Remove free_pendings
[deliverable/binutils-gdb.git] / gdb / buildsym.c
1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright (C) 1986-2018 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* This module provides subroutines used for creating and adding to
20 the symbol table. These routines are called from various symbol-
21 file-reading routines.
22
23 Routines to support specific debugging information formats (stabs,
24 DWARF, etc) belong somewhere else.
25
26 The basic way this module is used is as follows:
27
28 buildsym_init ();
29 scoped_free_pendings free_pending;
30 cust = start_symtab (...);
31 ... read debug info ...
32 cust = end_symtab (...);
33
34 The compunit symtab pointer ("cust") is returned from both start_symtab
35 and end_symtab to simplify the debug info readers.
36
37 There are minor variations on this, e.g., dwarf2read.c splits end_symtab
38 into two calls: end_symtab_get_static_block, end_symtab_from_static_block,
39 but all debug info readers follow this basic flow.
40
41 Reading DWARF Type Units is another variation:
42
43 buildsym_init ();
44 scoped_free_pendings free_pending;
45 cust = start_symtab (...);
46 ... read debug info ...
47 cust = end_expandable_symtab (...);
48
49 And then reading subsequent Type Units within the containing "Comp Unit"
50 will use a second flow:
51
52 buildsym_init ();
53 scoped_free_pendings free_pending;
54 cust = restart_symtab (...);
55 ... read debug info ...
56 cust = augment_type_symtab (...);
57
58 dbxread.c and xcoffread.c use another variation:
59
60 buildsym_init ();
61 scoped_free_pendings free_pending;
62 cust = start_symtab (...);
63 ... read debug info ...
64 cust = end_symtab (...);
65 ... start_symtab + read + end_symtab repeated ...
66 */
67
68 #include "defs.h"
69 #include "bfd.h"
70 #include "gdb_obstack.h"
71 #include "symtab.h"
72 #include "symfile.h"
73 #include "objfiles.h"
74 #include "gdbtypes.h"
75 #include "complaints.h"
76 #include "expression.h" /* For "enum exp_opcode" used by... */
77 #include "filenames.h" /* For DOSish file names. */
78 #include "macrotab.h"
79 #include "demangle.h" /* Needed by SYMBOL_INIT_DEMANGLED_NAME. */
80 #include "block.h"
81 #include "cp-support.h"
82 #include "dictionary.h"
83 #include "addrmap.h"
84 #include <algorithm>
85
86 /* Ask buildsym.h to define the vars it normally declares `extern'. */
87 #define EXTERN
88 /**/
89 #include "buildsym.h" /* Our own declarations. */
90 #undef EXTERN
91
92 /* For cleanup_undefined_stabs_types and finish_global_stabs (somewhat
93 questionable--see comment where we call them). */
94
95 #include "stabsread.h"
96
97 /* Buildsym's counterpart to struct compunit_symtab.
98 TODO(dje): Move all related global state into here. */
99
100 struct buildsym_compunit
101 {
102 /* Start recording information about a primary source file (IOW, not an
103 included source file).
104 COMP_DIR is the directory in which the compilation unit was compiled
105 (or NULL if not known). */
106
107 buildsym_compunit (struct objfile *objfile_, const char *name,
108 const char *comp_dir_, enum language language_,
109 CORE_ADDR last_addr)
110 : objfile (objfile_),
111 m_last_source_file (name == nullptr ? nullptr : xstrdup (name)),
112 comp_dir (comp_dir_ == nullptr ? nullptr : xstrdup (comp_dir_)),
113 language (language_),
114 m_last_source_start_addr (last_addr)
115 {
116 }
117
118 ~buildsym_compunit ()
119 {
120 struct subfile *subfile, *nextsub;
121
122 if (m_pending_macros != nullptr)
123 free_macro_table (m_pending_macros);
124
125 for (subfile = subfiles;
126 subfile != NULL;
127 subfile = nextsub)
128 {
129 nextsub = subfile->next;
130 xfree (subfile->name);
131 xfree (subfile->line_vector);
132 xfree (subfile);
133 }
134 }
135
136 void set_last_source_file (const char *name)
137 {
138 char *new_name = name == NULL ? NULL : xstrdup (name);
139 m_last_source_file.reset (new_name);
140 }
141
142 struct macro_table *get_macro_table ()
143 {
144 if (m_pending_macros == nullptr)
145 m_pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
146 objfile->per_bfd->macro_cache,
147 compunit_symtab);
148 return m_pending_macros;
149 }
150
151 struct macro_table *release_macros ()
152 {
153 struct macro_table *result = m_pending_macros;
154 m_pending_macros = nullptr;
155 return result;
156 }
157
158 /* This function is called to discard any pending blocks. */
159
160 void free_pending_blocks ()
161 {
162 m_pending_block_obstack.clear ();
163 m_pending_blocks = nullptr;
164 }
165
166 /* The objfile we're reading debug info from. */
167 struct objfile *objfile;
168
169 /* List of subfiles (source files).
170 Files are added to the front of the list.
171 This is important mostly for the language determination hacks we use,
172 which iterate over previously added files. */
173 struct subfile *subfiles = nullptr;
174
175 /* The subfile of the main source file. */
176 struct subfile *main_subfile = nullptr;
177
178 /* Name of source file whose symbol data we are now processing. This
179 comes from a symbol of type N_SO for stabs. For DWARF it comes
180 from the DW_AT_name attribute of a DW_TAG_compile_unit DIE. */
181 gdb::unique_xmalloc_ptr<char> m_last_source_file;
182
183 /* E.g., DW_AT_comp_dir if DWARF. Space for this is malloc'd. */
184 gdb::unique_xmalloc_ptr<char> comp_dir;
185
186 /* Space for this is not malloc'd, and is assumed to have at least
187 the same lifetime as objfile. */
188 const char *producer = nullptr;
189
190 /* Space for this is not malloc'd, and is assumed to have at least
191 the same lifetime as objfile. */
192 const char *debugformat = nullptr;
193
194 /* The compunit we are building. */
195 struct compunit_symtab *compunit_symtab = nullptr;
196
197 /* Language of this compunit_symtab. */
198 enum language language;
199
200 /* The macro table for the compilation unit whose symbols we're
201 currently reading. */
202 struct macro_table *m_pending_macros = nullptr;
203
204 /* True if symtab has line number info. This prevents an otherwise
205 empty symtab from being tossed. */
206 bool m_have_line_numbers = false;
207
208 /* Core address of start of text of current source file. This too
209 comes from the N_SO symbol. For Dwarf it typically comes from the
210 DW_AT_low_pc attribute of a DW_TAG_compile_unit DIE. */
211 CORE_ADDR m_last_source_start_addr;
212
213 /* Stack of subfile names. */
214 std::vector<const char *> m_subfile_stack;
215
216 /* The "using" directives local to lexical context. */
217 struct using_direct *m_local_using_directives = nullptr;
218
219 /* Global "using" directives. */
220 struct using_direct *m_global_using_directives = nullptr;
221
222 /* The stack of contexts that are pushed by push_context and popped
223 by pop_context. */
224 std::vector<struct context_stack> m_context_stack;
225
226 struct subfile *m_current_subfile = nullptr;
227
228 /* The mutable address map for the compilation unit whose symbols
229 we're currently reading. The symtabs' shared blockvector will
230 point to a fixed copy of this. */
231 struct addrmap *m_pending_addrmap = nullptr;
232
233 /* The obstack on which we allocate pending_addrmap.
