Workaround for gcc/45682.
[deliverable/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2003, 2004, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* Parse a C expression from text in a string,
22 and return the result as a struct expression pointer.
23 That structure contains arithmetic operations in reverse polish,
24 with constants represented by operations that are followed by special data.
25 See expression.h for the details of the format.
26 What is important here is that it can be built up sequentially
27 during the process of parsing; the lower levels of the tree always
28 come first in the result.
29
30 Note that malloc's and realloc's in this file are transformed to
31 xmalloc and xrealloc respectively by the same sed command in the
32 makefile that remaps any other malloc/realloc inserted by the parser
33 generator. Doing this with #defines and trying to control the interaction
34 with include files (<malloc.h> and <stdlib.h> for example) just became
35 too messy, particularly when such includes can be inserted at random
36 times by the parser generator. */
37
38 %{
39
40 #include "defs.h"
41 #include "gdb_string.h"
42 #include <ctype.h>
43 #include "expression.h"
44 #include "value.h"
45 #include "parser-defs.h"
46 #include "language.h"
47 #include "c-lang.h"
48 #include "bfd.h" /* Required by objfiles.h. */
49 #include "symfile.h" /* Required by objfiles.h. */
50 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
51 #include "charset.h"
52 #include "block.h"
53 #include "cp-support.h"
54 #include "dfp.h"
55 #include "gdb_assert.h"
56 #include "macroscope.h"
57
58 #define parse_type builtin_type (parse_gdbarch)
59
60 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
61 as well as gratuitiously global symbol names, so we can have multiple
62 yacc generated parsers in gdb. Note that these are only the variables
63 produced by yacc. If other parser generators (bison, byacc, etc) produce
64 additional global names that conflict at link time, then those parser
65 generators need to be fixed instead of adding those names to this list. */
66
67 #define yymaxdepth c_maxdepth
68 #define yyparse c_parse_internal
69 #define yylex c_lex
70 #define yyerror c_error
71 #define yylval c_lval
72 #define yychar c_char
73 #define yydebug c_debug
74 #define yypact c_pact
75 #define yyr1 c_r1
76 #define yyr2 c_r2
77 #define yydef c_def
78 #define yychk c_chk
79 #define yypgo c_pgo
80 #define yyact c_act
81 #define yyexca c_exca
82 #define yyerrflag c_errflag
83 #define yynerrs c_nerrs
84 #define yyps c_ps
85 #define yypv c_pv
86 #define yys c_s
87 #define yy_yys c_yys
88 #define yystate c_state
89 #define yytmp c_tmp
90 #define yyv c_v
91 #define yy_yyv c_yyv
92 #define yyval c_val
93 #define yylloc c_lloc
94 #define yyreds c_reds /* With YYDEBUG defined */
95 #define yytoks c_toks /* With YYDEBUG defined */
96 #define yyname c_name /* With YYDEBUG defined */
97 #define yyrule c_rule /* With YYDEBUG defined */
98 #define yylhs c_yylhs
99 #define yylen c_yylen
100 #define yydefred c_yydefred
101 #define yydgoto c_yydgoto
102 #define yysindex c_yysindex
103 #define yyrindex c_yyrindex
104 #define yygindex c_yygindex
105 #define yytable c_yytable
106 #define yycheck c_yycheck
107
108 #ifndef YYDEBUG
109 #define YYDEBUG 1 /* Default to yydebug support */
110 #endif
111
112 #define YYFPRINTF parser_fprintf
113
114 int yyparse (void);
115
116 static int yylex (void);
117
118 void yyerror (char *);
119
120 %}
121
122 /* Although the yacc "value" of an expression is not used,
123 since the result is stored in the structure being created,
124 other node types do have values. */
125
126 %union
127 {
128 LONGEST lval;
129 struct {
130 LONGEST val;
131 struct type *type;
132 } typed_val_int;
133 struct {
134 DOUBLEST dval;
135 struct type *type;
136 } typed_val_float;
137 struct {
138 gdb_byte val[16];
139 struct type *type;
140 } typed_val_decfloat;
141 struct symbol *sym;
142 struct type *tval;
143 struct stoken sval;
144 struct typed_stoken tsval;
145 struct ttype tsym;
146 struct symtoken ssym;
147 int voidval;
148 struct block *bval;
149 enum exp_opcode opcode;
150 struct internalvar *ivar;
151
152 struct stoken_vector svec;
153 struct type **tvec;
154 int *ivec;
155 }
156
157 %{
158 /* YYSTYPE gets defined by %union */
159 static int parse_number (char *, int, int, YYSTYPE *);
160 static struct stoken operator_stoken (const char *);
161 %}
162
163 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
164 %type <lval> rcurly
165 %type <tval> type typebase
166 %type <tvec> nonempty_typelist
167 /* %type <bval> block */
168
169 /* Fancy type parsing. */
170 %type <voidval> func_mod direct_abs_decl abs_decl
171 %type <tval> ptype
172 %type <lval> array_mod
173
174 %token <typed_val_int> INT
175 %token <typed_val_float> FLOAT
176 %token <typed_val_decfloat> DECFLOAT
177
178 /* Both NAME and TYPENAME tokens represent symbols in the input,
179 and both convey their data as strings.
180 But a TYPENAME is a string that happens to be defined as a typedef
181 or builtin type name (such as int or char)
182 and a NAME is any other symbol.
183 Contexts where this distinction is not important can use the
184 nonterminal "name", which matches either NAME or TYPENAME. */
185
186 %token <tsval> STRING
187 %token <tsval> CHAR
188 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
189 %token <ssym> UNKNOWN_CPP_NAME
190 %token <voidval> COMPLETE
191 %token <tsym> TYPENAME
192 %type <sval> name
193 %type <svec> string_exp
194 %type <ssym> name_not_typename
195 %type <tsym> typename
196
197 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
198 but which would parse as a valid number in the current input radix.
199 E.g. "c" when input_radix==16. Depending on the parse, it will be
200 turned into a name or into a number. */
201
202 %token <ssym> NAME_OR_INT
203
204 %token OPERATOR
205 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
206 %token TEMPLATE
207 %token ERROR
208 %token NEW DELETE
209 %type <sval> operator
210 %token REINTERPRET_CAST DYNAMIC_CAST STATIC_CAST CONST_CAST
211
212 /* Special type cases, put in to allow the parser to distinguish different
213 legal basetypes. */
214 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD
215
216 %token <sval> VARIABLE
217
218 %token <opcode> ASSIGN_MODIFY
219
220 /* C++ */
221 %token TRUEKEYWORD
222 %token FALSEKEYWORD
223
224
225 %left ','
226 %left ABOVE_COMMA
227 %right '=' ASSIGN_MODIFY
228 %right '?'
229 %left OROR
230 %left ANDAND
231 %left '|'
232 %left '^'
233 %left '&'
234 %left EQUAL NOTEQUAL
235 %left '<' '>' LEQ GEQ
236 %left LSH RSH
237 %left '@'
238 %left '+' '-'
239 %left '*' '/' '%'
240 %right UNARY INCREMENT DECREMENT
241 %right ARROW ARROW_STAR '.' DOT_STAR '[' '('
242 %token <ssym> BLOCKNAME
243 %token <bval> FILENAME
244 %type <bval> block
245 %left COLONCOLON
246
247 \f
248 %%
249
250 start : exp1
251 | type_exp
252 ;
253
254 type_exp: type
255 { write_exp_elt_opcode(OP_TYPE);
256 write_exp_elt_type($1);
257 write_exp_elt_opcode(OP_TYPE);}
258 ;
259
260 /* Expressions, including the comma operator. */
261 exp1 : exp
262 | exp1 ',' exp
263 { write_exp_elt_opcode (BINOP_COMMA); }
264 ;
265
266 /* Expressions, not including the comma operator. */
267 exp : '*' exp %prec UNARY
268 { write_exp_elt_opcode (UNOP_IND); }
269 ;
270
271 exp : '&' exp %prec UNARY
272 { write_exp_elt_opcode (UNOP_ADDR); }
273 ;
274
275 exp : '-' exp %prec UNARY
276 { write_exp_elt_opcode (UNOP_NEG); }
277 ;
278
279 exp : '+' exp %prec UNARY
280 { write_exp_elt_opcode (UNOP_PLUS); }
281 ;
282
283 exp : '!' exp %prec UNARY
284 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
285 ;
286
287 exp : '~' exp %prec UNARY
288 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
289 ;
290
291 exp : INCREMENT exp %prec UNARY
292 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
293 ;
294
295 exp : DECREMENT exp %prec UNARY
296 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
297 ;
298
299 exp : exp INCREMENT %prec UNARY
300 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
301 ;
302
303 exp : exp DECREMENT %prec UNARY
304 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
305 ;
306
307 exp : SIZEOF exp %prec UNARY
308 { write_exp_elt_opcode (UNOP_SIZEOF); }
309 ;
310
311 exp : exp ARROW name
312 { write_exp_elt_opcode (STRUCTOP_PTR);
313 write_exp_string ($3);
314 write_exp_elt_opcode (STRUCTOP_PTR); }
315 ;
316
317 exp : exp ARROW name COMPLETE
318 { mark_struct_expression ();
319 write_exp_elt_opcode (STRUCTOP_PTR);
