* ppc-tdep.h (PPC_INSN_SIZE): Define.
[deliverable/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright 1986, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2003, 2004
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* Parse a C expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result.
30
31 Note that malloc's and realloc's in this file are transformed to
32 xmalloc and xrealloc respectively by the same sed command in the
33 makefile that remaps any other malloc/realloc inserted by the parser
34 generator. Doing this with #defines and trying to control the interaction
35 with include files (<malloc.h> and <stdlib.h> for example) just became
36 too messy, particularly when such includes can be inserted at random
37 times by the parser generator. */
38
39 %{
40
41 #include "defs.h"
42 #include "gdb_string.h"
43 #include <ctype.h>
44 #include "expression.h"
45 #include "value.h"
46 #include "parser-defs.h"
47 #include "language.h"
48 #include "c-lang.h"
49 #include "bfd.h" /* Required by objfiles.h. */
50 #include "symfile.h" /* Required by objfiles.h. */
51 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
52 #include "charset.h"
53 #include "block.h"
54 #include "cp-support.h"
55
56 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
57 as well as gratuitiously global symbol names, so we can have multiple
58 yacc generated parsers in gdb. Note that these are only the variables
59 produced by yacc. If other parser generators (bison, byacc, etc) produce
60 additional global names that conflict at link time, then those parser
61 generators need to be fixed instead of adding those names to this list. */
62
63 #define yymaxdepth c_maxdepth
64 #define yyparse c_parse
65 #define yylex c_lex
66 #define yyerror c_error
67 #define yylval c_lval
68 #define yychar c_char
69 #define yydebug c_debug
70 #define yypact c_pact
71 #define yyr1 c_r1
72 #define yyr2 c_r2
73 #define yydef c_def
74 #define yychk c_chk
75 #define yypgo c_pgo
76 #define yyact c_act
77 #define yyexca c_exca
78 #define yyerrflag c_errflag
79 #define yynerrs c_nerrs
80 #define yyps c_ps
81 #define yypv c_pv
82 #define yys c_s
83 #define yy_yys c_yys
84 #define yystate c_state
85 #define yytmp c_tmp
86 #define yyv c_v
87 #define yy_yyv c_yyv
88 #define yyval c_val
89 #define yylloc c_lloc
90 #define yyreds c_reds /* With YYDEBUG defined */
91 #define yytoks c_toks /* With YYDEBUG defined */
92 #define yyname c_name /* With YYDEBUG defined */
93 #define yyrule c_rule /* With YYDEBUG defined */
94 #define yylhs c_yylhs
95 #define yylen c_yylen
96 #define yydefred c_yydefred
97 #define yydgoto c_yydgoto
98 #define yysindex c_yysindex
99 #define yyrindex c_yyrindex
100 #define yygindex c_yygindex
101 #define yytable c_yytable
102 #define yycheck c_yycheck
103
104 #ifndef YYDEBUG
105 #define YYDEBUG 1 /* Default to yydebug support */
106 #endif
107
108 #define YYFPRINTF parser_fprintf
109
110 int yyparse (void);
111
112 static int yylex (void);
113
114 void yyerror (char *);
115
116 %}
117
118 /* Although the yacc "value" of an expression is not used,
119 since the result is stored in the structure being created,
120 other node types do have values. */
121
122 %union
123 {
124 LONGEST lval;
125 struct {
126 LONGEST val;
127 struct type *type;
128 } typed_val_int;
129 struct {
130 DOUBLEST dval;
131 struct type *type;
132 } typed_val_float;
133 struct symbol *sym;
134 struct type *tval;
135 struct stoken sval;
136 struct ttype tsym;
137 struct symtoken ssym;
138 int voidval;
139 struct block *bval;
140 enum exp_opcode opcode;
141 struct internalvar *ivar;
142
143 struct type **tvec;
144 int *ivec;
145 }
146
147 %{
148 /* YYSTYPE gets defined by %union */
149 static int parse_number (char *, int, int, YYSTYPE *);
150 %}
151
152 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
153 %type <lval> rcurly
154 %type <tval> type typebase qualified_type
155 %type <tvec> nonempty_typelist
156 /* %type <bval> block */
157
158 /* Fancy type parsing. */
159 %type <voidval> func_mod direct_abs_decl abs_decl
160 %type <tval> ptype
161 %type <lval> array_mod
162
163 %token <typed_val_int> INT
164 %token <typed_val_float> FLOAT
165
166 /* Both NAME and TYPENAME tokens represent symbols in the input,
167 and both convey their data as strings.
168 But a TYPENAME is a string that happens to be defined as a typedef
169 or builtin type name (such as int or char)
170 and a NAME is any other symbol.
171 Contexts where this distinction is not important can use the
172 nonterminal "name", which matches either NAME or TYPENAME. */
173
174 %token <sval> STRING
175 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
176 %token <tsym> TYPENAME
177 %type <sval> name
178 %type <ssym> name_not_typename
179 %type <tsym> typename
180
181 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
182 but which would parse as a valid number in the current input radix.
183 E.g. "c" when input_radix==16. Depending on the parse, it will be
184 turned into a name or into a number. */
185
186 %token <ssym> NAME_OR_INT
187
188 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
189 %token TEMPLATE
190 %token ERROR
191
192 /* Special type cases, put in to allow the parser to distinguish different
193 legal basetypes. */
194 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD
195
196 %token <voidval> VARIABLE
197
198 %token <opcode> ASSIGN_MODIFY
199
200 /* C++ */
201 %token TRUEKEYWORD
202 %token FALSEKEYWORD
203
204
205 %left ','
206 %left ABOVE_COMMA
207 %right '=' ASSIGN_MODIFY
208 %right '?'