234 If pending_addrmap is NULL, this is uninitialized; otherwise, it is
235 initialized (and holds pending_addrmap). */
236 auto_obstack m_pending_addrmap_obstack;
237
238 /* True if we recorded any ranges in the addrmap that are different
239 from those in the blockvector already. We set this to false when
240 we start processing a symfile, and if it's still false at the
241 end, then we just toss the addrmap. */
242 bool m_pending_addrmap_interesting = false;
243
244 /* An obstack used for allocating pending blocks. */
245 auto_obstack m_pending_block_obstack;
246
247 /* Pointer to the head of a linked list of symbol blocks which have
248 already been finalized (lexical contexts already closed) and which
249 are just waiting to be built into a blockvector when finalizing the
250 associated symtab. */
251 struct pending_block *m_pending_blocks = nullptr;
252 };
253
254 /* The work-in-progress of the compunit we are building.
255 This is created first, before any subfiles by start_symtab. */
256
257 static struct buildsym_compunit *buildsym_compunit;
258
259 /* List of blocks already made (lexical contexts already closed).
260 This is used at the end to make the blockvector. */
261
262 struct pending_block
263 {
264 struct pending_block *next;
265 struct block *block;
266 };
267
268 static void free_buildsym_compunit (void);
269
270 static int compare_line_numbers (const void *ln1p, const void *ln2p);
271
272 static void record_pending_block (struct objfile *objfile,
273 struct block *block,
274 struct pending_block *opblock);
275
276 /* Initial sizes of data structures. These are realloc'd larger if
277 needed, and realloc'd down to the size actually used, when
278 completed. */
279
280 #define INITIAL_LINE_VECTOR_LENGTH 1000
281 \f
282
283 /* Maintain the lists of symbols and blocks. */
284
285 /* Add a symbol to one of the lists of symbols. */
286
287 void
288 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
289 {
290 struct pending *link;
291
292 /* If this is an alias for another symbol, don't add it. */
293 if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
294 return;
295
296 /* We keep PENDINGSIZE symbols in each link of the list. If we
297 don't have a link with room in it, add a new link. */
298 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
299 {
300 link = XNEW (struct pending);
301 link->next = *listhead;
302 *listhead = link;
303 link->nsyms = 0;
304 }
305
306 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
307 }
308
309 /* Find a symbol named NAME on a LIST. NAME need not be
310 '\0'-terminated; LENGTH is the length of the name. */
311
312 struct symbol *
313 find_symbol_in_list (struct pending *list, char *name, int length)
314 {
315 int j;
316 const char *pp;
317
318 while (list != NULL)
319 {
320 for (j = list->nsyms; --j >= 0;)
321 {
322 pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
323 if (*pp == *name && strncmp (pp, name, length) == 0
324 && pp[length] == '\0')
325 {
326 return (list->symbol[j]);
327 }
328 }
329 list = list->next;
330 }
331 return (NULL);
332 }
333
334 /* At end of reading syms, or in case of quit, ensure everything
335 associated with building symtabs is freed.
336
337 N.B. This is *not* intended to be used when building psymtabs. Some debug
338 info readers call this anyway, which is harmless if confusing. */
339
340 scoped_free_pendings::~scoped_free_pendings ()
341 {
342 struct pending *next, *next1;
343
344 for (next = file_symbols; next != NULL; next = next1)
345 {
346 next1 = next->next;
347 xfree ((void *) next);
348 }
349 file_symbols = NULL;
350
351 for (next = global_symbols; next != NULL; next = next1)
352 {
353 next1 = next->next;
354 xfree ((void *) next);
355 }
356 global_symbols = NULL;
357
358 free_buildsym_compunit ();
359 }
360
361 /* Take one of the lists of symbols and make a block from it. Keep
362 the order the symbols have in the list (reversed from the input
363 file). Put the block on the list of pending blocks. */
364
365 static struct block *
366 finish_block_internal (struct symbol *symbol,
367 struct pending **listhead,
368 struct pending_block *old_blocks,
369 const struct dynamic_prop *static_link,
370 CORE_ADDR start, CORE_ADDR end,
371 int is_global, int expandable)
372 {
373 struct objfile *objfile = buildsym_compunit->objfile;
374 struct gdbarch *gdbarch = get_objfile_arch (objfile);
375 struct pending *next, *next1;
376 struct block *block;
377 struct pending_block *pblock;
378 struct pending_block *opblock;
379
380 block = (is_global
381 ? allocate_global_block (&objfile->objfile_obstack)
382 : allocate_block (&objfile->objfile_obstack));
383
384 if (symbol)
385 {
386 BLOCK_DICT (block)
387 = dict_create_linear (&objfile->objfile_obstack,
388 buildsym_compunit->language, *listhead);
389 }
390 else
391 {
392 if (expandable)
393 {
394 BLOCK_DICT (block)
395 = dict_create_hashed_expandable (buildsym_compunit->language);
396 dict_add_pending (BLOCK_DICT (block), *listhead);
397 }
398 else
399 {
400 BLOCK_DICT (block) =
401 dict_create_hashed (&objfile->objfile_obstack,
402 buildsym_compunit->language, *listhead);
403 }
404 }
405
406 BLOCK_START (block) = start;
407 BLOCK_END (block) = end;
408
409 /* Put the block in as the value of the symbol that names it. */
410
411 if (symbol)
412 {
413 struct type *ftype = SYMBOL_TYPE (symbol);
414 struct dict_iterator iter;
415 SYMBOL_BLOCK_VALUE (symbol) = block;
416 BLOCK_FUNCTION (block) = symbol;
417
418 if (TYPE_NFIELDS (ftype) <= 0)
419 {
420 /* No parameter type information is recorded with the
421 function's type. Set that from the type of the
422 parameter symbols. */
423 int nparams = 0, iparams;
424 struct symbol *sym;
425
426 /* Here we want to directly access the dictionary, because
427 we haven't fully initialized the block yet. */
428 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
429 {
430 if (SYMBOL_IS_ARGUMENT (sym))
431 nparams++;
432 }
433 if (nparams > 0)
434 {
435 TYPE_NFIELDS (ftype) = nparams;
436 TYPE_FIELDS (ftype) = (struct field *)
437 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
438
439 iparams = 0;
440 /* Here we want to directly access the dictionary, because
441 we haven't fully initialized the block yet. */
442 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
443 {
444 if (iparams == nparams)
445 break;
446
447 if (SYMBOL_IS_ARGUMENT (sym))
448 {
449 TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
450 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
451 iparams++;
452 }
453 }
454 }
455 }
456 }
457 else
458 {
459 BLOCK_FUNCTION (block) = NULL;
460 }
461
462 if (static_link != NULL)
463 objfile_register_static_link (objfile, block, static_link);
464
465 /* Now free the links of the list, and empty the list. */
466
467 for (next = *listhead; next; next = next1)
468 {
469 next1 = next->next;
470 xfree (next);
471 }
472 *listhead = NULL;
473
474 /* Check to be sure that the blocks have an end address that is
475 greater than starting address. */
476
477 if (BLOCK_END (block) < BLOCK_START (block))
478 {
479 if (symbol)
480 {
481 complaint (_("block end address less than block "
482 "start address in %s (patched it)"),
483 SYMBOL_PRINT_NAME (symbol));
484 }
485 else
486 {
487 complaint (_("block end address %s less than block "
488 "start address %s (patched it)"),
489 paddress (gdbarch, BLOCK_END (block)),
490 paddress (gdbarch, BLOCK_START (block)));
491 }
492 /* Better than nothing. */
493 BLOCK_END (block) = BLOCK_START (block);
494 }
495
496 /* Install this block as the superblock of all blocks made since the
497 start of this scope that don't have superblocks yet. */
498
499 opblock = NULL;
500 for (pblock = buildsym_compunit->m_pending_blocks;
501 pblock && pblock != old_blocks;
502 pblock = pblock->next)
503 {
504 if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
505 {
506 /* Check to be sure the blocks are nested as we receive
507 them. If the compiler/assembler/linker work, this just
508 burns a small amount of time.
