configure.in -- decide whether to configure gdb.hp; configure -- regenerated.
[deliverable/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1993, 1994, 1996, 1997
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* Parse a C expression from text in a string,
22 and return the result as a struct expression pointer.
23 That structure contains arithmetic operations in reverse polish,
24 with constants represented by operations that are followed by special data.
25 See expression.h for the details of the format.
26 What is important here is that it can be built up sequentially
27 during the process of parsing; the lower levels of the tree always
28 come first in the result.
29
30 Note that malloc's and realloc's in this file are transformed to
31 xmalloc and xrealloc respectively by the same sed command in the
32 makefile that remaps any other malloc/realloc inserted by the parser
33 generator. Doing this with #defines and trying to control the interaction
34 with include files (<malloc.h> and <stdlib.h> for example) just became
35 too messy, particularly when such includes can be inserted at random
36 times by the parser generator. */
37
38 %{
39
40 #include "defs.h"
41 #include "gdb_string.h"
42 #include <ctype.h>
43 #include "expression.h"
44 #include "value.h"
45 #include "parser-defs.h"
46 #include "language.h"
47 #include "c-lang.h"
48 #include "bfd.h" /* Required by objfiles.h. */
49 #include "symfile.h" /* Required by objfiles.h. */
50 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
51
52 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
53 as well as gratuitiously global symbol names, so we can have multiple
54 yacc generated parsers in gdb. Note that these are only the variables
55 produced by yacc. If other parser generators (bison, byacc, etc) produce
56 additional global names that conflict at link time, then those parser
57 generators need to be fixed instead of adding those names to this list. */
58
59 #define yymaxdepth c_maxdepth
60 #define yyparse c_parse
61 #define yylex c_lex
62 #define yyerror c_error
63 #define yylval c_lval
64 #define yychar c_char
65 #define yydebug c_debug
66 #define yypact c_pact
67 #define yyr1 c_r1
68 #define yyr2 c_r2
69 #define yydef c_def
70 #define yychk c_chk
71 #define yypgo c_pgo
72 #define yyact c_act
73 #define yyexca c_exca
74 #define yyerrflag c_errflag
75 #define yynerrs c_nerrs
76 #define yyps c_ps
77 #define yypv c_pv
78 #define yys c_s
79 #define yy_yys c_yys
80 #define yystate c_state
81 #define yytmp c_tmp
82 #define yyv c_v
83 #define yy_yyv c_yyv
84 #define yyval c_val
85 #define yylloc c_lloc
86 #define yyreds c_reds /* With YYDEBUG defined */
87 #define yytoks c_toks /* With YYDEBUG defined */
88 #define yylhs c_yylhs
89 #define yylen c_yylen
90 #define yydefred c_yydefred
91 #define yydgoto c_yydgoto
92 #define yysindex c_yysindex
93 #define yyrindex c_yyrindex
94 #define yygindex c_yygindex
95 #define yytable c_yytable
96 #define yycheck c_yycheck
97
98 #ifndef YYDEBUG
99 #define YYDEBUG 0 /* Default to no yydebug support */
100 #endif
101
102 int
103 yyparse PARAMS ((void));
104
105 static int
106 yylex PARAMS ((void));
107
108 void
109 yyerror PARAMS ((char *));
110
111 %}
112
113 /* Although the yacc "value" of an expression is not used,
114 since the result is stored in the structure being created,
115 other node types do have values. */
116
117 %union
118 {
119 LONGEST lval;
120 struct {
121 LONGEST val;
122 struct type *type;
123 } typed_val_int;
124 struct {
125 DOUBLEST dval;
126 struct type *type;
127 } typed_val_float;
128 struct symbol *sym;
129 struct type *tval;
130 struct stoken sval;
131 struct ttype tsym;
132 struct symtoken ssym;
133 int voidval;
134 struct block *bval;
135 enum exp_opcode opcode;
136 struct internalvar *ivar;
137
138 struct type **tvec;
139 int *ivec;
140 }
141
142 %{
143 /* YYSTYPE gets defined by %union */
144 static int
145 parse_number PARAMS ((char *, int, int, YYSTYPE *));
146 %}
147
148 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
149 %type <lval> rcurly
150 %type <tval> type typebase
151 %type <tvec> nonempty_typelist
152 /* %type <bval> block */
153
154 /* Fancy type parsing. */
155 %type <voidval> func_mod direct_abs_decl abs_decl
156 %type <tval> ptype
157 %type <lval> array_mod
158
159 %token <typed_val_int> INT
160 %token <typed_val_float> FLOAT
161
162 /* Both NAME and TYPENAME tokens represent symbols in the input,
163 and both convey their data as strings.
164 But a TYPENAME is a string that happens to be defined as a typedef
165 or builtin type name (such as int or char)
166 and a NAME is any other symbol.
167 Contexts where this distinction is not important can use the
168 nonterminal "name", which matches either NAME or TYPENAME. */
169
170 %token <sval> STRING
171 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
172 %token <tsym> TYPENAME
173 %type <sval> name
174 %type <ssym> name_not_typename
175 %type <tsym> typename
176
177 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
178 but which would parse as a valid number in the current input radix.
179 E.g. "c" when input_radix==16. Depending on the parse, it will be
180 turned into a name or into a number. */
181
182 %token <ssym> NAME_OR_INT
183
184 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
185 %token TEMPLATE
186 %token ERROR
187
188 /* Special type cases, put in to allow the parser to distinguish different
189 legal basetypes. */
190 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD
191
192 %token <voidval> VARIABLE
193
194 %token <opcode> ASSIGN_MODIFY
195
196 /* C++ */
197 %token THIS
198
199 %left ','
200 %left ABOVE_COMMA
201 %right '=' ASSIGN_MODIFY
202 %right '?'
