* ltconfig, ltmain.sh, libtool.m4, ltcf-c.sh, ltcf-cxx.sh,
[deliverable/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright 1986, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* Parse a C expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result.
30
31 Note that malloc's and realloc's in this file are transformed to
32 xmalloc and xrealloc respectively by the same sed command in the
33 makefile that remaps any other malloc/realloc inserted by the parser
34 generator. Doing this with #defines and trying to control the interaction
35 with include files (<malloc.h> and <stdlib.h> for example) just became
36 too messy, particularly when such includes can be inserted at random
37 times by the parser generator. */
38
39 %{
40
41 #include "defs.h"
42 #include "gdb_string.h"
43 #include <ctype.h>
44 #include "expression.h"
45 #include "value.h"
46 #include "parser-defs.h"
47 #include "language.h"
48 #include "c-lang.h"
49 #include "bfd.h" /* Required by objfiles.h. */
50 #include "symfile.h" /* Required by objfiles.h. */
51 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
52
53 /* Flag indicating we're dealing with HP-compiled objects */
54 extern int hp_som_som_object_present;
55
56 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
57 as well as gratuitiously global symbol names, so we can have multiple
58 yacc generated parsers in gdb. Note that these are only the variables
59 produced by yacc. If other parser generators (bison, byacc, etc) produce
60 additional global names that conflict at link time, then those parser
61 generators need to be fixed instead of adding those names to this list. */
62
63 #define yymaxdepth c_maxdepth
64 #define yyparse c_parse
65 #define yylex c_lex
66 #define yyerror c_error
67 #define yylval c_lval
68 #define yychar c_char
69 #define yydebug c_debug
70 #define yypact c_pact
71 #define yyr1 c_r1
72 #define yyr2 c_r2
73 #define yydef c_def
74 #define yychk c_chk
75 #define yypgo c_pgo
76 #define yyact c_act
77 #define yyexca c_exca
78 #define yyerrflag c_errflag
79 #define yynerrs c_nerrs
80 #define yyps c_ps
81 #define yypv c_pv
82 #define yys c_s
83 #define yy_yys c_yys
84 #define yystate c_state
85 #define yytmp c_tmp
86 #define yyv c_v
87 #define yy_yyv c_yyv
88 #define yyval c_val
89 #define yylloc c_lloc
90 #define yyreds c_reds /* With YYDEBUG defined */
91 #define yytoks c_toks /* With YYDEBUG defined */
92 #define yylhs c_yylhs
93 #define yylen c_yylen
94 #define yydefred c_yydefred
95 #define yydgoto c_yydgoto
96 #define yysindex c_yysindex
97 #define yyrindex c_yyrindex
98 #define yygindex c_yygindex
99 #define yytable c_yytable
100 #define yycheck c_yycheck
101
102 #ifndef YYDEBUG
103 #define YYDEBUG 0 /* Default to no yydebug support */
104 #endif
105
106 int yyparse (void);
107
108 static int yylex (void);
109
110 void yyerror (char *);
111
112 %}
113
114 /* Although the yacc "value" of an expression is not used,
115 since the result is stored in the structure being created,
116 other node types do have values. */
117
118 %union
119 {
120 LONGEST lval;
121 struct {
122 LONGEST val;
123 struct type *type;
124 } typed_val_int;
125 struct {
126 DOUBLEST dval;
127 struct type *type;
128 } typed_val_float;
129 struct symbol *sym;
130 struct type *tval;
131 struct stoken sval;
132 struct ttype tsym;
133 struct symtoken ssym;
134 int voidval;
135 struct block *bval;
136 enum exp_opcode opcode;
137 struct internalvar *ivar;
138
139 struct type **tvec;
140 int *ivec;
141 }
142
143 %{
144 /* YYSTYPE gets defined by %union */
145 static int parse_number (char *, int, int, YYSTYPE *);
146 %}
147
148 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
149 %type <lval> rcurly
150 %type <tval> type typebase
151 %type <tvec> nonempty_typelist
152 /* %type <bval> block */
153
154 /* Fancy type parsing. */
155 %type <voidval> func_mod direct_abs_decl abs_decl
156 %type <tval> ptype
157 %type <lval> array_mod
158
159 %token <typed_val_int> INT
160 %token <typed_val_float> FLOAT
161
162 /* Both NAME and TYPENAME tokens represent symbols in the input,
163 and both convey their data as strings.
164 But a TYPENAME is a string that happens to be defined as a typedef
165 or builtin type name (such as int or char)
166 and a NAME is any other symbol.
167 Contexts where this distinction is not important can use the
168 nonterminal "name", which matches either NAME or TYPENAME. */
169
170 %token <sval> STRING
171 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
172 %token <tsym> TYPENAME
173 %type <sval> name
174 %type <ssym> name_not_typename
175 %type <tsym> typename
176
177 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
178 but which would parse as a valid number in the current input radix.
179 E.g. "c" when input_radix==16. Depending on the parse, it will be
180 turned into a name or into a number. */
181
182 %token <ssym> NAME_OR_INT
183
184 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
185 %token TEMPLATE
186 %token ERROR
187
188 /* Special type cases, put in to allow the parser to distinguish different
189 legal basetypes. */
190 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD
191
192 %token <voidval> VARIABLE
193
194 %token <opcode> ASSIGN_MODIFY
195
196 /* C++ */
197 %token THIS
198 %token TRUEKEYWORD
199 %token FALSEKEYWORD
200
201
202 %left ','
203 %left ABOVE_COMMA
204 %right '=' ASSIGN_MODIFY
205 %right '?'