509
510 Skip blocks which correspond to a function; they're not
511 physically nested inside this other blocks, only
512 lexically nested. */
513 if (BLOCK_FUNCTION (pblock->block) == NULL
514 && (BLOCK_START (pblock->block) < BLOCK_START (block)
515 || BLOCK_END (pblock->block) > BLOCK_END (block)))
516 {
517 if (symbol)
518 {
519 complaint (_("inner block not inside outer block in %s"),
520 SYMBOL_PRINT_NAME (symbol));
521 }
522 else
523 {
524 complaint (_("inner block (%s-%s) not "
525 "inside outer block (%s-%s)"),
526 paddress (gdbarch, BLOCK_START (pblock->block)),
527 paddress (gdbarch, BLOCK_END (pblock->block)),
528 paddress (gdbarch, BLOCK_START (block)),
529 paddress (gdbarch, BLOCK_END (block)));
530 }
531 if (BLOCK_START (pblock->block) < BLOCK_START (block))
532 BLOCK_START (pblock->block) = BLOCK_START (block);
533 if (BLOCK_END (pblock->block) > BLOCK_END (block))
534 BLOCK_END (pblock->block) = BLOCK_END (block);
535 }
536 BLOCK_SUPERBLOCK (pblock->block) = block;
537 }
538 opblock = pblock;
539 }
540
541 block_set_using (block,
542 (is_global
543 ? buildsym_compunit->m_global_using_directives
544 : buildsym_compunit->m_local_using_directives),
545 &objfile->objfile_obstack);
546 if (is_global)
547 buildsym_compunit->m_global_using_directives = NULL;
548 else
549 buildsym_compunit->m_local_using_directives = NULL;
550
551 record_pending_block (objfile, block, opblock);
552
553 return block;
554 }
555
556 struct block *
557 finish_block (struct symbol *symbol,
558 struct pending_block *old_blocks,
559 const struct dynamic_prop *static_link,
560 CORE_ADDR start, CORE_ADDR end)
561 {
562 return finish_block_internal (symbol, &local_symbols, old_blocks, static_link,
563 start, end, 0, 0);
564 }
565
566 /* Record BLOCK on the list of all blocks in the file. Put it after
567 OPBLOCK, or at the beginning if opblock is NULL. This puts the
568 block in the list after all its subblocks.
569
570 Allocate the pending block struct in the objfile_obstack to save
571 time. This wastes a little space. FIXME: Is it worth it? */
572
573 static void
574 record_pending_block (struct objfile *objfile, struct block *block,
575 struct pending_block *opblock)
576 {
577 struct pending_block *pblock;
578
579 pblock = XOBNEW (&buildsym_compunit->m_pending_block_obstack,
580 struct pending_block);
581 pblock->block = block;
582 if (opblock)
583 {
584 pblock->next = opblock->next;
585 opblock->next = pblock;
586 }
587 else
588 {
589 pblock->next = buildsym_compunit->m_pending_blocks;
590 buildsym_compunit->m_pending_blocks = pblock;
591 }
592 }
593
594
595 /* Record that the range of addresses from START to END_INCLUSIVE
596 (inclusive, like it says) belongs to BLOCK. BLOCK's start and end
597 addresses must be set already. You must apply this function to all
598 BLOCK's children before applying it to BLOCK.
599
600 If a call to this function complicates the picture beyond that
601 already provided by BLOCK_START and BLOCK_END, then we create an
602 address map for the block. */
603 void
604 record_block_range (struct block *block,
605 CORE_ADDR start, CORE_ADDR end_inclusive)
606 {
607 /* If this is any different from the range recorded in the block's
608 own BLOCK_START and BLOCK_END, then note that the address map has
609 become interesting. Note that even if this block doesn't have
610 any "interesting" ranges, some later block might, so we still
611 need to record this block in the addrmap. */
612 if (start != BLOCK_START (block)
613 || end_inclusive + 1 != BLOCK_END (block))
614 buildsym_compunit->m_pending_addrmap_interesting = true;
615
616 if (buildsym_compunit->m_pending_addrmap == nullptr)
617 buildsym_compunit->m_pending_addrmap
618 = addrmap_create_mutable (&buildsym_compunit->m_pending_addrmap_obstack);
619
620 addrmap_set_empty (buildsym_compunit->m_pending_addrmap,
621 start, end_inclusive, block);
622 }
623
624 static struct blockvector *
625 make_blockvector (void)
626 {
627 struct objfile *objfile = buildsym_compunit->objfile;
628 struct pending_block *next;
629 struct blockvector *blockvector;
630 int i;
631
632 /* Count the length of the list of blocks. */
633
634 for (next = buildsym_compunit->m_pending_blocks, i = 0;
635 next;
636 next = next->next, i++)
637 {
638 }
639
640 blockvector = (struct blockvector *)
641 obstack_alloc (&objfile->objfile_obstack,
642 (sizeof (struct blockvector)
643 + (i - 1) * sizeof (struct block *)));
644
645 /* Copy the blocks into the blockvector. This is done in reverse
646 order, which happens to put the blocks into the proper order
647 (ascending starting address). finish_block has hair to insert
648 each block into the list after its subblocks in order to make
649 sure this is true. */
650
651 BLOCKVECTOR_NBLOCKS (blockvector) = i;
652 for (next = buildsym_compunit->m_pending_blocks; next; next = next->next)
653 {
654 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
655 }
656
657 buildsym_compunit->free_pending_blocks ();
658
659 /* If we needed an address map for this symtab, record it in the
660 blockvector. */
661 if (buildsym_compunit->m_pending_addrmap != nullptr
662 && buildsym_compunit->m_pending_addrmap_interesting)
663 BLOCKVECTOR_MAP (blockvector)
664 = addrmap_create_fixed (buildsym_compunit->m_pending_addrmap,
665 &objfile->objfile_obstack);
666 else
667 BLOCKVECTOR_MAP (blockvector) = 0;
668
669 /* Some compilers output blocks in the wrong order, but we depend on
670 their being in the right order so we can binary search. Check the
671 order and moan about it.
672 Note: Remember that the first two blocks are the global and static
673 blocks. We could special case that fact and begin checking at block 2.