203 %left OROR
204 %left ANDAND
205 %left '|'
206 %left '^'
207 %left '&'
208 %left EQUAL NOTEQUAL
209 %left '<' '>' LEQ GEQ
210 %left LSH RSH
211 %left '@'
212 %left '+' '-'
213 %left '*' '/' '%'
214 %right UNARY INCREMENT DECREMENT
215 %right ARROW '.' '[' '('
216 %token <ssym> BLOCKNAME
217 %token <bval> FILENAME
218 %type <bval> block
219 %left COLONCOLON
220
221 \f
222 %%
223
224 start : exp1
225 | type_exp
226 ;
227
228 type_exp: type
229 { write_exp_elt_opcode(OP_TYPE);
230 write_exp_elt_type($1);
231 write_exp_elt_opcode(OP_TYPE);}
232 ;
233
234 /* Expressions, including the comma operator. */
235 exp1 : exp
236 | exp1 ',' exp
237 { write_exp_elt_opcode (BINOP_COMMA); }
238 ;
239
240 /* Expressions, not including the comma operator. */
241 exp : '*' exp %prec UNARY
242 { write_exp_elt_opcode (UNOP_IND); }
243
244 exp : '&' exp %prec UNARY
245 { write_exp_elt_opcode (UNOP_ADDR); }
246
247 exp : '-' exp %prec UNARY
248 { write_exp_elt_opcode (UNOP_NEG); }
249 ;
250
251 exp : '!' exp %prec UNARY
252 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
253 ;
254
255 exp : '~' exp %prec UNARY
256 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
257 ;
258
259 exp : INCREMENT exp %prec UNARY
260 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
261 ;
262
263 exp : DECREMENT exp %prec UNARY
264 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
265 ;
266
267 exp : exp INCREMENT %prec UNARY
268 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
269 ;
270
271 exp : exp DECREMENT %prec UNARY
272 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
273 ;
274
275 exp : SIZEOF exp %prec UNARY
276 { write_exp_elt_opcode (UNOP_SIZEOF); }
277 ;
278
279 exp : exp ARROW name
280 { write_exp_elt_opcode (STRUCTOP_PTR);
281 write_exp_string ($3);
282 write_exp_elt_opcode (STRUCTOP_PTR); }
283 ;
284
285 exp : exp ARROW qualified_name
286 { /* exp->type::name becomes exp->*(&type::name) */
287 /* Note: this doesn't work if name is a
288 static member! FIXME */
289 write_exp_elt_opcode (UNOP_ADDR);
290 write_exp_elt_opcode (STRUCTOP_MPTR); }
291 ;
292 exp : exp ARROW '*' exp
293 { write_exp_elt_opcode (STRUCTOP_MPTR); }
294 ;
295
296 exp : exp '.' name
297 { write_exp_elt_opcode (STRUCTOP_STRUCT);
298 write_exp_string ($3);
299 write_exp_elt_opcode (STRUCTOP_STRUCT); }
300 ;
301
302 exp : exp '.' qualified_name
303 { /* exp.type::name becomes exp.*(&type::name) */
304 /* Note: this doesn't work if name is a
305 static member! FIXME */
306 write_exp_elt_opcode (UNOP_ADDR);
307 write_exp_elt_opcode (STRUCTOP_MEMBER); }
308 ;
309
310 exp : exp '.' '*' exp
311 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
312 ;
313
314 exp : exp '[' exp1 ']'
315 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
316 ;
317
318 exp : exp '('
319 /* This is to save the value of arglist_len
320 being accumulated by an outer function call. */
321 { start_arglist (); }
322 arglist ')' %prec ARROW
323 { write_exp_elt_opcode (OP_FUNCALL);
324 write_exp_elt_longcst ((LONGEST) end_arglist ());
325 write_exp_elt_opcode (OP_FUNCALL); }
326 ;
327
328 lcurly : '{'
329 { start_arglist (); }
330 ;
331
332 arglist :
333 ;
334
335 arglist : exp
336 { arglist_len = 1; }
337 ;
338
339 arglist : arglist ',' exp %prec ABOVE_COMMA
340 { arglist_len++; }
341 ;
342
343 rcurly : '}'
344 { $$ = end_arglist () - 1; }
345 ;
346 exp : lcurly arglist rcurly %prec ARROW
347 { write_exp_elt_opcode (OP_ARRAY);
348 write_exp_elt_longcst ((LONGEST) 0);
349 write_exp_elt_longcst ((LONGEST) $3);
350 write_exp_elt_opcode (OP_ARRAY); }
351 ;
352
353 exp : lcurly type rcurly exp %prec UNARY
354 { write_exp_elt_opcode (UNOP_MEMVAL);
355 write_exp_elt_type ($2);
356 write_exp_elt_opcode (UNOP_MEMVAL); }
357 ;
358
359 exp : '(' type ')' exp %prec UNARY
360 { write_exp_elt_opcode (UNOP_CAST);
361 write_exp_elt_type ($2);
362 write_exp_elt_opcode (UNOP_CAST); }
363 ;
364
365 exp : '(' exp1 ')'
366 { }
367 ;
368
369 /* Binary operators in order of decreasing precedence. */
370
371 exp : exp '@' exp
372 { write_exp_elt_opcode (BINOP_REPEAT); }
373 ;
374
375 exp : exp '*' exp
376 { write_exp_elt_opcode (BINOP_MUL); }
377 ;
378
379 exp : exp '/' exp
380 { write_exp_elt_opcode (BINOP_DIV); }
381 ;
382
383 exp : exp '%' exp
384 { write_exp_elt_opcode (BINOP_REM); }
385 ;
386
387 exp : exp '+' exp
388 { write_exp_elt_opcode (BINOP_ADD); }
389 ;
390
391 exp : exp '-' exp
392 { write_exp_elt_opcode (BINOP_SUB); }
393 ;
394
395 exp : exp LSH exp
396 { write_exp_elt_opcode (BINOP_LSH); }
397 ;
398
399 exp : exp RSH exp
400 { write_exp_elt_opcode (BINOP_RSH); }
401 ;
402
403 exp : exp EQUAL exp
404 { write_exp_elt_opcode (BINOP_EQUAL); }
405 ;
406
407 exp : exp NOTEQUAL exp
408 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
409 ;
410
411 exp : exp LEQ exp
412 { write_exp_elt_opcode (BINOP_LEQ); }
413 ;
414
415 exp : exp GEQ exp
416 { write_exp_elt_opcode (BINOP_GEQ); }
417 ;
418
419 exp : exp '<' exp
420 { write_exp_elt_opcode (BINOP_LESS); }
421 ;
422
423 exp : exp '>' exp
424 { write_exp_elt_opcode (BINOP_GTR); }
425 ;
426
427 exp : exp '&' exp
428 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
429 ;
430
431 exp : exp '^' exp
432 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
433 ;
434
435 exp : exp '|' exp
436 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
437 ;
438
439 exp : exp ANDAND exp
440 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
441 ;
442
443 exp : exp OROR exp
444 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
445 ;
446
447 exp : exp '?' exp ':' exp %prec '?'
