*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright 1986, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2003, 2004
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* Parse a C expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result.
30
31 Note that malloc's and realloc's in this file are transformed to
32 xmalloc and xrealloc respectively by the same sed command in the
33 makefile that remaps any other malloc/realloc inserted by the parser
34 generator. Doing this with #defines and trying to control the interaction
35 with include files (<malloc.h> and <stdlib.h> for example) just became
36 too messy, particularly when such includes can be inserted at random
37 times by the parser generator. */
38
39 %{
40
41 #include "defs.h"
42 #include "gdb_string.h"
43 #include <ctype.h>
44 #include "expression.h"
45 #include "value.h"
46 #include "parser-defs.h"
47 #include "language.h"
48 #include "c-lang.h"
49 #include "bfd.h" /* Required by objfiles.h. */
50 #include "symfile.h" /* Required by objfiles.h. */
51 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
52 #include "charset.h"
53 #include "block.h"
54 #include "cp-support.h"
55
56 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
57 as well as gratuitiously global symbol names, so we can have multiple
58 yacc generated parsers in gdb. Note that these are only the variables
59 produced by yacc. If other parser generators (bison, byacc, etc) produce
60 additional global names that conflict at link time, then those parser
61 generators need to be fixed instead of adding those names to this list. */
62
63 #define yymaxdepth c_maxdepth
64 #define yyparse c_parse
65 #define yylex c_lex
66 #define yyerror c_error
67 #define yylval c_lval
68 #define yychar c_char
69 #define yydebug c_debug
70 #define yypact c_pact
71 #define yyr1 c_r1
72 #define yyr2 c_r2
73 #define yydef c_def
74 #define yychk c_chk
75 #define yypgo c_pgo
76 #define yyact c_act
77 #define yyexca c_exca
78 #define yyerrflag c_errflag
79 #define yynerrs c_nerrs
80 #define yyps c_ps
81 #define yypv c_pv
82 #define yys c_s
83 #define yy_yys c_yys
84 #define yystate c_state
85 #define yytmp c_tmp
86 #define yyv c_v
87 #define yy_yyv c_yyv
88 #define yyval c_val
89 #define yylloc c_lloc
90 #define yyreds c_reds /* With YYDEBUG defined */
91 #define yytoks c_toks /* With YYDEBUG defined */
92 #define yyname c_name /* With YYDEBUG defined */
93 #define yyrule c_rule /* With YYDEBUG defined */
94 #define yylhs c_yylhs
95 #define yylen c_yylen
96 #define yydefred c_yydefred
97 #define yydgoto c_yydgoto
98 #define yysindex c_yysindex
99 #define yyrindex c_yyrindex
100 #define yygindex c_yygindex
101 #define yytable c_yytable
102 #define yycheck c_yycheck
103
104 #ifndef YYDEBUG
105 #define YYDEBUG 1 /* Default to yydebug support */
106 #endif
107
108 #define YYFPRINTF parser_fprintf
109
110 int yyparse (void);
111
112 static int yylex (void);
113
114 void yyerror (char *);
115
116 %}
117
118 /* Although the yacc "value" of an expression is not used,
119 since the result is stored in the structure being created,
120 other node types do have values. */
121
122 %union
123 {
124 LONGEST lval;
125 struct {
126 LONGEST val;
127 struct type *type;
128 } typed_val_int;
129 struct {
130 DOUBLEST dval;
131 struct type *type;
132 } typed_val_float;
133 struct symbol *sym;
134 struct type *tval;
135 struct stoken sval;
136 struct ttype tsym;
137 struct symtoken ssym;
138 int voidval;
139 struct block *bval;
140 enum exp_opcode opcode;
141 struct internalvar *ivar;
142
143 struct type **tvec;
144 int *ivec;
145 }
146
147 %{
148 /* YYSTYPE gets defined by %union */
149 static int parse_number (char *, int, int, YYSTYPE *);
150 %}
151
152 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
153 %type <lval> rcurly
154 %type <tval> type typebase qualified_type
155 %type <tvec> nonempty_typelist
156 /* %type <bval> block */
157
158 /* Fancy type parsing. */
159 %type <voidval> func_mod direct_abs_decl abs_decl
160 %type <tval> ptype
161 %type <lval> array_mod
162
163 %token <typed_val_int> INT
164 %token <typed_val_float> FLOAT
165
166 /* Both NAME and TYPENAME tokens represent symbols in the input,
167 and both convey their data as strings.
168 But a TYPENAME is a string that happens to be defined as a typedef
169 or builtin type name (such as int or char)
170 and a NAME is any other symbol.
171 Contexts where this distinction is not important can use the
172 nonterminal "name", which matches either NAME or TYPENAME. */
173
174 %token <sval> STRING
175 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
176 %token <tsym> TYPENAME
177 %type <sval> name
178 %type <ssym> name_not_typename
179 %type <tsym> typename
180
181 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
182 but which would parse as a valid number in the current input radix.
183 E.g. "c" when input_radix==16. Depending on the parse, it will be
184 turned into a name or into a number. */
185
186 %token <ssym> NAME_OR_INT
187
188 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
189 %token TEMPLATE
190 %token ERROR
191
192 /* Special type cases, put in to allow the parser to distinguish different
193 legal basetypes. */
194 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD
195
196 %token <voidval> VARIABLE
197
198 %token <opcode> ASSIGN_MODIFY
199
200 /* C++ */
201 %token TRUEKEYWORD
202 %token FALSEKEYWORD
203
204
205 %left ','
206 %left ABOVE_COMMA
207 %right '=' ASSIGN_MODIFY
208 %right '?'