674 To avoid making that assumption we do not. */
675 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
676 {
677 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
678 {
679 if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
680 > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
681 {
682 CORE_ADDR start
683 = BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
684
685 complaint (_("block at %s out of order"),
686 hex_string ((LONGEST) start));
687 }
688 }
689 }
690
691 return (blockvector);
692 }
693 \f
694 /* Start recording information about source code that came from an
695 included (or otherwise merged-in) source file with a different
696 name. NAME is the name of the file (cannot be NULL). */
697
698 void
699 start_subfile (const char *name)
700 {
701 const char *subfile_dirname;
702 struct subfile *subfile;
703
704 gdb_assert (buildsym_compunit != NULL);
705
706 subfile_dirname = buildsym_compunit->comp_dir.get ();
707
708 /* See if this subfile is already registered. */
709
710 for (subfile = buildsym_compunit->subfiles; subfile; subfile = subfile->next)
711 {
712 char *subfile_name;
713
714 /* If NAME is an absolute path, and this subfile is not, then
715 attempt to create an absolute path to compare. */
716 if (IS_ABSOLUTE_PATH (name)
717 && !IS_ABSOLUTE_PATH (subfile->name)
718 && subfile_dirname != NULL)
719 subfile_name = concat (subfile_dirname, SLASH_STRING,
720 subfile->name, (char *) NULL);
721 else
722 subfile_name = subfile->name;
723
724 if (FILENAME_CMP (subfile_name, name) == 0)
725 {
726 buildsym_compunit->m_current_subfile = subfile;
727 if (subfile_name != subfile->name)
728 xfree (subfile_name);
729 return;
730 }
731 if (subfile_name != subfile->name)
732 xfree (subfile_name);
733 }
734
735 /* This subfile is not known. Add an entry for it. */
736
737 subfile = XNEW (struct subfile);
738 memset (subfile, 0, sizeof (struct subfile));
739 subfile->buildsym_compunit = buildsym_compunit;
740
741 subfile->next = buildsym_compunit->subfiles;
742 buildsym_compunit->subfiles = subfile;
743
744 buildsym_compunit->m_current_subfile = subfile;
745
746 subfile->name = xstrdup (name);
747
748 /* Initialize line-number recording for this subfile. */
749 subfile->line_vector = NULL;
750
751 /* Default the source language to whatever can be deduced from the
752 filename. If nothing can be deduced (such as for a C/C++ include
753 file with a ".h" extension), then inherit whatever language the
754 previous subfile had. This kludgery is necessary because there
755 is no standard way in some object formats to record the source
756 language. Also, when symtabs are allocated we try to deduce a
757 language then as well, but it is too late for us to use that
758 information while reading symbols, since symtabs aren't allocated
759 until after all the symbols have been processed for a given
760 source file. */
761
762 subfile->language = deduce_language_from_filename (subfile->name);
763 if (subfile->language == language_unknown
764 && subfile->next != NULL)
765 {
766 subfile->language = subfile->next->language;
767 }
768
769 /* If the filename of this subfile ends in .C, then change the
770 language of any pending subfiles from C to C++. We also accept
771 any other C++ suffixes accepted by deduce_language_from_filename. */
772 /* Likewise for f2c. */
773
774 if (subfile->name)
775 {
776 struct subfile *s;
777 enum language sublang = deduce_language_from_filename (subfile->name);
778
779 if (sublang == language_cplus || sublang == language_fortran)
780 for (s = buildsym_compunit->subfiles; s != NULL; s = s->next)
781 if (s->language == language_c)
782 s->language = sublang;
783 }
784
785 /* And patch up this file if necessary. */
786 if (subfile->language == language_c
787 && subfile->next != NULL
788 && (subfile->next->language == language_cplus
789 || subfile->next->language == language_fortran))
790 {
791 subfile->language = subfile->next->language;
792 }
793 }
794
795 /* Delete the buildsym compunit. */
796
797 static void
798 free_buildsym_compunit (void)
799 {
800 if (buildsym_compunit == NULL)
801 return;
802 delete buildsym_compunit;
803 buildsym_compunit = NULL;
804 }
805
806 /* For stabs readers, the first N_SO symbol is assumed to be the
807 source file name, and the subfile struct is initialized using that
808 assumption. If another N_SO symbol is later seen, immediately
809 following the first one, then the first one is assumed to be the
810 directory name and the second one is really the source file name.
811
812 So we have to patch up the subfile struct by moving the old name
813 value to dirname and remembering the new name. Some sanity
814 checking is performed to ensure that the state of the subfile
815 struct is reasonable and that the old name we are assuming to be a
816 directory name actually is (by checking for a trailing '/'). */
817
818 void
819 patch_subfile_names (struct subfile *subfile, const char *name)
820 {
821 if (subfile != NULL
822 && buildsym_compunit->comp_dir == NULL
823 && subfile->name != NULL
824 && IS_DIR_SEPARATOR (subfile->name[strlen (subfile->name) - 1]))
825 {
826 buildsym_compunit->comp_dir.reset (subfile->name);
827 subfile->name = xstrdup (name);
828 set_last_source_file (name);
829
830 /* Default the source language to whatever can be deduced from
831 the filename. If nothing can be deduced (such as for a C/C++
832 include file with a ".h" extension), then inherit whatever
833 language the previous subfile had. This kludgery is
834 necessary because there is no standard way in some object
835 formats to record the source language. Also, when symtabs
836 are allocated we try to deduce a language then as well, but
837 it is too late for us to use that information while reading
838 symbols, since symtabs aren't allocated until after all the
839 symbols have been processed for a given source file. */
840
841 subfile->language = deduce_language_from_filename (subfile->name);
842 if (subfile->language == language_unknown
843 && subfile->next != NULL)
844 {
845 subfile->language = subfile->next->language;
846 }
847 }
848 }
849 \f
850 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
851 switching source files (different subfiles, as we call them) within
852 one object file, but using a stack rather than in an arbitrary
853 order. */
854
855 void
856 push_subfile ()
857 {
858 gdb_assert (buildsym_compunit != nullptr);
859 gdb_assert (buildsym_compunit->m_current_subfile != NULL);
860 gdb_assert (buildsym_compunit->m_current_subfile->name != NULL);
861 buildsym_compunit->m_subfile_stack.push_back
862 (buildsym_compunit->m_current_subfile->name);
863 }
864
865 const char *
866 pop_subfile ()
867 {
868 gdb_assert (buildsym_compunit != nullptr);
869 gdb_assert (!buildsym_compunit->m_subfile_stack.empty ());
870 const char *name = buildsym_compunit->m_subfile_stack.back ();
871 buildsym_compunit->m_subfile_stack.pop_back ();
872 return name;
873 }
874 \f
875 /* Add a linetable entry for line number LINE and address PC to the
876 line vector for SUBFILE. */
877
878 void
879 record_line (struct subfile *subfile, int line, CORE_ADDR pc)
880 {
881 struct linetable_entry *e;
882
883 /* Ignore the dummy line number in libg.o */
884 if (line == 0xffff)
885 {
886 return;
887 }
888
889 /* Make sure line vector exists and is big enough. */
890 if (!subfile->line_vector)
891 {
892 subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
893 subfile->line_vector = (struct linetable *)
894 xmalloc (sizeof (struct linetable)
895 + subfile->line_vector_length * sizeof (struct linetable_entry));
896 subfile->line_vector->nitems = 0;
897 buildsym_compunit->m_have_line_numbers = true;
898 }
899
900 if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
901 {
902 subfile->line_vector_length *= 2;
903 subfile->line_vector = (struct linetable *)
904 xrealloc ((char *) subfile->line_vector,
905 (sizeof (struct linetable)
906 + (subfile->line_vector_length
907 * sizeof (struct linetable_entry))));
908 }
909
910 /* Normally, we treat lines as unsorted. But the end of sequence
911 marker is special. We sort line markers at the same PC by line
912 number, so end of sequence markers (which have line == 0) appear
913 first. This is right if the marker ends the previous function,
914 and there is no padding before the next function. But it is
915 wrong if the previous line was empty and we are now marking a
916 switch to a different subfile. We must leave the end of sequence
917 marker at the end of this group of lines, not sort the empty line
918 to after the marker. The easiest way to accomplish this is to
919 delete any empty lines from our table, if they are followed by
920 end of sequence markers. All we lose is the ability to set
921 breakpoints at some lines which contain no instructions
922 anyway. */
923 if (line == 0 && subfile->line_vector->nitems > 0)
924 {
925 e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
926 while (subfile->line_vector->nitems > 0 && e->pc == pc)
927 {
928 e--;
929 subfile->line_vector->nitems--;
930 }
931 }
932
933 e = subfile->line_vector->item + subfile->line_vector->nitems++;
934 e->line = line;
935 e->pc = pc;
936 }
937
938 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */
939
940 static int
941 compare_line_numbers (const void *ln1p, const void *ln2p)
942 {
943 struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
944 struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
945
946 /* Note: this code does not assume that CORE_ADDRs can fit in ints.