448 { write_exp_elt_opcode (TERNOP_COND); }
449 ;
450
451 exp : exp '=' exp
452 { write_exp_elt_opcode (BINOP_ASSIGN); }
453 ;
454
455 exp : exp ASSIGN_MODIFY exp
456 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
457 write_exp_elt_opcode ($2);
458 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
459 ;
460
461 exp : INT
462 { write_exp_elt_opcode (OP_LONG);
463 write_exp_elt_type ($1.type);
464 write_exp_elt_longcst ((LONGEST)($1.val));
465 write_exp_elt_opcode (OP_LONG); }
466 ;
467
468 exp : NAME_OR_INT
469 { YYSTYPE val;
470 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
471 write_exp_elt_opcode (OP_LONG);
472 write_exp_elt_type (val.typed_val_int.type);
473 write_exp_elt_longcst ((LONGEST)val.typed_val_int.val);
474 write_exp_elt_opcode (OP_LONG);
475 }
476 ;
477
478
479 exp : FLOAT
480 { write_exp_elt_opcode (OP_DOUBLE);
481 write_exp_elt_type ($1.type);
482 write_exp_elt_dblcst ($1.dval);
483 write_exp_elt_opcode (OP_DOUBLE); }
484 ;
485
486 exp : variable
487 ;
488
489 exp : VARIABLE
490 /* Already written by write_dollar_variable. */
491 ;
492
493 exp : SIZEOF '(' type ')' %prec UNARY
494 { write_exp_elt_opcode (OP_LONG);
495 write_exp_elt_type (builtin_type_int);
496 CHECK_TYPEDEF ($3);
497 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
498 write_exp_elt_opcode (OP_LONG); }
499 ;
500
501 exp : STRING
502 { /* C strings are converted into array constants with
503 an explicit null byte added at the end. Thus
504 the array upper bound is the string length.
505 There is no such thing in C as a completely empty
506 string. */
507 char *sp = $1.ptr; int count = $1.length;
508 while (count-- > 0)
509 {
510 write_exp_elt_opcode (OP_LONG);
511 write_exp_elt_type (builtin_type_char);
512 write_exp_elt_longcst ((LONGEST)(*sp++));
513 write_exp_elt_opcode (OP_LONG);
514 }
515 write_exp_elt_opcode (OP_LONG);
516 write_exp_elt_type (builtin_type_char);
517 write_exp_elt_longcst ((LONGEST)'\0');
518 write_exp_elt_opcode (OP_LONG);
519 write_exp_elt_opcode (OP_ARRAY);
520 write_exp_elt_longcst ((LONGEST) 0);
521 write_exp_elt_longcst ((LONGEST) ($1.length));
522 write_exp_elt_opcode (OP_ARRAY); }
523 ;
524
525 /* C++. */
526 exp : THIS
527 { write_exp_elt_opcode (OP_THIS);
528 write_exp_elt_opcode (OP_THIS); }
529 ;
530
531 /* end of C++. */
532
533 block : BLOCKNAME
534 {
535 if ($1.sym)
536 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
537 else
538 error ("No file or function \"%s\".",
539 copy_name ($1.stoken));
540 }
541 | FILENAME
542 {
543 $$ = $1;
544 }
545 ;
546
547 block : block COLONCOLON name
548 { struct symbol *tem
549 = lookup_symbol (copy_name ($3), $1,
550 VAR_NAMESPACE, (int *) NULL,
551 (struct symtab **) NULL);
552 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
553 error ("No function \"%s\" in specified context.",
554 copy_name ($3));
555 $$ = SYMBOL_BLOCK_VALUE (tem); }
556 ;
557
558 variable: block COLONCOLON name
559 { struct symbol *sym;
560 sym = lookup_symbol (copy_name ($3), $1,
561 VAR_NAMESPACE, (int *) NULL,
562 (struct symtab **) NULL);
563 if (sym == 0)
564 error ("No symbol \"%s\" in specified context.",
565 copy_name ($3));
566
567 write_exp_elt_opcode (OP_VAR_VALUE);
568 /* block_found is set by lookup_symbol. */
569 write_exp_elt_block (block_found);
570 write_exp_elt_sym (sym);
571 write_exp_elt_opcode (OP_VAR_VALUE); }
572 ;
573
574 qualified_name: typebase COLONCOLON name
575 {
576 struct type *type = $1;
577 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
578 && TYPE_CODE (type) != TYPE_CODE_UNION)
579 error ("`%s' is not defined as an aggregate type.",
580 TYPE_NAME (type));
581
582 write_exp_elt_opcode (OP_SCOPE);
583 write_exp_elt_type (type);
584 write_exp_string ($3);
585 write_exp_elt_opcode (OP_SCOPE);
586 }
587 | typebase COLONCOLON '~' name
588 {
589 struct type *type = $1;
590 struct stoken tmp_token;
591 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
592 && TYPE_CODE (type) != TYPE_CODE_UNION)
593 error ("`%s' is not defined as an aggregate type.",
594 TYPE_NAME (type));
595
596 tmp_token.ptr = (char*) alloca ($4.length + 2);
597 tmp_token.length = $4.length + 1;
598 tmp_token.ptr[0] = '~';
599 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
600 tmp_token.ptr[tmp_token.length] = 0;
601
602 /* Check for valid destructor name. */
603 destructor_name_p (tmp_token.ptr, type);
604 write_exp_elt_opcode (OP_SCOPE);
605 write_exp_elt_type (type);
606 write_exp_string (tmp_token);
607 write_exp_elt_opcode (OP_SCOPE);
608 }
609 ;
610
611 variable: qualified_name
612 | COLONCOLON name
613 {
614 char *name = copy_name ($2);
615 struct symbol *sym;
616 struct minimal_symbol *msymbol;
617
618 sym =
619 lookup_symbol (name, (const struct block *) NULL,
620 VAR_NAMESPACE, (int *) NULL,
621 (struct symtab **) NULL);
622 if (sym)
623 {
624 write_exp_elt_opcode (OP_VAR_VALUE);
625 write_exp_elt_block (NULL);
626 write_exp_elt_sym (sym);
627 write_exp_elt_opcode (OP_VAR_VALUE);
628 break;
629 }
630
631 msymbol = lookup_minimal_symbol (name, NULL, NULL);
632 if (msymbol != NULL)
633 {
634 write_exp_msymbol (msymbol,
635 lookup_function_type (builtin_type_int),
636 builtin_type_int);
637 }
638 else
639 if (!have_full_symbols () && !have_partial_symbols ())
640 error ("No symbol table is loaded. Use the \"file\" command.");
641 else
642 error ("No symbol \"%s\" in current context.", name);
643 }
644 ;
645
646 variable: name_not_typename
647 { struct symbol *sym = $1.sym;
648
649 if (sym)
650 {
651 if (symbol_read_needs_frame (sym))
652 {
653 if (innermost_block == 0 ||
654 contained_in (block_found,
655 innermost_block))
656 innermost_block = block_found;
657 }
658
659 write_exp_elt_opcode (OP_VAR_VALUE);
660 /* We want to use the selected frame, not
661 another more inner frame which happens to
662 be in the same block. */
663 write_exp_elt_block (NULL);
664 write_exp_elt_sym (sym);
665 write_exp_elt_opcode (OP_VAR_VALUE);
666 }
667 else if ($1.is_a_field_of_this)
668 {