209 %left OROR
210 %left ANDAND
211 %left '|'
212 %left '^'
213 %left '&'
214 %left EQUAL NOTEQUAL
215 %left '<' '>' LEQ GEQ
216 %left LSH RSH
217 %left '@'
218 %left '+' '-'
219 %left '*' '/' '%'
220 %right UNARY INCREMENT DECREMENT
221 %right ARROW '.' '[' '('
222 %token <ssym> BLOCKNAME
223 %token <bval> FILENAME
224 %type <bval> block
225 %left COLONCOLON
226
227 \f
228 %%
229
230 start : exp1
231 | type_exp
232 ;
233
234 type_exp: type
235 { write_exp_elt_opcode(OP_TYPE);
236 write_exp_elt_type($1);
237 write_exp_elt_opcode(OP_TYPE);}
238 ;
239
240 /* Expressions, including the comma operator. */
241 exp1 : exp
242 | exp1 ',' exp
243 { write_exp_elt_opcode (BINOP_COMMA); }
244 ;
245
246 /* Expressions, not including the comma operator. */
247 exp : '*' exp %prec UNARY
248 { write_exp_elt_opcode (UNOP_IND); }
249 ;
250
251 exp : '&' exp %prec UNARY
252 { write_exp_elt_opcode (UNOP_ADDR); }
253 ;
254
255 exp : '-' exp %prec UNARY
256 { write_exp_elt_opcode (UNOP_NEG); }
257 ;
258
259 exp : '+' exp %prec UNARY
260 { write_exp_elt_opcode (UNOP_PLUS); }
261 ;
262
263 exp : '!' exp %prec UNARY
264 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
265 ;
266
267 exp : '~' exp %prec UNARY
268 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
269 ;
270
271 exp : INCREMENT exp %prec UNARY
272 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
273 ;
274
275 exp : DECREMENT exp %prec UNARY
276 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
277 ;
278
279 exp : exp INCREMENT %prec UNARY
280 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
281 ;
282
283 exp : exp DECREMENT %prec UNARY
284 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
285 ;
286
287 exp : SIZEOF exp %prec UNARY
288 { write_exp_elt_opcode (UNOP_SIZEOF); }
289 ;
290
291 exp : exp ARROW name
292 { write_exp_elt_opcode (STRUCTOP_PTR);
293 write_exp_string ($3);
294 write_exp_elt_opcode (STRUCTOP_PTR); }
295 ;
296
297 exp : exp ARROW qualified_name
298 { /* exp->type::name becomes exp->*(&type::name) */
299 /* Note: this doesn't work if name is a
300 static member! FIXME */
301 write_exp_elt_opcode (UNOP_ADDR);
302 write_exp_elt_opcode (STRUCTOP_MPTR); }
303 ;
304
305 exp : exp ARROW '*' exp
306 { write_exp_elt_opcode (STRUCTOP_MPTR); }
307 ;
308
309 exp : exp '.' name
310 { write_exp_elt_opcode (STRUCTOP_STRUCT);
311 write_exp_string ($3);
312 write_exp_elt_opcode (STRUCTOP_STRUCT); }
313 ;
314
315 exp : exp '.' qualified_name
316 { /* exp.type::name becomes exp.*(&type::name) */
317 /* Note: this doesn't work if name is a
318 static member! FIXME */
319 write_exp_elt_opcode (UNOP_ADDR);
320 write_exp_elt_opcode (STRUCTOP_MEMBER); }
321 ;
322
323 exp : exp '.' '*' exp
324 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
325 ;
326
327 exp : exp '[' exp1 ']'
328 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
329 ;
330
331 exp : exp '('
332 /* This is to save the value of arglist_len
333 being accumulated by an outer function call. */
334 { start_arglist (); }
335 arglist ')' %prec ARROW
336 { write_exp_elt_opcode (OP_FUNCALL);
337 write_exp_elt_longcst ((LONGEST) end_arglist ());
338 write_exp_elt_opcode (OP_FUNCALL); }
339 ;
340
341 lcurly : '{'
342 { start_arglist (); }
343 ;
344
345 arglist :
346 ;
347
348 arglist : exp
349 { arglist_len = 1; }
350 ;
351
352 arglist : arglist ',' exp %prec ABOVE_COMMA
353 { arglist_len++; }
354 ;
355
356 rcurly : '}'
357 { $$ = end_arglist () - 1; }
358 ;
359 exp : lcurly arglist rcurly %prec ARROW
360 { write_exp_elt_opcode (OP_ARRAY);
361 write_exp_elt_longcst ((LONGEST) 0);
362 write_exp_elt_longcst ((LONGEST) $3);
363 write_exp_elt_opcode (OP_ARRAY); }
364 ;
365
366 exp : lcurly type rcurly exp %prec UNARY
367 { write_exp_elt_opcode (UNOP_MEMVAL);
368 write_exp_elt_type ($2);
369 write_exp_elt_opcode (UNOP_MEMVAL); }
370 ;
371
372 exp : '(' type ')' exp %prec UNARY
373 { write_exp_elt_opcode (UNOP_CAST);
374 write_exp_elt_type ($2);
375 write_exp_elt_opcode (UNOP_CAST); }
376 ;
377
378 exp : '(' exp1 ')'
379 { }
380 ;
381
382 /* Binary operators in order of decreasing precedence. */
383
384 exp : exp '@' exp
385 { write_exp_elt_opcode (BINOP_REPEAT); }
386 ;
387
388 exp : exp '*' exp
389 { write_exp_elt_opcode (BINOP_MUL); }
390 ;
391
392 exp : exp '/' exp
393 { write_exp_elt_opcode (BINOP_DIV); }
394 ;
395
396 exp : exp '%' exp
397 { write_exp_elt_opcode (BINOP_REM); }
398 ;
399
400 exp : exp '+' exp
401 { write_exp_elt_opcode (BINOP_ADD); }
402 ;
403
404 exp : exp '-' exp
405 { write_exp_elt_opcode (BINOP_SUB); }
406 ;
407
408 exp : exp LSH exp
409 { write_exp_elt_opcode (BINOP_LSH); }
410 ;
411
412 exp : exp RSH exp
413 { write_exp_elt_opcode (BINOP_RSH); }
414 ;
415
416 exp : exp EQUAL exp
417 { write_exp_elt_opcode (BINOP_EQUAL); }
418 ;
419
420 exp : exp NOTEQUAL exp
421 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
422 ;
423
424 exp : exp LEQ exp
425 { write_exp_elt_opcode (BINOP_LEQ); }
426 ;
427
428 exp : exp GEQ exp
429 { write_exp_elt_opcode (BINOP_GEQ); }
430 ;
431
432 exp : exp '<' exp
433 { write_exp_elt_opcode (BINOP_LESS); }
434 ;
435
436 exp : exp '>' exp
437 { write_exp_elt_opcode (BINOP_GTR); }
438 ;
439
440 exp : exp '&' exp
441 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
442 ;
443
444 exp : exp '^' exp
445 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
446 ;
447
448 exp : exp '|' exp
449 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
450 ;
451
452 exp : exp ANDAND exp
453 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
454 ;
455
456 exp : exp OROR exp
457 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
458 ;
459
460 exp : exp '?' exp ':' exp %prec '?'
461 { write_exp_elt_opcode (TERNOP_COND); }
462 ;
463
464 exp : exp '=' exp
465 { write_exp_elt_opcode (BINOP_ASSIGN); }
466 ;
467
468 exp : exp ASSIGN_MODIFY exp
469 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
470 write_exp_elt_opcode ($2);
471 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
472 ;
473
474 exp : INT
475 { write_exp_elt_opcode (OP_LONG);
476 write_exp_elt_type ($1.type);
477 write_exp_elt_longcst ((LONGEST)($1.val));
478 write_exp_elt_opcode (OP_LONG); }
479 ;
480
481 exp : NAME_OR_INT
482 { YYSTYPE val;
483 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
484 write_exp_elt_opcode (OP_LONG);
485 write_exp_elt_type (val.typed_val_int.type);
486 write_exp_elt_longcst ((LONGEST)val.typed_val_int.val);
487 write_exp_elt_opcode (OP_LONG);
488 }
489 ;
490
491
492 exp : FLOAT
493 { write_exp_elt_opcode (OP_DOUBLE);
494 write_exp_elt_type ($1.type);
495 write_exp_elt_dblcst ($1.dval);
496 write_exp_elt_opcode (OP_DOUBLE); }
497 ;
498
499 exp : variable
500 ;
501
502 exp : VARIABLE
503 /* Already written by write_dollar_variable. */
504 ;
505
506 exp : SIZEOF '(' type ')' %prec UNARY
507 { write_exp_elt_opcode (OP_LONG);
508 write_exp_elt_type (builtin_type (current_gdbarch)->builtin_int);
509 CHECK_TYPEDEF ($3);
510 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
511 write_exp_elt_opcode (OP_LONG); }
512 ;
513
514 exp : STRING
515 { /* C strings are converted into array constants with
516 an explicit null byte added at the end. Thus
517 the array upper bound is the string length.