320 write_exp_string ($3);
321 write_exp_elt_opcode (STRUCTOP_PTR); }
322 ;
323
324 exp : exp ARROW COMPLETE
325 { struct stoken s;
326 mark_struct_expression ();
327 write_exp_elt_opcode (STRUCTOP_PTR);
328 s.ptr = "";
329 s.length = 0;
330 write_exp_string (s);
331 write_exp_elt_opcode (STRUCTOP_PTR); }
332 ;
333
334 exp : exp ARROW qualified_name
335 { /* exp->type::name becomes exp->*(&type::name) */
336 /* Note: this doesn't work if name is a
337 static member! FIXME */
338 write_exp_elt_opcode (UNOP_ADDR);
339 write_exp_elt_opcode (STRUCTOP_MPTR); }
340 ;
341
342 exp : exp ARROW_STAR exp
343 { write_exp_elt_opcode (STRUCTOP_MPTR); }
344 ;
345
346 exp : exp '.' name
347 { write_exp_elt_opcode (STRUCTOP_STRUCT);
348 write_exp_string ($3);
349 write_exp_elt_opcode (STRUCTOP_STRUCT); }
350 ;
351
352 exp : exp '.' name COMPLETE
353 { mark_struct_expression ();
354 write_exp_elt_opcode (STRUCTOP_STRUCT);
355 write_exp_string ($3);
356 write_exp_elt_opcode (STRUCTOP_STRUCT); }
357 ;
358
359 exp : exp '.' COMPLETE
360 { struct stoken s;
361 mark_struct_expression ();
362 write_exp_elt_opcode (STRUCTOP_STRUCT);
363 s.ptr = "";
364 s.length = 0;
365 write_exp_string (s);
366 write_exp_elt_opcode (STRUCTOP_STRUCT); }
367 ;
368
369 exp : exp '.' qualified_name
370 { /* exp.type::name becomes exp.*(&type::name) */
371 /* Note: this doesn't work if name is a
372 static member! FIXME */
373 write_exp_elt_opcode (UNOP_ADDR);
374 write_exp_elt_opcode (STRUCTOP_MEMBER); }
375 ;
376
377 exp : exp DOT_STAR exp
378 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
379 ;
380
381 exp : exp '[' exp1 ']'
382 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
383 ;
384
385 exp : exp '('
386 /* This is to save the value of arglist_len
387 being accumulated by an outer function call. */
388 { start_arglist (); }
389 arglist ')' %prec ARROW
390 { write_exp_elt_opcode (OP_FUNCALL);
391 write_exp_elt_longcst ((LONGEST) end_arglist ());
392 write_exp_elt_opcode (OP_FUNCALL); }
393 ;
394
395 exp : UNKNOWN_CPP_NAME '('
396 {
397 /* This could potentially be a an argument defined
398 lookup function (Koenig). */
399 write_exp_elt_opcode (OP_ADL_FUNC);
400 write_exp_elt_block (expression_context_block);
401 write_exp_elt_sym (NULL); /* Placeholder. */
402 write_exp_string ($1.stoken);
403 write_exp_elt_opcode (OP_ADL_FUNC);
404
405 /* This is to save the value of arglist_len
406 being accumulated by an outer function call. */
407
408 start_arglist ();
409 }
410 arglist ')' %prec ARROW
411 {
412 write_exp_elt_opcode (OP_FUNCALL);
413 write_exp_elt_longcst ((LONGEST) end_arglist ());
414 write_exp_elt_opcode (OP_FUNCALL);
415 }
416 ;
417
418 lcurly : '{'
419 { start_arglist (); }
420 ;
421
422 arglist :
423 ;
424
425 arglist : exp
426 { arglist_len = 1; }
427 ;
428
429 arglist : arglist ',' exp %prec ABOVE_COMMA
430 { arglist_len++; }
431 ;
432
433 exp : exp '(' nonempty_typelist ')' const_or_volatile
434 { int i;
435 write_exp_elt_opcode (TYPE_INSTANCE);
436 write_exp_elt_longcst ((LONGEST) $<ivec>3[0]);
437 for (i = 0; i < $<ivec>3[0]; ++i)
438 write_exp_elt_type ($<tvec>3[i + 1]);
439 write_exp_elt_longcst((LONGEST) $<ivec>3[0]);
440 write_exp_elt_opcode (TYPE_INSTANCE);
441 free ($3);
442 }
443 ;
444
445 rcurly : '}'
446 { $$ = end_arglist () - 1; }
447 ;
448 exp : lcurly arglist rcurly %prec ARROW
449 { write_exp_elt_opcode (OP_ARRAY);
450 write_exp_elt_longcst ((LONGEST) 0);
451 write_exp_elt_longcst ((LONGEST) $3);
452 write_exp_elt_opcode (OP_ARRAY); }
453 ;
454
455 exp : lcurly type rcurly exp %prec UNARY
456 { write_exp_elt_opcode (UNOP_MEMVAL);
457 write_exp_elt_type ($2);
458 write_exp_elt_opcode (UNOP_MEMVAL); }
459 ;
460
461 exp : '(' type ')' exp %prec UNARY
462 { write_exp_elt_opcode (UNOP_CAST);
463 write_exp_elt_type ($2);
464 write_exp_elt_opcode (UNOP_CAST); }
465 ;
466
467 exp : '(' exp1 ')'
468 { }
469 ;
470
471 /* Binary operators in order of decreasing precedence. */
472
473 exp : exp '@' exp
474 { write_exp_elt_opcode (BINOP_REPEAT); }
475 ;
476
477 exp : exp '*' exp
478 { write_exp_elt_opcode (BINOP_MUL); }
479 ;
480
481 exp : exp '/' exp
482 { write_exp_elt_opcode (BINOP_DIV); }
483 ;
484
485 exp : exp '%' exp
486 { write_exp_elt_opcode (BINOP_REM); }
487 ;
488
489 exp : exp '+' exp
490 { write_exp_elt_opcode (BINOP_ADD); }
491 ;
492
493 exp : exp '-' exp
494 { write_exp_elt_opcode (BINOP_SUB); }
495 ;
496
497 exp : exp LSH exp
498 { write_exp_elt_opcode (BINOP_LSH); }
499 ;
500
501 exp : exp RSH exp
502 { write_exp_elt_opcode (BINOP_RSH); }
503 ;
504
505 exp : exp EQUAL exp
506 { write_exp_elt_opcode (BINOP_EQUAL); }
507 ;
508
509 exp : exp NOTEQUAL exp
510 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
511 ;
512
513 exp : exp LEQ exp
514 { write_exp_elt_opcode (BINOP_LEQ); }
515 ;
516
517 exp : exp GEQ exp
518 { write_exp_elt_opcode (BINOP_GEQ); }
519 ;
520
521 exp : exp '<' exp
522 { write_exp_elt_opcode (BINOP_LESS); }
523 ;
524
525 exp : exp '>' exp
526 { write_exp_elt_opcode (BINOP_GTR); }
527 ;
528
529 exp : exp '&' exp
530 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
531 ;
532
533 exp : exp '^' exp
534 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
535 ;
536
537 exp : exp '|' exp
538 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
539 ;
540
541 exp : exp ANDAND exp
542 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
543 ;
544
545 exp : exp OROR exp
546 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
547 ;
548
549 exp : exp '?' exp ':' exp %prec '?'
550 { write_exp_elt_opcode (TERNOP_COND); }
551 ;
552
553 exp : exp '=' exp
554 { write_exp_elt_opcode (BINOP_ASSIGN); }
555 ;
556
557 exp : exp ASSIGN_MODIFY exp
558 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
559 write_exp_elt_opcode ($2);
560 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
561 ;
562
563 exp : INT
564 { write_exp_elt_opcode (OP_LONG);
565 write_exp_elt_type ($1.type);
566 write_exp_elt_longcst ((LONGEST)($1.val));
567 write_exp_elt_opcode (OP_LONG); }
568 ;
569
570 exp : CHAR
571 {
572 struct stoken_vector vec;
573 vec.len = 1;
574 vec.tokens = &$1;
575 write_exp_string_vector ($1.type, &vec);
576 }
577 ;
578
579 exp : NAME_OR_INT
580 { YYSTYPE val;
581 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
582 write_exp_elt_opcode (OP_LONG);
583 write_exp_elt_type (val.typed_val_int.type);
584 write_exp_elt_longcst ((LONGEST)val.typed_val_int.val);
585 write_exp_elt_opcode (OP_LONG);
586 }
587 ;
588
589
590 exp : FLOAT
591 { write_exp_elt_opcode (OP_DOUBLE);
592 write_exp_elt_type ($1.type);
593 write_exp_elt_dblcst ($1.dval);
594 write_exp_elt_opcode (OP_DOUBLE); }
595 ;
596
597 exp : DECFLOAT
598 { write_exp_elt_opcode (OP_DECFLOAT);
599 write_exp_elt_type ($1.type);
600 write_exp_elt_decfloatcst ($1.val);
601 write_exp_elt_opcode (OP_DECFLOAT); }
602 ;
603
604 exp : variable
605 ;
606
607 exp : VARIABLE
608 {
609 write_dollar_variable ($1);
610 }
611 ;
612
613 exp : SIZEOF '(' type ')' %prec UNARY
614 { write_exp_elt_opcode (OP_LONG);
615 write_exp_elt_type (parse_type->builtin_int);
616 CHECK_TYPEDEF ($3);
617 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
618 write_exp_elt_opcode (OP_LONG); }
619 ;
620
621 exp : REINTERPRET_CAST '<' type '>' '(' exp ')' %prec UNARY
622 { write_exp_elt_opcode (UNOP_REINTERPRET_CAST);
623 write_exp_elt_type ($3);
624 write_exp_elt_opcode (UNOP_REINTERPRET_CAST); }
625 ;
626
627 exp : STATIC_CAST '<' type '>' '(' exp ')' %prec UNARY
628 { write_exp_elt_opcode (UNOP_CAST);
629 write_exp_elt_type ($3);
630 write_exp_elt_opcode (UNOP_CAST); }
631 ;
632
633 exp : DYNAMIC_CAST '<' type '>' '(' exp ')' %prec UNARY
634 { write_exp_elt_opcode (UNOP_DYNAMIC_CAST);
635 write_exp_elt_type ($3);
636 write_exp_elt_opcode (UNOP_DYNAMIC_CAST); }
637 ;
638
639 exp : CONST_CAST '<' type '>' '(' exp ')' %prec UNARY
640 { /* We could do more error checking here, but
641 it doesn't seem worthwhile. */
642 write_exp_elt_opcode (UNOP_CAST);
643 write_exp_elt_type ($3);
644 write_exp_elt_opcode (UNOP_CAST); }
645 ;
646
647 string_exp:
648 STRING
649 {
650 /* We copy the string here, and not in the
651 lexer, to guarantee that we do not leak a
652 string. Note that we follow the
653 NUL-termination convention of the
654 lexer. */
655 struct typed_stoken *vec = XNEW (struct typed_stoken);
656 $$.len = 1;
657 $$.tokens = vec;
658
659 vec->type = $1.type;
660 vec->length = $1.length;
661 vec->ptr = malloc ($1.length + 1);
662 memcpy (vec->ptr, $1.ptr, $1.length + 1);
663 }
664
665 | string_exp STRING
666 {
667 /* Note that we NUL-terminate here, but just
