74b962d8d2bf774ee17bf210a95c6e0741c7377f
[deliverable/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Parse a C expression from text in a string,
22 and return the result as a struct expression pointer.
23 That structure contains arithmetic operations in reverse polish,
24 with constants represented by operations that are followed by special data.
25 See expression.h for the details of the format.
26 What is important here is that it can be built up sequentially
27 during the process of parsing; the lower levels of the tree always
28 come first in the result.
29
30 Note that malloc's and realloc's in this file are transformed to
31 xmalloc and xrealloc respectively by the same sed command in the
32 makefile that remaps any other malloc/realloc inserted by the parser
33 generator. Doing this with #defines and trying to control the interaction
34 with include files (<malloc.h> and <stdlib.h> for example) just became
35 too messy, particularly when such includes can be inserted at random
36 times by the parser generator. */
37
38 %{
39
40 #include "defs.h"
41 #include <string.h>
42 #include "expression.h"
43 #include "value.h"
44 #include "parser-defs.h"
45 #include "language.h"
46 #include "c-lang.h"
47 #include "bfd.h" /* Required by objfiles.h. */
48 #include "symfile.h" /* Required by objfiles.h. */
49 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
50
51 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
52 as well as gratuitiously global symbol names, so we can have multiple
53 yacc generated parsers in gdb. Note that these are only the variables
54 produced by yacc. If other parser generators (bison, byacc, etc) produce
55 additional global names that conflict at link time, then those parser
56 generators need to be fixed instead of adding those names to this list. */
57
58 #define yymaxdepth c_maxdepth
59 #define yyparse c_parse
60 #define yylex c_lex
61 #define yyerror c_error
62 #define yylval c_lval
63 #define yychar c_char
64 #define yydebug c_debug
65 #define yypact c_pact
66 #define yyr1 c_r1
67 #define yyr2 c_r2
68 #define yydef c_def
69 #define yychk c_chk
70 #define yypgo c_pgo
71 #define yyact c_act
72 #define yyexca c_exca
73 #define yyerrflag c_errflag
74 #define yynerrs c_nerrs
75 #define yyps c_ps
76 #define yypv c_pv
77 #define yys c_s
78 #define yy_yys c_yys
79 #define yystate c_state
80 #define yytmp c_tmp
81 #define yyv c_v
82 #define yy_yyv c_yyv
83 #define yyval c_val
84 #define yylloc c_lloc
85 #define yyreds c_reds /* With YYDEBUG defined */
86 #define yytoks c_toks /* With YYDEBUG defined */
87 #define yylhs c_yylhs
88 #define yylen c_yylen
89 #define yydefred c_yydefred
90 #define yydgoto c_yydgoto
91 #define yysindex c_yysindex
92 #define yyrindex c_yyrindex
93 #define yygindex c_yygindex
94 #define yytable c_yytable
95 #define yycheck c_yycheck
96
97 #ifndef YYDEBUG
98 #define YYDEBUG 0 /* Default to no yydebug support */
99 #endif
100
101 int
102 yyparse PARAMS ((void));
103
104 static int
105 yylex PARAMS ((void));
106
107 void
108 yyerror PARAMS ((char *));
109
110 %}
111
112 /* Although the yacc "value" of an expression is not used,
113 since the result is stored in the structure being created,
114 other node types do have values. */
115
116 %union
117 {
118 LONGEST lval;
119 struct {
120 LONGEST val;
121 struct type *type;
122 } typed_val;
123 double dval;
124 struct symbol *sym;
125 struct type *tval;
126 struct stoken sval;
127 struct ttype tsym;
128 struct symtoken ssym;
129 int voidval;
130 struct block *bval;
131 enum exp_opcode opcode;
132 struct internalvar *ivar;
133
134 struct type **tvec;
135 int *ivec;
136 }
137
138 %{
139 /* YYSTYPE gets defined by %union */
140 static int
141 parse_number PARAMS ((char *, int, int, YYSTYPE *));
142 %}
143
144 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
145 %type <lval> rcurly
146 %type <tval> type typebase
147 %type <tvec> nonempty_typelist
148 /* %type <bval> block */
149
150 /* Fancy type parsing. */
151 %type <voidval> func_mod direct_abs_decl abs_decl
152 %type <tval> ptype
153 %type <lval> array_mod
154
155 %token <typed_val> INT
156 %token <dval> FLOAT
157
158 /* Both NAME and TYPENAME tokens represent symbols in the input,
159 and both convey their data as strings.
160 But a TYPENAME is a string that happens to be defined as a typedef
161 or builtin type name (such as int or char)
162 and a NAME is any other symbol.
163 Contexts where this distinction is not important can use the
164 nonterminal "name", which matches either NAME or TYPENAME. */
165
166 %token <sval> STRING
167 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
168 %token <tsym> TYPENAME
169 %type <sval> name
170 %type <ssym> name_not_typename
171 %type <tsym> typename
172
173 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
174 but which would parse as a valid number in the current input radix.