669 /* C++: it hangs off of `this'. Must
670 not inadvertently convert from a method call
671 to data ref. */
672 if (innermost_block == 0 ||
673 contained_in (block_found, innermost_block))
674 innermost_block = block_found;
675 write_exp_elt_opcode (OP_THIS);
676 write_exp_elt_opcode (OP_THIS);
677 write_exp_elt_opcode (STRUCTOP_PTR);
678 write_exp_string ($1.stoken);
679 write_exp_elt_opcode (STRUCTOP_PTR);
680 }
681 else
682 {
683 struct minimal_symbol *msymbol;
684 register char *arg = copy_name ($1.stoken);
685
686 msymbol =
687 lookup_minimal_symbol (arg, NULL, NULL);
688 if (msymbol != NULL)
689 {
690 write_exp_msymbol (msymbol,
691 lookup_function_type (builtin_type_int),
692 builtin_type_int);
693 }
694 else if (!have_full_symbols () && !have_partial_symbols ())
695 error ("No symbol table is loaded. Use the \"file\" command.");
696 else
697 error ("No symbol \"%s\" in current context.",
698 copy_name ($1.stoken));
699 }
700 }
701 ;
702
703
704 ptype : typebase
705 /* "const" and "volatile" are curently ignored. A type qualifier
706 before the type is currently handled in the typebase rule.
707 The reason for recognizing these here (shift/reduce conflicts)
708 might be obsolete now that some pointer to member rules have
709 been deleted. */
710 | typebase CONST_KEYWORD
711 | typebase VOLATILE_KEYWORD
712 | typebase abs_decl
713 { $$ = follow_types ($1); }
714 | typebase CONST_KEYWORD abs_decl
715 { $$ = follow_types ($1); }
716 | typebase VOLATILE_KEYWORD abs_decl
717 { $$ = follow_types ($1); }
718 ;
719
720 abs_decl: '*'
721 { push_type (tp_pointer); $$ = 0; }
722 | '*' abs_decl
723 { push_type (tp_pointer); $$ = $2; }
724 | '&'
725 { push_type (tp_reference); $$ = 0; }
726 | '&' abs_decl
727 { push_type (tp_reference); $$ = $2; }
728 | direct_abs_decl
729 ;
730
731 direct_abs_decl: '(' abs_decl ')'
732 { $$ = $2; }
733 | direct_abs_decl array_mod
734 {
735 push_type_int ($2);
736 push_type (tp_array);
737 }
738 | array_mod
739 {
740 push_type_int ($1);
741 push_type (tp_array);
742 $$ = 0;
743 }
744
745 | direct_abs_decl func_mod
746 { push_type (tp_function); }
747 | func_mod
748 { push_type (tp_function); }
749 ;
750
751 array_mod: '[' ']'
752 { $$ = -1; }
753 | '[' INT ']'
754 { $$ = $2.val; }
755 ;
756
757 func_mod: '(' ')'
758 { $$ = 0; }
759 | '(' nonempty_typelist ')'
760 { free ((PTR)$2); $$ = 0; }
761 ;
762
763 /* We used to try to recognize more pointer to member types here, but
764 that didn't work (shift/reduce conflicts meant that these rules never
765 got executed). The problem is that
766 int (foo::bar::baz::bizzle)
767 is a function type but
768 int (foo::bar::baz::bizzle::*)
769 is a pointer to member type. Stroustrup loses again! */
770
771 type : ptype
772 | typebase COLONCOLON '*'
773 { $$ = lookup_member_type (builtin_type_int, $1); }
774 ;
775
776 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
777 : TYPENAME
778 { $$ = $1.type; }
779 | INT_KEYWORD
780 { $$ = builtin_type_int; }
781 | LONG
782 { $$ = builtin_type_long; }
783 | SHORT
784 { $$ = builtin_type_short; }
785 | LONG INT_KEYWORD
786 { $$ = builtin_type_long; }
787 | UNSIGNED LONG INT_KEYWORD
788 { $$ = builtin_type_unsigned_long; }
789 | LONG LONG
790 { $$ = builtin_type_long_long; }
791 | LONG LONG INT_KEYWORD
792 { $$ = builtin_type_long_long; }
793 | UNSIGNED LONG LONG
794 { $$ = builtin_type_unsigned_long_long; }
795 | UNSIGNED LONG LONG INT_KEYWORD
796 { $$ = builtin_type_unsigned_long_long; }
797 | SHORT INT_KEYWORD
798 { $$ = builtin_type_short; }
799 | UNSIGNED SHORT INT_KEYWORD
800 { $$ = builtin_type_unsigned_short; }
801 | DOUBLE_KEYWORD
802 { $$ = builtin_type_double; }
803 | LONG DOUBLE_KEYWORD
804 { $$ = builtin_type_long_double; }
805 | STRUCT name
806 { $$ = lookup_struct (copy_name ($2),
807 expression_context_block); }
808 | CLASS name
809 { $$ = lookup_struct (copy_name ($2),
810 expression_context_block); }
811 | UNION name
812 { $$ = lookup_union (copy_name ($2),
813 expression_context_block); }
814 | ENUM name
815 { $$ = lookup_enum (copy_name ($2),
816 expression_context_block); }
817 | UNSIGNED typename
818 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
819 | UNSIGNED
820 { $$ = builtin_type_unsigned_int; }
821 | SIGNED_KEYWORD typename
822 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
823 | SIGNED_KEYWORD
824 { $$ = builtin_type_int; }
825 | TEMPLATE name '<' type '>'
826 { $$ = lookup_template_type(copy_name($2), $4,
827 expression_context_block);
828 }
829 /* "const" and "volatile" are curently ignored. A type qualifier
830 after the type is handled in the ptype rule. I think these could
831 be too. */
832 | CONST_KEYWORD typebase { $$ = $2; }
833 | VOLATILE_KEYWORD typebase { $$ = $2; }
834 ;
835
836 typename: TYPENAME
837 | INT_KEYWORD
838 {
839 $$.stoken.ptr = "int";
840 $$.stoken.length = 3;
841 $$.type = builtin_type_int;
842 }
843 | LONG
844 {
845 $$.stoken.ptr = "long";
846 $$.stoken.length = 4;
847 $$.type = builtin_type_long;
848 }
849 | SHORT
850 {
851 $$.stoken.ptr = "short";
852 $$.stoken.length = 5;
853 $$.type = builtin_type_short;
854 }
855 ;
856
857 nonempty_typelist
858 : type
859 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
860 $<ivec>$[0] = 1; /* Number of types in vector */
861 $$[1] = $1;
862 }
863 | nonempty_typelist ',' type
864 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
865 $$ = (struct type **) realloc ((char *) $1, len);
866 $$[$<ivec>$[0]] = $3;
867 }
868 ;
869
870 name : NAME { $$ = $1.stoken; }
871 | BLOCKNAME { $$ = $1.stoken; }
872 | TYPENAME { $$ = $1.stoken; }
873 | NAME_OR_INT { $$ = $1.stoken; }
874 ;
875
876 name_not_typename : NAME
877 | BLOCKNAME
878 /* These would be useful if name_not_typename was useful, but it is just
879 a fake for "variable", so these cause reduce/reduce conflicts because
880 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
881 =exp) or just an exp. If name_not_typename was ever used in an lvalue
882 context where only a name could occur, this might be useful.