947 Please keep it that way. */
948 if (ln1->pc < ln2->pc)
949 return -1;
950
951 if (ln1->pc > ln2->pc)
952 return 1;
953
954 /* If pc equal, sort by line. I'm not sure whether this is optimum
955 behavior (see comment at struct linetable in symtab.h). */
956 return ln1->line - ln2->line;
957 }
958 \f
959 /* See buildsym.h. */
960
961 struct compunit_symtab *
962 buildsym_compunit_symtab (void)
963 {
964 gdb_assert (buildsym_compunit != NULL);
965
966 return buildsym_compunit->compunit_symtab;
967 }
968
969 /* See buildsym.h. */
970
971 struct macro_table *
972 get_macro_table (void)
973 {
974 struct objfile *objfile;
975
976 gdb_assert (buildsym_compunit != NULL);
977 return buildsym_compunit->get_macro_table ();
978 }
979 \f
980 /* Init state to prepare for building a symtab.
981 Note: This can't be done in buildsym_init because dbxread.c and xcoffread.c
982 can call start_symtab+end_symtab multiple times after one call to
983 buildsym_init. */
984
985 static void
986 prepare_for_building ()
987 {
988 local_symbols = NULL;
989
990 /* These should have been reset either by successful completion of building
991 a symtab, or by the scoped_free_pendings destructor. */
992 gdb_assert (file_symbols == NULL);
993 gdb_assert (global_symbols == NULL);
994 gdb_assert (buildsym_compunit == nullptr);
995 }
996
997 /* Start a new symtab for a new source file in OBJFILE. Called, for example,
998 when a stabs symbol of type N_SO is seen, or when a DWARF
999 TAG_compile_unit DIE is seen. It indicates the start of data for
1000 one original source file.
1001
1002 NAME is the name of the file (cannot be NULL). COMP_DIR is the
1003 directory in which the file was compiled (or NULL if not known).
1004 START_ADDR is the lowest address of objects in the file (or 0 if
1005 not known). LANGUAGE is the language of the source file, or
1006 language_unknown if not known, in which case it'll be deduced from
1007 the filename. */
1008
1009 struct compunit_symtab *
1010 start_symtab (struct objfile *objfile, const char *name, const char *comp_dir,
1011 CORE_ADDR start_addr, enum language language)
1012 {
1013 prepare_for_building ();
1014
1015 buildsym_compunit = new struct buildsym_compunit (objfile, name, comp_dir,
1016 language, start_addr);
1017
1018 /* Allocate the compunit symtab now. The caller needs it to allocate
1019 non-primary symtabs. It is also needed by get_macro_table. */
1020 buildsym_compunit->compunit_symtab = allocate_compunit_symtab (objfile,
1021 name);
1022
1023 /* Build the subfile for NAME (the main source file) so that we can record
1024 a pointer to it for later.
1025 IMPORTANT: Do not allocate a struct symtab for NAME here.
1026 It can happen that the debug info provides a different path to NAME than
1027 DIRNAME,NAME. We cope with this in watch_main_source_file_lossage but
1028 that only works if the main_subfile doesn't have a symtab yet. */
1029 start_subfile (name);
1030 /* Save this so that we don't have to go looking for it at the end
1031 of the subfiles list. */
1032 buildsym_compunit->main_subfile = buildsym_compunit->m_current_subfile;
1033
1034 return buildsym_compunit->compunit_symtab;
1035 }
1036
1037 /* Restart compilation for a symtab.
1038 CUST is the result of end_expandable_symtab.
1039 NAME, START_ADDR are the source file we are resuming with.
1040
1041 This is used when a symtab is built from multiple sources.
1042 The symtab is first built with start_symtab/end_expandable_symtab
1043 and then for each additional piece call restart_symtab/augment_*_symtab.
1044 Note: At the moment there is only augment_type_symtab. */
1045
1046 void
1047 restart_symtab (struct compunit_symtab *cust,
1048 const char *name, CORE_ADDR start_addr)
1049 {
1050 prepare_for_building ();
1051
1052 buildsym_compunit
1053 = new struct buildsym_compunit (COMPUNIT_OBJFILE (cust),
1054 name,
1055 COMPUNIT_DIRNAME (cust),
1056 compunit_language (cust),
1057 start_addr);
1058 buildsym_compunit->compunit_symtab = cust;
1059 }
1060
1061 /* Subroutine of end_symtab to simplify it. Look for a subfile that
1062 matches the main source file's basename. If there is only one, and
1063 if the main source file doesn't have any symbol or line number
1064 information, then copy this file's symtab and line_vector to the
1065 main source file's subfile and discard the other subfile. This can
1066 happen because of a compiler bug or from the user playing games
1067 with #line or from things like a distributed build system that
1068 manipulates the debug info. This can also happen from an innocent
1069 symlink in the paths, we don't canonicalize paths here. */
1070
1071 static void
1072 watch_main_source_file_lossage (void)
1073 {
1074 struct subfile *mainsub, *subfile;
1075
1076 /* We have to watch for buildsym_compunit == NULL here. It's a quirk of
1077 end_symtab, it can return NULL so there may not be a main subfile. */
1078 if (buildsym_compunit == NULL)
1079 return;
1080
1081 /* Get the main source file. */
1082 mainsub = buildsym_compunit->main_subfile;
1083
1084 /* If the main source file doesn't have any line number or symbol
1085 info, look for an alias in another subfile. */
1086
1087 if (mainsub->line_vector == NULL
1088 && mainsub->symtab == NULL)
1089 {
1090 const char *mainbase = lbasename (mainsub->name);
1091 int nr_matches = 0;
1092 struct subfile *prevsub;
1093 struct subfile *mainsub_alias = NULL;
1094 struct subfile *prev_mainsub_alias = NULL;
1095
1096 prevsub = NULL;
1097 for (subfile = buildsym_compunit->subfiles;
1098 subfile != NULL;
1099 subfile = subfile->next)
1100 {
1101 if (subfile == mainsub)
1102 continue;
1103 if (filename_cmp (lbasename (subfile->name), mainbase) == 0)
1104 {
1105 ++nr_matches;
1106 mainsub_alias = subfile;
1107 prev_mainsub_alias = prevsub;
1108 }
1109 prevsub = subfile;
1110 }
1111
1112 if (nr_matches == 1)
1113 {
1114 gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
1115
1116 /* Found a match for the main source file.