209 %left OROR
210 %left ANDAND
211 %left '|'
212 %left '^'
213 %left '&'
214 %left EQUAL NOTEQUAL
215 %left '<' '>' LEQ GEQ
216 %left LSH RSH
217 %left '@'
218 %left '+' '-'
219 %left '*' '/' '%'
220 %right UNARY INCREMENT DECREMENT
221 %right ARROW '.' '[' '('
222 %token <ssym> BLOCKNAME
223 %token <bval> FILENAME
224 %type <bval> block
225 %left COLONCOLON
226
227 \f
228 %%
229
230 start : exp1
231 | type_exp
232 ;
233
234 type_exp: type
235 { write_exp_elt_opcode(OP_TYPE);
236 write_exp_elt_type($1);
237 write_exp_elt_opcode(OP_TYPE);}
238 ;
239
240 /* Expressions, including the comma operator. */
241 exp1 : exp
242 | exp1 ',' exp
243 { write_exp_elt_opcode (BINOP_COMMA); }
244 ;
245
246 /* Expressions, not including the comma operator. */
247 exp : '*' exp %prec UNARY
248 { write_exp_elt_opcode (UNOP_IND); }
249 ;
250
251 exp : '&' exp %prec UNARY
252 { write_exp_elt_opcode (UNOP_ADDR); }
253 ;
254
255 exp : '-' exp %prec UNARY
256 { write_exp_elt_opcode (UNOP_NEG); }
257 ;
258
259 exp : '+' exp %prec UNARY
260 { write_exp_elt_opcode (UNOP_PLUS); }
261 ;
262
263 exp : '!' exp %prec UNARY
264 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
265 ;
266
267 exp : '~' exp %prec UNARY
268 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
269 ;
270
271 exp : INCREMENT exp %prec UNARY
272 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
273 ;
274
275 exp : DECREMENT exp %prec UNARY
276 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
277 ;
278
279 exp : exp INCREMENT %prec UNARY
280 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
281 ;
282
283 exp : exp DECREMENT %prec UNARY
284 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
285 ;
286
287 exp : SIZEOF exp %prec UNARY
288 { write_exp_elt_opcode (UNOP_SIZEOF); }
289 ;
290
291 exp : exp ARROW name
292 { write_exp_elt_opcode (STRUCTOP_PTR);
293 write_exp_string ($3);
294 write_exp_elt_opcode (STRUCTOP_PTR); }
295 ;
296
297 exp : exp ARROW qualified_name
298 { /* exp->type::name becomes exp->*(&type::name) */
299 /* Note: this doesn't work if name is a
300 static member! FIXME */
301 write_exp_elt_opcode (UNOP_ADDR);
302 write_exp_elt_opcode (STRUCTOP_MPTR); }
303 ;
304
305 exp : exp ARROW '*' exp
306 { write_exp_elt_opcode (STRUCTOP_MPTR); }
307 ;
308
309 exp : exp '.' name
310 { write_exp_elt_opcode (STRUCTOP_STRUCT);
311 write_exp_string ($3);
312 write_exp_elt_opcode (STRUCTOP_STRUCT); }
313 ;
314
315 exp : exp '.' qualified_name
316 { /* exp.type::name becomes exp.*(&type::name) */
317 /* Note: this doesn't work if name is a
318 static member! FIXME */
319 write_exp_elt_opcode (UNOP_ADDR);
320 write_exp_elt_opcode (STRUCTOP_MEMBER); }
321 ;
322
323 exp : exp '.' '*' exp
324 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
325 ;
326
327 exp : exp '[' exp1 ']'
328 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
329 ;
330
331 exp : exp '('
332 /* This is to save the value of arglist_len
333 being accumulated by an outer function call. */
334 { start_arglist (); }
335 arglist ')' %prec ARROW
336 { write_exp_elt_opcode (OP_FUNCALL);
337 write_exp_elt_longcst ((LONGEST) end_arglist ());
338 write_exp_elt_opcode (OP_FUNCALL); }
339 ;
340
341 lcurly : '{'
342 { start_arglist (); }
343 ;
344
345 arglist :
346 ;
347
348 arglist : exp
349 { arglist_len = 1; }
350 ;
351
352 arglist : arglist ',' exp %prec ABOVE_COMMA
353 { arglist_len++; }
354 ;
355
356 rcurly : '}'
357 { $$ = end_arglist () - 1; }
358 ;
359 exp : lcurly arglist rcurly %prec ARROW
360 { write_exp_elt_opcode (OP_ARRAY);
361 write_exp_elt_longcst ((LONGEST) 0);
362 write_exp_elt_longcst ((LONGEST) $3);
363 write_exp_elt_opcode (OP_ARRAY); }
364 ;
365
366 exp : lcurly type rcurly exp %prec UNARY
367 { write_exp_elt_opcode (UNOP_MEMVAL);
368 write_exp_elt_type ($2);
369 write_exp_elt_opcode (UNOP_MEMVAL); }
370 ;
371
372 exp : '(' type ')' exp %prec UNARY
373 { write_exp_elt_opcode (UNOP_CAST);
374 write_exp_elt_type ($2);
375 write_exp_elt_opcode (UNOP_CAST); }
376 ;
377
378 exp : '(' exp1 ')'
379 { }
380 ;
381
382 /* Binary operators in order of decreasing precedence. */
383
384 exp : exp '@' exp
385 { write_exp_elt_opcode (BINOP_REPEAT); }
386 ;
387
388 exp : exp '*' exp
389 { write_exp_elt_opcode (BINOP_MUL); }
390 ;
391
392 exp : exp '/' exp
393 { write_exp_elt_opcode (BINOP_DIV); }
394 ;
395
396 exp : exp '%' exp
397 { write_exp_elt_opcode (BINOP_REM); }
398 ;
399
400 exp : exp '+' exp
401 { write_exp_elt_opcode (BINOP_ADD); }
402 ;
403
404 exp : exp '-' exp
405 { write_exp_elt_opcode (BINOP_SUB); }
406 ;
407
408 exp : exp LSH exp
409 { write_exp_elt_opcode (BINOP_LSH); }
410 ;
411
412 exp : exp RSH exp
413 { write_exp_elt_opcode (BINOP_RSH); }
414 ;
415
416 exp : exp EQUAL exp
417 { write_exp_elt_opcode (BINOP_EQUAL); }
418 ;
419
420 exp : exp NOTEQUAL exp
421 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
422 ;
423
424 exp : exp LEQ exp
425 { write_exp_elt_opcode (BINOP_LEQ); }
426 ;
427
428 exp : exp GEQ exp
429 { write_exp_elt_opcode (BINOP_GEQ); }
430 ;
431
432 exp : exp '<' exp
433 { write_exp_elt_opcode (BINOP_LESS); }
434 ;
435
436 exp : exp '>' exp
437 { write_exp_elt_opcode (BINOP_GTR); }
438 ;
439
440 exp : exp '&' exp
441 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
442 ;
443
444 exp : exp '^' exp
445 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
446 ;
447
448 exp : exp '|' exp
449 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
450 ;
451
452 exp : exp ANDAND exp
453 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
454 ;
455
456 exp : exp OROR exp
457 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
458 ;
459
460 exp : exp '?' exp ':' exp %prec '?'
461 { write_exp_elt_opcode (TERNOP_COND); }
462 ;
463
464 exp : exp '=' exp
465 { write_exp_elt_opcode (BINOP_ASSIGN); }
466 ;
467
468 exp : exp ASSIGN_MODIFY exp
469 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
470 write_exp_elt_opcode ($2);
471 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
472 ;
473
474 exp : INT
475 { write_exp_elt_opcode (OP_LONG);
476 write_exp_elt_type ($1.type);
477 write_exp_elt_longcst ((LONGEST)($1.val));
478 write_exp_elt_opcode (OP_LONG); }
479 ;
480
481 exp : NAME_OR_INT
482 { YYSTYPE val;
483 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
484 write_exp_elt_opcode (OP_LONG);
485 write_exp_elt_type (val.typed_val_int.type);
486 write_exp_elt_longcst ((LONGEST)val.typed_val_int.val);
487 write_exp_elt_opcode (OP_LONG);
488 }
489 ;
490
491
492 exp : FLOAT
493 { write_exp_elt_opcode (OP_DOUBLE);
494 write_exp_elt_type ($1.type);
495 write_exp_elt_dblcst ($1.dval);
496 write_exp_elt_opcode (OP_DOUBLE); }
497 ;
498
499 exp : variable
500 ;
501
502 exp : VARIABLE
503 /* Already written by write_dollar_variable. */
504 ;
505
506 exp : SIZEOF '(' type ')' %prec UNARY
507 { write_exp_elt_opcode (OP_LONG);
508 write_exp_elt_type (builtin_type (current_gdbarch)->builtin_int);
509 CHECK_TYPEDEF ($3);
510 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
511 write_exp_elt_opcode (OP_LONG); }
512 ;
513
514 exp : STRING
515 { /* C strings are converted into array constants with
516 an explicit null byte added at the end. Thus
517 the array upper bound is the string length.
