2717 && TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, n)) >= 0)
2718 {
2719 predicted_fieldno = TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, n));
2720 break;
2721 }
2722 }
2723 #endif
2724
2725 t = read_type (pp, objfile);
2726 p = (*pp)++;
2727 while (*p != '\0' && *p != ';')
2728 p++;
2729 if (*p == '\0')
2730 /* Premature end of symbol. */
2731 return error_type (pp);
2732
2733 TYPE_VPTR_BASETYPE (type) = t;
2734 if (type == t)
2735 {
2736 if (TYPE_FIELD_NAME (t, TYPE_N_BASECLASSES (t)) == 0)
2737 {
2738 /* FIXME-tiemann: what's this? */
2739 #if 0
2740 TYPE_VPTR_FIELDNO (type) = i = TYPE_N_BASECLASSES (t);
2741 #else
2742 error_type (pp);
2743 #endif
2744 }
2745 else for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); --i)
2746 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2747 sizeof (vptr_name) -1))
2748 {
2749 TYPE_VPTR_FIELDNO (type) = i;
2750 break;
2751 }
2752 if (i < 0)
2753 /* Virtual function table field not found. */
2754 return error_type (pp);
2755 }
2756 else
2757 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2758
2759 #if 0
2760 if (TYPE_VPTR_FIELDNO (type) != predicted_fieldno)
2761 error ("TYPE_VPTR_FIELDNO miscalculated");
2762 #endif
2763
2764 *pp = p + 1;
2765 }
2766 }
2767
2768 return type;
2769 }
2770
2771 /* Read a definition of an array type,
2772 and create and return a suitable type object.
2773 Also creates a range type which represents the bounds of that
2774 array. */
2775 static struct type *
2776 read_array_type (pp, type, objfile)
2777 register char **pp;
2778 register struct type *type;
2779 struct objfile *objfile;
2780 {
2781 struct type *index_type, *element_type, *range_type;
2782 int lower, upper;
2783 int adjustable = 0;
2784
2785 /* Format of an array type:
2786 "ar<index type>;lower;upper;<array_contents_type>". Put code in
2787 to handle this.
2788
2789 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2790 for these, produce a type like float[][]. */
2791
2792 index_type = read_type (pp, objfile);
2793 if (**pp != ';')
2794 /* Improper format of array type decl. */
2795 return error_type (pp);
2796 ++*pp;
2797
2798 if (!(**pp >= '0' && **pp <= '9'))
2799 {
2800 *pp += 1;
2801 adjustable = 1;
2802 }
2803 lower = read_number (pp, ';');
2804
2805 if (!(**pp >= '0' && **pp <= '9'))
2806 {
2807 *pp += 1;
2808 adjustable = 1;
2809 }
2810 upper = read_number (pp, ';');
2811
2812 element_type = read_type (pp, objfile);
2813
2814 if (adjustable)
2815 {
2816 lower = 0;
2817 upper = -1;
2818 }
2819
2820 {
2821 /* Create range type. */
2822 range_type = (struct type *)
2823 obstack_alloc (&objfile -> type_obstack, sizeof (struct type));
2824 bzero (range_type, sizeof (struct type));
2825 TYPE_OBJFILE (range_type) = objfile;
2826 TYPE_CODE (range_type) = TYPE_CODE_RANGE;
2827 TYPE_TARGET_TYPE (range_type) = index_type;
2828
2829 /* This should never be needed. */
2830 TYPE_LENGTH (range_type) = sizeof (int);
2831
2832 TYPE_NFIELDS (range_type) = 2;
2833 TYPE_FIELDS (range_type) =
2834 (struct field *) obstack_alloc (&objfile -> type_obstack,
2835 2 * sizeof (struct field));
2836 TYPE_FIELD_BITPOS (range_type, 0) = lower;
2837 TYPE_FIELD_BITPOS (range_type, 1) = upper;
2838 }
2839
2840 TYPE_CODE (type) = TYPE_CODE_ARRAY;
2841 TYPE_TARGET_TYPE (type) = element_type;
2842 TYPE_LENGTH (type) = (upper - lower + 1) * TYPE_LENGTH (element_type);
2843 TYPE_NFIELDS (type) = 1;
2844 TYPE_FIELDS (type) =
2845 (struct field *) obstack_alloc (&objfile -> type_obstack,
2846 sizeof (struct field));
2847 TYPE_FIELD_TYPE (type, 0) = range_type;
2848
2849 /* If we have an array whose element type is not yet known, but whose
2850 bounds *are* known, record it to be adjusted at the end of the file. */
2851 if (TYPE_LENGTH (element_type) == 0 && !adjustable)
2852 add_undefined_type (type);
2853
2854 return type;
2855 }
2856
2857
2858 /* Read a definition of an enumeration type,
2859 and create and return a suitable type object.