206 %left OROR
207 %left ANDAND
208 %left '|'
209 %left '^'
210 %left '&'
211 %left EQUAL NOTEQUAL
212 %left '<' '>' LEQ GEQ
213 %left LSH RSH
214 %left '@'
215 %left '+' '-'
216 %left '*' '/' '%'
217 %right UNARY INCREMENT DECREMENT
218 %right ARROW '.' '[' '('
219 %token <ssym> BLOCKNAME
220 %token <bval> FILENAME
221 %type <bval> block
222 %left COLONCOLON
223
224 \f
225 %%
226
227 start : exp1
228 | type_exp
229 ;
230
231 type_exp: type
232 { write_exp_elt_opcode(OP_TYPE);
233 write_exp_elt_type($1);
234 write_exp_elt_opcode(OP_TYPE);}
235 ;
236
237 /* Expressions, including the comma operator. */
238 exp1 : exp
239 | exp1 ',' exp
240 { write_exp_elt_opcode (BINOP_COMMA); }
241 ;
242
243 /* Expressions, not including the comma operator. */
244 exp : '*' exp %prec UNARY
245 { write_exp_elt_opcode (UNOP_IND); }
246
247 exp : '&' exp %prec UNARY
248 { write_exp_elt_opcode (UNOP_ADDR); }
249
250 exp : '-' exp %prec UNARY
251 { write_exp_elt_opcode (UNOP_NEG); }
252 ;
253
254 exp : '!' exp %prec UNARY
255 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
256 ;
257
258 exp : '~' exp %prec UNARY
259 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
260 ;
261
262 exp : INCREMENT exp %prec UNARY
263 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
264 ;
265
266 exp : DECREMENT exp %prec UNARY
267 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
268 ;
269
270 exp : exp INCREMENT %prec UNARY
271 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
272 ;
273
274 exp : exp DECREMENT %prec UNARY
275 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
276 ;
277
278 exp : SIZEOF exp %prec UNARY
279 { write_exp_elt_opcode (UNOP_SIZEOF); }
280 ;
281
282 exp : exp ARROW name
283 { write_exp_elt_opcode (STRUCTOP_PTR);
284 write_exp_string ($3);
285 write_exp_elt_opcode (STRUCTOP_PTR); }
286 ;
287
288 exp : exp ARROW qualified_name
289 { /* exp->type::name becomes exp->*(&type::name) */
290 /* Note: this doesn't work if name is a
291 static member! FIXME */
292 write_exp_elt_opcode (UNOP_ADDR);
293 write_exp_elt_opcode (STRUCTOP_MPTR); }
294 ;
295
296 exp : exp ARROW '*' exp
297 { write_exp_elt_opcode (STRUCTOP_MPTR); }
298 ;
299
300 exp : exp '.' name
301 { write_exp_elt_opcode (STRUCTOP_STRUCT);
302 write_exp_string ($3);
303 write_exp_elt_opcode (STRUCTOP_STRUCT); }
304 ;
305
306 exp : exp '.' qualified_name
307 { /* exp.type::name becomes exp.*(&type::name) */
308 /* Note: this doesn't work if name is a
309 static member! FIXME */
310 write_exp_elt_opcode (UNOP_ADDR);
311 write_exp_elt_opcode (STRUCTOP_MEMBER); }
312 ;
313
314 exp : exp '.' '*' exp
315 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
316 ;
317
318 exp : exp '[' exp1 ']'
319 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
320 ;
321
322 exp : exp '('
323 /* This is to save the value of arglist_len
324 being accumulated by an outer function call. */
325 { start_arglist (); }
326 arglist ')' %prec ARROW
327 { write_exp_elt_opcode (OP_FUNCALL);
328 write_exp_elt_longcst ((LONGEST) end_arglist ());
329 write_exp_elt_opcode (OP_FUNCALL); }
330 ;
331
332 lcurly : '{'
333 { start_arglist (); }
334 ;
335
336 arglist :
337 ;
338
339 arglist : exp
340 { arglist_len = 1; }
341 ;
342
343 arglist : arglist ',' exp %prec ABOVE_COMMA
344 { arglist_len++; }
345 ;
346
347 rcurly : '}'
348 { $$ = end_arglist () - 1; }
349 ;
350 exp : lcurly arglist rcurly %prec ARROW
351 { write_exp_elt_opcode (OP_ARRAY);
352 write_exp_elt_longcst ((LONGEST) 0);
353 write_exp_elt_longcst ((LONGEST) $3);
354 write_exp_elt_opcode (OP_ARRAY); }
355 ;
356
357 exp : lcurly type rcurly exp %prec UNARY
358 { write_exp_elt_opcode (UNOP_MEMVAL);
359 write_exp_elt_type ($2);
360 write_exp_elt_opcode (UNOP_MEMVAL); }
361 ;
362
363 exp : '(' type ')' exp %prec UNARY
364 { write_exp_elt_opcode (UNOP_CAST);
365 write_exp_elt_type ($2);
366 write_exp_elt_opcode (UNOP_CAST); }
367 ;
368
369 exp : '(' exp1 ')'
370 { }
371 ;
372
373 /* Binary operators in order of decreasing precedence. */
374
375 exp : exp '@' exp
376 { write_exp_elt_opcode (BINOP_REPEAT); }
377 ;
378
379 exp : exp '*' exp
380 { write_exp_elt_opcode (BINOP_MUL); }
381 ;
382
383 exp : exp '/' exp
384 { write_exp_elt_opcode (BINOP_DIV); }
385 ;
386
387 exp : exp '%' exp
388 { write_exp_elt_opcode (BINOP_REM); }
389 ;
390
391 exp : exp '+' exp
392 { write_exp_elt_opcode (BINOP_ADD); }
393 ;
394
395 exp : exp '-' exp
396 { write_exp_elt_opcode (BINOP_SUB); }
397 ;
398
399 exp : exp LSH exp
400 { write_exp_elt_opcode (BINOP_LSH); }
401 ;
402
403 exp : exp RSH exp
404 { write_exp_elt_opcode (BINOP_RSH); }
405 ;
406
407 exp : exp EQUAL exp
408 { write_exp_elt_opcode (BINOP_EQUAL); }
409 ;
410
411 exp : exp NOTEQUAL exp
412 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
413 ;
414
415 exp : exp LEQ exp
416 { write_exp_elt_opcode (BINOP_LEQ); }
417 ;
418
419 exp : exp GEQ exp
420 { write_exp_elt_opcode (BINOP_GEQ); }
421 ;
422
423 exp : exp '<' exp
424 { write_exp_elt_opcode (BINOP_LESS); }
425 ;
426
427 exp : exp '>' exp
428 { write_exp_elt_opcode (BINOP_GTR); }
429 ;
430
431 exp : exp '&' exp
432 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
433 ;
434
435 exp : exp '^' exp
436 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
437 ;
438
439 exp : exp '|' exp
440 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
441 ;
442
443 exp : exp ANDAND exp
444 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
445 ;
446
447 exp : exp OROR exp
448 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
449 ;
450
451 exp : exp '?' exp ':' exp %prec '?'