883 | NAME_OR_INT
884 */
885 ;
886
887 %%
888
889 /* Take care of parsing a number (anything that starts with a digit).
890 Set yylval and return the token type; update lexptr.
891 LEN is the number of characters in it. */
892
893 /*** Needs some error checking for the float case ***/
894
895 static int
896 parse_number (p, len, parsed_float, putithere)
897 register char *p;
898 register int len;
899 int parsed_float;
900 YYSTYPE *putithere;
901 {
902 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
903 here, and we do kind of silly things like cast to unsigned. */
904 register LONGEST n = 0;
905 register LONGEST prevn = 0;
906 ULONGEST un;
907
908 register int i = 0;
909 register int c;
910 register int base = input_radix;
911 int unsigned_p = 0;
912
913 /* Number of "L" suffixes encountered. */
914 int long_p = 0;
915
916 /* We have found a "L" or "U" suffix. */
917 int found_suffix = 0;
918
919 ULONGEST high_bit;
920 struct type *signed_type;
921 struct type *unsigned_type;
922
923 if (parsed_float)
924 {
925 /* It's a float since it contains a point or an exponent. */
926 char c;
927 int num = 0; /* number of tokens scanned by scanf */
928 char saved_char = p[len];
929
930 p[len] = 0; /* null-terminate the token */
931 if (sizeof (putithere->typed_val_float.dval) <= sizeof (float))
932 num = sscanf (p, "%g%c", (float *) &putithere->typed_val_float.dval,&c);
933 else if (sizeof (putithere->typed_val_float.dval) <= sizeof (double))
934 num = sscanf (p, "%lg%c", (double *) &putithere->typed_val_float.dval,&c);
935 else
936 {
937 #ifdef SCANF_HAS_LONG_DOUBLE
938 num = sscanf (p, "%Lg%c", &putithere->typed_val_float.dval,&c);
939 #else
940 /* Scan it into a double, then assign it to the long double.
941 This at least wins with values representable in the range
942 of doubles. */
943 double temp;
944 num = sscanf (p, "%lg%c", &temp,&c);
945 putithere->typed_val_float.dval = temp;
946 #endif
947 }
948 p[len] = saved_char; /* restore the input stream */
949 if (num != 1) /* check scanf found ONLY a float ... */
950 return ERROR;
951 /* See if it has `f' or `l' suffix (float or long double). */
952
953 c = tolower (p[len - 1]);
954
955 if (c == 'f')
956 putithere->typed_val_float.type = builtin_type_float;
957 else if (c == 'l')
958 putithere->typed_val_float.type = builtin_type_long_double;
959 else if (isdigit (c) || c == '.')
960 putithere->typed_val_float.type = builtin_type_double;
961 else
962 return ERROR;
963
964 return FLOAT;
965 }
966
967 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
968 if (p[0] == '0')
969 switch (p[1])
970 {
971 case 'x':
972 case 'X':
973 if (len >= 3)
974 {
975 p += 2;
976 base = 16;
977 len -= 2;
978 }
979 break;
980
981 case 't':
982 case 'T':
983 case 'd':
984 case 'D':
985 if (len >= 3)
986 {
987 p += 2;
988 base = 10;
989 len -= 2;
990 }
991 break;
992
993 default:
994 base = 8;
995 break;
996 }
997
998 while (len-- > 0)
999 {
1000 c = *p++;
1001 if (c >= 'A' && c <= 'Z')
1002 c += 'a' - 'A';
1003 if (c != 'l' && c != 'u')
1004 n *= base;
1005 if (c >= '0' && c <= '9')
1006 {
1007 if (found_suffix)
1008 return ERROR;
1009 n += i = c - '0';
1010 }
1011 else
1012 {
1013 if (base > 10 && c >= 'a' && c <= 'f')
1014 {
1015 if (found_suffix)
1016 return ERROR;
1017 n += i = c - 'a' + 10;
1018 }
1019 else if (c == 'l')
1020 {
1021 ++long_p;
1022 found_suffix = 1;
1023 }
1024 else if (c == 'u')
1025 {
1026 unsigned_p = 1;
1027 found_suffix = 1;
1028 }
1029 else
1030 return ERROR; /* Char not a digit */
1031 }
1032 if (i >= base)
1033 return ERROR; /* Invalid digit in this base */
1034
1035 /* Portably test for overflow (only works for nonzero values, so make
1036 a second check for zero). FIXME: Can't we just make n and prevn
1037 unsigned and avoid this? */
1038 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1039 unsigned_p = 1; /* Try something unsigned */
1040
1041 /* Portably test for unsigned overflow.