175 E.g. "c" when input_radix==16. Depending on the parse, it will be
176 turned into a name or into a number. */
177
178 %token <ssym> NAME_OR_INT
179
180 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
181 %token TEMPLATE
182 %token ERROR
183
184 /* Special type cases, put in to allow the parser to distinguish different
185 legal basetypes. */
186 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD
187 %token <lval> LAST REGNAME
188
189 %token <ivar> VARIABLE
190
191 %token <opcode> ASSIGN_MODIFY
192
193 /* C++ */
194 %token THIS
195
196 %left ','
197 %left ABOVE_COMMA
198 %right '=' ASSIGN_MODIFY
199 %right '?'
200 %left OROR
201 %left ANDAND
202 %left '|'
203 %left '^'
204 %left '&'
205 %left EQUAL NOTEQUAL
206 %left '<' '>' LEQ GEQ
207 %left LSH RSH
208 %left '@'
209 %left '+' '-'
210 %left '*' '/' '%'
211 %right UNARY INCREMENT DECREMENT
212 %right ARROW '.' '[' '('
213 %token <ssym> BLOCKNAME
214 %type <bval> block
215 %left COLONCOLON
216
217 \f
218 %%
219
220 start : exp1
221 | type_exp
222 ;
223
224 type_exp: type
225 { write_exp_elt_opcode(OP_TYPE);
226 write_exp_elt_type($1);
227 write_exp_elt_opcode(OP_TYPE);}
228 ;
229
230 /* Expressions, including the comma operator. */
231 exp1 : exp
232 | exp1 ',' exp
233 { write_exp_elt_opcode (BINOP_COMMA); }
234 ;
235
236 /* Expressions, not including the comma operator. */
237 exp : '*' exp %prec UNARY
238 { write_exp_elt_opcode (UNOP_IND); }
239
240 exp : '&' exp %prec UNARY
241 { write_exp_elt_opcode (UNOP_ADDR); }
242
243 exp : '-' exp %prec UNARY
244 { write_exp_elt_opcode (UNOP_NEG); }
245 ;
246
247 exp : '!' exp %prec UNARY
248 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
249 ;
250
251 exp : '~' exp %prec UNARY
252 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
253 ;
254
255 exp : INCREMENT exp %prec UNARY
256 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
257 ;
258
259 exp : DECREMENT exp %prec UNARY
260 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
261 ;
262
263 exp : exp INCREMENT %prec UNARY
264 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
265 ;
266
267 exp : exp DECREMENT %prec UNARY
268 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
269 ;
270
271 exp : SIZEOF exp %prec UNARY
272 { write_exp_elt_opcode (UNOP_SIZEOF); }
273 ;
274
275 exp : exp ARROW name
276 { write_exp_elt_opcode (STRUCTOP_PTR);
277 write_exp_string ($3);
278 write_exp_elt_opcode (STRUCTOP_PTR); }
279 ;
280
281 exp : exp ARROW qualified_name
282 { /* exp->type::name becomes exp->*(&type::name) */
283 /* Note: this doesn't work if name is a
284 static member! FIXME */
285 write_exp_elt_opcode (UNOP_ADDR);
286 write_exp_elt_opcode (STRUCTOP_MPTR); }
287 ;
288 exp : exp ARROW '*' exp
289 { write_exp_elt_opcode (STRUCTOP_MPTR); }
290 ;
291
292 exp : exp '.' name
293 { write_exp_elt_opcode (STRUCTOP_STRUCT);
294 write_exp_string ($3);
295 write_exp_elt_opcode (STRUCTOP_STRUCT); }
296 ;
297
298 exp : exp '.' qualified_name
299 { /* exp.type::name becomes exp.*(&type::name) */
300 /* Note: this doesn't work if name is a
301 static member! FIXME */
302 write_exp_elt_opcode (UNOP_ADDR);
303 write_exp_elt_opcode (STRUCTOP_MEMBER); }
304 ;
305
306 exp : exp '.' '*' exp
307 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
308 ;
309
310 exp : exp '[' exp1 ']'
311 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
312 ;
313
314 exp : exp '('
315 /* This is to save the value of arglist_len
316 being accumulated by an outer function call. */
317 { start_arglist (); }
318 arglist ')' %prec ARROW
319 { write_exp_elt_opcode (OP_FUNCALL);
320 write_exp_elt_longcst ((LONGEST) end_arglist ());
321 write_exp_elt_opcode (OP_FUNCALL); }
322 ;
323
324 lcurly : '{'
325 { start_arglist (); }
326 ;
327
328 arglist :
329 ;
330
331 arglist : exp
332 { arglist_len = 1; }
333 ;
334
335 arglist : arglist ',' exp %prec ABOVE_COMMA
336 { arglist_len++; }
337 ;
338
339 rcurly : '}'
340 { $$ = end_arglist () - 1; }
341 ;
342 exp : lcurly arglist rcurly %prec ARROW
343 { write_exp_elt_opcode (OP_ARRAY);
344 write_exp_elt_longcst ((LONGEST) 0);
345 write_exp_elt_longcst ((LONGEST) $3);
346 write_exp_elt_opcode (OP_ARRAY); }