668 for convenience. */
669 char *p;
670 ++$$.len;
671 $$.tokens = realloc ($$.tokens,
672 $$.len * sizeof (struct typed_stoken));
673
674 p = malloc ($2.length + 1);
675 memcpy (p, $2.ptr, $2.length + 1);
676
677 $$.tokens[$$.len - 1].type = $2.type;
678 $$.tokens[$$.len - 1].length = $2.length;
679 $$.tokens[$$.len - 1].ptr = p;
680 }
681 ;
682
683 exp : string_exp
684 {
685 int i;
686 enum c_string_type type = C_STRING;
687
688 for (i = 0; i < $1.len; ++i)
689 {
690 switch ($1.tokens[i].type)
691 {
692 case C_STRING:
693 break;
694 case C_WIDE_STRING:
695 case C_STRING_16:
696 case C_STRING_32:
697 if (type != C_STRING
698 && type != $1.tokens[i].type)
699 error ("Undefined string concatenation.");
700 type = $1.tokens[i].type;
701 break;
702 default:
703 /* internal error */
704 internal_error (__FILE__, __LINE__,
705 "unrecognized type in string concatenation");
706 }
707 }
708
709 write_exp_string_vector (type, &$1);
710 for (i = 0; i < $1.len; ++i)
711 free ($1.tokens[i].ptr);
712 free ($1.tokens);
713 }
714 ;
715
716 /* C++. */
717 exp : TRUEKEYWORD
718 { write_exp_elt_opcode (OP_LONG);
719 write_exp_elt_type (parse_type->builtin_bool);
720 write_exp_elt_longcst ((LONGEST) 1);
721 write_exp_elt_opcode (OP_LONG); }
722 ;
723
724 exp : FALSEKEYWORD
725 { write_exp_elt_opcode (OP_LONG);
726 write_exp_elt_type (parse_type->builtin_bool);
727 write_exp_elt_longcst ((LONGEST) 0);
728 write_exp_elt_opcode (OP_LONG); }
729 ;
730
731 /* end of C++. */
732
733 block : BLOCKNAME
734 {
735 if ($1.sym)
736 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
737 else
738 error ("No file or function \"%s\".",
739 copy_name ($1.stoken));
740 }
741 | FILENAME
742 {
743 $$ = $1;
744 }
745 ;
746
747 block : block COLONCOLON name
748 { struct symbol *tem
749 = lookup_symbol (copy_name ($3), $1,
750 VAR_DOMAIN, (int *) NULL);
751 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
752 error ("No function \"%s\" in specified context.",
753 copy_name ($3));
754 $$ = SYMBOL_BLOCK_VALUE (tem); }
755 ;
756
757 variable: block COLONCOLON name
758 { struct symbol *sym;
759 sym = lookup_symbol (copy_name ($3), $1,
760 VAR_DOMAIN, (int *) NULL);
761 if (sym == 0)
762 error ("No symbol \"%s\" in specified context.",
763 copy_name ($3));
764
765 write_exp_elt_opcode (OP_VAR_VALUE);
766 /* block_found is set by lookup_symbol. */
767 write_exp_elt_block (block_found);
768 write_exp_elt_sym (sym);
769 write_exp_elt_opcode (OP_VAR_VALUE); }
770 ;
771
772 qualified_name: TYPENAME COLONCOLON name
773 {
774 struct type *type = $1.type;
775 CHECK_TYPEDEF (type);
776 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
777 && TYPE_CODE (type) != TYPE_CODE_UNION
778 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
779 error ("`%s' is not defined as an aggregate type.",
780 TYPE_NAME (type));
781
782 write_exp_elt_opcode (OP_SCOPE);
783 write_exp_elt_type (type);
784 write_exp_string ($3);
785 write_exp_elt_opcode (OP_SCOPE);
786 }
787 | TYPENAME COLONCOLON '~' name
788 {
789 struct type *type = $1.type;
790 struct stoken tmp_token;
791 CHECK_TYPEDEF (type);
792 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
793 && TYPE_CODE (type) != TYPE_CODE_UNION
794 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
795 error ("`%s' is not defined as an aggregate type.",
796 TYPE_NAME (type));
797
798 tmp_token.ptr = (char*) alloca ($4.length + 2);
799 tmp_token.length = $4.length + 1;
800 tmp_token.ptr[0] = '~';
801 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
802 tmp_token.ptr[tmp_token.length] = 0;
803
804 /* Check for valid destructor name. */
805 destructor_name_p (tmp_token.ptr, type);
806 write_exp_elt_opcode (OP_SCOPE);
807 write_exp_elt_type (type);
808 write_exp_string (tmp_token);
809 write_exp_elt_opcode (OP_SCOPE);
810 }
811 | TYPENAME COLONCOLON name COLONCOLON name
812 {
813 char *copy = copy_name ($3);
814 error (_("No type \"%s\" within class "
815 "or namespace \"%s\"."),
816 copy, TYPE_NAME ($1.type));
817 }
818 ;
819
820 variable: qualified_name
821 | COLONCOLON name_not_typename
822 {
823 char *name = copy_name ($2.stoken);
824 struct symbol *sym;
825 struct minimal_symbol *msymbol;
826
827 sym =
828 lookup_symbol (name, (const struct block *) NULL,
829 VAR_DOMAIN, (int *) NULL);
830 if (sym)
831 {
832 write_exp_elt_opcode (OP_VAR_VALUE);
833 write_exp_elt_block (NULL);
834 write_exp_elt_sym (sym);
835 write_exp_elt_opcode (OP_VAR_VALUE);
836 break;
837 }
838
839 msymbol = lookup_minimal_symbol (name, NULL, NULL);
840 if (msymbol != NULL)
841 write_exp_msymbol (msymbol);
842 else if (!have_full_symbols () && !have_partial_symbols ())
843 error ("No symbol table is loaded. Use the \"file\" command.");
844 else
845 error ("No symbol \"%s\" in current context.", name);
846 }
847 ;
848
849 variable: name_not_typename
850 { struct symbol *sym = $1.sym;
851
852 if (sym)
853 {
854 if (symbol_read_needs_frame (sym))
855 {
856 if (innermost_block == 0
857 || contained_in (block_found,
858 innermost_block))
859 innermost_block = block_found;
860 }
861
862 write_exp_elt_opcode (OP_VAR_VALUE);
863 /* We want to use the selected frame, not
864 another more inner frame which happens to
865 be in the same block. */
866 write_exp_elt_block (NULL);
867 write_exp_elt_sym (sym);
868 write_exp_elt_opcode (OP_VAR_VALUE);
869 }
870 else if ($1.is_a_field_of_this)
871 {
872 /* C++: it hangs off of `this'. Must
873 not inadvertently convert from a method call
874 to data ref. */
875 if (innermost_block == 0
876 || contained_in (block_found,
877 innermost_block))
878 innermost_block = block_found;
879 write_exp_elt_opcode (OP_THIS);
880 write_exp_elt_opcode (OP_THIS);
881 write_exp_elt_opcode (STRUCTOP_PTR);
882 write_exp_string ($1.stoken);
883 write_exp_elt_opcode (STRUCTOP_PTR);
884 }
885 else
886 {
887 struct minimal_symbol *msymbol;
888 char *arg = copy_name ($1.stoken);
889
890 msymbol =
891 lookup_minimal_symbol (arg, NULL, NULL);
892 if (msymbol != NULL)
893 write_exp_msymbol (msymbol);
894 else if (!have_full_symbols () && !have_partial_symbols ())
895 error ("No symbol table is loaded. Use the \"file\" command.");
896 else
897 error ("No symbol \"%s\" in current context.",
898 copy_name ($1.stoken));
899 }
900 }
901 ;
902
903 space_identifier : '@' NAME
904 { push_type_address_space (copy_name ($2.stoken));
905 push_type (tp_space_identifier);
906 }
907 ;
908
909 const_or_volatile: const_or_volatile_noopt
910 |
911 ;
912
913 cv_with_space_id : const_or_volatile space_identifier const_or_volatile
914 ;
915
916 const_or_volatile_or_space_identifier_noopt: cv_with_space_id
917 | const_or_volatile_noopt
918 ;
919
920 const_or_volatile_or_space_identifier:
921 const_or_volatile_or_space_identifier_noopt
922 |
923 ;
924
925 abs_decl: '*'
926 { push_type (tp_pointer); $$ = 0; }
927 | '*' abs_decl
928 { push_type (tp_pointer); $$ = $2; }
929 | '&'
930 { push_type (tp_reference); $$ = 0; }
931 | '&' abs_decl
932 { push_type (tp_reference); $$ = $2; }
933 | direct_abs_decl
934 ;
935
936 direct_abs_decl: '(' abs_decl ')'
937 { $$ = $2; }
938 | direct_abs_decl array_mod
939 {
940 push_type_int ($2);
941 push_type (tp_array);
942 }
943 | array_mod
944 {
945 push_type_int ($1);
946 push_type (tp_array);
947 $$ = 0;
948 }
949
950 | direct_abs_decl func_mod
951 { push_type (tp_function); }
952 | func_mod
953 { push_type (tp_function); }
954 ;
955
956 array_mod: '[' ']'
957 { $$ = -1; }
958 | '[' INT ']'
959 { $$ = $2.val; }
960 ;
961
962 func_mod: '(' ')'
963 { $$ = 0; }
964 | '(' nonempty_typelist ')'
965 { free ($2); $$ = 0; }
966 ;
967
968 /* We used to try to recognize pointer to member types here, but
969 that didn't work (shift/reduce conflicts meant that these rules never
970 got executed). The problem is that
971 int (foo::bar::baz::bizzle)
972 is a function type but
973 int (foo::bar::baz::bizzle::*)
974 is a pointer to member type. Stroustrup loses again! */
975
976 type : ptype
977 ;
978
979 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
980 : TYPENAME
981 { $$ = $1.type; }
982 | INT_KEYWORD
983 { $$ = parse_type->builtin_int; }
984 | LONG
985 { $$ = parse_type->builtin_long; }
986 | SHORT
987 { $$ = parse_type->builtin_short; }
988 | LONG INT_KEYWORD
989 { $$ = parse_type->builtin_long; }
990 | LONG SIGNED_KEYWORD INT_KEYWORD
991 { $$ = parse_type->builtin_long; }
992 | LONG SIGNED_KEYWORD
993 { $$ = parse_type->builtin_long; }
994 | SIGNED_KEYWORD LONG INT_KEYWORD
995 { $$ = parse_type->builtin_long; }
996 | UNSIGNED LONG INT_KEYWORD
997 { $$ = parse_type->builtin_unsigned_long; }