2860 Also defines the symbols that represent the values of the type. */
2861
2862 static struct type *
2863 read_enum_type (pp, type, objfile)
2864 register char **pp;
2865 register struct type *type;
2866 struct objfile *objfile;
2867 {
2868 register char *p;
2869 char *name;
2870 register long n;
2871 register struct symbol *sym;
2872 int nsyms = 0;
2873 struct pending **symlist;
2874 struct pending *osyms, *syms;
2875 int o_nsyms;
2876
2877 if (within_function)
2878 symlist = &local_symbols;
2879 else
2880 symlist = &file_symbols;
2881 osyms = *symlist;
2882 o_nsyms = osyms ? osyms->nsyms : 0;
2883
2884 /* Read the value-names and their values.
2885 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
2886 A semicolon or comma instead of a NAME means the end. */
2887 while (**pp && **pp != ';' && **pp != ',')
2888 {
2889 /* Check for and handle cretinous dbx symbol name continuation! */
2890 if (**pp == '\\') *pp = next_symbol_text ();
2891
2892 p = *pp;
2893 while (*p != ':') p++;
2894 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
2895 *pp = p + 1;
2896 n = read_number (pp, ',');
2897
2898 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2899 bzero (sym, sizeof (struct symbol));
2900 SYMBOL_NAME (sym) = name;
2901 SYMBOL_CLASS (sym) = LOC_CONST;
2902 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2903 SYMBOL_VALUE (sym) = n;
2904 add_symbol_to_list (sym, symlist);
2905 nsyms++;
2906 }
2907
2908 if (**pp == ';')
2909 (*pp)++; /* Skip the semicolon. */
2910
2911 /* Now fill in the fields of the type-structure. */
2912
2913 TYPE_LENGTH (type) = sizeof (int);
2914 TYPE_CODE (type) = TYPE_CODE_ENUM;
2915 TYPE_NFIELDS (type) = nsyms;
2916 TYPE_FIELDS (type) = (struct field *)
2917 obstack_alloc (&objfile -> type_obstack,
2918 sizeof (struct field) * nsyms);
2919
2920 /* Find the symbols for the values and put them into the type.
2921 The symbols can be found in the symlist that we put them on
2922 to cause them to be defined. osyms contains the old value
2923 of that symlist; everything up to there was defined by us. */
2924 /* Note that we preserve the order of the enum constants, so
2925 that in something like "enum {FOO, LAST_THING=FOO}" we print
2926 FOO, not LAST_THING. */
2927
2928 for (syms = *symlist, n = 0; syms; syms = syms->next)
2929 {
2930 int j = 0;
2931 if (syms == osyms)
2932 j = o_nsyms;
2933 for (; j < syms->nsyms; j++,n++)
2934 {
2935 struct symbol *xsym = syms->symbol[j];
2936 SYMBOL_TYPE (xsym) = type;
2937 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
2938 TYPE_FIELD_VALUE (type, n) = 0;
2939 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
2940 TYPE_FIELD_BITSIZE (type, n) = 0;
2941 }
2942 if (syms == osyms)
2943 break;
2944 }
2945
2946 #if 0
2947 /* This screws up perfectly good C programs with enums. FIXME. */
2948 /* Is this Modula-2's BOOLEAN type? Flag it as such if so. */
2949 if(TYPE_NFIELDS(type) == 2 &&
2950 ((!strcmp(TYPE_FIELD_NAME(type,0),"TRUE") &&
2951 !strcmp(TYPE_FIELD_NAME(type,1),"FALSE")) ||
2952 (!strcmp(TYPE_FIELD_NAME(type,1),"TRUE") &&
2953 !strcmp(TYPE_FIELD_NAME(type,0),"FALSE"))))
2954 TYPE_CODE(type) = TYPE_CODE_BOOL;
2955 #endif
2956
2957 return type;
2958 }
2959
2960 /* Read a number from the string pointed to by *PP.