1117 Copy its line_vector and symtab to the main subfile
1118 and then discard it. */
1119
1120 mainsub->line_vector = mainsub_alias->line_vector;
1121 mainsub->line_vector_length = mainsub_alias->line_vector_length;
1122 mainsub->symtab = mainsub_alias->symtab;
1123
1124 if (prev_mainsub_alias == NULL)
1125 buildsym_compunit->subfiles = mainsub_alias->next;
1126 else
1127 prev_mainsub_alias->next = mainsub_alias->next;
1128 xfree (mainsub_alias->name);
1129 xfree (mainsub_alias);
1130 }
1131 }
1132 }
1133
1134 /* Reset state after a successful building of a symtab.
1135 This exists because dbxread.c and xcoffread.c can call
1136 start_symtab+end_symtab multiple times after one call to buildsym_init,
1137 and before the scoped_free_pendings destructor is called.
1138 We keep the free_pendings list around for dbx/xcoff sake. */
1139
1140 static void
1141 reset_symtab_globals (void)
1142 {
1143 local_symbols = NULL;
1144 file_symbols = NULL;
1145 global_symbols = NULL;
1146
1147 free_buildsym_compunit ();
1148 }
1149
1150 /* Implementation of the first part of end_symtab. It allows modifying
1151 STATIC_BLOCK before it gets finalized by end_symtab_from_static_block.
1152 If the returned value is NULL there is no blockvector created for
1153 this symtab (you still must call end_symtab_from_static_block).
1154
1155 END_ADDR is the same as for end_symtab: the address of the end of the
1156 file's text.
1157
1158 If EXPANDABLE is non-zero the STATIC_BLOCK dictionary is made
1159 expandable.
1160
1161 If REQUIRED is non-zero, then a symtab is created even if it does
1162 not contain any symbols. */
1163
1164 struct block *
1165 end_symtab_get_static_block (CORE_ADDR end_addr, int expandable, int required)
1166 {
1167 struct objfile *objfile = buildsym_compunit->objfile;
1168
1169 /* Finish the lexical context of the last function in the file; pop
1170 the context stack. */
1171
1172 if (!buildsym_compunit->m_context_stack.empty ())
1173 {
1174 struct context_stack cstk = pop_context ();
1175
1176 /* Make a block for the local symbols within. */
1177 finish_block (cstk.name, cstk.old_blocks, NULL,
1178 cstk.start_addr, end_addr);
1179
1180 if (!buildsym_compunit->m_context_stack.empty ())
1181 {
1182 /* This is said to happen with SCO. The old coffread.c
1183 code simply emptied the context stack, so we do the
1184 same. FIXME: Find out why it is happening. This is not
1185 believed to happen in most cases (even for coffread.c);
1186 it used to be an abort(). */
1187 complaint (_("Context stack not empty in end_symtab"));
1188 buildsym_compunit->m_context_stack.clear ();
1189 }
1190 }
1191
1192 /* Reordered executables may have out of order pending blocks; if
1193 OBJF_REORDERED is true, then sort the pending blocks. */
1194
1195 if ((objfile->flags & OBJF_REORDERED) && buildsym_compunit->m_pending_blocks)
1196 {
1197 struct pending_block *pb;
1198
1199 std::vector<block *> barray;
1200
1201 for (pb = buildsym_compunit->m_pending_blocks; pb != NULL; pb = pb->next)
1202 barray.push_back (pb->block);
1203
1204 /* Sort blocks by start address in descending order. Blocks with the
1205 same start address must remain in the original order to preserve
1206 inline function caller/callee relationships. */
1207 std::stable_sort (barray.begin (), barray.end (),
1208 [] (const block *a, const block *b)
1209 {
1210 return BLOCK_START (a) > BLOCK_START (b);
1211 });
1212
1213 int i = 0;
1214 for (pb = buildsym_compunit->m_pending_blocks; pb != NULL; pb = pb->next)
1215 pb->block = barray[i++];
1216 }
1217
1218 /* Cleanup any undefined types that have been left hanging around
1219 (this needs to be done before the finish_blocks so that
1220 file_symbols is still good).
1221
1222 Both cleanup_undefined_stabs_types and finish_global_stabs are stabs
1223 specific, but harmless for other symbol readers, since on gdb
1224 startup or when finished reading stabs, the state is set so these
1225 are no-ops. FIXME: Is this handled right in case of QUIT? Can
1226 we make this cleaner? */
1227
1228 cleanup_undefined_stabs_types (objfile);
1229 finish_global_stabs (objfile);
1230
1231 if (!required
1232 && buildsym_compunit->m_pending_blocks == NULL
1233 && file_symbols == NULL
1234 && global_symbols == NULL
1235 && !buildsym_compunit->m_have_line_numbers
1236 && buildsym_compunit->m_pending_macros == NULL
1237 && buildsym_compunit->m_global_using_directives == NULL)
1238 {
1239 /* Ignore symtabs that have no functions with real debugging info. */
1240 return NULL;
1241 }
1242 else
1243 {
1244 /* Define the STATIC_BLOCK. */
1245 return finish_block_internal (NULL, &file_symbols, NULL, NULL,
1246 buildsym_compunit->m_last_source_start_addr,
1247 end_addr, 0, expandable);
1248 }
1249 }
1250
1251 /* Subroutine of end_symtab_from_static_block to simplify it.
1252 Handle the "have blockvector" case.
1253 See end_symtab_from_static_block for a description of the arguments. */
1254
1255 static struct compunit_symtab *
1256 end_symtab_with_blockvector (struct block *static_block,
1257 int section, int expandable)
1258 {
1259 struct objfile *objfile = buildsym_compunit->objfile;
1260 struct compunit_symtab *cu = buildsym_compunit->compunit_symtab;
1261 struct symtab *symtab;
1262 struct blockvector *blockvector;
1263 struct subfile *subfile;
1264 CORE_ADDR end_addr;
1265
1266 gdb_assert (static_block != NULL);
1267 gdb_assert (buildsym_compunit != NULL);
1268 gdb_assert (buildsym_compunit->subfiles != NULL);
1269
1270 end_addr = BLOCK_END (static_block);
1271
1272 /* Create the GLOBAL_BLOCK and build the blockvector. */
1273 finish_block_internal (NULL, &global_symbols, NULL, NULL,
1274 buildsym_compunit->m_last_source_start_addr, end_addr,
1275 1, expandable);
1276 blockvector = make_blockvector ();
1277
1278 /* Read the line table if it has to be read separately.