518 There is no such thing in C as a completely empty
519 string. */
520 char *sp = $1.ptr; int count = $1.length;
521 while (count-- > 0)
522 {
523 write_exp_elt_opcode (OP_LONG);
524 write_exp_elt_type (builtin_type (current_gdbarch)->builtin_char);
525 write_exp_elt_longcst ((LONGEST)(*sp++));
526 write_exp_elt_opcode (OP_LONG);
527 }
528 write_exp_elt_opcode (OP_LONG);
529 write_exp_elt_type (builtin_type (current_gdbarch)->builtin_char);
530 write_exp_elt_longcst ((LONGEST)'\0');
531 write_exp_elt_opcode (OP_LONG);
532 write_exp_elt_opcode (OP_ARRAY);
533 write_exp_elt_longcst ((LONGEST) 0);
534 write_exp_elt_longcst ((LONGEST) ($1.length));
535 write_exp_elt_opcode (OP_ARRAY); }
536 ;
537
538 /* C++. */
539 exp : TRUEKEYWORD
540 { write_exp_elt_opcode (OP_LONG);
541 write_exp_elt_type (builtin_type (current_gdbarch)->builtin_bool);
542 write_exp_elt_longcst ((LONGEST) 1);
543 write_exp_elt_opcode (OP_LONG); }
544 ;
545
546 exp : FALSEKEYWORD
547 { write_exp_elt_opcode (OP_LONG);
548 write_exp_elt_type (builtin_type (current_gdbarch)->builtin_bool);
549 write_exp_elt_longcst ((LONGEST) 0);
550 write_exp_elt_opcode (OP_LONG); }
551 ;
552
553 /* end of C++. */
554
555 block : BLOCKNAME
556 {
557 if ($1.sym)
558 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
559 else
560 error ("No file or function \"%s\".",
561 copy_name ($1.stoken));
562 }
563 | FILENAME
564 {
565 $$ = $1;
566 }
567 ;
568
569 block : block COLONCOLON name
570 { struct symbol *tem
571 = lookup_symbol (copy_name ($3), $1,
572 VAR_DOMAIN, (int *) NULL,
573 (struct symtab **) NULL);
574 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
575 error ("No function \"%s\" in specified context.",
576 copy_name ($3));
577 $$ = SYMBOL_BLOCK_VALUE (tem); }
578 ;
579
580 variable: block COLONCOLON name
581 { struct symbol *sym;
582 sym = lookup_symbol (copy_name ($3), $1,
583 VAR_DOMAIN, (int *) NULL,
584 (struct symtab **) NULL);
585 if (sym == 0)
586 error ("No symbol \"%s\" in specified context.",
587 copy_name ($3));
588
589 write_exp_elt_opcode (OP_VAR_VALUE);
590 /* block_found is set by lookup_symbol. */
591 write_exp_elt_block (block_found);
592 write_exp_elt_sym (sym);
593 write_exp_elt_opcode (OP_VAR_VALUE); }
594 ;
595
596 qualified_name: typebase COLONCOLON name
597 {
598 struct type *type = $1;
599 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
600 && TYPE_CODE (type) != TYPE_CODE_UNION
601 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
602 error ("`%s' is not defined as an aggregate type.",
603 TYPE_NAME (type));
604
605 write_exp_elt_opcode (OP_SCOPE);
606 write_exp_elt_type (type);
607 write_exp_string ($3);
608 write_exp_elt_opcode (OP_SCOPE);
609 }
610 | typebase COLONCOLON '~' name
611 {
612 struct type *type = $1;
613 struct stoken tmp_token;
614 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
615 && TYPE_CODE (type) != TYPE_CODE_UNION
616 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
617 error ("`%s' is not defined as an aggregate type.",
618 TYPE_NAME (type));
619
620 tmp_token.ptr = (char*) alloca ($4.length + 2);
621 tmp_token.length = $4.length + 1;
622 tmp_token.ptr[0] = '~';
623 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
624 tmp_token.ptr[tmp_token.length] = 0;
625
626 /* Check for valid destructor name. */
627 destructor_name_p (tmp_token.ptr, type);
628 write_exp_elt_opcode (OP_SCOPE);
629 write_exp_elt_type (type);
630 write_exp_string (tmp_token);
631 write_exp_elt_opcode (OP_SCOPE);
632 }
633 ;
634
635 variable: qualified_name
636 | COLONCOLON name
637 {
638 char *name = copy_name ($2);
639 struct symbol *sym;
640 struct minimal_symbol *msymbol;
641
642 sym =
643 lookup_symbol (name, (const struct block *) NULL,
644 VAR_DOMAIN, (int *) NULL,
645 (struct symtab **) NULL);
646 if (sym)
647 {
648 write_exp_elt_opcode (OP_VAR_VALUE);
649 write_exp_elt_block (NULL);
650 write_exp_elt_sym (sym);
651 write_exp_elt_opcode (OP_VAR_VALUE);
652 break;
653 }
654
655 msymbol = lookup_minimal_symbol (name, NULL, NULL);
656 if (msymbol != NULL)
657 {
658 write_exp_msymbol (msymbol,
659 lookup_function_type (builtin_type (current_gdbarch)->builtin_int),
660 builtin_type (current_gdbarch)->builtin_int);
661 }
662 else
663 if (!have_full_symbols () && !have_partial_symbols ())
664 error ("No symbol table is loaded. Use the \"file\" command.");
665 else
666 error ("No symbol \"%s\" in current context.", name);
667 }
668 ;
669
670 variable: name_not_typename
671 { struct symbol *sym = $1.sym;
672
673 if (sym)
674 {
675 if (symbol_read_needs_frame (sym))
676 {
677 if (innermost_block == 0 ||
678 contained_in (block_found,
679 innermost_block))
680 innermost_block = block_found;
681 }
682
683 write_exp_elt_opcode (OP_VAR_VALUE);
684 /* We want to use the selected frame, not
685 another more inner frame which happens to
686 be in the same block. */
687 write_exp_elt_block (NULL);
688 write_exp_elt_sym (sym);
689 write_exp_elt_opcode (OP_VAR_VALUE);
690 }
691 else if ($1.is_a_field_of_this)
692 {
693 /* C++: it hangs off of `this'. Must
694 not inadvertently convert from a method call
695 to data ref. */
696 if (innermost_block == 0 ||
697 contained_in (block_found, innermost_block))
698 innermost_block = block_found;
699 write_exp_elt_opcode (OP_THIS);
700 write_exp_elt_opcode (OP_THIS);
701 write_exp_elt_opcode (STRUCTOP_PTR);
702 write_exp_string ($1.stoken);
703 write_exp_elt_opcode (STRUCTOP_PTR);
704 }
705 else
706 {
707 struct minimal_symbol *msymbol;
708 char *arg = copy_name ($1.stoken);
709
710 msymbol =
711 lookup_minimal_symbol (arg, NULL, NULL);
712 if (msymbol != NULL)
713 {
714 write_exp_msymbol (msymbol,
715 lookup_function_type (builtin_type (current_gdbarch)->builtin_int),
716 builtin_type (current_gdbarch)->builtin_int);
717 }
718 else if (!have_full_symbols () && !have_partial_symbols ())
719 error ("No symbol table is loaded. Use the \"file\" command.");
720 else
721 error ("No symbol \"%s\" in current context.",
722 copy_name ($1.stoken));
723 }
724 }
725 ;
726
727 space_identifier : '@' NAME
728 { push_type_address_space (copy_name ($2.stoken));
729 push_type (tp_space_identifier);
730 }
731 ;