2961 The value of *PP is advanced over the number.
2962 If END is nonzero, the character that ends the
2963 number must match END, or an error happens;
2964 and that character is skipped if it does match.
2965 If END is zero, *PP is left pointing to that character.
2966
2967 If the number fits in a long, set *VALUE and set *BITS to 0.
2968 If not, set *BITS to be the number of bits in the number.
2969
2970 If encounter garbage, set *BITS to -1. */
2971
2972 static void
2973 read_huge_number (pp, end, valu, bits)
2974 char **pp;
2975 int end;
2976 long *valu;
2977 int *bits;
2978 {
2979 char *p = *pp;
2980 int sign = 1;
2981 long n = 0;
2982 int radix = 10;
2983 char overflow = 0;
2984 int nbits = 0;
2985 int c;
2986 long upper_limit;
2987
2988 if (*p == '-')
2989 {
2990 sign = -1;
2991 p++;
2992 }
2993
2994 /* Leading zero means octal. GCC uses this to output values larger
2995 than an int (because that would be hard in decimal). */
2996 if (*p == '0')
2997 {
2998 radix = 8;
2999 p++;
3000 }
3001
3002 upper_limit = LONG_MAX / radix;
3003 while ((c = *p++) >= '0' && c <= ('0' + radix))
3004 {
3005 if (n <= upper_limit)
3006 {
3007 n *= radix;
3008 n += c - '0'; /* FIXME this overflows anyway */
3009 }
3010 else
3011 overflow = 1;
3012
3013 /* This depends on large values being output in octal, which is
3014 what GCC does. */
3015 if (radix == 8)
3016 {
3017 if (nbits == 0)
3018 {
3019 if (c == '0')
3020 /* Ignore leading zeroes. */
3021 ;
3022 else if (c == '1')
3023 nbits = 1;
3024 else if (c == '2' || c == '3')
3025 nbits = 2;
3026 else
3027 nbits = 3;
3028 }
3029 else
3030 nbits += 3;
3031 }
3032 }
3033 if (end)
3034 {
3035 if (c && c != end)
3036 {
3037 if (bits != NULL)
3038 *bits = -1;
3039 return;
3040 }
3041 }
3042 else
3043 --p;
3044
3045 *pp = p;
3046 if (overflow)
3047 {
3048 if (nbits == 0)
3049 {
3050 /* Large decimal constants are an error (because it is hard to
3051 count how many bits are in them). */
3052 if (bits != NULL)
3053 *bits = -1;
3054 return;
3055 }
3056
3057 /* -0x7f is the same as 0x80. So deal with it by adding one to
3058 the number of bits. */
3059 if (sign == -1)
3060 ++nbits;
3061 if (bits)
3062 *bits = nbits;
3063 }
3064 else
3065 {
3066 if (valu)
3067 *valu = n * sign;
3068 if (bits)
3069 *bits = 0;
3070 }
3071 }
3072
3073 static struct type *
3074 read_range_type (pp, typenums, objfile)
3075 char **pp;
3076 int typenums[2];
3077 struct objfile *objfile;
3078 {
3079 int rangenums[2];
3080 long n2, n3;
3081 int n2bits, n3bits;
3082 int self_subrange;
3083 struct type *result_type;
3084
3085 /* First comes a type we are a subrange of.