1042 FIXME: This check is wrong; for example it doesn't find overflow
1043 on 0x123456789 when LONGEST is 32 bits. */
1044 if (c != 'l' && c != 'u' && n != 0)
1045 {
1046 if ((unsigned_p && (ULONGEST) prevn >= (ULONGEST) n))
1047 error ("Numeric constant too large.");
1048 }
1049 prevn = n;
1050 }
1051
1052 /* An integer constant is an int, a long, or a long long. An L
1053 suffix forces it to be long; an LL suffix forces it to be long
1054 long. If not forced to a larger size, it gets the first type of
1055 the above that it fits in. To figure out whether it fits, we
1056 shift it right and see whether anything remains. Note that we
1057 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1058 operation, because many compilers will warn about such a shift
1059 (which always produces a zero result). Sometimes TARGET_INT_BIT
1060 or TARGET_LONG_BIT will be that big, sometimes not. To deal with
1061 the case where it is we just always shift the value more than
1062 once, with fewer bits each time. */
1063
1064 un = (ULONGEST)n >> 2;
1065 if (long_p == 0
1066 && (un >> (TARGET_INT_BIT - 2)) == 0)
1067 {
1068 high_bit = ((ULONGEST)1) << (TARGET_INT_BIT-1);
1069
1070 /* A large decimal (not hex or octal) constant (between INT_MAX
1071 and UINT_MAX) is a long or unsigned long, according to ANSI,
1072 never an unsigned int, but this code treats it as unsigned
1073 int. This probably should be fixed. GCC gives a warning on
1074 such constants. */
1075
1076 unsigned_type = builtin_type_unsigned_int;
1077 signed_type = builtin_type_int;
1078 }
1079 else if (long_p <= 1
1080 && (un >> (TARGET_LONG_BIT - 2)) == 0)
1081 {
1082 high_bit = ((ULONGEST)1) << (TARGET_LONG_BIT-1);
1083 unsigned_type = builtin_type_unsigned_long;
1084 signed_type = builtin_type_long;
1085 }
1086 else
1087 {
1088 int shift;
1089 if (sizeof (ULONGEST) * HOST_CHAR_BIT < TARGET_LONG_LONG_BIT)
1090 /* A long long does not fit in a LONGEST. */
1091 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
1092 else
1093 shift = (TARGET_LONG_LONG_BIT - 1);
1094 high_bit = (ULONGEST) 1 << shift;
1095 unsigned_type = builtin_type_unsigned_long_long;
1096 signed_type = builtin_type_long_long;
1097 }
1098
1099 putithere->typed_val_int.val = n;
1100
1101 /* If the high bit of the worked out type is set then this number
1102 has to be unsigned. */
1103
1104 if (unsigned_p || (n & high_bit))
1105 {
1106 putithere->typed_val_int.type = unsigned_type;
1107 }
1108 else
1109 {
1110 putithere->typed_val_int.type = signed_type;
1111 }
1112
1113 return INT;
1114 }
1115
1116 struct token
1117 {
1118 char *operator;
1119 int token;
1120 enum exp_opcode opcode;
1121 };
1122
1123 static const struct token tokentab3[] =
1124 {
1125 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1126 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1127 };
1128
1129 static const struct token tokentab2[] =
1130 {
1131 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1132 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1133 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1134 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1135 {"%=", ASSIGN_MODIFY, BINOP_REM},
1136 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1137 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1138 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1139 {"++", INCREMENT, BINOP_END},
1140 {"--", DECREMENT, BINOP_END},
1141 {"->", ARROW, BINOP_END},
1142 {"&&", ANDAND, BINOP_END},
1143 {"||", OROR, BINOP_END},
1144 {"::", COLONCOLON, BINOP_END},
1145 {"<<", LSH, BINOP_END},
1146 {">>", RSH, BINOP_END},
1147 {"==", EQUAL, BINOP_END},
1148 {"!=", NOTEQUAL, BINOP_END},
1149 {"<=", LEQ, BINOP_END},
1150 {">=", GEQ, BINOP_END}
1151 };
1152
1153 /* Read one token, getting characters through lexptr. */
1154
1155 static int
1156 yylex ()
1157 {
1158 int c;
1159 int namelen;
1160 unsigned int i;
1161 char *tokstart;
1162 char *tokptr;
1163 int tempbufindex;
1164 static char *tempbuf;
1165 static int tempbufsize;
1166
1167 retry:
1168
1169 tokstart = lexptr;
1170 /* See if it is a special token of length 3. */
1171 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1172 if (STREQN (tokstart, tokentab3[i].operator, 3))
1173 {
1174 lexptr += 3;
1175 yylval.opcode = tokentab3[i].opcode;
1176 return tokentab3[i].token;
1177 }
1178
1179 /* See if it is a special token of length 2. */
1180 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1181 if (STREQN (tokstart, tokentab2[i].operator, 2))
1182 {
1183 lexptr += 2;
1184 yylval.opcode = tokentab2[i].opcode;
1185 return tokentab2[i].token;
1186 }
1187
1188 switch (c = *tokstart)
1189 {
1190 case 0:
1191 return 0;
1192
1193 case ' ':
1194 case '\t':
1195 case '\n':
1196 lexptr++;
1197 goto retry;
1198
1199 case '\'':
1200 /* We either have a character constant ('0' or '\177' for example)
1201 or we have a quoted symbol reference ('foo(int,int)' in C++
1202 for example). */
1203 lexptr++;
1204 c = *lexptr++;
1205 if (c == '\\')
1206 c = parse_escape (&lexptr);
1207 else if (c == '\'')
1208 error ("Empty character constant.");
1209
1210 yylval.typed_val_int.val = c;
1211 yylval.typed_val_int.type = builtin_type_char;
1212
1213 c = *lexptr++;
1214 if (c != '\'')
1215 {
1216 namelen = skip_quoted (tokstart) - tokstart;
1217 if (namelen > 2)
1218 {
1219 lexptr = tokstart + namelen;
1220 if (lexptr[-1] != '\'')
1221 error ("Unmatched single quote.");
1222 namelen -= 2;
1223 tokstart++;
1224 goto tryname;
1225 }
1226 error ("Invalid character constant.");
1227 }
1228 return INT;
1229
1230 case '(':
1231 paren_depth++;
1232 lexptr++;
1233 return c;
1234
1235 case ')':
1236 if (paren_depth == 0)
1237 return 0;
1238 paren_depth--;
1239 lexptr++;
1240 return c;
1241
1242 case ',':
1243 if (comma_terminates && paren_depth == 0)
1244 return 0;
1245 lexptr++;
1246 return c;
1247
1248 case '.':
1249 /* Might be a floating point number. */
1250 if (lexptr[1] < '0' || lexptr[1] > '9')
1251 goto symbol; /* Nope, must be a symbol. */
1252 /* FALL THRU into number case. */
1253
1254 case '0':
1255 case '1':
1256 case '2':
1257 case '3':
1258 case '4':
1259 case '5':
1260 case '6':
1261 case '7':
1262 case '8':
1263 case '9':
1264 {
1265 /* It's a number. */
1266 int got_dot = 0, got_e = 0, toktype;
1267 register char *p = tokstart;
1268 int hex = input_radix > 10;
1269
1270 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1271 {
1272 p += 2;
1273 hex = 1;
1274 }
1275 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1276 {
1277 p += 2;
1278 hex = 0;
1279 }
1280
1281 for (;; ++p)
1282 {
1283 /* This test includes !hex because 'e' is a valid hex digit
1284 and thus does not indicate a floating point number when
1285 the radix is hex. */
1286 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1287 got_dot = got_e = 1;
1288 /* This test does not include !hex, because a '.' always indicates
1289 a decimal floating point number regardless of the radix. */
1290 else if (!got_dot && *p == '.')