1279 This is only used by xcoffread.c. */
1280 if (objfile->sf->sym_read_linetable != NULL)
1281 objfile->sf->sym_read_linetable (objfile);
1282
1283 /* Handle the case where the debug info specifies a different path
1284 for the main source file. It can cause us to lose track of its
1285 line number information. */
1286 watch_main_source_file_lossage ();
1287
1288 /* Now create the symtab objects proper, if not already done,
1289 one for each subfile. */
1290
1291 for (subfile = buildsym_compunit->subfiles;
1292 subfile != NULL;
1293 subfile = subfile->next)
1294 {
1295 int linetablesize = 0;
1296
1297 if (subfile->line_vector)
1298 {
1299 linetablesize = sizeof (struct linetable) +
1300 subfile->line_vector->nitems * sizeof (struct linetable_entry);
1301
1302 /* Like the pending blocks, the line table may be
1303 scrambled in reordered executables. Sort it if
1304 OBJF_REORDERED is true. */
1305 if (objfile->flags & OBJF_REORDERED)
1306 qsort (subfile->line_vector->item,
1307 subfile->line_vector->nitems,
1308 sizeof (struct linetable_entry), compare_line_numbers);
1309 }
1310
1311 /* Allocate a symbol table if necessary. */
1312 if (subfile->symtab == NULL)
1313 subfile->symtab = allocate_symtab (cu, subfile->name);
1314 symtab = subfile->symtab;
1315
1316 /* Fill in its components. */
1317
1318 if (subfile->line_vector)
1319 {
1320 /* Reallocate the line table on the symbol obstack. */
1321 SYMTAB_LINETABLE (symtab) = (struct linetable *)
1322 obstack_alloc (&objfile->objfile_obstack, linetablesize);
1323 memcpy (SYMTAB_LINETABLE (symtab), subfile->line_vector,
1324 linetablesize);
1325 }
1326 else
1327 {
1328 SYMTAB_LINETABLE (symtab) = NULL;
1329 }
1330
1331 /* Use whatever language we have been using for this
1332 subfile, not the one that was deduced in allocate_symtab
1333 from the filename. We already did our own deducing when
1334 we created the subfile, and we may have altered our
1335 opinion of what language it is from things we found in
1336 the symbols. */
1337 symtab->language = subfile->language;
1338 }
1339
1340 /* Make sure the symtab of main_subfile is the first in its list. */
1341 {
1342 struct symtab *main_symtab, *prev_symtab;
1343
1344 main_symtab = buildsym_compunit->main_subfile->symtab;
1345 prev_symtab = NULL;
1346 ALL_COMPUNIT_FILETABS (cu, symtab)
1347 {
1348 if (symtab == main_symtab)
1349 {
1350 if (prev_symtab != NULL)
1351 {
1352 prev_symtab->next = main_symtab->next;
1353 main_symtab->next = COMPUNIT_FILETABS (cu);
1354 COMPUNIT_FILETABS (cu) = main_symtab;
1355 }
1356 break;
1357 }
1358 prev_symtab = symtab;
1359 }
1360 gdb_assert (main_symtab == COMPUNIT_FILETABS (cu));
1361 }
1362
1363 /* Fill out the compunit symtab. */
1364
1365 if (buildsym_compunit->comp_dir != NULL)
1366 {
1367 /* Reallocate the dirname on the symbol obstack. */
1368 const char *comp_dir = buildsym_compunit->comp_dir.get ();
1369 COMPUNIT_DIRNAME (cu)
1370 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
1371 comp_dir, strlen (comp_dir));
1372 }
1373
1374 /* Save the debug format string (if any) in the symtab. */
1375 COMPUNIT_DEBUGFORMAT (cu) = buildsym_compunit->debugformat;
1376
1377 /* Similarly for the producer. */
1378 COMPUNIT_PRODUCER (cu) = buildsym_compunit->producer;
1379
1380 COMPUNIT_BLOCKVECTOR (cu) = blockvector;
1381 {
1382 struct block *b = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1383
1384 set_block_compunit_symtab (b, cu);
1385 }
1386
1387 COMPUNIT_BLOCK_LINE_SECTION (cu) = section;
1388
1389 COMPUNIT_MACRO_TABLE (cu) = buildsym_compunit->release_macros ();
1390
1391 /* Default any symbols without a specified symtab to the primary symtab. */
1392 {
1393 int block_i;
1394
1395 /* The main source file's symtab. */
1396 symtab = COMPUNIT_FILETABS (cu);
1397
1398 for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1399 {
1400 struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1401 struct symbol *sym;
1402 struct dict_iterator iter;
1403
1404 /* Inlined functions may have symbols not in the global or
1405 static symbol lists. */
1406 if (BLOCK_FUNCTION (block) != NULL)
1407 if (symbol_symtab (BLOCK_FUNCTION (block)) == NULL)
1408 symbol_set_symtab (BLOCK_FUNCTION (block), symtab);
1409
1410 /* Note that we only want to fix up symbols from the local
1411 blocks, not blocks coming from included symtabs. That is why
1412 we use ALL_DICT_SYMBOLS here and not ALL_BLOCK_SYMBOLS. */
1413 ALL_DICT_SYMBOLS (BLOCK_DICT (block), iter, sym)
1414 if (symbol_symtab (sym) == NULL)
1415 symbol_set_symtab (sym, symtab);
1416 }
1417 }
1418
1419 add_compunit_symtab_to_objfile (cu);
1420
1421 return cu;
1422 }
1423
1424 /* Implementation of the second part of end_symtab. Pass STATIC_BLOCK
1425 as value returned by end_symtab_get_static_block.
1426
1427 SECTION is the same as for end_symtab: the section number
1428 (in objfile->section_offsets) of the blockvector and linetable.
1429
1430 If EXPANDABLE is non-zero the GLOBAL_BLOCK dictionary is made
1431 expandable. */
1432
1433 struct compunit_symtab *
1434 end_symtab_from_static_block (struct block *static_block,
1435 int section, int expandable)
1436 {
1437 struct compunit_symtab *cu;
1438
1439 if (static_block == NULL)
1440 {
1441 /* Handle the "no blockvector" case.
1442 When this happens there is nothing to record, so there's nothing
1443 to do: memory will be freed up later.
1444
1445 Note: We won't be adding a compunit to the objfile's list of
1446 compunits, so there's nothing to unchain. However, since each symtab
1447 is added to the objfile's obstack we can't free that space.
1448 We could do better, but this is believed to be a sufficiently rare
1449 event. */
1450 cu = NULL;
1451 }
1452 else
1453 cu = end_symtab_with_blockvector (static_block, section, expandable);
1454
1455 reset_symtab_globals ();
1456
1457 return cu;
1458 }
1459
1460 /* Finish the symbol definitions for one main source file, close off
1461 all the lexical contexts for that file (creating struct block's for
1462 them), then make the struct symtab for that file and put it in the
1463 list of all such.
1464
1465 END_ADDR is the address of the end of the file's text. SECTION is
1466 the section number (in objfile->section_offsets) of the blockvector
1467 and linetable.
1468
1469 Note that it is possible for end_symtab() to return NULL. In
1470 particular, for the DWARF case at least, it will return NULL when
1471 it finds a compilation unit that has exactly one DIE, a
1472 TAG_compile_unit DIE. This can happen when we link in an object
1473 file that was compiled from an empty source file. Returning NULL
1474 is probably not the correct thing to do, because then gdb will
1475 never know about this empty file (FIXME).
1476
1477 If you need to modify STATIC_BLOCK before it is finalized you should
1478 call end_symtab_get_static_block and end_symtab_from_static_block
1479 yourself. */
1480
1481 struct compunit_symtab *
1482 end_symtab (CORE_ADDR end_addr, int section)
1483 {
1484 struct block *static_block;
1485
1486 static_block = end_symtab_get_static_block (end_addr, 0, 0);
1487 return end_symtab_from_static_block (static_block, section, 0);
1488 }
1489
1490 /* Same as end_symtab except create a symtab that can be later added to. */
1491
1492 struct compunit_symtab *
1493 end_expandable_symtab (CORE_ADDR end_addr, int section)
1494 {
1495 struct block *static_block;
1496
1497 static_block = end_symtab_get_static_block (end_addr, 1, 0);
1498 return end_symtab_from_static_block (static_block, section, 1);
1499 }
1500
1501 /* Subroutine of augment_type_symtab to simplify it.