998 | LONG UNSIGNED INT_KEYWORD
999 { $$ = parse_type->builtin_unsigned_long; }
1000 | LONG UNSIGNED
1001 { $$ = parse_type->builtin_unsigned_long; }
1002 | LONG LONG
1003 { $$ = parse_type->builtin_long_long; }
1004 | LONG LONG INT_KEYWORD
1005 { $$ = parse_type->builtin_long_long; }
1006 | LONG LONG SIGNED_KEYWORD INT_KEYWORD
1007 { $$ = parse_type->builtin_long_long; }
1008 | LONG LONG SIGNED_KEYWORD
1009 { $$ = parse_type->builtin_long_long; }
1010 | SIGNED_KEYWORD LONG LONG
1011 { $$ = parse_type->builtin_long_long; }
1012 | SIGNED_KEYWORD LONG LONG INT_KEYWORD
1013 { $$ = parse_type->builtin_long_long; }
1014 | UNSIGNED LONG LONG
1015 { $$ = parse_type->builtin_unsigned_long_long; }
1016 | UNSIGNED LONG LONG INT_KEYWORD
1017 { $$ = parse_type->builtin_unsigned_long_long; }
1018 | LONG LONG UNSIGNED
1019 { $$ = parse_type->builtin_unsigned_long_long; }
1020 | LONG LONG UNSIGNED INT_KEYWORD
1021 { $$ = parse_type->builtin_unsigned_long_long; }
1022 | SHORT INT_KEYWORD
1023 { $$ = parse_type->builtin_short; }
1024 | SHORT SIGNED_KEYWORD INT_KEYWORD
1025 { $$ = parse_type->builtin_short; }
1026 | SHORT SIGNED_KEYWORD
1027 { $$ = parse_type->builtin_short; }
1028 | UNSIGNED SHORT INT_KEYWORD
1029 { $$ = parse_type->builtin_unsigned_short; }
1030 | SHORT UNSIGNED
1031 { $$ = parse_type->builtin_unsigned_short; }
1032 | SHORT UNSIGNED INT_KEYWORD
1033 { $$ = parse_type->builtin_unsigned_short; }
1034 | DOUBLE_KEYWORD
1035 { $$ = parse_type->builtin_double; }
1036 | LONG DOUBLE_KEYWORD
1037 { $$ = parse_type->builtin_long_double; }
1038 | STRUCT name
1039 { $$ = lookup_struct (copy_name ($2),
1040 expression_context_block); }
1041 | CLASS name
1042 { $$ = lookup_struct (copy_name ($2),
1043 expression_context_block); }
1044 | UNION name
1045 { $$ = lookup_union (copy_name ($2),
1046 expression_context_block); }
1047 | ENUM name
1048 { $$ = lookup_enum (copy_name ($2),
1049 expression_context_block); }
1050 | UNSIGNED typename
1051 { $$ = lookup_unsigned_typename (parse_language,
1052 parse_gdbarch,
1053 TYPE_NAME($2.type)); }
1054 | UNSIGNED
1055 { $$ = parse_type->builtin_unsigned_int; }
1056 | SIGNED_KEYWORD typename
1057 { $$ = lookup_signed_typename (parse_language,
1058 parse_gdbarch,
1059 TYPE_NAME($2.type)); }
1060 | SIGNED_KEYWORD
1061 { $$ = parse_type->builtin_int; }
1062 /* It appears that this rule for templates is never
1063 reduced; template recognition happens by lookahead
1064 in the token processing code in yylex. */
1065 | TEMPLATE name '<' type '>'
1066 { $$ = lookup_template_type(copy_name($2), $4,
1067 expression_context_block);
1068 }
1069 | const_or_volatile_or_space_identifier_noopt typebase
1070 { $$ = follow_types ($2); }
1071 | typebase const_or_volatile_or_space_identifier_noopt
1072 { $$ = follow_types ($1); }
1073 ;
1074
1075 typename: TYPENAME
1076 | INT_KEYWORD
1077 {
1078 $$.stoken.ptr = "int";
1079 $$.stoken.length = 3;
1080 $$.type = parse_type->builtin_int;
1081 }
1082 | LONG
1083 {
1084 $$.stoken.ptr = "long";
1085 $$.stoken.length = 4;
1086 $$.type = parse_type->builtin_long;
1087 }
1088 | SHORT
1089 {
1090 $$.stoken.ptr = "short";
1091 $$.stoken.length = 5;
1092 $$.type = parse_type->builtin_short;
1093 }
1094 ;
1095
1096 nonempty_typelist
1097 : type
1098 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
1099 $<ivec>$[0] = 1; /* Number of types in vector */
1100 $$[1] = $1;
1101 }
1102 | nonempty_typelist ',' type
1103 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
1104 $$ = (struct type **) realloc ((char *) $1, len);
1105 $$[$<ivec>$[0]] = $3;
1106 }
1107 ;
1108
1109 ptype : typebase
1110 | ptype const_or_volatile_or_space_identifier abs_decl const_or_volatile_or_space_identifier
1111 { $$ = follow_types ($1); }
1112 ;
1113
1114 const_and_volatile: CONST_KEYWORD VOLATILE_KEYWORD
1115 | VOLATILE_KEYWORD CONST_KEYWORD
1116 ;
1117
1118 const_or_volatile_noopt: const_and_volatile
1119 { push_type (tp_const);
1120 push_type (tp_volatile);
1121 }
1122 | CONST_KEYWORD
1123 { push_type (tp_const); }
1124 | VOLATILE_KEYWORD
1125 { push_type (tp_volatile); }
1126 ;
1127
1128 operator: OPERATOR NEW
1129 { $$ = operator_stoken (" new"); }
1130 | OPERATOR DELETE
1131 { $$ = operator_stoken (" delete"); }
1132 | OPERATOR NEW '[' ']'
1133 { $$ = operator_stoken (" new[]"); }
1134 | OPERATOR DELETE '[' ']'
1135 { $$ = operator_stoken (" delete[]"); }
1136 | OPERATOR '+'
1137 { $$ = operator_stoken ("+"); }
1138 | OPERATOR '-'
1139 { $$ = operator_stoken ("-"); }
1140 | OPERATOR '*'
1141 { $$ = operator_stoken ("*"); }
1142 | OPERATOR '/'
1143 { $$ = operator_stoken ("/"); }
1144 | OPERATOR '%'
1145 { $$ = operator_stoken ("%"); }
1146 | OPERATOR '^'
1147 { $$ = operator_stoken ("^"); }
1148 | OPERATOR '&'
1149 { $$ = operator_stoken ("&"); }
1150 | OPERATOR '|'
1151 { $$ = operator_stoken ("|"); }
1152 | OPERATOR '~'
1153 { $$ = operator_stoken ("~"); }
1154 | OPERATOR '!'
1155 { $$ = operator_stoken ("!"); }
1156 | OPERATOR '='
1157 { $$ = operator_stoken ("="); }
1158 | OPERATOR '<'
1159 { $$ = operator_stoken ("<"); }
1160 | OPERATOR '>'
1161 { $$ = operator_stoken (">"); }
1162 | OPERATOR ASSIGN_MODIFY
1163 { const char *op = "unknown";
1164 switch ($2)
1165 {
1166 case BINOP_RSH:
1167 op = ">>=";
1168 break;
1169 case BINOP_LSH:
1170 op = "<<=";
1171 break;
1172 case BINOP_ADD:
1173 op = "+=";
1174 break;
1175 case BINOP_SUB:
1176 op = "-=";
1177 break;
1178 case BINOP_MUL:
1179 op = "*=";
1180 break;
1181 case BINOP_DIV:
1182 op = "/=";
1183 break;
1184 case BINOP_REM:
1185 op = "%=";
1186 break;
1187 case BINOP_BITWISE_IOR:
1188 op = "|=";
1189 break;
1190 case BINOP_BITWISE_AND:
1191 op = "&=";
1192 break;
1193 case BINOP_BITWISE_XOR:
1194 op = "^=";
1195 break;
1196 default:
1197 break;
1198 }
1199
1200 $$ = operator_stoken (op);
1201 }
1202 | OPERATOR LSH
1203 { $$ = operator_stoken ("<<"); }
1204 | OPERATOR RSH
1205 { $$ = operator_stoken (">>"); }
1206 | OPERATOR EQUAL
1207 { $$ = operator_stoken ("=="); }
1208 | OPERATOR NOTEQUAL
1209 { $$ = operator_stoken ("!="); }
1210 | OPERATOR LEQ
1211 { $$ = operator_stoken ("<="); }
1212 | OPERATOR GEQ
1213 { $$ = operator_stoken (">="); }
1214 | OPERATOR ANDAND
1215 { $$ = operator_stoken ("&&"); }
1216 | OPERATOR OROR
1217 { $$ = operator_stoken ("||"); }
1218 | OPERATOR INCREMENT
1219 { $$ = operator_stoken ("++"); }
1220 | OPERATOR DECREMENT
1221 { $$ = operator_stoken ("--"); }
1222 | OPERATOR ','
1223 { $$ = operator_stoken (","); }
1224 | OPERATOR ARROW_STAR
1225 { $$ = operator_stoken ("->*"); }
1226 | OPERATOR ARROW
1227 { $$ = operator_stoken ("->"); }
1228 | OPERATOR '(' ')'
1229 { $$ = operator_stoken ("()"); }
1230 | OPERATOR '[' ']'
1231 { $$ = operator_stoken ("[]"); }
1232 | OPERATOR ptype
1233 { char *name;
1234 long length;
1235 struct ui_file *buf = mem_fileopen ();
1236
1237 c_print_type ($2, NULL, buf, -1, 0);
1238 name = ui_file_xstrdup (buf, &length);
1239 ui_file_delete (buf);
1240 $$ = operator_stoken (name);
1241 free (name);
1242 }
1243 ;
1244
1245
1246
1247 name : NAME { $$ = $1.stoken; }
1248 | BLOCKNAME { $$ = $1.stoken; }
1249 | TYPENAME { $$ = $1.stoken; }
1250 | NAME_OR_INT { $$ = $1.stoken; }
1251 | UNKNOWN_CPP_NAME { $$ = $1.stoken; }
1252 | operator { $$ = $1; }
1253 ;
1254
1255 name_not_typename : NAME
1256 | BLOCKNAME
1257 /* These would be useful if name_not_typename was useful, but it is just
1258 a fake for "variable", so these cause reduce/reduce conflicts because
1259 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
1260 =exp) or just an exp. If name_not_typename was ever used in an lvalue
1261 context where only a name could occur, this might be useful.
1262 | NAME_OR_INT
1263 */
1264 | operator
1265 {
1266 $$.stoken = $1;
1267 $$.sym = lookup_symbol ($1.ptr,
1268 expression_context_block,
1269 VAR_DOMAIN,
1270 &$$.is_a_field_of_this);
1271 }
1272 | UNKNOWN_CPP_NAME
1273 ;
1274
1275 %%
1276
1277 /* Returns a stoken of the operator name given by OP (which does not
1278 include the string "operator"). */
1279 static struct stoken
1280 operator_stoken (const char *op)
1281 {
1282 static const char *operator_string = "operator";
1283 struct stoken st = { NULL, 0 };
1284 st.length = strlen (operator_string) + strlen (op);
1285 st.ptr = malloc (st.length + 1);
1286 strcpy (st.ptr, operator_string);
1287 strcat (st.ptr, op);
1288
1289 /* The toplevel (c_parse) will free the memory allocated here. */
1290 make_cleanup (free, st.ptr);
1291 return st;
1292 };
1293
1294 /* Take care of parsing a number (anything that starts with a digit).