1291 got_dot = 1;
1292 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1293 && (*p == '-' || *p == '+'))
1294 /* This is the sign of the exponent, not the end of the
1295 number. */
1296 continue;
1297 /* We will take any letters or digits. parse_number will
1298 complain if past the radix, or if L or U are not final. */
1299 else if ((*p < '0' || *p > '9')
1300 && ((*p < 'a' || *p > 'z')
1301 && (*p < 'A' || *p > 'Z')))
1302 break;
1303 }
1304 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1305 if (toktype == ERROR)
1306 {
1307 char *err_copy = (char *) alloca (p - tokstart + 1);
1308
1309 memcpy (err_copy, tokstart, p - tokstart);
1310 err_copy[p - tokstart] = 0;
1311 error ("Invalid number \"%s\".", err_copy);
1312 }
1313 lexptr = p;
1314 return toktype;
1315 }
1316
1317 case '+':
1318 case '-':
1319 case '*':
1320 case '/':
1321 case '%':
1322 case '|':
1323 case '&':
1324 case '^':
1325 case '~':
1326 case '!':
1327 case '@':
1328 case '<':
1329 case '>':
1330 case '[':
1331 case ']':
1332 case '?':
1333 case ':':
1334 case '=':
1335 case '{':
1336 case '}':
1337 symbol:
1338 lexptr++;
1339 return c;
1340
1341 case '"':
1342
1343 /* Build the gdb internal form of the input string in tempbuf,
1344 translating any standard C escape forms seen. Note that the
1345 buffer is null byte terminated *only* for the convenience of
1346 debugging gdb itself and printing the buffer contents when
1347 the buffer contains no embedded nulls. Gdb does not depend
1348 upon the buffer being null byte terminated, it uses the length
1349 string instead. This allows gdb to handle C strings (as well
1350 as strings in other languages) with embedded null bytes */
1351
1352 tokptr = ++tokstart;
1353 tempbufindex = 0;
1354
1355 do {
1356 /* Grow the static temp buffer if necessary, including allocating
1357 the first one on demand. */
1358 if (tempbufindex + 1 >= tempbufsize)
1359 {
1360 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1361 }
1362 switch (*tokptr)
1363 {
1364 case '\0':
1365 case '"':
1366 /* Do nothing, loop will terminate. */
1367 break;
1368 case '\\':
1369 tokptr++;
1370 c = parse_escape (&tokptr);
1371 if (c == -1)
1372 {
1373 continue;
1374 }
1375 tempbuf[tempbufindex++] = c;
1376 break;
1377 default:
1378 tempbuf[tempbufindex++] = *tokptr++;
1379 break;
1380 }
1381 } while ((*tokptr != '"') && (*tokptr != '\0'));
1382 if (*tokptr++ != '"')
1383 {
1384 error ("Unterminated string in expression.");
1385 }
1386 tempbuf[tempbufindex] = '\0'; /* See note above */
1387 yylval.sval.ptr = tempbuf;
1388 yylval.sval.length = tempbufindex;
1389 lexptr = tokptr;
1390 return (STRING);
1391 }
1392
1393 if (!(c == '_' || c == '$'
1394 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1395 /* We must have come across a bad character (e.g. ';'). */
1396 error ("Invalid character '%c' in expression.", c);
1397
1398 /* It's a name. See how long it is. */
1399 namelen = 0;
1400 for (c = tokstart[namelen];
1401 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1402 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
1403 {
1404 /* Template parameter lists are part of the name.
1405 FIXME: This mishandles `print $a<4&&$a>3'. */
1406
1407 if (c == '<')
1408 {
1409 int i = namelen;
1410 int nesting_level = 1;
1411 while (tokstart[++i])
1412 {
1413 if (tokstart[i] == '<')
1414 nesting_level++;
1415 else if (tokstart[i] == '>')
1416 {
1417 if (--nesting_level == 0)
1418 break;
1419 }
1420 }
1421 if (tokstart[i] == '>')
1422 namelen = i;
1423 else
1424 break;
1425 }
1426 c = tokstart[++namelen];
1427 }
1428
1429 /* The token "if" terminates the expression and is NOT
1430 removed from the input stream. */
1431 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1432 {
1433 return 0;
1434 }
1435
1436 lexptr += namelen;
1437
1438 tryname:
1439
1440 /* Catch specific keywords. Should be done with a data structure. */
1441 switch (namelen)
1442 {
1443 case 8:
1444 if (STREQN (tokstart, "unsigned", 8))
1445 return UNSIGNED;
1446 if (current_language->la_language == language_cplus
1447 && STREQN (tokstart, "template", 8))
1448 return TEMPLATE;
1449 if (STREQN (tokstart, "volatile", 8))
1450 return VOLATILE_KEYWORD;
1451 break;
1452 case 6:
1453 if (STREQN (tokstart, "struct", 6))
1454 return STRUCT;
1455 if (STREQN (tokstart, "signed", 6))
1456 return SIGNED_KEYWORD;
1457 if (STREQN (tokstart, "sizeof", 6))
1458 return SIZEOF;
1459 if (STREQN (tokstart, "double", 6))
1460 return DOUBLE_KEYWORD;
1461 break;
1462 case 5:
1463 if (current_language->la_language == language_cplus
1464 && STREQN (tokstart, "class", 5))
1465 return CLASS;
1466 if (STREQN (tokstart, "union", 5))
1467 return UNION;
1468 if (STREQN (tokstart, "short", 5))
1469 return SHORT;
1470 if (STREQN (tokstart, "const", 5))
1471 return CONST_KEYWORD;
1472 break;
1473 case 4:
1474 if (STREQN (tokstart, "enum", 4))
1475 return ENUM;
1476 if (STREQN (tokstart, "long", 4))
1477 return LONG;
1478 if (current_language->la_language == language_cplus
1479 && STREQN (tokstart, "this", 4))
1480 {
1481 static const char this_name[] =
1482 { CPLUS_MARKER, 't', 'h', 'i', 's', '\0' };
1483
1484 if (lookup_symbol (this_name, expression_context_block,
1485 VAR_NAMESPACE, (int *) NULL,
1486 (struct symtab **) NULL))
1487 return THIS;
1488 }
1489 break;
1490 case 3:
1491 if (STREQN (tokstart, "int", 3))
1492 return INT_KEYWORD;
1493 break;
1494 default:
1495 break;
1496 }
1497
1498 yylval.sval.ptr = tokstart;
1499 yylval.sval.length = namelen;
1500
1501 if (*tokstart == '$')
1502 {
1503 write_dollar_variable (yylval.sval);
1504 return VARIABLE;
1505 }
1506
1507 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1508 functions or symtabs. If this is not so, then ...