518 There is no such thing in C as a completely empty
519 string. */
520 char *sp = $1.ptr; int count = $1.length;
521 while (count-- > 0)
522 {
523 write_exp_elt_opcode (OP_LONG);
524 write_exp_elt_type (builtin_type (current_gdbarch)->builtin_char);
525 write_exp_elt_longcst ((LONGEST)(*sp++));
526 write_exp_elt_opcode (OP_LONG);
527 }
528 write_exp_elt_opcode (OP_LONG);
529 write_exp_elt_type (builtin_type (current_gdbarch)->builtin_char);
530 write_exp_elt_longcst ((LONGEST)'\0');
531 write_exp_elt_opcode (OP_LONG);
532 write_exp_elt_opcode (OP_ARRAY);
533 write_exp_elt_longcst ((LONGEST) 0);
534 write_exp_elt_longcst ((LONGEST) ($1.length));
535 write_exp_elt_opcode (OP_ARRAY); }
536 ;
537
538 /* C++. */
539 exp : TRUEKEYWORD
540 { write_exp_elt_opcode (OP_LONG);
541 write_exp_elt_type (builtin_type (current_gdbarch)->builtin_bool);
542 write_exp_elt_longcst ((LONGEST) 1);
543 write_exp_elt_opcode (OP_LONG); }
544 ;
545
546 exp : FALSEKEYWORD
547 { write_exp_elt_opcode (OP_LONG);
548 write_exp_elt_type (builtin_type (current_gdbarch)->builtin_bool);
549 write_exp_elt_longcst ((LONGEST) 0);
550 write_exp_elt_opcode (OP_LONG); }
551 ;
552
553 /* end of C++. */
554
555 block : BLOCKNAME
556 {
557 if ($1.sym)
558 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
559 else
560 error ("No file or function \"%s\".",
561 copy_name ($1.stoken));
562 }
563 | FILENAME
564 {
565 $$ = $1;
566 }
567 ;
568
569 block : block COLONCOLON name
570 { struct symbol *tem
571 = lookup_symbol (copy_name ($3), $1,
572 VAR_DOMAIN, (int *) NULL,
573 (struct symtab **) NULL);
574 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
575 error ("No function \"%s\" in specified context.",
576 copy_name ($3));
577 $$ = SYMBOL_BLOCK_VALUE (tem); }
578 ;
579
580 variable: block COLONCOLON name
581 { struct symbol *sym;
582 sym = lookup_symbol (copy_name ($3), $1,
583 VAR_DOMAIN, (int *) NULL,
584 (struct symtab **) NULL);
585 if (sym == 0)
586 error ("No symbol \"%s\" in specified context.",
587 copy_name ($3));
588
589 write_exp_elt_opcode (OP_VAR_VALUE);
590 /* block_found is set by lookup_symbol. */
591 write_exp_elt_block (block_found);
592 write_exp_elt_sym (sym);
593 write_exp_elt_opcode (OP_VAR_VALUE); }
594 ;
595
596 qualified_name: typebase COLONCOLON name
597 {
598 struct type *type = $1;
599 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
600 && TYPE_CODE (type) != TYPE_CODE_UNION
601 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
602 error ("`%s' is not defined as an aggregate type.",
603 TYPE_NAME (type));
604
605 write_exp_elt_opcode (OP_SCOPE);
606 write_exp_elt_type (type);
607 write_exp_string ($3);
608 write_exp_elt_opcode (OP_SCOPE);
609 }
610 | typebase COLONCOLON '~' name
611 {
612 struct type *type = $1;
613 struct stoken tmp_token;
614 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
615 && TYPE_CODE (type) != TYPE_CODE_UNION
616 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
617 error ("`%s' is not defined as an aggregate type.",
618 TYPE_NAME (type));
619
620 tmp_token.ptr = (char*) alloca ($4.length + 2);
621 tmp_token.length = $4.length + 1;
622 tmp_token.ptr[0] = '~';
623 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
624 tmp_token.ptr[tmp_token.length] = 0;
625
626 /* Check for valid destructor name. */
627 destructor_name_p (tmp_token.ptr, type);
628 write_exp_elt_opcode (OP_SCOPE);
629 write_exp_elt_type (type);
630 write_exp_string (tmp_token);
631 write_exp_elt_opcode (OP_SCOPE);
632 }
633 ;
634
635 variable: qualified_name
636 | COLONCOLON name
637 {
638 char *name = copy_name ($2);
639 struct symbol *sym;
640 struct minimal_symbol *msymbol;
641
642 sym =
643 lookup_symbol (name, (const struct block *) NULL,
644 VAR_DOMAIN, (int *) NULL,
645 (struct symtab **) NULL);
646 if (sym)
647 {
648 write_exp_elt_opcode (OP_VAR_VALUE);
649 write_exp_elt_block (NULL);
650 write_exp_elt_sym (sym);
651 write_exp_elt_opcode (OP_VAR_VALUE);
652 break;
653 }
654
655 msymbol = lookup_minimal_symbol (name, NULL, NULL);
656 if (msymbol != NULL)
657 {
658 write_exp_msymbol (msymbol,
659 lookup_function_type (builtin_type (current_gdbarch)->builtin_int),
660 builtin_type (current_gdbarch)->builtin_int);
661 }
662 else
663 if (!have_full_symbols () && !have_partial_symbols ())
664 error ("No symbol table is loaded. Use the \"file\" command.");
665 else
666 error ("No symbol \"%s\" in current context.", name);
667 }
668 ;
669
670 variable: name_not_typename
671 { struct symbol *sym = $1.sym;
672
673 if (sym)
674 {
675 if (symbol_read_needs_frame (sym))
676 {
677 if (innermost_block == 0 ||
678 contained_in (block_found,
679 innermost_block))
680 innermost_block = block_found;
681 }
682
683 write_exp_elt_opcode (OP_VAR_VALUE);
684 /* We want to use the selected frame, not
685 another more inner frame which happens to
686 be in the same block. */
687 write_exp_elt_block (NULL);
688 write_exp_elt_sym (sym);
689 write_exp_elt_opcode (OP_VAR_VALUE);
690 }
691 else if ($1.is_a_field_of_this)
692 {
693 /* C++: it hangs off of `this'. Must
694 not inadvertently convert from a method call
695 to data ref. */
696 if (innermost_block == 0 ||
697 contained_in (block_found, innermost_block))
698 innermost_block = block_found;
699 write_exp_elt_opcode (OP_THIS);
700 write_exp_elt_opcode (OP_THIS);
701 write_exp_elt_opcode (STRUCTOP_PTR);
702 write_exp_string ($1.stoken);
703 write_exp_elt_opcode (STRUCTOP_PTR);
704 }
705 else
706 {
707 struct minimal_symbol *msymbol;
708 char *arg = copy_name ($1.stoken);
709
710 msymbol =
711 lookup_minimal_symbol (arg, NULL, NULL);
712 if (msymbol != NULL)
713 {
714 write_exp_msymbol (msymbol,
715 lookup_function_type (builtin_type (current_gdbarch)->builtin_int),
716 builtin_type (current_gdbarch)->builtin_int);
717 }
718 else if (!have_full_symbols () && !have_partial_symbols ())
719 error ("No symbol table is loaded. Use the \"file\" command.");
720 else
721 error ("No symbol \"%s\" in current context.",
722 copy_name ($1.stoken));
723 }
724 }
725 ;
726
727 space_identifier : '@' NAME
728 { push_type_address_space (copy_name ($2.stoken));
729 push_type (tp_space_identifier);
730 }
731 ;