3086 In C it is usually 0, 1 or the type being defined. */
3087 read_type_number (pp, rangenums);
3088 self_subrange = (rangenums[0] == typenums[0] &&
3089 rangenums[1] == typenums[1]);
3090
3091 /* A semicolon should now follow; skip it. */
3092 if (**pp == ';')
3093 (*pp)++;
3094
3095 /* The remaining two operands are usually lower and upper bounds
3096 of the range. But in some special cases they mean something else. */
3097 read_huge_number (pp, ';', &n2, &n2bits);
3098 read_huge_number (pp, ';', &n3, &n3bits);
3099
3100 if (n2bits == -1 || n3bits == -1)
3101 return error_type (pp);
3102
3103 /* If limits are huge, must be large integral type. */
3104 if (n2bits != 0 || n3bits != 0)
3105 {
3106 char got_signed = 0;
3107 char got_unsigned = 0;
3108 /* Number of bits in the type. */
3109 int nbits;
3110
3111 /* Range from 0 to <large number> is an unsigned large integral type. */
3112 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3113 {
3114 got_unsigned = 1;
3115 nbits = n3bits;
3116 }
3117 /* Range from <large number> to <large number>-1 is a large signed
3118 integral type. */
3119 else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3120 {
3121 got_signed = 1;
3122 nbits = n2bits;
3123 }
3124
3125 /* Check for "long long". */
3126 if (got_signed && nbits == TARGET_LONG_LONG_BIT)
3127 return (lookup_fundamental_type (objfile, FT_LONG_LONG));
3128 if (got_unsigned && nbits == TARGET_LONG_LONG_BIT)
3129 return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG_LONG));
3130
3131 if (got_signed || got_unsigned)
3132 {
3133 result_type = (struct type *)
3134 obstack_alloc (&objfile -> type_obstack,
3135 sizeof (struct type));
3136 bzero (result_type, sizeof (struct type));
3137 TYPE_OBJFILE (result_type) = objfile;
3138 TYPE_LENGTH (result_type) = nbits / TARGET_CHAR_BIT;
3139 TYPE_CODE (result_type) = TYPE_CODE_INT;
3140 if (got_unsigned)
3141 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
3142 return result_type;
3143 }
3144 else
3145 return error_type (pp);
3146 }
3147
3148 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3149 if (self_subrange && n2 == 0 && n3 == 0)
3150 return (lookup_fundamental_type (objfile, FT_VOID));
3151
3152 /* If n3 is zero and n2 is not, we want a floating type,
3153 and n2 is the width in bytes.
3154
3155 Fortran programs appear to use this for complex types also,
3156 and they give no way to distinguish between double and single-complex!
3157 We don't have complex types, so we would lose on all fortran files!
3158 So return type `double' for all of those. It won't work right
3159 for the complex values, but at least it makes the file loadable.