732
733 const_or_volatile: const_or_volatile_noopt
734 |
735 ;
736
737 cv_with_space_id : const_or_volatile space_identifier const_or_volatile
738 ;
739
740 const_or_volatile_or_space_identifier_noopt: cv_with_space_id
741 | const_or_volatile_noopt
742 ;
743
744 const_or_volatile_or_space_identifier:
745 const_or_volatile_or_space_identifier_noopt
746 |
747 ;
748
749 abs_decl: '*'
750 { push_type (tp_pointer); $$ = 0; }
751 | '*' abs_decl
752 { push_type (tp_pointer); $$ = $2; }
753 | '&'
754 { push_type (tp_reference); $$ = 0; }
755 | '&' abs_decl
756 { push_type (tp_reference); $$ = $2; }
757 | direct_abs_decl
758 ;
759
760 direct_abs_decl: '(' abs_decl ')'
761 { $$ = $2; }
762 | direct_abs_decl array_mod
763 {
764 push_type_int ($2);
765 push_type (tp_array);
766 }
767 | array_mod
768 {
769 push_type_int ($1);
770 push_type (tp_array);
771 $$ = 0;
772 }
773
774 | direct_abs_decl func_mod
775 { push_type (tp_function); }
776 | func_mod
777 { push_type (tp_function); }
778 ;
779
780 array_mod: '[' ']'
781 { $$ = -1; }
782 | '[' INT ']'
783 { $$ = $2.val; }
784 ;
785
786 func_mod: '(' ')'
787 { $$ = 0; }
788 | '(' nonempty_typelist ')'
789 { free ($2); $$ = 0; }
790 ;
791
792 /* We used to try to recognize more pointer to member types here, but
793 that didn't work (shift/reduce conflicts meant that these rules never
794 got executed). The problem is that
795 int (foo::bar::baz::bizzle)
796 is a function type but
797 int (foo::bar::baz::bizzle::*)
798 is a pointer to member type. Stroustrup loses again! */
799
800 type : ptype
801 | typebase COLONCOLON '*'
802 { $$ = lookup_member_type (builtin_type (current_gdbarch)->builtin_int, $1); }
803 ;
804
805 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
806 : TYPENAME
807 { $$ = $1.type; }
808 | INT_KEYWORD
809 { $$ = builtin_type (current_gdbarch)->builtin_int; }
810 | LONG
811 { $$ = builtin_type (current_gdbarch)->builtin_long; }
812 | SHORT
813 { $$ = builtin_type (current_gdbarch)->builtin_short; }
814 | LONG INT_KEYWORD
815 { $$ = builtin_type (current_gdbarch)->builtin_long; }
816 | LONG SIGNED_KEYWORD INT_KEYWORD
817 { $$ = builtin_type (current_gdbarch)->builtin_long; }
818 | LONG SIGNED_KEYWORD
819 { $$ = builtin_type (current_gdbarch)->builtin_long; }
820 | SIGNED_KEYWORD LONG INT_KEYWORD
821 { $$ = builtin_type (current_gdbarch)->builtin_long; }
822 | UNSIGNED LONG INT_KEYWORD
823 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_long; }
824 | LONG UNSIGNED INT_KEYWORD
825 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_long; }
826 | LONG UNSIGNED
827 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_long; }
828 | LONG LONG
829 { $$ = builtin_type (current_gdbarch)->builtin_long_long; }
830 | LONG LONG INT_KEYWORD
831 { $$ = builtin_type (current_gdbarch)->builtin_long_long; }
832 | LONG LONG SIGNED_KEYWORD INT_KEYWORD
833 { $$ = builtin_type (current_gdbarch)->builtin_long_long; }
834 | LONG LONG SIGNED_KEYWORD
835 { $$ = builtin_type (current_gdbarch)->builtin_long_long; }
836 | SIGNED_KEYWORD LONG LONG
837 { $$ = builtin_type (current_gdbarch)->builtin_long_long; }
838 | SIGNED_KEYWORD LONG LONG INT_KEYWORD
839 { $$ = builtin_type (current_gdbarch)->builtin_long_long; }
840 | UNSIGNED LONG LONG
841 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_long_long; }
842 | UNSIGNED LONG LONG INT_KEYWORD
843 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_long_long; }
844 | LONG LONG UNSIGNED
845 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_long_long; }
846 | LONG LONG UNSIGNED INT_KEYWORD
847 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_long_long; }
848 | SHORT INT_KEYWORD
849 { $$ = builtin_type (current_gdbarch)->builtin_short; }
850 | SHORT SIGNED_KEYWORD INT_KEYWORD
851 { $$ = builtin_type (current_gdbarch)->builtin_short; }
852 | SHORT SIGNED_KEYWORD
853 { $$ = builtin_type (current_gdbarch)->builtin_short; }
854 | UNSIGNED SHORT INT_KEYWORD
855 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_short; }
856 | SHORT UNSIGNED
857 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_short; }
858 | SHORT UNSIGNED INT_KEYWORD
859 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_short; }
860 | DOUBLE_KEYWORD
861 { $$ = builtin_type (current_gdbarch)->builtin_double; }
862 | LONG DOUBLE_KEYWORD
863 { $$ = builtin_type (current_gdbarch)->builtin_long_double; }
864 | STRUCT name
865 { $$ = lookup_struct (copy_name ($2),
866 expression_context_block); }
867 | CLASS name
868 { $$ = lookup_struct (copy_name ($2),
869 expression_context_block); }
870 | UNION name
871 { $$ = lookup_union (copy_name ($2),
872 expression_context_block); }
873 | ENUM name
874 { $$ = lookup_enum (copy_name ($2),
875 expression_context_block); }
876 | UNSIGNED typename
877 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
878 | UNSIGNED
879 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_int; }
880 | SIGNED_KEYWORD typename
881 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
882 | SIGNED_KEYWORD
883 { $$ = builtin_type (current_gdbarch)->builtin_int; }
884 /* It appears that this rule for templates is never
885 reduced; template recognition happens by lookahead
886 in the token processing code in yylex. */
887 | TEMPLATE name '<' type '>'
888 { $$ = lookup_template_type(copy_name($2), $4,
889 expression_context_block);
890 }
891 | const_or_volatile_or_space_identifier_noopt typebase
892 { $$ = follow_types ($2); }
893 | typebase const_or_volatile_or_space_identifier_noopt
894 { $$ = follow_types ($1); }
895 | qualified_type
896 ;
897
898 /* FIXME: carlton/2003-09-25: This next bit leads to lots of
899 reduce-reduce conflicts, because the parser doesn't know whether or
900 not to use qualified_name or qualified_type: the rules are
901 identical. If the parser is parsing 'A::B::x', then, when it sees
902 the second '::', it knows that the expression to the left of it has
903 to be a type, so it uses qualified_type. But if it is parsing just
904 'A::B', then it doesn't have any way of knowing which rule to use,
905 so there's a reduce-reduce conflict; it picks qualified_name, since
906 that occurs earlier in this file than qualified_type.