732
733 const_or_volatile: const_or_volatile_noopt
734 |
735 ;
736
737 cv_with_space_id : const_or_volatile space_identifier const_or_volatile
738 ;
739
740 const_or_volatile_or_space_identifier_noopt: cv_with_space_id
741 | const_or_volatile_noopt
742 ;
743
744 const_or_volatile_or_space_identifier:
745 const_or_volatile_or_space_identifier_noopt
746 |
747 ;
748
749 abs_decl: '*'
750 { push_type (tp_pointer); $$ = 0; }
751 | '*' abs_decl
752 { push_type (tp_pointer); $$ = $2; }
753 | '&'
754 { push_type (tp_reference); $$ = 0; }
755 | '&' abs_decl
756 { push_type (tp_reference); $$ = $2; }
757 | direct_abs_decl
758 ;
759
760 direct_abs_decl: '(' abs_decl ')'
761 { $$ = $2; }
762 | direct_abs_decl array_mod
763 {
764 push_type_int ($2);
765 push_type (tp_array);
766 }
767 | array_mod
768 {
769 push_type_int ($1);
770 push_type (tp_array);
771 $$ = 0;
772 }
773
774 | direct_abs_decl func_mod
775 { push_type (tp_function); }
776 | func_mod
777 { push_type (tp_function); }
778 ;
779
780 array_mod: '[' ']'
781 { $$ = -1; }
782 | '[' INT ']'
783 { $$ = $2.val; }
784 ;
785
786 func_mod: '(' ')'
787 { $$ = 0; }
788 | '(' nonempty_typelist ')'
789 { free ($2); $$ = 0; }
790 ;
791
792 /* We used to try to recognize more pointer to member types here, but
793 that didn't work (shift/reduce conflicts meant that these rules never
794 got executed). The problem is that
795 int (foo::bar::baz::bizzle)
796 is a function type but
797 int (foo::bar::baz::bizzle::*)
798 is a pointer to member type. Stroustrup loses again! */
799
800 type : ptype
801 | typebase COLONCOLON '*'
802 { $$ = lookup_member_type (builtin_type (current_gdbarch)->builtin_int, $1); }
803 ;
804
805 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
806 : TYPENAME
807 { $$ = $1.type; }
808 | INT_KEYWORD
809 { $$ = builtin_type (current_gdbarch)->builtin_int; }
810 | LONG
811 { $$ = builtin_type (current_gdbarch)->builtin_long; }
812 | SHORT
813 { $$ = builtin_type (current_gdbarch)->builtin_short; }
814 | LONG INT_KEYWORD
815 { $$ = builtin_type (current_gdbarch)->builtin_long; }
816 | LONG SIGNED_KEYWORD INT_KEYWORD
817 { $$ = builtin_type (current_gdbarch)->builtin_long; }
818 | LONG SIGNED_KEYWORD
819 { $$ = builtin_type (current_gdbarch)->builtin_long; }
820 | SIGNED_KEYWORD LONG INT_KEYWORD
821 { $$ = builtin_type (current_gdbarch)->builtin_long; }
822 | UNSIGNED LONG INT_KEYWORD
823 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_long; }
824 | LONG UNSIGNED INT_KEYWORD
825 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_long; }
826 | LONG UNSIGNED
827 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_long; }
828 | LONG LONG
829 { $$ = builtin_type (current_gdbarch)->builtin_long_long; }
830 | LONG LONG INT_KEYWORD
831 { $$ = builtin_type (current_gdbarch)->builtin_long_long; }
832 | LONG LONG SIGNED_KEYWORD INT_KEYWORD
833 { $$ = builtin_type (current_gdbarch)->builtin_long_long; }
834 | LONG LONG SIGNED_KEYWORD
835 { $$ = builtin_type (current_gdbarch)->builtin_long_long; }
836 | SIGNED_KEYWORD LONG LONG
837 { $$ = builtin_type (current_gdbarch)->builtin_long_long; }
838 | SIGNED_KEYWORD LONG LONG INT_KEYWORD
839 { $$ = builtin_type (current_gdbarch)->builtin_long_long; }
840 | UNSIGNED LONG LONG
841 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_long_long; }
842 | UNSIGNED LONG LONG INT_KEYWORD
843 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_long_long; }
844 | LONG LONG UNSIGNED
845 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_long_long; }
846 | LONG LONG UNSIGNED INT_KEYWORD
847 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_long_long; }
848 | SHORT INT_KEYWORD
849 { $$ = builtin_type (current_gdbarch)->builtin_short; }
850 | SHORT SIGNED_KEYWORD INT_KEYWORD
851 { $$ = builtin_type (current_gdbarch)->builtin_short; }
852 | SHORT SIGNED_KEYWORD
853 { $$ = builtin_type (current_gdbarch)->builtin_short; }
854 | UNSIGNED SHORT INT_KEYWORD
855 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_short; }
856 | SHORT UNSIGNED
857 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_short; }
858 | SHORT UNSIGNED INT_KEYWORD
859 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_short; }
860 | DOUBLE_KEYWORD
861 { $$ = builtin_type (current_gdbarch)->builtin_double; }
862 | LONG DOUBLE_KEYWORD
863 { $$ = builtin_type (current_gdbarch)->builtin_long_double; }
864 | STRUCT name
865 { $$ = lookup_struct (copy_name ($2),
866 expression_context_block); }
867 | CLASS name
868 { $$ = lookup_struct (copy_name ($2),
869 expression_context_block); }
870 | UNION name
871 { $$ = lookup_union (copy_name ($2),
872 expression_context_block); }
873 | ENUM name
874 { $$ = lookup_enum (copy_name ($2),
875 expression_context_block); }
876 | UNSIGNED typename
877 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
878 | UNSIGNED
879 { $$ = builtin_type (current_gdbarch)->builtin_unsigned_int; }
880 | SIGNED_KEYWORD typename
881 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
882 | SIGNED_KEYWORD
883 { $$ = builtin_type (current_gdbarch)->builtin_int; }
884 /* It appears that this rule for templates is never
885 reduced; template recognition happens by lookahead
886 in the token processing code in yylex. */
887 | TEMPLATE name '<' type '>'
888 { $$ = lookup_template_type(copy_name($2), $4,
889 expression_context_block);
890 }
891 | const_or_volatile_or_space_identifier_noopt typebase
892 { $$ = follow_types ($2); }
893 | typebase const_or_volatile_or_space_identifier_noopt
894 { $$ = follow_types ($1); }
895 | qualified_type
896 ;
897
898 /* FIXME: carlton/2003-09-25: This next bit leads to lots of
899 reduce-reduce conflicts, because the parser doesn't know whether or
900 not to use qualified_name or qualified_type: the rules are
901 identical. If the parser is parsing 'A::B::x', then, when it sees
902 the second '::', it knows that the expression to the left of it has
903 to be a type, so it uses qualified_type. But if it is parsing just
904 'A::B', then it doesn't have any way of knowing which rule to use,
905 so there's a reduce-reduce conflict; it picks qualified_name, since
906 that occurs earlier in this file than qualified_type.