452 { write_exp_elt_opcode (TERNOP_COND); }
453 ;
454
455 exp : exp '=' exp
456 { write_exp_elt_opcode (BINOP_ASSIGN); }
457 ;
458
459 exp : exp ASSIGN_MODIFY exp
460 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
461 write_exp_elt_opcode ($2);
462 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
463 ;
464
465 exp : INT
466 { write_exp_elt_opcode (OP_LONG);
467 write_exp_elt_type ($1.type);
468 write_exp_elt_longcst ((LONGEST)($1.val));
469 write_exp_elt_opcode (OP_LONG); }
470 ;
471
472 exp : NAME_OR_INT
473 { YYSTYPE val;
474 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
475 write_exp_elt_opcode (OP_LONG);
476 write_exp_elt_type (val.typed_val_int.type);
477 write_exp_elt_longcst ((LONGEST)val.typed_val_int.val);
478 write_exp_elt_opcode (OP_LONG);
479 }
480 ;
481
482
483 exp : FLOAT
484 { write_exp_elt_opcode (OP_DOUBLE);
485 write_exp_elt_type ($1.type);
486 write_exp_elt_dblcst ($1.dval);
487 write_exp_elt_opcode (OP_DOUBLE); }
488 ;
489
490 exp : variable
491 ;
492
493 exp : VARIABLE
494 /* Already written by write_dollar_variable. */
495 ;
496
497 exp : SIZEOF '(' type ')' %prec UNARY
498 { write_exp_elt_opcode (OP_LONG);
499 write_exp_elt_type (builtin_type_int);
500 CHECK_TYPEDEF ($3);
501 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
502 write_exp_elt_opcode (OP_LONG); }
503 ;
504
505 exp : STRING
506 { /* C strings are converted into array constants with
507 an explicit null byte added at the end. Thus
508 the array upper bound is the string length.
509 There is no such thing in C as a completely empty
510 string. */
511 char *sp = $1.ptr; int count = $1.length;
512 while (count-- > 0)
513 {
514 write_exp_elt_opcode (OP_LONG);
515 write_exp_elt_type (builtin_type_char);
516 write_exp_elt_longcst ((LONGEST)(*sp++));
517 write_exp_elt_opcode (OP_LONG);
518 }
519 write_exp_elt_opcode (OP_LONG);
520 write_exp_elt_type (builtin_type_char);
521 write_exp_elt_longcst ((LONGEST)'\0');
522 write_exp_elt_opcode (OP_LONG);
523 write_exp_elt_opcode (OP_ARRAY);
524 write_exp_elt_longcst ((LONGEST) 0);
525 write_exp_elt_longcst ((LONGEST) ($1.length));
526 write_exp_elt_opcode (OP_ARRAY); }
527 ;
528
529 /* C++. */
530 exp : THIS
531 { write_exp_elt_opcode (OP_THIS);
532 write_exp_elt_opcode (OP_THIS); }
533 ;
534
535 exp : TRUEKEYWORD
536 { write_exp_elt_opcode (OP_LONG);
537 write_exp_elt_type (builtin_type_bool);
538 write_exp_elt_longcst ((LONGEST) 1);
539 write_exp_elt_opcode (OP_LONG); }
540 ;
541
542 exp : FALSEKEYWORD
543 { write_exp_elt_opcode (OP_LONG);
544 write_exp_elt_type (builtin_type_bool);
545 write_exp_elt_longcst ((LONGEST) 0);
546 write_exp_elt_opcode (OP_LONG); }
547 ;
548
549 /* end of C++. */
550
551 block : BLOCKNAME
552 {
553 if ($1.sym)
554 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
555 else
556 error ("No file or function \"%s\".",
557 copy_name ($1.stoken));
558 }
559 | FILENAME
560 {
561 $$ = $1;
562 }
563 ;
564
565 block : block COLONCOLON name
566 { struct symbol *tem
567 = lookup_symbol (copy_name ($3), $1,
568 VAR_NAMESPACE, (int *) NULL,
569 (struct symtab **) NULL);
570 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
571 error ("No function \"%s\" in specified context.",
572 copy_name ($3));
573 $$ = SYMBOL_BLOCK_VALUE (tem); }
574 ;
575
576 variable: block COLONCOLON name
577 { struct symbol *sym;
578 sym = lookup_symbol (copy_name ($3), $1,
579 VAR_NAMESPACE, (int *) NULL,
580 (struct symtab **) NULL);
581 if (sym == 0)
582 error ("No symbol \"%s\" in specified context.",
583 copy_name ($3));
584
585 write_exp_elt_opcode (OP_VAR_VALUE);
586 /* block_found is set by lookup_symbol. */
587 write_exp_elt_block (block_found);
588 write_exp_elt_sym (sym);
589 write_exp_elt_opcode (OP_VAR_VALUE); }
590 ;
591
592 qualified_name: typebase COLONCOLON name
593 {
594 struct type *type = $1;
595 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
596 && TYPE_CODE (type) != TYPE_CODE_UNION)
597 error ("`%s' is not defined as an aggregate type.",
598 TYPE_NAME (type));
599
600 write_exp_elt_opcode (OP_SCOPE);
601 write_exp_elt_type (type);
602 write_exp_string ($3);
603 write_exp_elt_opcode (OP_SCOPE);
604 }
605 | typebase COLONCOLON '~' name
606 {
607 struct type *type = $1;
608 struct stoken tmp_token;
609 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
610 && TYPE_CODE (type) != TYPE_CODE_UNION)
611 error ("`%s' is not defined as an aggregate type.",
612 TYPE_NAME (type));
613
614 tmp_token.ptr = (char*) alloca ($4.length + 2);
615 tmp_token.length = $4.length + 1;
616 tmp_token.ptr[0] = '~';
617 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
618 tmp_token.ptr[tmp_token.length] = 0;
619
620 /* Check for valid destructor name. */
621 destructor_name_p (tmp_token.ptr, type);
622 write_exp_elt_opcode (OP_SCOPE);
623 write_exp_elt_type (type);
624 write_exp_string (tmp_token);
625 write_exp_elt_opcode (OP_SCOPE);
626 }
627 ;
628
629 variable: qualified_name
630 | COLONCOLON name
631 {
632 char *name = copy_name ($2);
633 struct symbol *sym;
634 struct minimal_symbol *msymbol;
635
636 sym =
637 lookup_symbol (name, (const struct block *) NULL,
638 VAR_NAMESPACE, (int *) NULL,
639 (struct symtab **) NULL);
640 if (sym)
641 {
642 write_exp_elt_opcode (OP_VAR_VALUE);
643 write_exp_elt_block (NULL);
644 write_exp_elt_sym (sym);
645 write_exp_elt_opcode (OP_VAR_VALUE);
646 break;
647 }
648
649 msymbol = lookup_minimal_symbol (name, NULL, NULL);
650 if (msymbol != NULL)
651 {
652 write_exp_msymbol (msymbol,
653 lookup_function_type (builtin_type_int),
654 builtin_type_int);
655 }
656 else
657 if (!have_full_symbols () && !have_partial_symbols ())
658 error ("No symbol table is loaded. Use the \"file\" command.");
659 else
660 error ("No symbol \"%s\" in current context.", name);
661 }
662 ;
663
664 variable: name_not_typename
665 { struct symbol *sym = $1.sym;
666
667 if (sym)
668 {
669 if (symbol_read_needs_frame (sym))
670 {
671 if (innermost_block == 0 ||
672 contained_in (block_found,
673 innermost_block))
674 innermost_block = block_found;
675 }
676
677 write_exp_elt_opcode (OP_VAR_VALUE);
678 /* We want to use the selected frame, not
679 another more inner frame which happens to
680 be in the same block. */
681 write_exp_elt_block (NULL);
682 write_exp_elt_sym (sym);
683 write_exp_elt_opcode (OP_VAR_VALUE);
684 }
685 else if ($1.is_a_field_of_this)
686 {
687 /* C++: it hangs off of `this'. Must
688 not inadvertently convert from a method call
689 to data ref. */
690 if (innermost_block == 0 ||
691 contained_in (block_found, innermost_block))
692 innermost_block = block_found;
693 write_exp_elt_opcode (OP_THIS);
694 write_exp_elt_opcode (OP_THIS);
695 write_exp_elt_opcode (STRUCTOP_PTR);
696 write_exp_string ($1.stoken);
697 write_exp_elt_opcode (STRUCTOP_PTR);
698 }
699 else
700 {
701 struct minimal_symbol *msymbol;
702 register char *arg = copy_name ($1.stoken);
703
704 msymbol =
705 lookup_minimal_symbol (arg, NULL, NULL);
706 if (msymbol != NULL)
707 {
708 write_exp_msymbol (msymbol,
709 lookup_function_type (builtin_type_int),
710 builtin_type_int);
711 }
712 else if (!have_full_symbols () && !have_partial_symbols ())
713 error ("No symbol table is loaded. Use the \"file\" command.");
714 else
715 error ("No symbol \"%s\" in current context.",
716 copy_name ($1.stoken));
717 }
718 }
719 ;
720
721
722 ptype : typebase
723 /* "const" and "volatile" are curently ignored. A type qualifier
724 before the type is currently handled in the typebase rule.