907
908 There's no good way to fix this with the grammar as it stands; as
909 far as I can tell, some of the problems arise from ambiguities that
910 GDB introduces ('start' can be either an expression or a type), but
911 some of it is inherent to the nature of C++ (you want to treat the
912 input "(FOO)" fairly differently depending on whether FOO is an
913 expression or a type, and if FOO is a complex expression, this can
914 be hard to determine at the right time). Fortunately, it works
915 pretty well in most cases. For example, if you do 'ptype A::B',
916 where A::B is a nested type, then the parser will mistakenly
917 misidentify it as an expression; but evaluate_subexp will get
918 called with 'noside' set to EVAL_AVOID_SIDE_EFFECTS, and everything
919 will work out anyways. But there are situations where the parser
920 will get confused: the most common one that I've run into is when
921 you want to do
922
923 print *((A::B *) x)"
924
925 where the parser doesn't realize that A::B has to be a type until
926 it hits the first right paren, at which point it's too late. (The
927 workaround is to type "print *(('A::B' *) x)" instead.) (And
928 another solution is to fix our symbol-handling code so that the
929 user never wants to type something like that in the first place,
930 because we get all the types right without the user's help!)
931
932 Perhaps we could fix this by making the lexer smarter. Some of
933 this functionality used to be in the lexer, but in a way that
934 worked even less well than the current solution: that attempt
935 involved having the parser sometimes handle '::' and having the
936 lexer sometimes handle it, and without a clear division of
937 responsibility, it quickly degenerated into a big mess. Probably
938 the eventual correct solution will give more of a role to the lexer
939 (ideally via code that is shared between the lexer and
940 decode_line_1), but I'm not holding my breath waiting for somebody
941 to get around to cleaning this up... */
942
943 qualified_type: typebase COLONCOLON name
944 {
945 struct type *type = $1;
946 struct type *new_type;
947 char *ncopy = alloca ($3.length + 1);
948
949 memcpy (ncopy, $3.ptr, $3.length);
950 ncopy[$3.length] = '\0';
951
952 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
953 && TYPE_CODE (type) != TYPE_CODE_UNION
954 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
955 error ("`%s' is not defined as an aggregate type.",
956 TYPE_NAME (type));
957
958 new_type = cp_lookup_nested_type (type, ncopy,
959 expression_context_block);
960 if (new_type == NULL)
961 error ("No type \"%s\" within class or namespace \"%s\".",
962 ncopy, TYPE_NAME (type));
963
964 $$ = new_type;
965 }
966 ;
967
968 typename: TYPENAME
969 | INT_KEYWORD
970 {
971 $$.stoken.ptr = "int";
972 $$.stoken.length = 3;
973 $$.type = builtin_type (current_gdbarch)->builtin_int;
974 }
975 | LONG
976 {
977 $$.stoken.ptr = "long";
978 $$.stoken.length = 4;
979 $$.type = builtin_type (current_gdbarch)->builtin_long;
980 }
981 | SHORT
982 {
983 $$.stoken.ptr = "short";
984 $$.stoken.length = 5;
985 $$.type = builtin_type (current_gdbarch)->builtin_short;
986 }
987 ;
988
989 nonempty_typelist
990 : type
991 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
992 $<ivec>$[0] = 1; /* Number of types in vector */
993 $$[1] = $1;
994 }
995 | nonempty_typelist ',' type
996 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
997 $$ = (struct type **) realloc ((char *) $1, len);
998 $$[$<ivec>$[0]] = $3;
999 }
1000 ;
1001
1002 ptype : typebase
1003 | ptype const_or_volatile_or_space_identifier abs_decl const_or_volatile_or_space_identifier
1004 { $$ = follow_types ($1); }
1005 ;
1006
1007 const_and_volatile: CONST_KEYWORD VOLATILE_KEYWORD
1008 | VOLATILE_KEYWORD CONST_KEYWORD
1009 ;
1010
1011 const_or_volatile_noopt: const_and_volatile
1012 { push_type (tp_const);
1013 push_type (tp_volatile);
1014 }
1015 | CONST_KEYWORD
1016 { push_type (tp_const); }
1017 | VOLATILE_KEYWORD
1018 { push_type (tp_volatile); }
1019 ;
1020
1021 name : NAME { $$ = $1.stoken; }
1022 | BLOCKNAME { $$ = $1.stoken; }
1023 | TYPENAME { $$ = $1.stoken; }
1024 | NAME_OR_INT { $$ = $1.stoken; }
1025 ;
1026
1027 name_not_typename : NAME
1028 | BLOCKNAME
1029 /* These would be useful if name_not_typename was useful, but it is just
1030 a fake for "variable", so these cause reduce/reduce conflicts because
1031 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
1032 =exp) or just an exp. If name_not_typename was ever used in an lvalue
1033 context where only a name could occur, this might be useful.
1034 | NAME_OR_INT
1035 */
1036 ;
1037
1038 %%
1039
1040 /* Take care of parsing a number (anything that starts with a digit).
1041 Set yylval and return the token type; update lexptr.
1042 LEN is the number of characters in it. */
1043
1044 /*** Needs some error checking for the float case ***/
1045
1046 static int
1047 parse_number (p, len, parsed_float, putithere)
1048 char *p;
1049 int len;
1050 int parsed_float;
1051 YYSTYPE *putithere;
1052 {
1053 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
1054 here, and we do kind of silly things like cast to unsigned. */
1055 LONGEST n = 0;
1056 LONGEST prevn = 0;
1057 ULONGEST un;
1058
1059 int i = 0;
1060 int c;
1061 int base = input_radix;
1062 int unsigned_p = 0;
1063
1064 /* Number of "L" suffixes encountered. */
1065 int long_p = 0;
1066
1067 /* We have found a "L" or "U" suffix. */
1068 int found_suffix = 0;
1069
1070 ULONGEST high_bit;
1071 struct type *signed_type;
1072 struct type *unsigned_type;
1073
1074 if (parsed_float)
1075 {
1076 /* It's a float since it contains a point or an exponent. */
1077 char c;
1078 int num = 0; /* number of tokens scanned by scanf */
1079 char saved_char = p[len];
1080
1081 p[len] = 0; /* null-terminate the token */
1082 if (sizeof (putithere->typed_val_float.dval) <= sizeof (float))
1083 num = sscanf (p, "%g%c", (float *) &putithere->typed_val_float.dval,&c);
1084 else if (sizeof (putithere->typed_val_float.dval) <= sizeof (double))
1085 num = sscanf (p, "%lg%c", (double *) &putithere->typed_val_float.dval,&c);
1086 else
1087 {
1088 #ifdef SCANF_HAS_LONG_DOUBLE
1089 num = sscanf (p, "%Lg%c", &putithere->typed_val_float.dval,&c);
1090 #else
1091 /* Scan it into a double, then assign it to the long double.
1092 This at least wins with values representable in the range
1093 of doubles. */
1094 double temp;
1095 num = sscanf (p, "%lg%c", &temp,&c);
1096 putithere->typed_val_float.dval = temp;
1097 #endif
1098 }
1099 p[len] = saved_char; /* restore the input stream */
1100 if (num != 1) /* check scanf found ONLY a float ... */
1101 return ERROR;
1102 /* See if it has `f' or `l' suffix (float or long double). */
1103
1104 c = tolower (p[len - 1]);
1105
1106 if (c == 'f')
1107 putithere->typed_val_float.type = builtin_type (current_gdbarch)->builtin_float;
1108 else if (c == 'l')
1109 putithere->typed_val_float.type = builtin_type (current_gdbarch)->builtin_long_double;
1110 else if (isdigit (c) || c == '.')