907
908 There's no good way to fix this with the grammar as it stands; as
909 far as I can tell, some of the problems arise from ambiguities that
910 GDB introduces ('start' can be either an expression or a type), but
911 some of it is inherent to the nature of C++ (you want to treat the
912 input "(FOO)" fairly differently depending on whether FOO is an
913 expression or a type, and if FOO is a complex expression, this can
914 be hard to determine at the right time). Fortunately, it works
915 pretty well in most cases. For example, if you do 'ptype A::B',
916 where A::B is a nested type, then the parser will mistakenly
917 misidentify it as an expression; but evaluate_subexp will get
918 called with 'noside' set to EVAL_AVOID_SIDE_EFFECTS, and everything
919 will work out anyways. But there are situations where the parser
920 will get confused: the most common one that I've run into is when
921 you want to do
922
923 print *((A::B *) x)"
924
925 where the parser doesn't realize that A::B has to be a type until
926 it hits the first right paren, at which point it's too late. (The
927 workaround is to type "print *(('A::B' *) x)" instead.) (And
928 another solution is to fix our symbol-handling code so that the
929 user never wants to type something like that in the first place,
930 because we get all the types right without the user's help!)
931
932 Perhaps we could fix this by making the lexer smarter. Some of
933 this functionality used to be in the lexer, but in a way that
934 worked even less well than the current solution: that attempt
935 involved having the parser sometimes handle '::' and having the
936 lexer sometimes handle it, and without a clear division of
937 responsibility, it quickly degenerated into a big mess. Probably
938 the eventual correct solution will give more of a role to the lexer
939 (ideally via code that is shared between the lexer and
940 decode_line_1), but I'm not holding my breath waiting for somebody
941 to get around to cleaning this up... */
942
943 qualified_type: typebase COLONCOLON name
944 {
945 struct type *type = $1;
946 struct type *new_type;
947 char *ncopy = alloca ($3.length + 1);
948
949 memcpy (ncopy, $3.ptr, $3.length);
950 ncopy[$3.length] = '\0';
951
952 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
953 && TYPE_CODE (type) != TYPE_CODE_UNION
954 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
955 error ("`%s' is not defined as an aggregate type.",
956 TYPE_NAME (type));
957
958 new_type = cp_lookup_nested_type (type, ncopy,
959 expression_context_block);
960 if (new_type == NULL)
961 error ("No type \"%s\" within class or namespace \"%s\".",
962 ncopy, TYPE_NAME (type));
963
964 $$ = new_type;
965 }
966 ;
967
968 typename: TYPENAME
969 | INT_KEYWORD
970 {
971 $$.stoken.ptr = "int";
972 $$.stoken.length = 3;
973 $$.type = builtin_type (current_gdbarch)->builtin_int;
974 }
975 | LONG
976 {
977 $$.stoken.ptr = "long";
978 $$.stoken.length = 4;
979 $$.type = builtin_type (current_gdbarch)->builtin_long;
980 }
981 | SHORT
982 {
983 $$.stoken.ptr = "short";
984 $$.stoken.length = 5;
985 $$.type = builtin_type (current_gdbarch)->builtin_short;
986 }
987 ;
988
989 nonempty_typelist
990 : type
991 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
992 $<ivec>$[0] = 1; /* Number of types in vector */
993 $$[1] = $1;
994 }
995 | nonempty_typelist ',' type
996 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
997 $$ = (struct type **) realloc ((char *) $1, len);
998 $$[$<ivec>$[0]] = $3;
999 }
1000 ;
1001
1002 ptype : typebase
1003 | ptype const_or_volatile_or_space_identifier abs_decl const_or_volatile_or_space_identifier
1004 { $$ = follow_types ($1); }
1005 ;
1006
1007 const_and_volatile: CONST_KEYWORD VOLATILE_KEYWORD
1008 | VOLATILE_KEYWORD CONST_KEYWORD
1009 ;
1010
1011 const_or_volatile_noopt: const_and_volatile
1012 { push_type (tp_const);
1013 push_type (tp_volatile);
1014 }
1015 | CONST_KEYWORD
1016 { push_type (tp_const); }
1017 | VOLATILE_KEYWORD
1018 { push_type (tp_volatile); }
1019 ;
1020
1021 name : NAME { $$ = $1.stoken; }
1022 | BLOCKNAME { $$ = $1.stoken; }
1023 | TYPENAME { $$ = $1.stoken; }
1024 | NAME_OR_INT { $$ = $1.stoken; }
1025 ;
1026
1027 name_not_typename : NAME
1028 | BLOCKNAME
1029 /* These would be useful if name_not_typename was useful, but it is just
1030 a fake for "variable", so these cause reduce/reduce conflicts because
1031 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
1032 =exp) or just an exp. If name_not_typename was ever used in an lvalue
1033 context where only a name could occur, this might be useful.
1034 | NAME_OR_INT
1035 */
1036 ;
1037
1038 %%
1039
1040 /* Take care of parsing a number (anything that starts with a digit).
1041 Set yylval and return the token type; update lexptr.
1042 LEN is the number of characters in it. */
1043
1044 /*** Needs some error checking for the float case ***/
1045
1046 static int
1047 parse_number (p, len, parsed_float, putithere)
1048 char *p;
1049 int len;
1050 int parsed_float;
1051 YYSTYPE *putithere;
1052 {
1053 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
1054 here, and we do kind of silly things like cast to unsigned. */
1055 LONGEST n = 0;
1056 LONGEST prevn = 0;
1057 ULONGEST un;
1058
1059 int i = 0;
1060 int c;
1061 int base = input_radix;
1062 int unsigned_p = 0;
1063
1064 /* Number of "L" suffixes encountered. */
1065 int long_p = 0;
1066
1067 /* We have found a "L" or "U" suffix. */
1068 int found_suffix = 0;
1069
1070 ULONGEST high_bit;
1071 struct type *signed_type;
1072 struct type *unsigned_type;
1073
1074 if (parsed_float)
1075 {
1076 /* It's a float since it contains a point or an exponent. */
1077 char *s = malloc (len);
1078 int num = 0; /* number of tokens scanned by scanf */
1079 char saved_char = p[len];
1080
1081 p[len] = 0; /* null-terminate the token */
1082
1083 if (sizeof (putithere->typed_val_float.dval) <= sizeof (float))
1084 num = sscanf (p, "%g%s", (float *) &putithere->typed_val_float.dval,s);
1085 else if (sizeof (putithere->typed_val_float.dval) <= sizeof (double))
1086 num = sscanf (p, "%lg%s", (double *) &putithere->typed_val_float.dval,s);
1087 else
1088 {
1089 #ifdef SCANF_HAS_LONG_DOUBLE
1090 num = sscanf (p, "%Lg%s", &putithere->typed_val_float.dval,s);
1091 #else
1092 /* Scan it into a double, then assign it to the long double.