725 The reason for recognizing these here (shift/reduce conflicts)
726 might be obsolete now that some pointer to member rules have
727 been deleted. */
728 | typebase CONST_KEYWORD
729 | typebase VOLATILE_KEYWORD
730 | typebase abs_decl
731 { $$ = follow_types ($1); }
732 | typebase CONST_KEYWORD abs_decl
733 { $$ = follow_types ($1); }
734 | typebase VOLATILE_KEYWORD abs_decl
735 { $$ = follow_types ($1); }
736 ;
737
738 abs_decl: '*'
739 { push_type (tp_pointer); $$ = 0; }
740 | '*' abs_decl
741 { push_type (tp_pointer); $$ = $2; }
742 | '&'
743 { push_type (tp_reference); $$ = 0; }
744 | '&' abs_decl
745 { push_type (tp_reference); $$ = $2; }
746 | direct_abs_decl
747 ;
748
749 direct_abs_decl: '(' abs_decl ')'
750 { $$ = $2; }
751 | direct_abs_decl array_mod
752 {
753 push_type_int ($2);
754 push_type (tp_array);
755 }
756 | array_mod
757 {
758 push_type_int ($1);
759 push_type (tp_array);
760 $$ = 0;
761 }
762
763 | direct_abs_decl func_mod
764 { push_type (tp_function); }
765 | func_mod
766 { push_type (tp_function); }
767 ;
768
769 array_mod: '[' ']'
770 { $$ = -1; }
771 | '[' INT ']'
772 { $$ = $2.val; }
773 ;
774
775 func_mod: '(' ')'
776 { $$ = 0; }
777 | '(' nonempty_typelist ')'
778 { free ((PTR)$2); $$ = 0; }
779 ;
780
781 /* We used to try to recognize more pointer to member types here, but
782 that didn't work (shift/reduce conflicts meant that these rules never
783 got executed). The problem is that
784 int (foo::bar::baz::bizzle)
785 is a function type but
786 int (foo::bar::baz::bizzle::*)
787 is a pointer to member type. Stroustrup loses again! */
788
789 type : ptype
790 | typebase COLONCOLON '*'
791 { $$ = lookup_member_type (builtin_type_int, $1); }
792 ;
793
794 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
795 : TYPENAME
796 { $$ = $1.type; }
797 | INT_KEYWORD
798 { $$ = builtin_type_int; }
799 | LONG
800 { $$ = builtin_type_long; }
801 | SHORT
802 { $$ = builtin_type_short; }
803 | LONG INT_KEYWORD
804 { $$ = builtin_type_long; }
805 | UNSIGNED LONG INT_KEYWORD
806 { $$ = builtin_type_unsigned_long; }
807 | LONG LONG
808 { $$ = builtin_type_long_long; }
809 | LONG LONG INT_KEYWORD
810 { $$ = builtin_type_long_long; }
811 | UNSIGNED LONG LONG
812 { $$ = builtin_type_unsigned_long_long; }
813 | UNSIGNED LONG LONG INT_KEYWORD
814 { $$ = builtin_type_unsigned_long_long; }
815 | SHORT INT_KEYWORD
816 { $$ = builtin_type_short; }
817 | UNSIGNED SHORT INT_KEYWORD
818 { $$ = builtin_type_unsigned_short; }
819 | DOUBLE_KEYWORD
820 { $$ = builtin_type_double; }
821 | LONG DOUBLE_KEYWORD
822 { $$ = builtin_type_long_double; }
823 | STRUCT name
824 { $$ = lookup_struct (copy_name ($2),
825 expression_context_block); }
826 | CLASS name
827 { $$ = lookup_struct (copy_name ($2),
828 expression_context_block); }
829 | UNION name
830 { $$ = lookup_union (copy_name ($2),
831 expression_context_block); }
832 | ENUM name
833 { $$ = lookup_enum (copy_name ($2),
834 expression_context_block); }
835 | UNSIGNED typename
836 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
837 | UNSIGNED
838 { $$ = builtin_type_unsigned_int; }
839 | SIGNED_KEYWORD typename
840 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
841 | SIGNED_KEYWORD
842 { $$ = builtin_type_int; }
843 /* It appears that this rule for templates is never
844 reduced; template recognition happens by lookahead
845 in the token processing code in yylex. */
846 | TEMPLATE name '<' type '>'
847 { $$ = lookup_template_type(copy_name($2), $4,
848 expression_context_block);
849 }
850 /* "const" and "volatile" are curently ignored. A type qualifier
851 after the type is handled in the ptype rule. I think these could
852 be too. */
853 | CONST_KEYWORD typebase { $$ = $2; }
854 | VOLATILE_KEYWORD typebase { $$ = $2; }
855 ;
856
857 typename: TYPENAME
858 | INT_KEYWORD
859 {
860 $$.stoken.ptr = "int";
861 $$.stoken.length = 3;
862 $$.type = builtin_type_int;
863 }
864 | LONG
865 {
866 $$.stoken.ptr = "long";
867 $$.stoken.length = 4;
868 $$.type = builtin_type_long;
869 }
870 | SHORT
871 {
872 $$.stoken.ptr = "short";
873 $$.stoken.length = 5;
874 $$.type = builtin_type_short;
875 }
876 ;
877
878 nonempty_typelist
879 : type
880 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
881 $<ivec>$[0] = 1; /* Number of types in vector */
882 $$[1] = $1;
883 }
884 | nonempty_typelist ',' type
885 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
886 $$ = (struct type **) realloc ((char *) $1, len);
887 $$[$<ivec>$[0]] = $3;
888 }
889 ;
890
891 name : NAME { $$ = $1.stoken; }
892 | BLOCKNAME { $$ = $1.stoken; }
893 | TYPENAME { $$ = $1.stoken; }
894 | NAME_OR_INT { $$ = $1.stoken; }
895 ;
896
897 name_not_typename : NAME
898 | BLOCKNAME
899 /* These would be useful if name_not_typename was useful, but it is just
900 a fake for "variable", so these cause reduce/reduce conflicts because
901 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
902 =exp) or just an exp. If name_not_typename was ever used in an lvalue
903 context where only a name could occur, this might be useful.