1509 Use token-type TYPENAME for symbols that happen to be defined
1510 currently as names of types; NAME for other symbols.
1511 The caller is not constrained to care about the distinction. */
1512 {
1513 char *tmp = copy_name (yylval.sval);
1514 struct symbol *sym;
1515 int is_a_field_of_this = 0;
1516 int hextype;
1517
1518 sym = lookup_symbol (tmp, expression_context_block,
1519 VAR_NAMESPACE,
1520 current_language->la_language == language_cplus
1521 ? &is_a_field_of_this : (int *) NULL,
1522 (struct symtab **) NULL);
1523 /* Call lookup_symtab, not lookup_partial_symtab, in case there are
1524 no psymtabs (coff, xcoff, or some future change to blow away the
1525 psymtabs once once symbols are read). */
1526 if (sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
1527 {
1528 yylval.ssym.sym = sym;
1529 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1530 return BLOCKNAME;
1531 }
1532 else if (!sym)
1533 { /* See if it's a file name. */
1534 struct symtab *symtab;
1535
1536 symtab = lookup_symtab (tmp);
1537
1538 if (symtab)
1539 {
1540 yylval.bval = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), STATIC_BLOCK);
1541 return FILENAME;
1542 }
1543 }
1544
1545 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1546 {
1547 #if 1
1548 /* Despite the following flaw, we need to keep this code enabled.
1549 Because we can get called from check_stub_method, if we don't
1550 handle nested types then it screws many operations in any
1551 program which uses nested types. */
1552 /* In "A::x", if x is a member function of A and there happens
1553 to be a type (nested or not, since the stabs don't make that
1554 distinction) named x, then this code incorrectly thinks we
1555 are dealing with nested types rather than a member function. */
1556
1557 char *p;
1558 char *namestart;
1559 struct symbol *best_sym;
1560
1561 /* Look ahead to detect nested types. This probably should be
1562 done in the grammar, but trying seemed to introduce a lot
1563 of shift/reduce and reduce/reduce conflicts. It's possible
1564 that it could be done, though. Or perhaps a non-grammar, but
1565 less ad hoc, approach would work well. */
1566
1567 /* Since we do not currently have any way of distinguishing
1568 a nested type from a non-nested one (the stabs don't tell
1569 us whether a type is nested), we just ignore the
1570 containing type. */
1571
1572 p = lexptr;
1573 best_sym = sym;
1574 while (1)
1575 {
1576 /* Skip whitespace. */
1577 while (*p == ' ' || *p == '\t' || *p == '\n')
1578 ++p;
1579 if (*p == ':' && p[1] == ':')
1580 {
1581 /* Skip the `::'. */
1582 p += 2;
1583 /* Skip whitespace. */
1584 while (*p == ' ' || *p == '\t' || *p == '\n')
1585 ++p;
1586 namestart = p;
1587 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1588 || (*p >= 'a' && *p <= 'z')
1589 || (*p >= 'A' && *p <= 'Z'))
1590 ++p;
1591 if (p != namestart)
1592 {
1593 struct symbol *cur_sym;
1594 /* As big as the whole rest of the expression, which is
1595 at least big enough. */
1596 char *ncopy = alloca (strlen (tmp)+strlen (namestart)+3);
1597 char *tmp1;
1598
1599 tmp1 = ncopy;
1600 memcpy (tmp1, tmp, strlen (tmp));
1601 tmp1 += strlen (tmp);
1602 memcpy (tmp1, "::", 2);
1603 tmp1 += 2;
1604 memcpy (tmp1, namestart, p - namestart);
1605 tmp1[p - namestart] = '\0';
1606 cur_sym = lookup_symbol (ncopy, expression_context_block,
1607 VAR_NAMESPACE, (int *) NULL,
1608 (struct symtab **) NULL);
1609 if (cur_sym)
1610 {
1611 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1612 {
1613 best_sym = cur_sym;
1614 lexptr = p;
1615 }
1616 else
1617 break;
1618 }
1619 else
1620 break;
1621 }
1622 else
1623 break;
1624 }
1625 else
1626 break;
1627 }
1628
1629 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1630 #else /* not 0 */
1631 yylval.tsym.type = SYMBOL_TYPE (sym);
1632 #endif /* not 0 */
1633 return TYPENAME;
1634 }
1635 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1636 return TYPENAME;
1637
1638 /* Input names that aren't symbols but ARE valid hex numbers,
1639 when the input radix permits them, can be names or numbers
1640 depending on the parse. Note we support radixes > 16 here. */
1641 if (!sym &&
1642 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1643 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1644 {
1645 YYSTYPE newlval; /* Its value is ignored. */
1646 hextype = parse_number (tokstart, namelen, 0, &newlval);
1647 if (hextype == INT)
1648 {
1649 yylval.ssym.sym = sym;
1650 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1651 return NAME_OR_INT;
1652 }
1653 }
1654
1655 /* Any other kind of symbol */
1656 yylval.ssym.sym = sym;
1657 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1658 return NAME;
1659 }
1660 }
1661
1662 void
1663 yyerror (msg)
1664 char *msg;
1665 {
1666 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
1667 }
This page took 0.063589 seconds and 4 git commands to generate.