1093 This at least wins with values representable in the range
1094 of doubles. */
1095 double temp;
1096 num = sscanf (p, "%lg%s", &temp,s);
1097 putithere->typed_val_float.dval = temp;
1098 #endif
1099 }
1100 p[len] = saved_char; /* restore the input stream */
1101
1102 if (num == 1)
1103 putithere->typed_val_float.type =
1104 builtin_type (current_gdbarch)->builtin_double;
1105
1106 if (num == 2 )
1107 {
1108 /* See if it has any float suffix: 'f' for float, 'l' for long
1109 double. */
1110 if (!strcasecmp (s, "f"))
1111 putithere->typed_val_float.type =
1112 builtin_type (current_gdbarch)->builtin_float;
1113 else if (!strcasecmp (s, "l"))
1114 putithere->typed_val_float.type =
1115 builtin_type (current_gdbarch)->builtin_long_double;
1116 else
1117 return ERROR;
1118 }
1119
1120 return FLOAT;
1121 }
1122
1123 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
1124 if (p[0] == '0')
1125 switch (p[1])
1126 {
1127 case 'x':
1128 case 'X':
1129 if (len >= 3)
1130 {
1131 p += 2;
1132 base = 16;
1133 len -= 2;
1134 }
1135 break;
1136
1137 case 't':
1138 case 'T':
1139 case 'd':
1140 case 'D':
1141 if (len >= 3)
1142 {
1143 p += 2;
1144 base = 10;
1145 len -= 2;
1146 }
1147 break;
1148
1149 default:
1150 base = 8;
1151 break;
1152 }
1153
1154 while (len-- > 0)
1155 {
1156 c = *p++;
1157 if (c >= 'A' && c <= 'Z')
1158 c += 'a' - 'A';
1159 if (c != 'l' && c != 'u')
1160 n *= base;
1161 if (c >= '0' && c <= '9')
1162 {
1163 if (found_suffix)
1164 return ERROR;
1165 n += i = c - '0';
1166 }
1167 else
1168 {
1169 if (base > 10 && c >= 'a' && c <= 'f')
1170 {
1171 if (found_suffix)
1172 return ERROR;
1173 n += i = c - 'a' + 10;
1174 }
1175 else if (c == 'l')
1176 {
1177 ++long_p;
1178 found_suffix = 1;
1179 }
1180 else if (c == 'u')
1181 {
1182 unsigned_p = 1;
1183 found_suffix = 1;
1184 }
1185 else
1186 return ERROR; /* Char not a digit */
1187 }
1188 if (i >= base)
1189 return ERROR; /* Invalid digit in this base */
1190
1191 /* Portably test for overflow (only works for nonzero values, so make
1192 a second check for zero). FIXME: Can't we just make n and prevn
1193 unsigned and avoid this? */
1194 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1195 unsigned_p = 1; /* Try something unsigned */
1196
1197 /* Portably test for unsigned overflow.
1198 FIXME: This check is wrong; for example it doesn't find overflow
1199 on 0x123456789 when LONGEST is 32 bits. */
1200 if (c != 'l' && c != 'u' && n != 0)
1201 {
1202 if ((unsigned_p && (ULONGEST) prevn >= (ULONGEST) n))
1203 error ("Numeric constant too large.");
1204 }
1205 prevn = n;
1206 }
1207
1208 /* An integer constant is an int, a long, or a long long. An L
1209 suffix forces it to be long; an LL suffix forces it to be long
1210 long. If not forced to a larger size, it gets the first type of
1211 the above that it fits in. To figure out whether it fits, we
1212 shift it right and see whether anything remains. Note that we
1213 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1214 operation, because many compilers will warn about such a shift
1215 (which always produces a zero result). Sometimes TARGET_INT_BIT
1216 or TARGET_LONG_BIT will be that big, sometimes not. To deal with
1217 the case where it is we just always shift the value more than
1218 once, with fewer bits each time. */
1219
1220 un = (ULONGEST)n >> 2;
1221 if (long_p == 0
1222 && (un >> (TARGET_INT_BIT - 2)) == 0)
1223 {
1224 high_bit = ((ULONGEST)1) << (TARGET_INT_BIT-1);
1225
1226 /* A large decimal (not hex or octal) constant (between INT_MAX
1227 and UINT_MAX) is a long or unsigned long, according to ANSI,
1228 never an unsigned int, but this code treats it as unsigned
1229 int. This probably should be fixed. GCC gives a warning on
1230 such constants. */
1231
1232 unsigned_type = builtin_type (current_gdbarch)->builtin_unsigned_int;
1233 signed_type = builtin_type (current_gdbarch)->builtin_int;
1234 }
1235 else if (long_p <= 1
1236 && (un >> (TARGET_LONG_BIT - 2)) == 0)
1237 {
1238 high_bit = ((ULONGEST)1) << (TARGET_LONG_BIT-1);
1239 unsigned_type = builtin_type (current_gdbarch)->builtin_unsigned_long;
1240 signed_type = builtin_type (current_gdbarch)->builtin_long;
1241 }
1242 else
1243 {
1244 int shift;
1245 if (sizeof (ULONGEST) * HOST_CHAR_BIT < TARGET_LONG_LONG_BIT)
1246 /* A long long does not fit in a LONGEST. */
1247 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
1248 else
1249 shift = (TARGET_LONG_LONG_BIT - 1);
1250 high_bit = (ULONGEST) 1 << shift;
1251 unsigned_type = builtin_type (current_gdbarch)->builtin_unsigned_long_long;
1252 signed_type = builtin_type (current_gdbarch)->builtin_long_long;
1253 }
1254
1255 putithere->typed_val_int.val = n;
1256
1257 /* If the high bit of the worked out type is set then this number
1258 has to be unsigned. */
1259
1260 if (unsigned_p || (n & high_bit))
1261 {
1262 putithere->typed_val_int.type = unsigned_type;
1263 }
1264 else
1265 {
1266 putithere->typed_val_int.type = signed_type;
1267 }
1268
1269 return INT;
1270 }
1271
1272 struct token
1273 {
1274 char *operator;
1275 int token;
1276 enum exp_opcode opcode;
1277 };
1278
1279 static const struct token tokentab3[] =
1280 {
1281 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1282 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1283 };
1284
1285 static const struct token tokentab2[] =
1286 {
1287 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1288 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1289 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1290 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1291 {"%=", ASSIGN_MODIFY, BINOP_REM},
1292 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1293 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1294 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1295 {"++", INCREMENT, BINOP_END},
1296 {"--", DECREMENT, BINOP_END},
1297 {"->", ARROW, BINOP_END},
1298 {"&&", ANDAND, BINOP_END},
1299 {"||", OROR, BINOP_END},
1300 {"::", COLONCOLON, BINOP_END},
1301 {"<<", LSH, BINOP_END},
1302 {">>", RSH, BINOP_END},
1303 {"==", EQUAL, BINOP_END},
1304 {"!=", NOTEQUAL, BINOP_END},
1305 {"<=", LEQ, BINOP_END},
1306 {">=", GEQ, BINOP_END}
1307 };
1308
1309 /* Read one token, getting characters through lexptr. */
1310
1311 static int
1312 yylex ()
1313 {
1314 int c;
1315 int namelen;
1316 unsigned int i;
1317 char *tokstart;
1318 char *tokptr;
1319 int tempbufindex;
1320 static char *tempbuf;
1321 static int tempbufsize;
1322 struct symbol * sym_class = NULL;
1323 char * token_string = NULL;
1324 int class_prefix = 0;
1325 int unquoted_expr;
1326
1327 retry:
1328
1329 /* Check if this is a macro invocation that we need to expand. */
1330 if (! scanning_macro_expansion ())
1331 {
1332 char *expanded = macro_expand_next (&lexptr,
1333 expression_macro_lookup_func,
1334 expression_macro_lookup_baton);
1335
1336 if (expanded)
1337 scan_macro_expansion (expanded);
1338 }
1339
1340 prev_lexptr = lexptr;
1341 unquoted_expr = 1;
1342
1343 tokstart = lexptr;
1344 /* See if it is a special token of length 3. */
1345 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1346 if (strncmp (tokstart, tokentab3[i].operator, 3) == 0)
1347 {
1348 lexptr += 3;
1349 yylval.opcode = tokentab3[i].opcode;
1350 return tokentab3[i].token;
1351 }
1352
1353 /* See if it is a special token of length 2. */
1354 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1355 if (strncmp (tokstart, tokentab2[i].operator, 2) == 0)
1356 {
1357 lexptr += 2;
1358 yylval.opcode = tokentab2[i].opcode;
1359 return tokentab2[i].token;
1360 }
1361
1362 switch (c = *tokstart)
1363 {
1364 case 0:
1365 /* If we were just scanning the result of a macro expansion,
1366 then we need to resume scanning the original text.