1111 putithere->typed_val_float.type = builtin_type (current_gdbarch)->builtin_double;
1112 else
1113 return ERROR;
1114
1115 return FLOAT;
1116 }
1117
1118 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
1119 if (p[0] == '0')
1120 switch (p[1])
1121 {
1122 case 'x':
1123 case 'X':
1124 if (len >= 3)
1125 {
1126 p += 2;
1127 base = 16;
1128 len -= 2;
1129 }
1130 break;
1131
1132 case 't':
1133 case 'T':
1134 case 'd':
1135 case 'D':
1136 if (len >= 3)
1137 {
1138 p += 2;
1139 base = 10;
1140 len -= 2;
1141 }
1142 break;
1143
1144 default:
1145 base = 8;
1146 break;
1147 }
1148
1149 while (len-- > 0)
1150 {
1151 c = *p++;
1152 if (c >= 'A' && c <= 'Z')
1153 c += 'a' - 'A';
1154 if (c != 'l' && c != 'u')
1155 n *= base;
1156 if (c >= '0' && c <= '9')
1157 {
1158 if (found_suffix)
1159 return ERROR;
1160 n += i = c - '0';
1161 }
1162 else
1163 {
1164 if (base > 10 && c >= 'a' && c <= 'f')
1165 {
1166 if (found_suffix)
1167 return ERROR;
1168 n += i = c - 'a' + 10;
1169 }
1170 else if (c == 'l')
1171 {
1172 ++long_p;
1173 found_suffix = 1;
1174 }
1175 else if (c == 'u')
1176 {
1177 unsigned_p = 1;
1178 found_suffix = 1;
1179 }
1180 else
1181 return ERROR; /* Char not a digit */
1182 }
1183 if (i >= base)
1184 return ERROR; /* Invalid digit in this base */
1185
1186 /* Portably test for overflow (only works for nonzero values, so make
1187 a second check for zero). FIXME: Can't we just make n and prevn
1188 unsigned and avoid this? */
1189 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1190 unsigned_p = 1; /* Try something unsigned */
1191
1192 /* Portably test for unsigned overflow.
1193 FIXME: This check is wrong; for example it doesn't find overflow
1194 on 0x123456789 when LONGEST is 32 bits. */
1195 if (c != 'l' && c != 'u' && n != 0)
1196 {
1197 if ((unsigned_p && (ULONGEST) prevn >= (ULONGEST) n))
1198 error ("Numeric constant too large.");
1199 }
1200 prevn = n;
1201 }
1202
1203 /* An integer constant is an int, a long, or a long long. An L
1204 suffix forces it to be long; an LL suffix forces it to be long
1205 long. If not forced to a larger size, it gets the first type of
1206 the above that it fits in. To figure out whether it fits, we
1207 shift it right and see whether anything remains. Note that we
1208 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1209 operation, because many compilers will warn about such a shift
1210 (which always produces a zero result). Sometimes TARGET_INT_BIT
1211 or TARGET_LONG_BIT will be that big, sometimes not. To deal with
1212 the case where it is we just always shift the value more than
1213 once, with fewer bits each time. */
1214
1215 un = (ULONGEST)n >> 2;
1216 if (long_p == 0
1217 && (un >> (TARGET_INT_BIT - 2)) == 0)
1218 {
1219 high_bit = ((ULONGEST)1) << (TARGET_INT_BIT-1);
1220
1221 /* A large decimal (not hex or octal) constant (between INT_MAX
1222 and UINT_MAX) is a long or unsigned long, according to ANSI,
1223 never an unsigned int, but this code treats it as unsigned
1224 int. This probably should be fixed. GCC gives a warning on
1225 such constants. */
1226
1227 unsigned_type = builtin_type (current_gdbarch)->builtin_unsigned_int;
1228 signed_type = builtin_type (current_gdbarch)->builtin_int;
1229 }
1230 else if (long_p <= 1
1231 && (un >> (TARGET_LONG_BIT - 2)) == 0)
1232 {
1233 high_bit = ((ULONGEST)1) << (TARGET_LONG_BIT-1);
1234 unsigned_type = builtin_type (current_gdbarch)->builtin_unsigned_long;
1235 signed_type = builtin_type (current_gdbarch)->builtin_long;
1236 }
1237 else
1238 {
1239 int shift;
1240 if (sizeof (ULONGEST) * HOST_CHAR_BIT < TARGET_LONG_LONG_BIT)
1241 /* A long long does not fit in a LONGEST. */
1242 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
1243 else
1244 shift = (TARGET_LONG_LONG_BIT - 1);
1245 high_bit = (ULONGEST) 1 << shift;
1246 unsigned_type = builtin_type (current_gdbarch)->builtin_unsigned_long_long;
1247 signed_type = builtin_type (current_gdbarch)->builtin_long_long;
1248 }
1249
1250 putithere->typed_val_int.val = n;
1251
1252 /* If the high bit of the worked out type is set then this number
1253 has to be unsigned. */
1254
1255 if (unsigned_p || (n & high_bit))
1256 {
1257 putithere->typed_val_int.type = unsigned_type;
1258 }
1259 else
1260 {
1261 putithere->typed_val_int.type = signed_type;
1262 }
1263
1264 return INT;
1265 }
1266
1267 struct token
1268 {
1269 char *operator;
1270 int token;
1271 enum exp_opcode opcode;
1272 };
1273
1274 static const struct token tokentab3[] =
1275 {
1276 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1277 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1278 };
1279
1280 static const struct token tokentab2[] =
1281 {
1282 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1283 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1284 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1285 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1286 {"%=", ASSIGN_MODIFY, BINOP_REM},
1287 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1288 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1289 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1290 {"++", INCREMENT, BINOP_END},
1291 {"--", DECREMENT, BINOP_END},
1292 {"->", ARROW, BINOP_END},
1293 {"&&", ANDAND, BINOP_END},
1294 {"||", OROR, BINOP_END},
1295 {"::", COLONCOLON, BINOP_END},
1296 {"<<", LSH, BINOP_END},
1297 {">>", RSH, BINOP_END},
1298 {"==", EQUAL, BINOP_END},
1299 {"!=", NOTEQUAL, BINOP_END},
1300 {"<=", LEQ, BINOP_END},
1301 {">=", GEQ, BINOP_END}
1302 };
1303
1304 /* Read one token, getting characters through lexptr. */
1305
1306 static int
1307 yylex ()
1308 {
1309 int c;
1310 int namelen;
1311 unsigned int i;
1312 char *tokstart;
1313 char *tokptr;
1314 int tempbufindex;
1315 static char *tempbuf;
1316 static int tempbufsize;
1317 struct symbol * sym_class = NULL;
1318 char * token_string = NULL;
1319 int class_prefix = 0;
1320 int unquoted_expr;
1321
1322 retry:
1323
1324 /* Check if this is a macro invocation that we need to expand. */
1325 if (! scanning_macro_expansion ())
1326 {
1327 char *expanded = macro_expand_next (&lexptr,
1328 expression_macro_lookup_func,
1329 expression_macro_lookup_baton);
1330
1331 if (expanded)
1332 scan_macro_expansion (expanded);
1333 }
1334
1335 prev_lexptr = lexptr;
1336 unquoted_expr = 1;
1337
1338 tokstart = lexptr;
1339 /* See if it is a special token of length 3. */
1340 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1341 if (strncmp (tokstart, tokentab3[i].operator, 3) == 0)
1342 {
1343 lexptr += 3;
1344 yylval.opcode = tokentab3[i].opcode;
1345 return tokentab3[i].token;
1346 }
1347
1348 /* See if it is a special token of length 2. */
1349 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1350 if (strncmp (tokstart, tokentab2[i].operator, 2) == 0)
1351 {
1352 lexptr += 2;
1353 yylval.opcode = tokentab2[i].opcode;
1354 return tokentab2[i].token;
1355 }
1356
1357 switch (c = *tokstart)
1358 {
1359 case 0:
1360 /* If we were just scanning the result of a macro expansion,
1361 then we need to resume scanning the original text.