3160
3161 FIXME, we may be able to distinguish these by their names. FIXME. */
3162
3163 if (n3 == 0 && n2 > 0)
3164 {
3165 if (n2 == sizeof (float))
3166 return (lookup_fundamental_type (objfile, FT_FLOAT));
3167 return (lookup_fundamental_type (objfile, FT_DBL_PREC_FLOAT));
3168 }
3169
3170 /* If the upper bound is -1, it must really be an unsigned int. */
3171
3172 else if (n2 == 0 && n3 == -1)
3173 {
3174 /* FIXME -- the only way to distinguish `unsigned int' from `unsigned
3175 long' is to look at its name! */
3176 if (
3177 long_kludge_name && ((long_kludge_name[0] == 'u' /* unsigned */ &&
3178 long_kludge_name[9] == 'l' /* long */)
3179 || (long_kludge_name[0] == 'l' /* long unsigned */)))
3180 return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG));
3181 else
3182 return (lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER));
3183 }
3184
3185 /* Special case: char is defined (Who knows why) as a subrange of
3186 itself with range 0-127. */
3187 else if (self_subrange && n2 == 0 && n3 == 127)
3188 return (lookup_fundamental_type (objfile, FT_CHAR));
3189
3190 /* Assumptions made here: Subrange of self is equivalent to subrange
3191 of int. FIXME: Host and target type-sizes assumed the same. */
3192 /* FIXME: This is the *only* place in GDB that depends on comparing
3193 some type to a builtin type with ==. Fix it! */
3194 else if (n2 == 0
3195 && (self_subrange ||
3196 *dbx_lookup_type (rangenums) == lookup_fundamental_type (objfile, FT_INTEGER)))
3197 {
3198 /* an unsigned type */
3199 #ifdef LONG_LONG
3200 if (n3 == - sizeof (long long))
3201 return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG_LONG));
3202 #endif
3203 /* FIXME -- the only way to distinguish `unsigned int' from `unsigned
3204 long' is to look at its name! */
3205 if (n3 == (unsigned long)~0L &&
3206 long_kludge_name && ((long_kludge_name[0] == 'u' /* unsigned */ &&
3207 long_kludge_name[9] == 'l' /* long */)
3208 || (long_kludge_name[0] == 'l' /* long unsigned */)))
3209 return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG));
3210 if (n3 == (unsigned int)~0L)
3211 return (lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER));
3212 if (n3 == (unsigned short)~0L)
3213 return (lookup_fundamental_type (objfile, FT_UNSIGNED_SHORT));
3214 if (n3 == (unsigned char)~0L)
3215 return (lookup_fundamental_type (objfile, FT_UNSIGNED_CHAR));
3216 }
3217 #ifdef LONG_LONG
3218 else if (n3 == 0 && n2 == -sizeof (long long))
3219 return (lookup_fundamental_type (objfile, FT_LONG_LONG));
3220 #endif
3221 else if (n2 == -n3 -1)
3222 {
3223 /* a signed type */
3224 /* FIXME -- the only way to distinguish `int' from `long' is to look
3225 at its name! */
3226 if ((n3 ==(long)(((unsigned long)1 << (8 * sizeof (long) - 1)) - 1)) &&
3227 long_kludge_name && long_kludge_name[0] == 'l' /* long */)
3228 return (lookup_fundamental_type (objfile, FT_LONG));
3229 if (n3 == (long)(((unsigned long)1 << (8 * sizeof (int) - 1)) - 1))
3230 return (lookup_fundamental_type (objfile, FT_INTEGER));
3231 if (n3 == ( 1 << (8 * sizeof (short) - 1)) - 1)
3232 return (lookup_fundamental_type (objfile, FT_SHORT));
3233 if (n3 == ( 1 << (8 * sizeof (char) - 1)) - 1)
3234 return (lookup_fundamental_type (objfile, FT_CHAR));
3235 }
3236
3237 /* We have a real range type on our hands. Allocate space and
3238 return a real pointer. */
3239
3240 /* At this point I don't have the faintest idea how to deal with
3241 a self_subrange type; I'm going to assume that this is used
3242 as an idiom, and that all of them are special cases. So . . . */
3243 if (self_subrange)
3244 return error_type (pp);
3245
3246 result_type = (struct type *)
3247 obstack_alloc (&objfile -> type_obstack, sizeof (struct type));
3248 bzero (result_type, sizeof (struct type));
3249 TYPE_OBJFILE (result_type) = objfile;
3250
3251 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
3252
3253 TYPE_TARGET_TYPE (result_type) = *dbx_lookup_type(rangenums);
3254 if (TYPE_TARGET_TYPE (result_type) == 0) {
3255 complain (&range_type_base_complaint, (char *) rangenums[1]);
3256 TYPE_TARGET_TYPE (result_type) = lookup_fundamental_type (objfile, FT_INTEGER);
3257 }
3258
3259 TYPE_NFIELDS (result_type) = 2;
3260 TYPE_FIELDS (result_type) =
3261 (struct field *) obstack_alloc (&objfile -> type_obstack,
3262 2 * sizeof (struct field));
3263 bzero (TYPE_FIELDS (result_type), 2 * sizeof (struct field));
3264 TYPE_FIELD_BITPOS (result_type, 0) = n2;
3265 TYPE_FIELD_BITPOS (result_type, 1) = n3;
3266
3267 TYPE_LENGTH (result_type) = TYPE_LENGTH (TYPE_TARGET_TYPE (result_type));
3268
3269 return result_type;
3270 }
3271
3272 /* Read a number from the string pointed to by *PP.