904 | NAME_OR_INT
905 */
906 ;
907
908 %%
909
910 /* Take care of parsing a number (anything that starts with a digit).
911 Set yylval and return the token type; update lexptr.
912 LEN is the number of characters in it. */
913
914 /*** Needs some error checking for the float case ***/
915
916 static int
917 parse_number (p, len, parsed_float, putithere)
918 register char *p;
919 register int len;
920 int parsed_float;
921 YYSTYPE *putithere;
922 {
923 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
924 here, and we do kind of silly things like cast to unsigned. */
925 register LONGEST n = 0;
926 register LONGEST prevn = 0;
927 ULONGEST un;
928
929 register int i = 0;
930 register int c;
931 register int base = input_radix;
932 int unsigned_p = 0;
933
934 /* Number of "L" suffixes encountered. */
935 int long_p = 0;
936
937 /* We have found a "L" or "U" suffix. */
938 int found_suffix = 0;
939
940 ULONGEST high_bit;
941 struct type *signed_type;
942 struct type *unsigned_type;
943
944 if (parsed_float)
945 {
946 /* It's a float since it contains a point or an exponent. */
947 char c;
948 int num = 0; /* number of tokens scanned by scanf */
949 char saved_char = p[len];
950
951 p[len] = 0; /* null-terminate the token */
952 if (sizeof (putithere->typed_val_float.dval) <= sizeof (float))
953 num = sscanf (p, "%g%c", (float *) &putithere->typed_val_float.dval,&c);
954 else if (sizeof (putithere->typed_val_float.dval) <= sizeof (double))
955 num = sscanf (p, "%lg%c", (double *) &putithere->typed_val_float.dval,&c);
956 else
957 {
958 #ifdef SCANF_HAS_LONG_DOUBLE
959 num = sscanf (p, "%Lg%c", &putithere->typed_val_float.dval,&c);
960 #else
961 /* Scan it into a double, then assign it to the long double.
962 This at least wins with values representable in the range
963 of doubles. */
964 double temp;
965 num = sscanf (p, "%lg%c", &temp,&c);
966 putithere->typed_val_float.dval = temp;
967 #endif
968 }
969 p[len] = saved_char; /* restore the input stream */
970 if (num != 1) /* check scanf found ONLY a float ... */
971 return ERROR;
972 /* See if it has `f' or `l' suffix (float or long double). */
973
974 c = tolower (p[len - 1]);
975
976 if (c == 'f')
977 putithere->typed_val_float.type = builtin_type_float;
978 else if (c == 'l')
979 putithere->typed_val_float.type = builtin_type_long_double;
980 else if (isdigit (c) || c == '.')
981 putithere->typed_val_float.type = builtin_type_double;
982 else
983 return ERROR;
984
985 return FLOAT;
986 }
987
988 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
989 if (p[0] == '0')
990 switch (p[1])
991 {
992 case 'x':
993 case 'X':
994 if (len >= 3)
995 {
996 p += 2;
997 base = 16;
998 len -= 2;
999 }
1000 break;
1001
1002 case 't':
1003 case 'T':
1004 case 'd':
1005 case 'D':
1006 if (len >= 3)
1007 {
1008 p += 2;
1009 base = 10;
1010 len -= 2;
1011 }
1012 break;
1013
1014 default:
1015 base = 8;
1016 break;
1017 }
1018
1019 while (len-- > 0)
1020 {
1021 c = *p++;
1022 if (c >= 'A' && c <= 'Z')
1023 c += 'a' - 'A';
1024 if (c != 'l' && c != 'u')
1025 n *= base;
1026 if (c >= '0' && c <= '9')
1027 {
1028 if (found_suffix)
1029 return ERROR;
1030 n += i = c - '0';
1031 }
1032 else
1033 {
1034 if (base > 10 && c >= 'a' && c <= 'f')
1035 {
1036 if (found_suffix)
1037 return ERROR;
1038 n += i = c - 'a' + 10;
1039 }
1040 else if (c == 'l')
1041 {
1042 ++long_p;
1043 found_suffix = 1;
1044 }
1045 else if (c == 'u')
1046 {
1047 unsigned_p = 1;
1048 found_suffix = 1;
1049 }
1050 else
1051 return ERROR; /* Char not a digit */
1052 }
1053 if (i >= base)
1054 return ERROR; /* Invalid digit in this base */
1055
1056 /* Portably test for overflow (only works for nonzero values, so make
1057 a second check for zero). FIXME: Can't we just make n and prevn
1058 unsigned and avoid this? */
1059 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1060 unsigned_p = 1; /* Try something unsigned */
1061
1062 /* Portably test for unsigned overflow.