1362 Otherwise, we were already scanning the original text, and
1363 we're really done. */
1364 if (scanning_macro_expansion ())
1365 {
1366 finished_macro_expansion ();
1367 goto retry;
1368 }
1369 else
1370 return 0;
1371
1372 case ' ':
1373 case '\t':
1374 case '\n':
1375 lexptr++;
1376 goto retry;
1377
1378 case '\'':
1379 /* We either have a character constant ('0' or '\177' for example)
1380 or we have a quoted symbol reference ('foo(int,int)' in C++
1381 for example). */
1382 lexptr++;
1383 c = *lexptr++;
1384 if (c == '\\')
1385 c = parse_escape (&lexptr);
1386 else if (c == '\'')
1387 error ("Empty character constant.");
1388 else if (! host_char_to_target (c, &c))
1389 {
1390 int toklen = lexptr - tokstart + 1;
1391 char *tok = alloca (toklen + 1);
1392 memcpy (tok, tokstart, toklen);
1393 tok[toklen] = '\0';
1394 error ("There is no character corresponding to %s in the target "
1395 "character set `%s'.", tok, target_charset ());
1396 }
1397
1398 yylval.typed_val_int.val = c;
1399 yylval.typed_val_int.type = builtin_type (current_gdbarch)->builtin_char;
1400
1401 c = *lexptr++;
1402 if (c != '\'')
1403 {
1404 namelen = skip_quoted (tokstart) - tokstart;
1405 if (namelen > 2)
1406 {
1407 lexptr = tokstart + namelen;
1408 unquoted_expr = 0;
1409 if (lexptr[-1] != '\'')
1410 error ("Unmatched single quote.");
1411 namelen -= 2;
1412 tokstart++;
1413 goto tryname;
1414 }
1415 error ("Invalid character constant.");
1416 }
1417 return INT;
1418
1419 case '(':
1420 paren_depth++;
1421 lexptr++;
1422 return c;
1423
1424 case ')':
1425 if (paren_depth == 0)
1426 return 0;
1427 paren_depth--;
1428 lexptr++;
1429 return c;
1430
1431 case ',':
1432 if (comma_terminates
1433 && paren_depth == 0
1434 && ! scanning_macro_expansion ())
1435 return 0;
1436 lexptr++;
1437 return c;
1438
1439 case '.':
1440 /* Might be a floating point number. */
1441 if (lexptr[1] < '0' || lexptr[1] > '9')
1442 goto symbol; /* Nope, must be a symbol. */
1443 /* FALL THRU into number case. */
1444
1445 case '0':
1446 case '1':
1447 case '2':
1448 case '3':
1449 case '4':
1450 case '5':
1451 case '6':
1452 case '7':
1453 case '8':
1454 case '9':
1455 {
1456 /* It's a number. */
1457 int got_dot = 0, got_e = 0, toktype;
1458 char *p = tokstart;
1459 int hex = input_radix > 10;
1460
1461 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1462 {
1463 p += 2;
1464 hex = 1;
1465 }
1466 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1467 {
1468 p += 2;
1469 hex = 0;
1470 }
1471
1472 for (;; ++p)
1473 {
1474 /* This test includes !hex because 'e' is a valid hex digit
1475 and thus does not indicate a floating point number when
1476 the radix is hex. */
1477 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1478 got_dot = got_e = 1;
1479 /* This test does not include !hex, because a '.' always indicates
1480 a decimal floating point number regardless of the radix. */
1481 else if (!got_dot && *p == '.')
1482 got_dot = 1;
1483 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1484 && (*p == '-' || *p == '+'))
1485 /* This is the sign of the exponent, not the end of the
1486 number. */
1487 continue;
1488 /* We will take any letters or digits. parse_number will
1489 complain if past the radix, or if L or U are not final. */
1490 else if ((*p < '0' || *p > '9')
1491 && ((*p < 'a' || *p > 'z')
1492 && (*p < 'A' || *p > 'Z')))
1493 break;
1494 }
1495 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1496 if (toktype == ERROR)
1497 {
1498 char *err_copy = (char *) alloca (p - tokstart + 1);
1499
1500 memcpy (err_copy, tokstart, p - tokstart);
1501 err_copy[p - tokstart] = 0;
1502 error ("Invalid number \"%s\".", err_copy);
1503 }
1504 lexptr = p;
1505 return toktype;
1506 }
1507
1508 case '+':
1509 case '-':
1510 case '*':
1511 case '/':
1512 case '%':
1513 case '|':
1514 case '&':
1515 case '^':
1516 case '~':
1517 case '!':
1518 case '@':
1519 case '<':
1520 case '>':
1521 case '[':
1522 case ']':
1523 case '?':
1524 case ':':
1525 case '=':
1526 case '{':
1527 case '}':
1528 symbol:
1529 lexptr++;
1530 return c;
1531
1532 case '"':
1533
1534 /* Build the gdb internal form of the input string in tempbuf,
1535 translating any standard C escape forms seen. Note that the
1536 buffer is null byte terminated *only* for the convenience of
1537 debugging gdb itself and printing the buffer contents when
1538 the buffer contains no embedded nulls. Gdb does not depend
1539 upon the buffer being null byte terminated, it uses the length
1540 string instead. This allows gdb to handle C strings (as well
1541 as strings in other languages) with embedded null bytes */
1542
1543 tokptr = ++tokstart;
1544 tempbufindex = 0;
1545
1546 do {
1547 char *char_start_pos = tokptr;
1548
1549 /* Grow the static temp buffer if necessary, including allocating
1550 the first one on demand. */
1551 if (tempbufindex + 1 >= tempbufsize)
1552 {
1553 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1554 }
1555 switch (*tokptr)
1556 {
1557 case '\0':
1558 case '"':
1559 /* Do nothing, loop will terminate. */
1560 break;
1561 case '\\':
1562 tokptr++;
1563 c = parse_escape (&tokptr);
1564 if (c == -1)
1565 {
1566 continue;
1567 }
1568 tempbuf[tempbufindex++] = c;
1569 break;
1570 default:
1571 c = *tokptr++;
1572 if (! host_char_to_target (c, &c))
1573 {
1574 int len = tokptr - char_start_pos;
1575 char *copy = alloca (len + 1);
1576 memcpy (copy, char_start_pos, len);
1577 copy[len] = '\0';
1578
1579 error ("There is no character corresponding to `%s' "
1580 "in the target character set `%s'.",
1581 copy, target_charset ());
1582 }
1583 tempbuf[tempbufindex++] = c;
1584 break;
1585 }
1586 } while ((*tokptr != '"') && (*tokptr != '\0'));
1587 if (*tokptr++ != '"')
1588 {
1589 error ("Unterminated string in expression.");
1590 }
1591 tempbuf[tempbufindex] = '\0'; /* See note above */
1592 yylval.sval.ptr = tempbuf;
1593 yylval.sval.length = tempbufindex;
1594 lexptr = tokptr;
1595 return (STRING);
1596 }
1597
1598 if (!(c == '_' || c == '$'
1599 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1600 /* We must have come across a bad character (e.g. ';'). */
1601 error ("Invalid character '%c' in expression.", c);
1602
1603 /* It's a name. See how long it is. */
1604 namelen = 0;
1605 for (c = tokstart[namelen];
1606 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1607 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
1608 {
1609 /* Template parameter lists are part of the name.