1295 Set yylval and return the token type; update lexptr.
1296 LEN is the number of characters in it. */
1297
1298 /*** Needs some error checking for the float case ***/
1299
1300 static int
1301 parse_number (char *p, int len, int parsed_float, YYSTYPE *putithere)
1302 {
1303 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
1304 here, and we do kind of silly things like cast to unsigned. */
1305 LONGEST n = 0;
1306 LONGEST prevn = 0;
1307 ULONGEST un;
1308
1309 int i = 0;
1310 int c;
1311 int base = input_radix;
1312 int unsigned_p = 0;
1313
1314 /* Number of "L" suffixes encountered. */
1315 int long_p = 0;
1316
1317 /* We have found a "L" or "U" suffix. */
1318 int found_suffix = 0;
1319
1320 ULONGEST high_bit;
1321 struct type *signed_type;
1322 struct type *unsigned_type;
1323
1324 if (parsed_float)
1325 {
1326 const char *suffix;
1327 int suffix_len;
1328
1329 /* If it ends at "df", "dd" or "dl", take it as type of decimal floating
1330 point. Return DECFLOAT. */
1331
1332 if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'f')
1333 {
1334 p[len - 2] = '\0';
1335 putithere->typed_val_decfloat.type
1336 = parse_type->builtin_decfloat;
1337 decimal_from_string (putithere->typed_val_decfloat.val, 4,
1338 gdbarch_byte_order (parse_gdbarch), p);
1339 p[len - 2] = 'd';
1340 return DECFLOAT;
1341 }
1342
1343 if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'd')
1344 {
1345 p[len - 2] = '\0';
1346 putithere->typed_val_decfloat.type
1347 = parse_type->builtin_decdouble;
1348 decimal_from_string (putithere->typed_val_decfloat.val, 8,
1349 gdbarch_byte_order (parse_gdbarch), p);
1350 p[len - 2] = 'd';
1351 return DECFLOAT;
1352 }
1353
1354 if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'l')
1355 {
1356 p[len - 2] = '\0';
1357 putithere->typed_val_decfloat.type
1358 = parse_type->builtin_declong;
1359 decimal_from_string (putithere->typed_val_decfloat.val, 16,
1360 gdbarch_byte_order (parse_gdbarch), p);
1361 p[len - 2] = 'd';
1362 return DECFLOAT;
1363 }
1364
1365 if (! parse_c_float (parse_gdbarch, p, len,
1366 &putithere->typed_val_float.dval,
1367 &putithere->typed_val_float.type))
1368 return ERROR;
1369 return FLOAT;
1370 }
1371
1372 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
1373 if (p[0] == '0')
1374 switch (p[1])
1375 {
1376 case 'x':
1377 case 'X':
1378 if (len >= 3)
1379 {
1380 p += 2;
1381 base = 16;
1382 len -= 2;
1383 }
1384 break;
1385
1386 case 'b':
1387 case 'B':
1388 if (len >= 3)
1389 {
1390 p += 2;
1391 base = 2;
1392 len -= 2;
1393 }
1394 break;
1395
1396 case 't':
1397 case 'T':
1398 case 'd':
1399 case 'D':
1400 if (len >= 3)
1401 {
1402 p += 2;
1403 base = 10;
1404 len -= 2;
1405 }
1406 break;
1407
1408 default:
1409 base = 8;
1410 break;
1411 }
1412
1413 while (len-- > 0)
1414 {
1415 c = *p++;
1416 if (c >= 'A' && c <= 'Z')
1417 c += 'a' - 'A';
1418 if (c != 'l' && c != 'u')
1419 n *= base;
1420 if (c >= '0' && c <= '9')
1421 {
1422 if (found_suffix)
1423 return ERROR;
1424 n += i = c - '0';
1425 }
1426 else
1427 {
1428 if (base > 10 && c >= 'a' && c <= 'f')
1429 {
1430 if (found_suffix)
1431 return ERROR;
1432 n += i = c - 'a' + 10;
1433 }
1434 else if (c == 'l')
1435 {
1436 ++long_p;
1437 found_suffix = 1;
1438 }
1439 else if (c == 'u')
1440 {
1441 unsigned_p = 1;
1442 found_suffix = 1;
1443 }
1444 else
1445 return ERROR; /* Char not a digit */
1446 }
1447 if (i >= base)
1448 return ERROR; /* Invalid digit in this base */
1449
1450 /* Portably test for overflow (only works for nonzero values, so make
1451 a second check for zero). FIXME: Can't we just make n and prevn
1452 unsigned and avoid this? */
1453 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1454 unsigned_p = 1; /* Try something unsigned */
1455
1456 /* Portably test for unsigned overflow.
1457 FIXME: This check is wrong; for example it doesn't find overflow
1458 on 0x123456789 when LONGEST is 32 bits. */
1459 if (c != 'l' && c != 'u' && n != 0)
1460 {
1461 if ((unsigned_p && (ULONGEST) prevn >= (ULONGEST) n))
1462 error ("Numeric constant too large.");
1463 }
1464 prevn = n;
1465 }
1466
1467 /* An integer constant is an int, a long, or a long long. An L
1468 suffix forces it to be long; an LL suffix forces it to be long
1469 long. If not forced to a larger size, it gets the first type of
1470 the above that it fits in. To figure out whether it fits, we
1471 shift it right and see whether anything remains. Note that we
1472 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1473 operation, because many compilers will warn about such a shift
1474 (which always produces a zero result). Sometimes gdbarch_int_bit
1475 or gdbarch_long_bit will be that big, sometimes not. To deal with
1476 the case where it is we just always shift the value more than
1477 once, with fewer bits each time. */
1478
1479 un = (ULONGEST)n >> 2;
1480 if (long_p == 0
1481 && (un >> (gdbarch_int_bit (parse_gdbarch) - 2)) == 0)
1482 {
1483 high_bit = ((ULONGEST)1) << (gdbarch_int_bit (parse_gdbarch) - 1);
1484
1485 /* A large decimal (not hex or octal) constant (between INT_MAX
1486 and UINT_MAX) is a long or unsigned long, according to ANSI,
1487 never an unsigned int, but this code treats it as unsigned
1488 int. This probably should be fixed. GCC gives a warning on
1489 such constants. */
1490
1491 unsigned_type = parse_type->builtin_unsigned_int;
1492 signed_type = parse_type->builtin_int;
1493 }
1494 else if (long_p <= 1
1495 && (un >> (gdbarch_long_bit (parse_gdbarch) - 2)) == 0)
1496 {
1497 high_bit = ((ULONGEST)1) << (gdbarch_long_bit (parse_gdbarch) - 1);
1498 unsigned_type = parse_type->builtin_unsigned_long;
1499 signed_type = parse_type->builtin_long;
1500 }
1501 else
1502 {
1503 int shift;
1504 if (sizeof (ULONGEST) * HOST_CHAR_BIT
1505 < gdbarch_long_long_bit (parse_gdbarch))
1506 /* A long long does not fit in a LONGEST. */
1507 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
1508 else
1509 shift = (gdbarch_long_long_bit (parse_gdbarch) - 1);
1510 high_bit = (ULONGEST) 1 << shift;
1511 unsigned_type = parse_type->builtin_unsigned_long_long;
1512 signed_type = parse_type->builtin_long_long;
1513 }
1514
1515 putithere->typed_val_int.val = n;
1516
1517 /* If the high bit of the worked out type is set then this number
1518 has to be unsigned. */
1519
1520 if (unsigned_p || (n & high_bit))
1521 {
1522 putithere->typed_val_int.type = unsigned_type;
1523 }
1524 else
1525 {
1526 putithere->typed_val_int.type = signed_type;
1527 }
1528
1529 return INT;
1530 }
1531
1532 /* Temporary obstack used for holding strings. */
1533 static struct obstack tempbuf;
1534 static int tempbuf_init;
1535
1536 /* Parse a C escape sequence. The initial backslash of the sequence
1537 is at (*PTR)[-1]. *PTR will be updated to point to just after the
1538 last character of the sequence. If OUTPUT is not NULL, the
1539 translated form of the escape sequence will be written there. If
1540 OUTPUT is NULL, no output is written and the call will only affect
1541 *PTR. If an escape sequence is expressed in target bytes, then the
1542 entire sequence will simply be copied to OUTPUT. Return 1 if any
1543 character was emitted, 0 otherwise. */
1544
1545 int
1546 c_parse_escape (char **ptr, struct obstack *output)
1547 {
1548 char *tokptr = *ptr;
1549 int result = 1;
1550
1551 /* Some escape sequences undergo character set conversion. Those we
1552 translate here. */
1553 switch (*tokptr)
1554 {
1555 /* Hex escapes do not undergo character set conversion, so keep
1556 the escape sequence for later. */
1557 case 'x':
1558 if (output)
1559 obstack_grow_str (output, "\\x");
1560 ++tokptr;
1561 if (!isxdigit (*tokptr))
1562 error (_("\\x escape without a following hex digit"));
1563 while (isxdigit (*tokptr))
1564 {
1565 if (output)
1566 obstack_1grow (output, *tokptr);
1567 ++tokptr;
1568 }
1569 break;
1570
1571 /* Octal escapes do not undergo character set conversion, so
1572 keep the escape sequence for later. */
1573 case '0':
1574 case '1':
1575 case '2':
1576 case '3':
1577 case '4':
1578 case '5':
1579 case '6':
1580 case '7':
1581 {
1582 int i;
1583 if (output)
1584 obstack_grow_str (output, "\\");
1585 for (i = 0;
1586 i < 3 && isdigit (*tokptr) && *tokptr != '8' && *tokptr != '9';
1587 ++i)
1588 {
1589 if (output)
1590 obstack_1grow (output, *tokptr);
1591 ++tokptr;
1592 }
1593 }
1594 break;
1595
1596 /* We handle UCNs later. We could handle them here, but that
1597 would mean a spurious error in the case where the UCN could
1598 be converted to the target charset but not the host
1599 charset. */
1600 case 'u':
1601 case 'U':
1602 {
1603 char c = *tokptr;