1063 FIXME: This check is wrong; for example it doesn't find overflow
1064 on 0x123456789 when LONGEST is 32 bits. */
1065 if (c != 'l' && c != 'u' && n != 0)
1066 {
1067 if ((unsigned_p && (ULONGEST) prevn >= (ULONGEST) n))
1068 error ("Numeric constant too large.");
1069 }
1070 prevn = n;
1071 }
1072
1073 /* An integer constant is an int, a long, or a long long. An L
1074 suffix forces it to be long; an LL suffix forces it to be long
1075 long. If not forced to a larger size, it gets the first type of
1076 the above that it fits in. To figure out whether it fits, we
1077 shift it right and see whether anything remains. Note that we
1078 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1079 operation, because many compilers will warn about such a shift
1080 (which always produces a zero result). Sometimes TARGET_INT_BIT
1081 or TARGET_LONG_BIT will be that big, sometimes not. To deal with
1082 the case where it is we just always shift the value more than
1083 once, with fewer bits each time. */
1084
1085 un = (ULONGEST)n >> 2;
1086 if (long_p == 0
1087 && (un >> (TARGET_INT_BIT - 2)) == 0)
1088 {
1089 high_bit = ((ULONGEST)1) << (TARGET_INT_BIT-1);
1090
1091 /* A large decimal (not hex or octal) constant (between INT_MAX
1092 and UINT_MAX) is a long or unsigned long, according to ANSI,
1093 never an unsigned int, but this code treats it as unsigned
1094 int. This probably should be fixed. GCC gives a warning on
1095 such constants. */
1096
1097 unsigned_type = builtin_type_unsigned_int;
1098 signed_type = builtin_type_int;
1099 }
1100 else if (long_p <= 1
1101 && (un >> (TARGET_LONG_BIT - 2)) == 0)
1102 {
1103 high_bit = ((ULONGEST)1) << (TARGET_LONG_BIT-1);
1104 unsigned_type = builtin_type_unsigned_long;
1105 signed_type = builtin_type_long;
1106 }
1107 else
1108 {
1109 int shift;
1110 if (sizeof (ULONGEST) * HOST_CHAR_BIT < TARGET_LONG_LONG_BIT)
1111 /* A long long does not fit in a LONGEST. */
1112 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
1113 else
1114 shift = (TARGET_LONG_LONG_BIT - 1);
1115 high_bit = (ULONGEST) 1 << shift;
1116 unsigned_type = builtin_type_unsigned_long_long;
1117 signed_type = builtin_type_long_long;
1118 }
1119
1120 putithere->typed_val_int.val = n;
1121
1122 /* If the high bit of the worked out type is set then this number
1123 has to be unsigned. */
1124
1125 if (unsigned_p || (n & high_bit))
1126 {
1127 putithere->typed_val_int.type = unsigned_type;
1128 }
1129 else
1130 {
1131 putithere->typed_val_int.type = signed_type;
1132 }
1133
1134 return INT;
1135 }
1136
1137 struct token
1138 {
1139 char *operator;
1140 int token;
1141 enum exp_opcode opcode;
1142 };
1143
1144 static const struct token tokentab3[] =
1145 {
1146 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1147 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1148 };
1149
1150 static const struct token tokentab2[] =
1151 {
1152 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1153 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1154 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1155 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1156 {"%=", ASSIGN_MODIFY, BINOP_REM},
1157 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1158 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1159 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1160 {"++", INCREMENT, BINOP_END},
1161 {"--", DECREMENT, BINOP_END},
1162 {"->", ARROW, BINOP_END},
1163 {"&&", ANDAND, BINOP_END},
1164 {"||", OROR, BINOP_END},
1165 {"::", COLONCOLON, BINOP_END},
1166 {"<<", LSH, BINOP_END},
1167 {">>", RSH, BINOP_END},
1168 {"==", EQUAL, BINOP_END},
1169 {"!=", NOTEQUAL, BINOP_END},
1170 {"<=", LEQ, BINOP_END},
1171 {">=", GEQ, BINOP_END}
1172 };
1173
1174 /* Read one token, getting characters through lexptr. */
1175
1176 static int
1177 yylex ()
1178 {
1179 int c;
1180 int namelen;
1181 unsigned int i;
1182 char *tokstart;
1183 char *tokptr;
1184 int tempbufindex;
1185 static char *tempbuf;
1186 static int tempbufsize;
1187 struct symbol * sym_class = NULL;
1188 char * token_string = NULL;
1189 int class_prefix = 0;
1190 int unquoted_expr;
1191
1192 retry:
1193
1194 unquoted_expr = 1;
1195
1196 tokstart = lexptr;
1197 /* See if it is a special token of length 3. */
1198 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1199 if (STREQN (tokstart, tokentab3[i].operator, 3))
1200 {
1201 lexptr += 3;
1202 yylval.opcode = tokentab3[i].opcode;
1203 return tokentab3[i].token;
1204 }
1205
1206 /* See if it is a special token of length 2. */
1207 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1208 if (STREQN (tokstart, tokentab2[i].operator, 2))
1209 {
1210 lexptr += 2;
1211 yylval.opcode = tokentab2[i].opcode;
1212 return tokentab2[i].token;
1213 }
1214
1215 switch (c = *tokstart)
1216 {
1217 case 0:
1218 return 0;
1219
1220 case ' ':
1221 case '\t':
1222 case '\n':
1223 lexptr++;
1224 goto retry;
1225
1226 case '\'':
1227 /* We either have a character constant ('0' or '\177' for example)
1228 or we have a quoted symbol reference ('foo(int,int)' in C++
1229 for example). */
1230 lexptr++;
1231 c = *lexptr++;
1232 if (c == '\\')
1233 c = parse_escape (&lexptr);
1234 else if (c == '\'')
1235 error ("Empty character constant.");
1236
1237 yylval.typed_val_int.val = c;
1238 yylval.typed_val_int.type = builtin_type_char;
1239
1240 c = *lexptr++;
1241 if (c != '\'')
1242 {
1243 namelen = skip_quoted (tokstart) - tokstart;
1244 if (namelen > 2)
1245 {
1246 lexptr = tokstart + namelen;
1247 unquoted_expr = 0;
1248 if (lexptr[-1] != '\'')
1249 error ("Unmatched single quote.");
1250 namelen -= 2;
1251 tokstart++;
1252 goto tryname;
1253 }
1254 error ("Invalid character constant.");
1255 }
1256 return INT;
1257
1258 case '(':
1259 paren_depth++;
1260 lexptr++;
1261 return c;
1262
1263 case ')':
1264 if (paren_depth == 0)
1265 return 0;
1266 paren_depth--;
1267 lexptr++;
1268 return c;
1269
1270 case ',':
1271 if (comma_terminates && paren_depth == 0)
1272 return 0;
1273 lexptr++;
1274 return c;
1275
1276 case '.':
1277 /* Might be a floating point number. */
1278 if (lexptr[1] < '0' || lexptr[1] > '9')
1279 goto symbol; /* Nope, must be a symbol. */
1280 /* FALL THRU into number case. */
1281
1282 case '0':
1283 case '1':
1284 case '2':
1285 case '3':
1286 case '4':
1287 case '5':
1288 case '6':
1289 case '7':
1290 case '8':
1291 case '9':
1292 {
1293 /* It's a number. */
1294 int got_dot = 0, got_e = 0, toktype;
1295 register char *p = tokstart;
1296 int hex = input_radix > 10;
1297
1298 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1299 {
1300 p += 2;
1301 hex = 1;
1302 }
1303 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1304 {
1305 p += 2;
1306 hex = 0;
1307 }
1308
1309 for (;; ++p)
1310 {
1311 /* This test includes !hex because 'e' is a valid hex digit
1312 and thus does not indicate a floating point number when
1313 the radix is hex. */
1314 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1315 got_dot = got_e = 1;
1316 /* This test does not include !hex, because a '.' always indicates
1317 a decimal floating point number regardless of the radix. */
1318 else if (!got_dot && *p == '.')