1502 Attach the main source file's symtab to all symbols in PENDING_LIST that
1503 don't have one. */
1504
1505 static void
1506 set_missing_symtab (struct pending *pending_list,
1507 struct compunit_symtab *cu)
1508 {
1509 struct pending *pending;
1510 int i;
1511
1512 for (pending = pending_list; pending != NULL; pending = pending->next)
1513 {
1514 for (i = 0; i < pending->nsyms; ++i)
1515 {
1516 if (symbol_symtab (pending->symbol[i]) == NULL)
1517 symbol_set_symtab (pending->symbol[i], COMPUNIT_FILETABS (cu));
1518 }
1519 }
1520 }
1521
1522 /* Same as end_symtab, but for the case where we're adding more symbols
1523 to an existing symtab that is known to contain only type information.
1524 This is the case for DWARF4 Type Units. */
1525
1526 void
1527 augment_type_symtab (void)
1528 {
1529 struct compunit_symtab *cust = buildsym_compunit->compunit_symtab;
1530 const struct blockvector *blockvector = COMPUNIT_BLOCKVECTOR (cust);
1531
1532 if (!buildsym_compunit->m_context_stack.empty ())
1533 complaint (_("Context stack not empty in augment_type_symtab"));
1534 if (buildsym_compunit->m_pending_blocks != NULL)
1535 complaint (_("Blocks in a type symtab"));
1536 if (buildsym_compunit->m_pending_macros != NULL)
1537 complaint (_("Macro in a type symtab"));
1538 if (buildsym_compunit->m_have_line_numbers)
1539 complaint (_("Line numbers recorded in a type symtab"));
1540
1541 if (file_symbols != NULL)
1542 {
1543 struct block *block = BLOCKVECTOR_BLOCK (blockvector, STATIC_BLOCK);
1544
1545 /* First mark any symbols without a specified symtab as belonging
1546 to the primary symtab. */
1547 set_missing_symtab (file_symbols, cust);
1548
1549 dict_add_pending (BLOCK_DICT (block), file_symbols);
1550 }
1551
1552 if (global_symbols != NULL)
1553 {
1554 struct block *block = BLOCKVECTOR_BLOCK (blockvector, GLOBAL_BLOCK);
1555
1556 /* First mark any symbols without a specified symtab as belonging
1557 to the primary symtab. */
1558 set_missing_symtab (global_symbols, cust);
1559
1560 dict_add_pending (BLOCK_DICT (block), global_symbols);
1561 }
1562
1563 reset_symtab_globals ();
1564 }
1565
1566 /* Push a context block. Args are an identifying nesting level
1567 (checkable when you pop it), and the starting PC address of this
1568 context. */
1569
1570 struct context_stack *
1571 push_context (int desc, CORE_ADDR valu)
1572 {
1573 gdb_assert (buildsym_compunit != nullptr);
1574
1575 buildsym_compunit->m_context_stack.emplace_back ();
1576 struct context_stack *newobj = &buildsym_compunit->m_context_stack.back ();
1577
1578 newobj->depth = desc;
1579 newobj->locals = local_symbols;
1580 newobj->old_blocks = buildsym_compunit->m_pending_blocks;
1581 newobj->start_addr = valu;
1582 newobj->local_using_directives
1583 = buildsym_compunit->m_local_using_directives;
1584 newobj->name = NULL;
1585
1586 local_symbols = NULL;
1587 buildsym_compunit->m_local_using_directives = NULL;
1588
1589 return newobj;
1590 }
1591
1592 /* Pop a context block. Returns the address of the context block just
1593 popped. */
1594
1595 struct context_stack
1596 pop_context ()
1597 {
1598 gdb_assert (buildsym_compunit != nullptr);
1599 gdb_assert (!buildsym_compunit->m_context_stack.empty ());
1600 struct context_stack result = buildsym_compunit->m_context_stack.back ();
1601 buildsym_compunit->m_context_stack.pop_back ();
1602 return result;
1603 }
1604
1605 \f
1606
1607 void
1608 record_debugformat (const char *format)
1609 {
1610 buildsym_compunit->debugformat = format;
1611 }
1612
1613 void
1614 record_producer (const char *producer)
1615 {
1616 buildsym_compunit->producer = producer;
1617 }
1618
1619 \f
1620
1621 /* See buildsym.h. */
1622
1623 void
1624 set_last_source_file (const char *name)
1625 {
1626 gdb_assert (buildsym_compunit != nullptr || name == nullptr);
1627 if (buildsym_compunit != nullptr)
1628 buildsym_compunit->set_last_source_file (name);
1629 }
1630
1631 /* See buildsym.h. */
1632
1633 const char *
1634 get_last_source_file (void)
1635 {
1636 if (buildsym_compunit == nullptr)
1637 return nullptr;
1638 return buildsym_compunit->m_last_source_file.get ();
1639 }
1640
1641 /* See buildsym.h. */
1642
1643 void
1644 set_last_source_start_addr (CORE_ADDR addr)
1645 {
1646 gdb_assert (buildsym_compunit != nullptr);
1647 buildsym_compunit->m_last_source_start_addr = addr;
1648 }
1649
1650 /* See buildsym.h. */
1651
1652 CORE_ADDR
1653 get_last_source_start_addr ()
1654 {
1655 gdb_assert (buildsym_compunit != nullptr);
1656 return buildsym_compunit->m_last_source_start_addr;
1657 }
1658
1659 /* See buildsym.h. */
1660
1661 struct using_direct **
1662 get_local_using_directives ()
1663 {
1664 gdb_assert (buildsym_compunit != nullptr);
1665 return &buildsym_compunit->m_local_using_directives;
1666 }
1667
1668 /* See buildsym.h. */
1669
1670 void
1671 set_local_using_directives (struct using_direct *new_local)
1672 {
1673 gdb_assert (buildsym_compunit != nullptr);
1674 buildsym_compunit->m_local_using_directives = new_local;
1675 }
1676
1677 /* See buildsym.h. */
1678
1679 struct using_direct **
1680 get_global_using_directives ()
1681 {
1682 gdb_assert (buildsym_compunit != nullptr);
1683 return &buildsym_compunit->m_global_using_directives;
1684 }
1685
1686 /* See buildsym.h. */
1687
1688 bool
1689 outermost_context_p ()
1690 {
1691 gdb_assert (buildsym_compunit != nullptr);
1692 return buildsym_compunit->m_context_stack.empty ();
1693 }
1694
1695 /* See buildsym.h. */
1696
1697 struct context_stack *
1698 get_current_context_stack ()
1699 {
1700 gdb_assert (buildsym_compunit != nullptr);
1701 if (buildsym_compunit->m_context_stack.empty ())
1702 return nullptr;
1703 return &buildsym_compunit->m_context_stack.back ();
1704 }
1705
1706 /* See buildsym.h. */
1707
1708 int
1709 get_context_stack_depth ()
1710 {
1711 gdb_assert (buildsym_compunit != nullptr);
1712 return buildsym_compunit->m_context_stack.size ();
1713 }
1714
1715 /* See buildsym.h. */
1716
1717 struct subfile *
1718 get_current_subfile ()
1719 {
1720 gdb_assert (buildsym_compunit != nullptr);
1721 return buildsym_compunit->m_current_subfile;
1722 }
1723
1724 \f
1725
1726 /* Initialize anything that needs initializing when starting to read a
1727 fresh piece of a symbol file, e.g. reading in the stuff
1728 corresponding to a psymtab. */
1729
1730 void
1731 buildsym_init ()
1732 {
1733 /* Ensure the scoped_free_pendings destructor was called after
1734 the last time. */
1735 gdb_assert (file_symbols == NULL);
1736 gdb_assert (global_symbols == NULL);
1737 gdb_assert (buildsym_compunit == NULL);
1738 }
This page took 0.06278 seconds and 5 git commands to generate.