1610 FIXME: This mishandles `print $a<4&&$a>3'. */
1611
1612 if (c == '<')
1613 {
1614 /* Scan ahead to get rest of the template specification. Note
1615 that we look ahead only when the '<' adjoins non-whitespace
1616 characters; for comparison expressions, e.g. "a < b > c",
1617 there must be spaces before the '<', etc. */
1618
1619 char * p = find_template_name_end (tokstart + namelen);
1620 if (p)
1621 namelen = p - tokstart;
1622 break;
1623 }
1624 c = tokstart[++namelen];
1625 }
1626
1627 /* The token "if" terminates the expression and is NOT removed from
1628 the input stream. It doesn't count if it appears in the
1629 expansion of a macro. */
1630 if (namelen == 2
1631 && tokstart[0] == 'i'
1632 && tokstart[1] == 'f'
1633 && ! scanning_macro_expansion ())
1634 {
1635 return 0;
1636 }
1637
1638 lexptr += namelen;
1639
1640 tryname:
1641
1642 /* Catch specific keywords. Should be done with a data structure. */
1643 switch (namelen)
1644 {
1645 case 8:
1646 if (strncmp (tokstart, "unsigned", 8) == 0)
1647 return UNSIGNED;
1648 if (current_language->la_language == language_cplus
1649 && strncmp (tokstart, "template", 8) == 0)
1650 return TEMPLATE;
1651 if (strncmp (tokstart, "volatile", 8) == 0)
1652 return VOLATILE_KEYWORD;
1653 break;
1654 case 6:
1655 if (strncmp (tokstart, "struct", 6) == 0)
1656 return STRUCT;
1657 if (strncmp (tokstart, "signed", 6) == 0)
1658 return SIGNED_KEYWORD;
1659 if (strncmp (tokstart, "sizeof", 6) == 0)
1660 return SIZEOF;
1661 if (strncmp (tokstart, "double", 6) == 0)
1662 return DOUBLE_KEYWORD;
1663 break;
1664 case 5:
1665 if (current_language->la_language == language_cplus)
1666 {
1667 if (strncmp (tokstart, "false", 5) == 0)
1668 return FALSEKEYWORD;
1669 if (strncmp (tokstart, "class", 5) == 0)
1670 return CLASS;
1671 }
1672 if (strncmp (tokstart, "union", 5) == 0)
1673 return UNION;
1674 if (strncmp (tokstart, "short", 5) == 0)
1675 return SHORT;
1676 if (strncmp (tokstart, "const", 5) == 0)
1677 return CONST_KEYWORD;
1678 break;
1679 case 4:
1680 if (strncmp (tokstart, "enum", 4) == 0)
1681 return ENUM;
1682 if (strncmp (tokstart, "long", 4) == 0)
1683 return LONG;
1684 if (current_language->la_language == language_cplus)
1685 {
1686 if (strncmp (tokstart, "true", 4) == 0)
1687 return TRUEKEYWORD;
1688 }
1689 break;
1690 case 3:
1691 if (strncmp (tokstart, "int", 3) == 0)
1692 return INT_KEYWORD;
1693 break;
1694 default:
1695 break;
1696 }
1697
1698 yylval.sval.ptr = tokstart;
1699 yylval.sval.length = namelen;
1700
1701 if (*tokstart == '$')
1702 {
1703 write_dollar_variable (yylval.sval);
1704 return VARIABLE;
1705 }
1706
1707 /* Look ahead and see if we can consume more of the input
1708 string to get a reasonable class/namespace spec or a
1709 fully-qualified name. This is a kludge to get around the
1710 HP aCC compiler's generation of symbol names with embedded
1711 colons for namespace and nested classes. */
1712
1713 /* NOTE: carlton/2003-09-24: I don't entirely understand the
1714 HP-specific code, either here or in linespec. Having said that,
1715 I suspect that we're actually moving towards their model: we want
1716 symbols whose names are fully qualified, which matches the
1717 description above. */
1718 if (unquoted_expr)
1719 {
1720 /* Only do it if not inside single quotes */
1721 sym_class = parse_nested_classes_for_hpacc (yylval.sval.ptr, yylval.sval.length,
1722 &token_string, &class_prefix, &lexptr);
1723 if (sym_class)
1724 {
1725 /* Replace the current token with the bigger one we found */
1726 yylval.sval.ptr = token_string;
1727 yylval.sval.length = strlen (token_string);
1728 }
1729 }
1730
1731 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1732 functions or symtabs. If this is not so, then ...
1733 Use token-type TYPENAME for symbols that happen to be defined
1734 currently as names of types; NAME for other symbols.
1735 The caller is not constrained to care about the distinction. */
1736 {
1737 char *tmp = copy_name (yylval.sval);
1738 struct symbol *sym;
1739 int is_a_field_of_this = 0;
1740 int hextype;
1741
1742 sym = lookup_symbol (tmp, expression_context_block,
1743 VAR_DOMAIN,
1744 current_language->la_language == language_cplus
1745 ? &is_a_field_of_this : (int *) NULL,
1746 (struct symtab **) NULL);
1747 /* Call lookup_symtab, not lookup_partial_symtab, in case there are
1748 no psymtabs (coff, xcoff, or some future change to blow away the
1749 psymtabs once once symbols are read). */
1750 if (sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
1751 {
1752 yylval.ssym.sym = sym;
1753 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1754 return BLOCKNAME;
1755 }
1756 else if (!sym)
1757 { /* See if it's a file name. */
1758 struct symtab *symtab;
1759
1760 symtab = lookup_symtab (tmp);
1761
1762 if (symtab)
1763 {
1764 yylval.bval = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), STATIC_BLOCK);
1765 return FILENAME;
1766 }
1767 }
1768
1769 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1770 {
1771 /* NOTE: carlton/2003-09-25: There used to be code here to
1772 handle nested types. It didn't work very well. See the
1773 comment before qualified_type for more info. */
1774 yylval.tsym.type = SYMBOL_TYPE (sym);
1775 return TYPENAME;
1776 }
1777 yylval.tsym.type
1778 = language_lookup_primitive_type_by_name (current_language,
1779 current_gdbarch, tmp);
1780 if (yylval.tsym.type != NULL)
1781 return TYPENAME;
1782
1783 /* Input names that aren't symbols but ARE valid hex numbers,
1784 when the input radix permits them, can be names or numbers
1785 depending on the parse. Note we support radixes > 16 here. */
1786 if (!sym &&
1787 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1788 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1789 {
1790 YYSTYPE newlval; /* Its value is ignored. */
1791 hextype = parse_number (tokstart, namelen, 0, &newlval);
1792 if (hextype == INT)
1793 {
1794 yylval.ssym.sym = sym;
1795 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1796 return NAME_OR_INT;
1797 }
1798 }
1799
1800 /* Any other kind of symbol */
1801 yylval.ssym.sym = sym;
1802 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1803 return NAME;
1804 }
1805 }
1806
1807 void
1808 yyerror (msg)
1809 char *msg;
1810 {
1811 if (prev_lexptr)
1812 lexptr = prev_lexptr;
1813
1814 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
1815 }
This page took 0.126106 seconds and 4 git commands to generate.