1319 got_dot = 1;
1320 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1321 && (*p == '-' || *p == '+'))
1322 /* This is the sign of the exponent, not the end of the
1323 number. */
1324 continue;
1325 /* We will take any letters or digits. parse_number will
1326 complain if past the radix, or if L or U are not final. */
1327 else if ((*p < '0' || *p > '9')
1328 && ((*p < 'a' || *p > 'z')
1329 && (*p < 'A' || *p > 'Z')))
1330 break;
1331 }
1332 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1333 if (toktype == ERROR)
1334 {
1335 char *err_copy = (char *) alloca (p - tokstart + 1);
1336
1337 memcpy (err_copy, tokstart, p - tokstart);
1338 err_copy[p - tokstart] = 0;
1339 error ("Invalid number \"%s\".", err_copy);
1340 }
1341 lexptr = p;
1342 return toktype;
1343 }
1344
1345 case '+':
1346 case '-':
1347 case '*':
1348 case '/':
1349 case '%':
1350 case '|':
1351 case '&':
1352 case '^':
1353 case '~':
1354 case '!':
1355 case '@':
1356 case '<':
1357 case '>':
1358 case '[':
1359 case ']':
1360 case '?':
1361 case ':':
1362 case '=':
1363 case '{':
1364 case '}':
1365 symbol:
1366 lexptr++;
1367 return c;
1368
1369 case '"':
1370
1371 /* Build the gdb internal form of the input string in tempbuf,
1372 translating any standard C escape forms seen. Note that the
1373 buffer is null byte terminated *only* for the convenience of
1374 debugging gdb itself and printing the buffer contents when
1375 the buffer contains no embedded nulls. Gdb does not depend
1376 upon the buffer being null byte terminated, it uses the length
1377 string instead. This allows gdb to handle C strings (as well
1378 as strings in other languages) with embedded null bytes */
1379
1380 tokptr = ++tokstart;
1381 tempbufindex = 0;
1382
1383 do {
1384 /* Grow the static temp buffer if necessary, including allocating
1385 the first one on demand. */
1386 if (tempbufindex + 1 >= tempbufsize)
1387 {
1388 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1389 }
1390 switch (*tokptr)
1391 {
1392 case '\0':
1393 case '"':
1394 /* Do nothing, loop will terminate. */
1395 break;
1396 case '\\':
1397 tokptr++;
1398 c = parse_escape (&tokptr);
1399 if (c == -1)
1400 {
1401 continue;
1402 }
1403 tempbuf[tempbufindex++] = c;
1404 break;
1405 default:
1406 tempbuf[tempbufindex++] = *tokptr++;
1407 break;
1408 }
1409 } while ((*tokptr != '"') && (*tokptr != '\0'));
1410 if (*tokptr++ != '"')
1411 {
1412 error ("Unterminated string in expression.");
1413 }
1414 tempbuf[tempbufindex] = '\0'; /* See note above */
1415 yylval.sval.ptr = tempbuf;
1416 yylval.sval.length = tempbufindex;
1417 lexptr = tokptr;
1418 return (STRING);
1419 }
1420
1421 if (!(c == '_' || c == '$'
1422 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1423 /* We must have come across a bad character (e.g. ';'). */
1424 error ("Invalid character '%c' in expression.", c);
1425
1426 /* It's a name. See how long it is. */
1427 namelen = 0;
1428 for (c = tokstart[namelen];
1429 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1430 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
1431 {
1432 /* Template parameter lists are part of the name.
1433 FIXME: This mishandles `print $a<4&&$a>3'. */
1434
1435 if (c == '<')
1436 {
1437 /* Scan ahead to get rest of the template specification. Note
1438 that we look ahead only when the '<' adjoins non-whitespace
1439 characters; for comparison expressions, e.g. "a < b > c",
1440 there must be spaces before the '<', etc. */
1441
1442 char * p = find_template_name_end (tokstart + namelen);
1443 if (p)
1444 namelen = p - tokstart;
1445 break;
1446 }
1447 c = tokstart[++namelen];
1448 }
1449
1450 /* The token "if" terminates the expression and is NOT
1451 removed from the input stream. */
1452 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1453 {
1454 return 0;
1455 }
1456
1457 lexptr += namelen;
1458
1459 tryname:
1460
1461 /* Catch specific keywords. Should be done with a data structure. */
1462 switch (namelen)
1463 {
1464 case 8:
1465 if (STREQN (tokstart, "unsigned", 8))
1466 return UNSIGNED;
1467 if (current_language->la_language == language_cplus
1468 && STREQN (tokstart, "template", 8))
1469 return TEMPLATE;
1470 if (STREQN (tokstart, "volatile", 8))
1471 return VOLATILE_KEYWORD;
1472 break;
1473 case 6:
1474 if (STREQN (tokstart, "struct", 6))
1475 return STRUCT;
1476 if (STREQN (tokstart, "signed", 6))
1477 return SIGNED_KEYWORD;
1478 if (STREQN (tokstart, "sizeof", 6))
1479 return SIZEOF;
1480 if (STREQN (tokstart, "double", 6))
1481 return DOUBLE_KEYWORD;
1482 break;
1483 case 5:
1484 if (current_language->la_language == language_cplus)
1485 {
1486 if (STREQN (tokstart, "false", 5))
1487 return FALSEKEYWORD;
1488 if (STREQN (tokstart, "class", 5))
1489 return CLASS;
1490 }
1491 if (STREQN (tokstart, "union", 5))
1492 return UNION;
1493 if (STREQN (tokstart, "short", 5))
1494 return SHORT;
1495 if (STREQN (tokstart, "const", 5))
1496 return CONST_KEYWORD;
1497 break;
1498 case 4:
1499 if (STREQN (tokstart, "enum", 4))
1500 return ENUM;
1501 if (STREQN (tokstart, "long", 4))
1502 return LONG;
1503 if (current_language->la_language == language_cplus)
1504 {
1505 if (STREQN (tokstart, "true", 4))
1506 return TRUEKEYWORD;
1507
1508 if (STREQN (tokstart, "this", 4))
1509 {
1510 static const char this_name[] =
1511 { CPLUS_MARKER, 't', 'h', 'i', 's', '\0' };
1512
1513 if (lookup_symbol (this_name, expression_context_block,
1514 VAR_NAMESPACE, (int *) NULL,
1515 (struct symtab **) NULL))
1516 return THIS;
1517 }
1518 }
1519 break;
1520 case 3:
1521 if (STREQN (tokstart, "int", 3))
1522 return INT_KEYWORD;
1523 break;
1524 default:
1525 break;
1526 }
1527
1528 yylval.sval.ptr = tokstart;
1529 yylval.sval.length = namelen;
1530
1531 if (*tokstart == '$')
1532 {
1533 write_dollar_variable (yylval.sval);
1534 return VARIABLE;
1535 }
1536
1537 /* Look ahead and see if we can consume more of the input
1538 string to get a reasonable class/namespace spec or a
1539 fully-qualified name. This is a kludge to get around the
1540 HP aCC compiler's generation of symbol names with embedded
1541 colons for namespace and nested classes. */
1542 if (unquoted_expr)
1543 {
1544 /* Only do it if not inside single quotes */
1545 sym_class = parse_nested_classes_for_hpacc (yylval.sval.ptr, yylval.sval.length,
1546 &token_string, &class_prefix, &lexptr);
1547 if (sym_class)
1548 {
1549 /* Replace the current token with the bigger one we found */
1550 yylval.sval.ptr = token_string;
1551 yylval.sval.length = strlen (token_string);
1552 }
1553 }
1554
1555 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1556 functions or symtabs. If this is not so, then ...