1604 int i, len = c == 'U' ? 8 : 4;
1605 if (output)
1606 {
1607 obstack_1grow (output, '\\');
1608 obstack_1grow (output, *tokptr);
1609 }
1610 ++tokptr;
1611 if (!isxdigit (*tokptr))
1612 error (_("\\%c escape without a following hex digit"), c);
1613 for (i = 0; i < len && isxdigit (*tokptr); ++i)
1614 {
1615 if (output)
1616 obstack_1grow (output, *tokptr);
1617 ++tokptr;
1618 }
1619 }
1620 break;
1621
1622 /* We must pass backslash through so that it does not
1623 cause quoting during the second expansion. */
1624 case '\\':
1625 if (output)
1626 obstack_grow_str (output, "\\\\");
1627 ++tokptr;
1628 break;
1629
1630 /* Escapes which undergo conversion. */
1631 case 'a':
1632 if (output)
1633 obstack_1grow (output, '\a');
1634 ++tokptr;
1635 break;
1636 case 'b':
1637 if (output)
1638 obstack_1grow (output, '\b');
1639 ++tokptr;
1640 break;
1641 case 'f':
1642 if (output)
1643 obstack_1grow (output, '\f');
1644 ++tokptr;
1645 break;
1646 case 'n':
1647 if (output)
1648 obstack_1grow (output, '\n');
1649 ++tokptr;
1650 break;
1651 case 'r':
1652 if (output)
1653 obstack_1grow (output, '\r');
1654 ++tokptr;
1655 break;
1656 case 't':
1657 if (output)
1658 obstack_1grow (output, '\t');
1659 ++tokptr;
1660 break;
1661 case 'v':
1662 if (output)
1663 obstack_1grow (output, '\v');
1664 ++tokptr;
1665 break;
1666
1667 /* GCC extension. */
1668 case 'e':
1669 if (output)
1670 obstack_1grow (output, HOST_ESCAPE_CHAR);
1671 ++tokptr;
1672 break;
1673
1674 /* Backslash-newline expands to nothing at all. */
1675 case '\n':
1676 ++tokptr;
1677 result = 0;
1678 break;
1679
1680 /* A few escapes just expand to the character itself. */
1681 case '\'':
1682 case '\"':
1683 case '?':
1684 /* GCC extensions. */
1685 case '(':
1686 case '{':
1687 case '[':
1688 case '%':
1689 /* Unrecognized escapes turn into the character itself. */
1690 default:
1691 if (output)
1692 obstack_1grow (output, *tokptr);
1693 ++tokptr;
1694 break;
1695 }
1696 *ptr = tokptr;
1697 return result;
1698 }
1699
1700 /* Parse a string or character literal from TOKPTR. The string or
1701 character may be wide or unicode. *OUTPTR is set to just after the
1702 end of the literal in the input string. The resulting token is
1703 stored in VALUE. This returns a token value, either STRING or
1704 CHAR, depending on what was parsed. *HOST_CHARS is set to the
1705 number of host characters in the literal. */
1706 static int
1707 parse_string_or_char (char *tokptr, char **outptr, struct typed_stoken *value,
1708 int *host_chars)
1709 {
1710 int quote;
1711 enum c_string_type type;
1712
1713 /* Build the gdb internal form of the input string in tempbuf. Note
1714 that the buffer is null byte terminated *only* for the
1715 convenience of debugging gdb itself and printing the buffer
1716 contents when the buffer contains no embedded nulls. Gdb does
1717 not depend upon the buffer being null byte terminated, it uses
1718 the length string instead. This allows gdb to handle C strings
1719 (as well as strings in other languages) with embedded null
1720 bytes */
1721
1722 if (!tempbuf_init)
1723 tempbuf_init = 1;
1724 else
1725 obstack_free (&tempbuf, NULL);
1726 obstack_init (&tempbuf);
1727
1728 /* Record the string type. */
1729 if (*tokptr == 'L')
1730 {
1731 type = C_WIDE_STRING;
1732 ++tokptr;
1733 }
1734 else if (*tokptr == 'u')
1735 {
1736 type = C_STRING_16;
1737 ++tokptr;
1738 }
1739 else if (*tokptr == 'U')
1740 {
1741 type = C_STRING_32;
1742 ++tokptr;
1743 }
1744 else
1745 type = C_STRING;
1746
1747 /* Skip the quote. */
1748 quote = *tokptr;
1749 if (quote == '\'')
1750 type |= C_CHAR;
1751 ++tokptr;
1752
1753 *host_chars = 0;
1754
1755 while (*tokptr)
1756 {
1757 char c = *tokptr;
1758 if (c == '\\')
1759 {
1760 ++tokptr;
1761 *host_chars += c_parse_escape (&tokptr, &tempbuf);
1762 }
1763 else if (c == quote)
1764 break;
1765 else
1766 {
1767 obstack_1grow (&tempbuf, c);
1768 ++tokptr;
1769 /* FIXME: this does the wrong thing with multi-byte host
1770 characters. We could use mbrlen here, but that would
1771 make "set host-charset" a bit less useful. */
1772 ++*host_chars;
1773 }
1774 }
1775
1776 if (*tokptr != quote)
1777 {
1778 if (quote == '"')
1779 error ("Unterminated string in expression.");
1780 else
1781 error ("Unmatched single quote.");
1782 }
1783 ++tokptr;
1784
1785 value->type = type;
1786 value->ptr = obstack_base (&tempbuf);
1787 value->length = obstack_object_size (&tempbuf);
1788
1789 *outptr = tokptr;
1790
1791 return quote == '"' ? STRING : CHAR;
1792 }
1793
1794 struct token
1795 {
1796 char *operator;
1797 int token;
1798 enum exp_opcode opcode;
1799 int cxx_only;
1800 };
1801
1802 static const struct token tokentab3[] =
1803 {
1804 {">>=", ASSIGN_MODIFY, BINOP_RSH, 0},
1805 {"<<=", ASSIGN_MODIFY, BINOP_LSH, 0},
1806 {"->*", ARROW_STAR, BINOP_END, 1}
1807 };
1808
1809 static const struct token tokentab2[] =
1810 {
1811 {"+=", ASSIGN_MODIFY, BINOP_ADD, 0},
1812 {"-=", ASSIGN_MODIFY, BINOP_SUB, 0},
1813 {"*=", ASSIGN_MODIFY, BINOP_MUL, 0},
1814 {"/=", ASSIGN_MODIFY, BINOP_DIV, 0},
1815 {"%=", ASSIGN_MODIFY, BINOP_REM, 0},
1816 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR, 0},
1817 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND, 0},
1818 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR, 0},
1819 {"++", INCREMENT, BINOP_END, 0},
1820 {"--", DECREMENT, BINOP_END, 0},
1821 {"->", ARROW, BINOP_END, 0},
1822 {"&&", ANDAND, BINOP_END, 0},
1823 {"||", OROR, BINOP_END, 0},
1824 /* "::" is *not* only C++: gdb overrides its meaning in several
1825 different ways, e.g., 'filename'::func, function::variable. */
1826 {"::", COLONCOLON, BINOP_END, 0},
1827 {"<<", LSH, BINOP_END, 0},
1828 {">>", RSH, BINOP_END, 0},
1829 {"==", EQUAL, BINOP_END, 0},
1830 {"!=", NOTEQUAL, BINOP_END, 0},
1831 {"<=", LEQ, BINOP_END, 0},
1832 {">=", GEQ, BINOP_END, 0},
1833 {".*", DOT_STAR, BINOP_END, 1}
1834 };
1835
1836 /* Identifier-like tokens. */
1837 static const struct token ident_tokens[] =
1838 {
1839 {"unsigned", UNSIGNED, OP_NULL, 0},
1840 {"template", TEMPLATE, OP_NULL, 1},
1841 {"volatile", VOLATILE_KEYWORD, OP_NULL, 0},
1842 {"struct", STRUCT, OP_NULL, 0},
1843 {"signed", SIGNED_KEYWORD, OP_NULL, 0},
1844 {"sizeof", SIZEOF, OP_NULL, 0},
1845 {"double", DOUBLE_KEYWORD, OP_NULL, 0},
1846 {"false", FALSEKEYWORD, OP_NULL, 1},
1847 {"class", CLASS, OP_NULL, 1},
1848 {"union", UNION, OP_NULL, 0},
1849 {"short", SHORT, OP_NULL, 0},
1850 {"const", CONST_KEYWORD, OP_NULL, 0},
1851 {"enum", ENUM, OP_NULL, 0},
1852 {"long", LONG, OP_NULL, 0},
1853 {"true", TRUEKEYWORD, OP_NULL, 1},
1854 {"int", INT_KEYWORD, OP_NULL, 0},
1855 {"new", NEW, OP_NULL, 1},
1856 {"delete", DELETE, OP_NULL, 1},
1857 {"operator", OPERATOR, OP_NULL, 1},
1858
1859 {"and", ANDAND, BINOP_END, 1},
1860 {"and_eq", ASSIGN_MODIFY, BINOP_BITWISE_AND, 1},
1861 {"bitand", '&', OP_NULL, 1},
1862 {"bitor", '|', OP_NULL, 1},
1863 {"compl", '~', OP_NULL, 1},
1864 {"not", '!', OP_NULL, 1},
1865 {"not_eq", NOTEQUAL, BINOP_END, 1},
1866 {"or", OROR, BINOP_END, 1},
1867 {"or_eq", ASSIGN_MODIFY, BINOP_BITWISE_IOR, 1},
1868 {"xor", '^', OP_NULL, 1},
1869 {"xor_eq", ASSIGN_MODIFY, BINOP_BITWISE_XOR, 1},
1870
1871 {"const_cast", CONST_CAST, OP_NULL, 1 },
1872 {"dynamic_cast", DYNAMIC_CAST, OP_NULL, 1 },
1873 {"static_cast", STATIC_CAST, OP_NULL, 1 },
1874 {"reinterpret_cast", REINTERPRET_CAST, OP_NULL, 1 }
1875 };
1876
1877 /* When we find that lexptr (the global var defined in parse.c) is
1878 pointing at a macro invocation, we expand the invocation, and call
1879 scan_macro_expansion to save the old lexptr here and point lexptr
1880 into the expanded text. When we reach the end of that, we call
1881 end_macro_expansion to pop back to the value we saved here. The
1882 macro expansion code promises to return only fully-expanded text,
1883 so we don't need to "push" more than one level.
1884
1885 This is disgusting, of course. It would be cleaner to do all macro
1886 expansion beforehand, and then hand that to lexptr. But we don't
1887 really know where the expression ends. Remember, in a command like
1888
1889 (gdb) break *ADDRESS if CONDITION
1890
1891 we evaluate ADDRESS in the scope of the current frame, but we
1892 evaluate CONDITION in the scope of the breakpoint's location. So
1893 it's simply wrong to try to macro-expand the whole thing at once. */
1894 static char *macro_original_text;
1895
1896 /* We save all intermediate macro expansions on this obstack for the
1897 duration of a single parse. The expansion text may sometimes have
1898 to live past the end of the expansion, due to yacc lookahead.