3273 The value of *PP is advanced over the number.
3274 If END is nonzero, the character that ends the
3275 number must match END, or an error happens;
3276 and that character is skipped if it does match.
3277 If END is zero, *PP is left pointing to that character. */
3278
3279 long
3280 read_number (pp, end)
3281 char **pp;
3282 int end;
3283 {
3284 register char *p = *pp;
3285 register long n = 0;
3286 register int c;
3287 int sign = 1;
3288
3289 /* Handle an optional leading minus sign. */
3290
3291 if (*p == '-')
3292 {
3293 sign = -1;
3294 p++;
3295 }
3296
3297 /* Read the digits, as far as they go. */
3298
3299 while ((c = *p++) >= '0' && c <= '9')
3300 {
3301 n *= 10;
3302 n += c - '0';
3303 }
3304 if (end)
3305 {
3306 if (c && c != end)
3307 error ("Invalid symbol data: invalid character \\%03o at symbol pos %d.", c, symnum);
3308 }
3309 else
3310 --p;
3311
3312 *pp = p;
3313 return n * sign;
3314 }
3315
3316 /* Read in an argument list. This is a list of types, separated by commas
3317 and terminated with END. Return the list of types read in, or (struct type
3318 **)-1 if there is an error. */
3319 static struct type **
3320 read_args (pp, end, objfile)
3321 char **pp;
3322 int end;
3323 struct objfile *objfile;
3324 {
3325 /* FIXME! Remove this arbitrary limit! */
3326 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3327 int n = 0;
3328
3329 while (**pp != end)
3330 {
3331 if (**pp != ',')
3332 /* Invalid argument list: no ','. */
3333 return (struct type **)-1;
3334 *pp += 1;
3335
3336 /* Check for and handle cretinous dbx symbol name continuation! */
3337 if (**pp == '\\')
3338 *pp = next_symbol_text ();
3339
3340 types[n++] = read_type (pp, objfile);
3341 }
3342 *pp += 1; /* get past `end' (the ':' character) */
3343
3344 if (n == 1)
3345 {
3346 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3347 }
3348 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3349 {
3350 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3351 bzero (rval + n, sizeof (struct type *));
3352 }
3353 else
3354 {
3355 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3356 }
3357 memcpy (rval, types, n * sizeof (struct type *));
3358 return rval;
3359 }
3360
3361 /* Add a common block's start address to the offset of each symbol
3362 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3363 the common block name). */
3364
3365 static void
3366 fix_common_block (sym, valu)
3367 struct symbol *sym;
3368 int valu;
3369 {
3370 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
3371 for ( ; next; next = next->next)
3372 {
3373 register int j;
3374 for (j = next->nsyms - 1; j >= 0; j--)
3375 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3376 }
3377 }
3378
3379 /* Initializer for this module */
3380 void
3381 _initialize_buildsym ()
3382 {
3383 undef_types_allocated = 20;
3384 undef_types_length = 0;
3385 undef_types = (struct type **) xmalloc (undef_types_allocated *
3386 sizeof (struct type *));
3387 }
This page took 0.100039 seconds and 4 git commands to generate.