1367 Otherwise, we were already scanning the original text, and
1368 we're really done. */
1369 if (scanning_macro_expansion ())
1370 {
1371 finished_macro_expansion ();
1372 goto retry;
1373 }
1374 else
1375 return 0;
1376
1377 case ' ':
1378 case '\t':
1379 case '\n':
1380 lexptr++;
1381 goto retry;
1382
1383 case '\'':
1384 /* We either have a character constant ('0' or '\177' for example)
1385 or we have a quoted symbol reference ('foo(int,int)' in C++
1386 for example). */
1387 lexptr++;
1388 c = *lexptr++;
1389 if (c == '\\')
1390 c = parse_escape (&lexptr);
1391 else if (c == '\'')
1392 error ("Empty character constant.");
1393 else if (! host_char_to_target (c, &c))
1394 {
1395 int toklen = lexptr - tokstart + 1;
1396 char *tok = alloca (toklen + 1);
1397 memcpy (tok, tokstart, toklen);
1398 tok[toklen] = '\0';
1399 error ("There is no character corresponding to %s in the target "
1400 "character set `%s'.", tok, target_charset ());
1401 }
1402
1403 yylval.typed_val_int.val = c;
1404 yylval.typed_val_int.type = builtin_type (current_gdbarch)->builtin_char;
1405
1406 c = *lexptr++;
1407 if (c != '\'')
1408 {
1409 namelen = skip_quoted (tokstart) - tokstart;
1410 if (namelen > 2)
1411 {
1412 lexptr = tokstart + namelen;
1413 unquoted_expr = 0;
1414 if (lexptr[-1] != '\'')
1415 error ("Unmatched single quote.");
1416 namelen -= 2;
1417 tokstart++;
1418 goto tryname;
1419 }
1420 error ("Invalid character constant.");
1421 }
1422 return INT;
1423
1424 case '(':
1425 paren_depth++;
1426 lexptr++;
1427 return c;
1428
1429 case ')':
1430 if (paren_depth == 0)
1431 return 0;
1432 paren_depth--;
1433 lexptr++;
1434 return c;
1435
1436 case ',':
1437 if (comma_terminates
1438 && paren_depth == 0
1439 && ! scanning_macro_expansion ())
1440 return 0;
1441 lexptr++;
1442 return c;
1443
1444 case '.':
1445 /* Might be a floating point number. */
1446 if (lexptr[1] < '0' || lexptr[1] > '9')
1447 goto symbol; /* Nope, must be a symbol. */
1448 /* FALL THRU into number case. */
1449
1450 case '0':
1451 case '1':
1452 case '2':
1453 case '3':
1454 case '4':
1455 case '5':
1456 case '6':
1457 case '7':
1458 case '8':
1459 case '9':
1460 {
1461 /* It's a number. */
1462 int got_dot = 0, got_e = 0, toktype;
1463 char *p = tokstart;
1464 int hex = input_radix > 10;
1465
1466 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1467 {
1468 p += 2;
1469 hex = 1;
1470 }
1471 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1472 {
1473 p += 2;
1474 hex = 0;
1475 }
1476
1477 for (;; ++p)
1478 {
1479 /* This test includes !hex because 'e' is a valid hex digit
1480 and thus does not indicate a floating point number when
1481 the radix is hex. */
1482 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1483 got_dot = got_e = 1;
1484 /* This test does not include !hex, because a '.' always indicates
1485 a decimal floating point number regardless of the radix. */
1486 else if (!got_dot && *p == '.')
1487 got_dot = 1;
1488 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1489 && (*p == '-' || *p == '+'))
1490 /* This is the sign of the exponent, not the end of the
1491 number. */
1492 continue;
1493 /* We will take any letters or digits. parse_number will
1494 complain if past the radix, or if L or U are not final. */
1495 else if ((*p < '0' || *p > '9')
1496 && ((*p < 'a' || *p > 'z')
1497 && (*p < 'A' || *p > 'Z')))
1498 break;
1499 }
1500 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1501 if (toktype == ERROR)
1502 {
1503 char *err_copy = (char *) alloca (p - tokstart + 1);
1504
1505 memcpy (err_copy, tokstart, p - tokstart);
1506 err_copy[p - tokstart] = 0;
1507 error ("Invalid number \"%s\".", err_copy);
1508 }
1509 lexptr = p;
1510 return toktype;
1511 }
1512
1513 case '+':
1514 case '-':
1515 case '*':
1516 case '/':
1517 case '%':
1518 case '|':
1519 case '&':
1520 case '^':
1521 case '~':
1522 case '!':
1523 case '@':
1524 case '<':
1525 case '>':
1526 case '[':
1527 case ']':
1528 case '?':
1529 case ':':
1530 case '=':
1531 case '{':
1532 case '}':
1533 symbol:
1534 lexptr++;
1535 return c;
1536
1537 case '"':
1538
1539 /* Build the gdb internal form of the input string in tempbuf,
1540 translating any standard C escape forms seen. Note that the
1541 buffer is null byte terminated *only* for the convenience of
1542 debugging gdb itself and printing the buffer contents when
1543 the buffer contains no embedded nulls. Gdb does not depend
1544 upon the buffer being null byte terminated, it uses the length
1545 string instead. This allows gdb to handle C strings (as well
1546 as strings in other languages) with embedded null bytes */
1547
1548 tokptr = ++tokstart;
1549 tempbufindex = 0;
1550
1551 do {
1552 char *char_start_pos = tokptr;
1553
1554 /* Grow the static temp buffer if necessary, including allocating
1555 the first one on demand. */
1556 if (tempbufindex + 1 >= tempbufsize)
1557 {
1558 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1559 }
1560 switch (*tokptr)
1561 {
1562 case '\0':
1563 case '"':
1564 /* Do nothing, loop will terminate. */
1565 break;
1566 case '\\':
1567 tokptr++;
1568 c = parse_escape (&tokptr);
1569 if (c == -1)
1570 {
1571 continue;
1572 }
1573 tempbuf[tempbufindex++] = c;
1574 break;
1575 default:
1576 c = *tokptr++;
1577 if (! host_char_to_target (c, &c))
1578 {
1579 int len = tokptr - char_start_pos;
1580 char *copy = alloca (len + 1);
1581 memcpy (copy, char_start_pos, len);
1582 copy[len] = '\0';
1583
1584 error ("There is no character corresponding to `%s' "
1585 "in the target character set `%s'.",
1586 copy, target_charset ());
1587 }
1588 tempbuf[tempbufindex++] = c;
1589 break;
1590 }
1591 } while ((*tokptr != '"') && (*tokptr != '\0'));
1592 if (*tokptr++ != '"')
1593 {
1594 error ("Unterminated string in expression.");
1595 }
1596 tempbuf[tempbufindex] = '\0'; /* See note above */
1597 yylval.sval.ptr = tempbuf;
1598 yylval.sval.length = tempbufindex;
1599 lexptr = tokptr;
1600 return (STRING);
1601 }
1602
1603 if (!(c == '_' || c == '$'
1604 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1605 /* We must have come across a bad character (e.g. ';'). */
1606 error ("Invalid character '%c' in expression.", c);
1607
1608 /* It's a name. See how long it is. */
1609 namelen = 0;
1610 for (c = tokstart[namelen];
1611 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1612 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
1613 {
1614 /* Template parameter lists are part of the name.