1899 Rather than try to be clever about saving the data for a single
1900 token, we simply keep it all and delete it after parsing has
1901 completed. */
1902 static struct obstack expansion_obstack;
1903
1904 static void
1905 scan_macro_expansion (char *expansion)
1906 {
1907 char *copy;
1908
1909 /* We'd better not be trying to push the stack twice. */
1910 gdb_assert (! macro_original_text);
1911
1912 /* Copy to the obstack, and then free the intermediate
1913 expansion. */
1914 copy = obstack_copy0 (&expansion_obstack, expansion, strlen (expansion));
1915 xfree (expansion);
1916
1917 /* Save the old lexptr value, so we can return to it when we're done
1918 parsing the expanded text. */
1919 macro_original_text = lexptr;
1920 lexptr = copy;
1921 }
1922
1923
1924 static int
1925 scanning_macro_expansion (void)
1926 {
1927 return macro_original_text != 0;
1928 }
1929
1930
1931 static void
1932 finished_macro_expansion (void)
1933 {
1934 /* There'd better be something to pop back to. */
1935 gdb_assert (macro_original_text);
1936
1937 /* Pop back to the original text. */
1938 lexptr = macro_original_text;
1939 macro_original_text = 0;
1940 }
1941
1942
1943 static void
1944 scan_macro_cleanup (void *dummy)
1945 {
1946 if (macro_original_text)
1947 finished_macro_expansion ();
1948
1949 obstack_free (&expansion_obstack, NULL);
1950 }
1951
1952 /* Return true iff the token represents a C++ cast operator. */
1953
1954 static int
1955 is_cast_operator (const char *token, int len)
1956 {
1957 return (! strncmp (token, "dynamic_cast", len)
1958 || ! strncmp (token, "static_cast", len)
1959 || ! strncmp (token, "reinterpret_cast", len)
1960 || ! strncmp (token, "const_cast", len));
1961 }
1962
1963 /* The scope used for macro expansion. */
1964 static struct macro_scope *expression_macro_scope;
1965
1966 /* This is set if a NAME token appeared at the very end of the input
1967 string, with no whitespace separating the name from the EOF. This
1968 is used only when parsing to do field name completion. */
1969 static int saw_name_at_eof;
1970
1971 /* This is set if the previously-returned token was a structure
1972 operator -- either '.' or ARROW. This is used only when parsing to
1973 do field name completion. */
1974 static int last_was_structop;
1975
1976 /* Read one token, getting characters through lexptr. */
1977
1978 static int
1979 lex_one_token (void)
1980 {
1981 int c;
1982 int namelen;
1983 unsigned int i;
1984 char *tokstart;
1985 int saw_structop = last_was_structop;
1986 char *copy;
1987
1988 last_was_structop = 0;
1989
1990 retry:
1991
1992 /* Check if this is a macro invocation that we need to expand. */
1993 if (! scanning_macro_expansion ())
1994 {
1995 char *expanded = macro_expand_next (&lexptr,
1996 standard_macro_lookup,
1997 expression_macro_scope);
1998
1999 if (expanded)
2000 scan_macro_expansion (expanded);
2001 }
2002
2003 prev_lexptr = lexptr;
2004
2005 tokstart = lexptr;
2006 /* See if it is a special token of length 3. */
2007 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
2008 if (strncmp (tokstart, tokentab3[i].operator, 3) == 0)
2009 {
2010 if (tokentab3[i].cxx_only
2011 && parse_language->la_language != language_cplus)
2012 break;
2013
2014 lexptr += 3;
2015 yylval.opcode = tokentab3[i].opcode;
2016 return tokentab3[i].token;
2017 }
2018
2019 /* See if it is a special token of length 2. */
2020 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
2021 if (strncmp (tokstart, tokentab2[i].operator, 2) == 0)
2022 {
2023 if (tokentab2[i].cxx_only
2024 && parse_language->la_language != language_cplus)
2025 break;
2026
2027 lexptr += 2;
2028 yylval.opcode = tokentab2[i].opcode;
2029 if (in_parse_field && tokentab2[i].token == ARROW)
2030 last_was_structop = 1;
2031 return tokentab2[i].token;
2032 }
2033
2034 switch (c = *tokstart)
2035 {
2036 case 0:
2037 /* If we were just scanning the result of a macro expansion,
2038 then we need to resume scanning the original text.
2039 If we're parsing for field name completion, and the previous
2040 token allows such completion, return a COMPLETE token.
2041 Otherwise, we were already scanning the original text, and
2042 we're really done. */
2043 if (scanning_macro_expansion ())
2044 {
2045 finished_macro_expansion ();
2046 goto retry;
2047 }
2048 else if (saw_name_at_eof)
2049 {
2050 saw_name_at_eof = 0;
2051 return COMPLETE;
2052 }
2053 else if (saw_structop)
2054 return COMPLETE;
2055 else
2056 return 0;
2057
2058 case ' ':
2059 case '\t':
2060 case '\n':
2061 lexptr++;
2062 goto retry;
2063
2064 case '[':
2065 case '(':
2066 paren_depth++;
2067 lexptr++;
2068 return c;
2069
2070 case ']':
2071 case ')':
2072 if (paren_depth == 0)
2073 return 0;
2074 paren_depth--;
2075 lexptr++;
2076 return c;
2077
2078 case ',':
2079 if (comma_terminates
2080 && paren_depth == 0
2081 && ! scanning_macro_expansion ())
2082 return 0;
2083 lexptr++;
2084 return c;
2085
2086 case '.':
2087 /* Might be a floating point number. */
2088 if (lexptr[1] < '0' || lexptr[1] > '9')
2089 {
2090 if (in_parse_field)
2091 last_was_structop = 1;
2092 goto symbol; /* Nope, must be a symbol. */
2093 }
2094 /* FALL THRU into number case. */
2095
2096 case '0':
2097 case '1':
2098 case '2':
2099 case '3':
2100 case '4':
2101 case '5':
2102 case '6':
2103 case '7':
2104 case '8':
2105 case '9':
2106 {
2107 /* It's a number. */
2108 int got_dot = 0, got_e = 0, toktype;
2109 char *p = tokstart;
2110 int hex = input_radix > 10;
2111
2112 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
2113 {
2114 p += 2;
2115 hex = 1;
2116 }
2117 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
2118 {
2119 p += 2;
2120 hex = 0;
2121 }
2122
2123 for (;; ++p)
2124 {
2125 /* This test includes !hex because 'e' is a valid hex digit
2126 and thus does not indicate a floating point number when
2127 the radix is hex. */
2128 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
2129 got_dot = got_e = 1;
2130 /* This test does not include !hex, because a '.' always indicates
2131 a decimal floating point number regardless of the radix. */
2132 else if (!got_dot && *p == '.')
2133 got_dot = 1;
2134 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
2135 && (*p == '-' || *p == '+'))
2136 /* This is the sign of the exponent, not the end of the
2137 number. */
2138 continue;
2139 /* We will take any letters or digits. parse_number will
2140 complain if past the radix, or if L or U are not final. */
2141 else if ((*p < '0' || *p > '9')
2142 && ((*p < 'a' || *p > 'z')
2143 && (*p < 'A' || *p > 'Z')))
2144 break;
2145 }
2146 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
2147 if (toktype == ERROR)
2148 {
2149 char *err_copy = (char *) alloca (p - tokstart + 1);
2150
2151 memcpy (err_copy, tokstart, p - tokstart);
2152 err_copy[p - tokstart] = 0;
2153 error ("Invalid number \"%s\".", err_copy);
2154 }
2155 lexptr = p;
2156 return toktype;
2157 }
2158
2159 case '+':
2160 case '-':
2161 case '*':
2162 case '/':
2163 case '%':
2164 case '|':
2165 case '&':
2166 case '^':
2167 case '~':
2168 case '!':
2169 case '@':
2170 case '<':
2171 case '>':
2172 case '?':
2173 case ':':
2174 case '=':
2175 case '{':
2176 case '}':
2177 symbol:
2178 lexptr++;
2179 return c;
2180
2181 case 'L':
2182 case 'u':
2183 case 'U':
2184 if (tokstart[1] != '"' && tokstart[1] != '\'')
2185 break;
2186 /* Fall through. */
2187 case '\'':
2188 case '"':
2189 {
2190 int host_len;
2191 int result = parse_string_or_char (tokstart, &lexptr, &yylval.tsval,
2192 &host_len);
2193 if (result == CHAR)
2194 {
2195 if (host_len == 0)
2196 error ("Empty character constant.");
2197 else if (host_len > 2 && c == '\'')
2198 {
2199 ++tokstart;
2200 namelen = lexptr - tokstart - 1;
2201 goto tryname;
2202 }
2203 else if (host_len > 1)
2204 error ("Invalid character constant.");
2205 }
2206 return result;
2207 }
2208 }
2209
2210 if (!(c == '_' || c == '$'
2211 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
2212 /* We must have come across a bad character (e.g. ';'). */
2213 error ("Invalid character '%c' in expression.", c);
2214
2215 /* It's a name. See how long it is. */
2216 namelen = 0;
2217 for (c = tokstart[namelen];
2218 (c == '_' || c == '$' || (c >= '0' && c <= '9')
2219 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
2220 {
2221 /* Template parameter lists are part of the name.
2222 FIXME: This mishandles `print $a<4&&$a>3'. */
2223
2224 if (c == '<')
2225 {
2226 if (! is_cast_operator (tokstart, namelen))
2227 {
2228 /* Scan ahead to get rest of the template specification. Note
2229 that we look ahead only when the '<' adjoins non-whitespace
2230 characters; for comparison expressions, e.g. "a < b > c",
2231 there must be spaces before the '<', etc. */
2232
2233 char * p = find_template_name_end (tokstart + namelen);
2234 if (p)
2235 namelen = p - tokstart;
2236 }
2237 break;
2238 }
2239 c = tokstart[++namelen];
2240 }
2241
2242 /* The token "if" terminates the expression and is NOT removed from
2243 the input stream. It doesn't count if it appears in the
2244 expansion of a macro. */
2245 if (namelen == 2
2246 && tokstart[0] == 'i'
2247 && tokstart[1] == 'f'
2248 && ! scanning_macro_expansion ())
2249 {
2250 return 0;
2251 }
2252
2253 /* For the same reason (breakpoint conditions), "thread N"
2254 terminates the expression. "thread" could be an identifier, but
2255 an identifier is never followed by a number without intervening
2256 punctuation. "task" is similar. Handle abbreviations of these,
2257 similarly to breakpoint.c:find_condition_and_thread. */
2258 if (namelen >= 1
2259 && (strncmp (tokstart, "thread", namelen) == 0
2260 || strncmp (tokstart, "task", namelen) == 0)
2261 && (tokstart[namelen] == ' ' || tokstart[namelen] == '\t')
2262 && ! scanning_macro_expansion ())
2263 {
2264 char *p = tokstart + namelen + 1;
2265 while (*p == ' ' || *p == '\t')
2266 p++;
2267 if (*p >= '0' && *p <= '9')
2268 return 0;
2269 }
2270
2271 lexptr += namelen;
2272
2273 tryname:
2274
2275 yylval.sval.ptr = tokstart;
2276 yylval.sval.length = namelen;
2277
2278 /* Catch specific keywords. */
2279 copy = copy_name (yylval.sval);
2280 for (i = 0; i < sizeof ident_tokens / sizeof ident_tokens[0]; i++)
2281 if (strcmp (copy, ident_tokens[i].operator) == 0)
2282 {
2283 if (ident_tokens[i].cxx_only
2284 && parse_language->la_language != language_cplus)
2285 break;
2286
2287 /* It is ok to always set this, even though we don't always
2288 strictly need to. */
2289 yylval.opcode = ident_tokens[i].opcode;
2290 return ident_tokens[i].token;
2291 }
2292
2293 if (*tokstart == '$')
2294 return VARIABLE;
2295
2296 if (in_parse_field && *lexptr == '\0')
2297 saw_name_at_eof = 1;
2298 return NAME;
2299 }
2300
2301 /* An object of this type is pushed on a FIFO by the "outer" lexer. */
2302 typedef struct
2303 {
2304 int token;
2305 YYSTYPE value;
2306 } token_and_value;
2307
2308 DEF_VEC_O (token_and_value);
2309
2310 /* A FIFO of tokens that have been read but not yet returned to the
2311 parser. */
2312 static VEC (token_and_value) *token_fifo;
2313
2314 /* Non-zero if the lexer should return tokens from the FIFO. */
2315 static int popping;
2316
2317 /* Temporary storage for c_lex; this holds symbol names as they are
2318 built up. */
2319 static struct obstack name_obstack;
2320
2321 /* Classify a NAME token. The contents of the token are in `yylval'.