1557 Use token-type TYPENAME for symbols that happen to be defined
1558 currently as names of types; NAME for other symbols.
1559 The caller is not constrained to care about the distinction. */
1560 {
1561 char *tmp = copy_name (yylval.sval);
1562 struct symbol *sym;
1563 int is_a_field_of_this = 0;
1564 int hextype;
1565
1566 sym = lookup_symbol (tmp, expression_context_block,
1567 VAR_NAMESPACE,
1568 current_language->la_language == language_cplus
1569 ? &is_a_field_of_this : (int *) NULL,
1570 (struct symtab **) NULL);
1571 /* Call lookup_symtab, not lookup_partial_symtab, in case there are
1572 no psymtabs (coff, xcoff, or some future change to blow away the
1573 psymtabs once once symbols are read). */
1574 if (sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
1575 {
1576 yylval.ssym.sym = sym;
1577 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1578 return BLOCKNAME;
1579 }
1580 else if (!sym)
1581 { /* See if it's a file name. */
1582 struct symtab *symtab;
1583
1584 symtab = lookup_symtab (tmp);
1585
1586 if (symtab)
1587 {
1588 yylval.bval = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), STATIC_BLOCK);
1589 return FILENAME;
1590 }
1591 }
1592
1593 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1594 {
1595 #if 1
1596 /* Despite the following flaw, we need to keep this code enabled.
1597 Because we can get called from check_stub_method, if we don't
1598 handle nested types then it screws many operations in any
1599 program which uses nested types. */
1600 /* In "A::x", if x is a member function of A and there happens
1601 to be a type (nested or not, since the stabs don't make that
1602 distinction) named x, then this code incorrectly thinks we
1603 are dealing with nested types rather than a member function. */
1604
1605 char *p;
1606 char *namestart;
1607 struct symbol *best_sym;
1608
1609 /* Look ahead to detect nested types. This probably should be
1610 done in the grammar, but trying seemed to introduce a lot
1611 of shift/reduce and reduce/reduce conflicts. It's possible
1612 that it could be done, though. Or perhaps a non-grammar, but
1613 less ad hoc, approach would work well. */
1614
1615 /* Since we do not currently have any way of distinguishing
1616 a nested type from a non-nested one (the stabs don't tell
1617 us whether a type is nested), we just ignore the
1618 containing type. */
1619
1620 p = lexptr;
1621 best_sym = sym;
1622 while (1)
1623 {
1624 /* Skip whitespace. */
1625 while (*p == ' ' || *p == '\t' || *p == '\n')
1626 ++p;
1627 if (*p == ':' && p[1] == ':')
1628 {
1629 /* Skip the `::'. */
1630 p += 2;
1631 /* Skip whitespace. */
1632 while (*p == ' ' || *p == '\t' || *p == '\n')
1633 ++p;
1634 namestart = p;
1635 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1636 || (*p >= 'a' && *p <= 'z')
1637 || (*p >= 'A' && *p <= 'Z'))
1638 ++p;
1639 if (p != namestart)
1640 {
1641 struct symbol *cur_sym;
1642 /* As big as the whole rest of the expression, which is
1643 at least big enough. */
1644 char *ncopy = alloca (strlen (tmp)+strlen (namestart)+3);
1645 char *tmp1;
1646
1647 tmp1 = ncopy;
1648 memcpy (tmp1, tmp, strlen (tmp));
1649 tmp1 += strlen (tmp);
1650 memcpy (tmp1, "::", 2);
1651 tmp1 += 2;
1652 memcpy (tmp1, namestart, p - namestart);
1653 tmp1[p - namestart] = '\0';
1654 cur_sym = lookup_symbol (ncopy, expression_context_block,
1655 VAR_NAMESPACE, (int *) NULL,
1656 (struct symtab **) NULL);
1657 if (cur_sym)
1658 {
1659 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1660 {
1661 best_sym = cur_sym;
1662 lexptr = p;
1663 }
1664 else
1665 break;
1666 }
1667 else
1668 break;
1669 }
1670 else
1671 break;
1672 }
1673 else
1674 break;
1675 }
1676
1677 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1678 #else /* not 0 */
1679 yylval.tsym.type = SYMBOL_TYPE (sym);
1680 #endif /* not 0 */
1681 return TYPENAME;
1682 }
1683 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1684 return TYPENAME;
1685
1686 /* Input names that aren't symbols but ARE valid hex numbers,
1687 when the input radix permits them, can be names or numbers
1688 depending on the parse. Note we support radixes > 16 here. */
1689 if (!sym &&
1690 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1691 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1692 {
1693 YYSTYPE newlval; /* Its value is ignored. */
1694 hextype = parse_number (tokstart, namelen, 0, &newlval);
1695 if (hextype == INT)
1696 {
1697 yylval.ssym.sym = sym;
1698 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1699 return NAME_OR_INT;
1700 }
1701 }
1702
1703 /* Any other kind of symbol */
1704 yylval.ssym.sym = sym;
1705 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1706 return NAME;
1707 }
1708 }
1709
1710 void
1711 yyerror (msg)
1712 char *msg;
1713 {
1714 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
1715 }
This page took 0.101057 seconds and 4 git commands to generate.