1615 FIXME: This mishandles `print $a<4&&$a>3'. */
1616
1617 if (c == '<')
1618 {
1619 /* Scan ahead to get rest of the template specification. Note
1620 that we look ahead only when the '<' adjoins non-whitespace
1621 characters; for comparison expressions, e.g. "a < b > c",
1622 there must be spaces before the '<', etc. */
1623
1624 char * p = find_template_name_end (tokstart + namelen);
1625 if (p)
1626 namelen = p - tokstart;
1627 break;
1628 }
1629 c = tokstart[++namelen];
1630 }
1631
1632 /* The token "if" terminates the expression and is NOT removed from
1633 the input stream. It doesn't count if it appears in the
1634 expansion of a macro. */
1635 if (namelen == 2
1636 && tokstart[0] == 'i'
1637 && tokstart[1] == 'f'
1638 && ! scanning_macro_expansion ())
1639 {
1640 return 0;
1641 }
1642
1643 lexptr += namelen;
1644
1645 tryname:
1646
1647 /* Catch specific keywords. Should be done with a data structure. */
1648 switch (namelen)
1649 {
1650 case 8:
1651 if (strncmp (tokstart, "unsigned", 8) == 0)
1652 return UNSIGNED;
1653 if (current_language->la_language == language_cplus
1654 && strncmp (tokstart, "template", 8) == 0)
1655 return TEMPLATE;
1656 if (strncmp (tokstart, "volatile", 8) == 0)
1657 return VOLATILE_KEYWORD;
1658 break;
1659 case 6:
1660 if (strncmp (tokstart, "struct", 6) == 0)
1661 return STRUCT;
1662 if (strncmp (tokstart, "signed", 6) == 0)
1663 return SIGNED_KEYWORD;
1664 if (strncmp (tokstart, "sizeof", 6) == 0)
1665 return SIZEOF;
1666 if (strncmp (tokstart, "double", 6) == 0)
1667 return DOUBLE_KEYWORD;
1668 break;
1669 case 5:
1670 if (current_language->la_language == language_cplus)
1671 {
1672 if (strncmp (tokstart, "false", 5) == 0)
1673 return FALSEKEYWORD;
1674 if (strncmp (tokstart, "class", 5) == 0)
1675 return CLASS;
1676 }
1677 if (strncmp (tokstart, "union", 5) == 0)
1678 return UNION;
1679 if (strncmp (tokstart, "short", 5) == 0)
1680 return SHORT;
1681 if (strncmp (tokstart, "const", 5) == 0)
1682 return CONST_KEYWORD;
1683 break;
1684 case 4:
1685 if (strncmp (tokstart, "enum", 4) == 0)
1686 return ENUM;
1687 if (strncmp (tokstart, "long", 4) == 0)
1688 return LONG;
1689 if (current_language->la_language == language_cplus)
1690 {
1691 if (strncmp (tokstart, "true", 4) == 0)
1692 return TRUEKEYWORD;
1693 }
1694 break;
1695 case 3:
1696 if (strncmp (tokstart, "int", 3) == 0)
1697 return INT_KEYWORD;
1698 break;
1699 default:
1700 break;
1701 }
1702
1703 yylval.sval.ptr = tokstart;
1704 yylval.sval.length = namelen;
1705
1706 if (*tokstart == '$')
1707 {
1708 write_dollar_variable (yylval.sval);
1709 return VARIABLE;
1710 }
1711
1712 /* Look ahead and see if we can consume more of the input
1713 string to get a reasonable class/namespace spec or a
1714 fully-qualified name. This is a kludge to get around the
1715 HP aCC compiler's generation of symbol names with embedded
1716 colons for namespace and nested classes. */
1717
1718 /* NOTE: carlton/2003-09-24: I don't entirely understand the
1719 HP-specific code, either here or in linespec. Having said that,
1720 I suspect that we're actually moving towards their model: we want
1721 symbols whose names are fully qualified, which matches the
1722 description above. */
1723 if (unquoted_expr)
1724 {
1725 /* Only do it if not inside single quotes */
1726 sym_class = parse_nested_classes_for_hpacc (yylval.sval.ptr, yylval.sval.length,
1727 &token_string, &class_prefix, &lexptr);
1728 if (sym_class)
1729 {
1730 /* Replace the current token with the bigger one we found */
1731 yylval.sval.ptr = token_string;
1732 yylval.sval.length = strlen (token_string);
1733 }
1734 }
1735
1736 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1737 functions or symtabs. If this is not so, then ...
1738 Use token-type TYPENAME for symbols that happen to be defined
1739 currently as names of types; NAME for other symbols.
1740 The caller is not constrained to care about the distinction. */
1741 {
1742 char *tmp = copy_name (yylval.sval);
1743 struct symbol *sym;
1744 int is_a_field_of_this = 0;
1745 int hextype;
1746
1747 sym = lookup_symbol (tmp, expression_context_block,
1748 VAR_DOMAIN,
1749 current_language->la_language == language_cplus
1750 ? &is_a_field_of_this : (int *) NULL,
1751 (struct symtab **) NULL);
1752 /* Call lookup_symtab, not lookup_partial_symtab, in case there are
1753 no psymtabs (coff, xcoff, or some future change to blow away the
1754 psymtabs once once symbols are read). */
1755 if (sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
1756 {
1757 yylval.ssym.sym = sym;
1758 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1759 return BLOCKNAME;
1760 }
1761 else if (!sym)
1762 { /* See if it's a file name. */
1763 struct symtab *symtab;
1764
1765 symtab = lookup_symtab (tmp);
1766
1767 if (symtab)
1768 {
1769 yylval.bval = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), STATIC_BLOCK);
1770 return FILENAME;
1771 }
1772 }
1773
1774 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1775 {
1776 /* NOTE: carlton/2003-09-25: There used to be code here to
1777 handle nested types. It didn't work very well. See the
1778 comment before qualified_type for more info. */
1779 yylval.tsym.type = SYMBOL_TYPE (sym);
1780 return TYPENAME;
1781 }
1782 yylval.tsym.type
1783 = language_lookup_primitive_type_by_name (current_language,
1784 current_gdbarch, tmp);
1785 if (yylval.tsym.type != NULL)
1786 return TYPENAME;
1787
1788 /* Input names that aren't symbols but ARE valid hex numbers,
1789 when the input radix permits them, can be names or numbers
1790 depending on the parse. Note we support radixes > 16 here. */
1791 if (!sym &&
1792 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1793 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1794 {
1795 YYSTYPE newlval; /* Its value is ignored. */
1796 hextype = parse_number (tokstart, namelen, 0, &newlval);
1797 if (hextype == INT)
1798 {
1799 yylval.ssym.sym = sym;
1800 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1801 return NAME_OR_INT;
1802 }
1803 }
1804
1805 /* Any other kind of symbol */
1806 yylval.ssym.sym = sym;
1807 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1808 return NAME;
1809 }
1810 }
1811
1812 void
1813 yyerror (msg)
1814 char *msg;
1815 {
1816 if (prev_lexptr)
1817 lexptr = prev_lexptr;
1818
1819 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
1820 }
This page took 0.074067 seconds and 4 git commands to generate.