2322 Updates yylval and returns the new token type. BLOCK is the block
2323 in which lookups start; this can be NULL to mean the global
2324 scope. */
2325 static int
2326 classify_name (struct block *block)
2327 {
2328 struct symbol *sym;
2329 char *copy;
2330 int is_a_field_of_this = 0;
2331
2332 copy = copy_name (yylval.sval);
2333
2334 sym = lookup_symbol (copy, block, VAR_DOMAIN,
2335 parse_language->la_language == language_cplus
2336 ? &is_a_field_of_this : (int *) NULL);
2337
2338 if (sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
2339 {
2340 yylval.ssym.sym = sym;
2341 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
2342 return BLOCKNAME;
2343 }
2344 else if (!sym)
2345 {
2346 /* See if it's a file name. */
2347 struct symtab *symtab;
2348
2349 symtab = lookup_symtab (copy);
2350 if (symtab)
2351 {
2352 yylval.bval = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), STATIC_BLOCK);
2353 return FILENAME;
2354 }
2355 }
2356
2357 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
2358 {
2359 yylval.tsym.type = SYMBOL_TYPE (sym);
2360 return TYPENAME;
2361 }
2362
2363 yylval.tsym.type
2364 = language_lookup_primitive_type_by_name (parse_language,
2365 parse_gdbarch, copy);
2366 if (yylval.tsym.type != NULL)
2367 return TYPENAME;
2368
2369 /* Input names that aren't symbols but ARE valid hex numbers, when
2370 the input radix permits them, can be names or numbers depending
2371 on the parse. Note we support radixes > 16 here. */
2372 if (!sym
2373 && ((copy[0] >= 'a' && copy[0] < 'a' + input_radix - 10)
2374 || (copy[0] >= 'A' && copy[0] < 'A' + input_radix - 10)))
2375 {
2376 YYSTYPE newlval; /* Its value is ignored. */
2377 int hextype = parse_number (copy, yylval.sval.length, 0, &newlval);
2378 if (hextype == INT)
2379 {
2380 yylval.ssym.sym = sym;
2381 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
2382 return NAME_OR_INT;
2383 }
2384 }
2385
2386 /* Any other kind of symbol */
2387 yylval.ssym.sym = sym;
2388 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
2389
2390 if (sym == NULL
2391 && parse_language->la_language == language_cplus
2392 && !is_a_field_of_this
2393 && !lookup_minimal_symbol (copy, NULL, NULL))
2394 return UNKNOWN_CPP_NAME;
2395
2396 return NAME;
2397 }
2398
2399 /* Like classify_name, but used by the inner loop of the lexer, when a
2400 name might have already been seen. FIRST_NAME is true if the token
2401 in `yylval' is the first component of a name, false otherwise. If
2402 this function returns NAME, it might not have updated `yylval'.
2403 This is ok because the caller only cares about TYPENAME. */
2404 static int
2405 classify_inner_name (struct block *block, int first_name)
2406 {
2407 struct type *type, *new_type;
2408 char *copy;
2409
2410 if (first_name)
2411 return classify_name (block);
2412
2413 type = check_typedef (yylval.tsym.type);
2414 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
2415 && TYPE_CODE (type) != TYPE_CODE_UNION
2416 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
2417 /* We know the caller won't expect us to update yylval. */
2418 return NAME;
2419
2420 copy = copy_name (yylval.tsym.stoken);
2421 new_type = cp_lookup_nested_type (type, copy, block);
2422
2423 if (new_type == NULL)
2424 /* We know the caller won't expect us to update yylval. */
2425 return NAME;
2426
2427 yylval.tsym.type = new_type;
2428 return TYPENAME;
2429 }
2430
2431 /* The outer level of a two-level lexer. This calls the inner lexer
2432 to return tokens. It then either returns these tokens, or
2433 aggregates them into a larger token. This lets us work around a
2434 problem in our parsing approach, where the parser could not
2435 distinguish between qualified names and qualified types at the
2436 right point.
2437
2438 This approach is still not ideal, because it mishandles template
2439 types. See the comment in lex_one_token for an example. However,
2440 this is still an improvement over the earlier approach, and will
2441 suffice until we move to better parsing technology. */
2442 static int
2443 yylex (void)
2444 {
2445 token_and_value current;
2446 int first_was_coloncolon, last_was_coloncolon, first_iter;
2447
2448 if (popping && !VEC_empty (token_and_value, token_fifo))
2449 {
2450 token_and_value tv = *VEC_index (token_and_value, token_fifo, 0);
2451 VEC_ordered_remove (token_and_value, token_fifo, 0);
2452 yylval = tv.value;
2453 return tv.token;
2454 }
2455 popping = 0;
2456
2457 current.token = lex_one_token ();
2458 if (current.token == NAME)
2459 current.token = classify_name (expression_context_block);
2460 if (parse_language->la_language != language_cplus
2461 || (current.token != TYPENAME && current.token != COLONCOLON))
2462 return current.token;
2463
2464 first_was_coloncolon = current.token == COLONCOLON;
2465 last_was_coloncolon = first_was_coloncolon;
2466 obstack_free (&name_obstack, obstack_base (&name_obstack));
2467 if (!last_was_coloncolon)
2468 obstack_grow (&name_obstack, yylval.sval.ptr, yylval.sval.length);
2469 current.value = yylval;
2470 first_iter = 1;
2471 while (1)
2472 {
2473 token_and_value next;
2474
2475 next.token = lex_one_token ();
2476 next.value = yylval;
2477
2478 if (next.token == NAME && last_was_coloncolon)
2479 {
2480 int classification;
2481
2482 classification = classify_inner_name (first_was_coloncolon
2483 ? NULL
2484 : expression_context_block,
2485 first_iter);
2486 /* We keep going until we either run out of names, or until
2487 we have a qualified name which is not a type. */
2488 if (classification != TYPENAME)
2489 {
2490 /* Push the final component and leave the loop. */
2491 VEC_safe_push (token_and_value, token_fifo, &next);
2492 break;
2493 }
2494
2495 /* Update the partial name we are constructing. */
2496 if (!first_iter)
2497 {
2498 /* We don't want to put a leading "::" into the name. */
2499 obstack_grow_str (&name_obstack, "::");
2500 }
2501 obstack_grow (&name_obstack, next.value.sval.ptr,
2502 next.value.sval.length);
2503
2504 yylval.sval.ptr = obstack_base (&name_obstack);
2505 yylval.sval.length = obstack_object_size (&name_obstack);
2506 current.value = yylval;
2507 current.token = classification;
2508
2509 last_was_coloncolon = 0;
2510 }
2511 else if (next.token == COLONCOLON && !last_was_coloncolon)
2512 last_was_coloncolon = 1;
2513 else
2514 {
2515 /* We've reached the end of the name. */
2516 VEC_safe_push (token_and_value, token_fifo, &next);
2517 break;
2518 }
2519
2520 first_iter = 0;
2521 }
2522
2523 popping = 1;
2524
2525 /* If we ended with a "::", insert it too. */
2526 if (last_was_coloncolon)
2527 {
2528 token_and_value cc;
2529 memset (&cc, 0, sizeof (token_and_value));
2530 if (first_was_coloncolon && first_iter)
2531 {
2532 yylval = cc.value;
2533 return COLONCOLON;
2534 }
2535 cc.token = COLONCOLON;
2536 VEC_safe_insert (token_and_value, token_fifo, 0, &cc);
2537 }
2538
2539 yylval = current.value;
2540 yylval.sval.ptr = obstack_copy0 (&expansion_obstack,
2541 yylval.sval.ptr,
2542 yylval.sval.length);
2543 return current.token;
2544 }
2545
2546 int
2547 c_parse (void)
2548 {
2549 int result;
2550 struct cleanup *back_to = make_cleanup (free_current_contents,
2551 &expression_macro_scope);
2552
2553 /* Set up the scope for macro expansion. */
2554 expression_macro_scope = NULL;
2555
2556 if (expression_context_block)
2557 expression_macro_scope
2558 = sal_macro_scope (find_pc_line (expression_context_pc, 0));
2559 else
2560 expression_macro_scope = default_macro_scope ();
2561 if (! expression_macro_scope)
2562 expression_macro_scope = user_macro_scope ();
2563
2564 /* Initialize macro expansion code. */
2565 obstack_init (&expansion_obstack);
2566 gdb_assert (! macro_original_text);
2567 make_cleanup (scan_macro_cleanup, 0);
2568
2569 make_cleanup_restore_integer (&yydebug);
2570 yydebug = parser_debug;
2571
2572 /* Initialize some state used by the lexer. */
2573 last_was_structop = 0;
2574 saw_name_at_eof = 0;
2575
2576 VEC_free (token_and_value, token_fifo);
2577 popping = 0;
2578 obstack_init (&name_obstack);
2579 make_cleanup_obstack_free (&name_obstack);
2580
2581 result = yyparse ();
2582 do_cleanups (back_to);
2583 return result;
2584 }
2585
2586
2587 void
2588 yyerror (char *msg)
2589 {
2590 if (prev_lexptr)
2591 lexptr = prev_lexptr;
2592
2593 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
2594 }
This page took 0.082407 seconds and 4 git commands to generate.