347 ;
348
349 exp : lcurly type rcurly exp %prec UNARY
350 { write_exp_elt_opcode (UNOP_MEMVAL);
351 write_exp_elt_type ($2);
352 write_exp_elt_opcode (UNOP_MEMVAL); }
353 ;
354
355 exp : '(' type ')' exp %prec UNARY
356 { write_exp_elt_opcode (UNOP_CAST);
357 write_exp_elt_type ($2);
358 write_exp_elt_opcode (UNOP_CAST); }
359 ;
360
361 exp : '(' exp1 ')'
362 { }
363 ;
364
365 /* Binary operators in order of decreasing precedence. */
366
367 exp : exp '@' exp
368 { write_exp_elt_opcode (BINOP_REPEAT); }
369 ;
370
371 exp : exp '*' exp
372 { write_exp_elt_opcode (BINOP_MUL); }
373 ;
374
375 exp : exp '/' exp
376 { write_exp_elt_opcode (BINOP_DIV); }
377 ;
378
379 exp : exp '%' exp
380 { write_exp_elt_opcode (BINOP_REM); }
381 ;
382
383 exp : exp '+' exp
384 { write_exp_elt_opcode (BINOP_ADD); }
385 ;
386
387 exp : exp '-' exp
388 { write_exp_elt_opcode (BINOP_SUB); }
389 ;
390
391 exp : exp LSH exp
392 { write_exp_elt_opcode (BINOP_LSH); }
393 ;
394
395 exp : exp RSH exp
396 { write_exp_elt_opcode (BINOP_RSH); }
397 ;
398
399 exp : exp EQUAL exp
400 { write_exp_elt_opcode (BINOP_EQUAL); }
401 ;
402
403 exp : exp NOTEQUAL exp
404 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
405 ;
406
407 exp : exp LEQ exp
408 { write_exp_elt_opcode (BINOP_LEQ); }
409 ;
410
411 exp : exp GEQ exp
412 { write_exp_elt_opcode (BINOP_GEQ); }
413 ;
414
415 exp : exp '<' exp
416 { write_exp_elt_opcode (BINOP_LESS); }
417 ;
418
419 exp : exp '>' exp
420 { write_exp_elt_opcode (BINOP_GTR); }
421 ;
422
423 exp : exp '&' exp
424 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
425 ;
426
427 exp : exp '^' exp
428 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
429 ;
430
431 exp : exp '|' exp
432 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
433 ;
434
435 exp : exp ANDAND exp
436 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
437 ;
438
439 exp : exp OROR exp
440 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
441 ;
442
443 exp : exp '?' exp ':' exp %prec '?'
444 { write_exp_elt_opcode (TERNOP_COND); }
445 ;
446
447 exp : exp '=' exp
448 { write_exp_elt_opcode (BINOP_ASSIGN); }
449 ;
450
451 exp : exp ASSIGN_MODIFY exp
452 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
453 write_exp_elt_opcode ($2);
454 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
455 ;
456
457 exp : INT
458 { write_exp_elt_opcode (OP_LONG);
459 write_exp_elt_type ($1.type);
460 write_exp_elt_longcst ((LONGEST)($1.val));
461 write_exp_elt_opcode (OP_LONG); }
462 ;
463
464 exp : NAME_OR_INT
465 { YYSTYPE val;
466 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
467 write_exp_elt_opcode (OP_LONG);
468 write_exp_elt_type (val.typed_val.type);
469 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
470 write_exp_elt_opcode (OP_LONG);
471 }
472 ;
473
474
475 exp : FLOAT
476 { write_exp_elt_opcode (OP_DOUBLE);
477 write_exp_elt_type (builtin_type_double);
478 write_exp_elt_dblcst ($1);
479 write_exp_elt_opcode (OP_DOUBLE); }
480 ;
481
482 exp : variable
483 ;
484
485 exp : LAST
486 { write_exp_elt_opcode (OP_LAST);
487 write_exp_elt_longcst ((LONGEST) $1);
488 write_exp_elt_opcode (OP_LAST); }
489 ;
490
491 exp : REGNAME
492 { write_exp_elt_opcode (OP_REGISTER);
493 write_exp_elt_longcst ((LONGEST) $1);
494 write_exp_elt_opcode (OP_REGISTER); }
495 ;
496
497 exp : VARIABLE
498 { write_exp_elt_opcode (OP_INTERNALVAR);
499 write_exp_elt_intern ($1);
500 write_exp_elt_opcode (OP_INTERNALVAR); }
501 ;
502
503 exp : SIZEOF '(' type ')' %prec UNARY
504 { write_exp_elt_opcode (OP_LONG);
505 write_exp_elt_type (builtin_type_int);
506 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
507 write_exp_elt_opcode (OP_LONG); }
508 ;
509
510 exp : STRING
511 { /* C strings are converted into array constants with
512 an explicit null byte added at the end. Thus
513 the array upper bound is the string length.
514 There is no such thing in C as a completely empty
515 string. */
516 char *sp = $1.ptr; int count = $1.length;
517 while (count-- > 0)
518 {
519 write_exp_elt_opcode (OP_LONG);
520 write_exp_elt_type (builtin_type_char);
521 write_exp_elt_longcst ((LONGEST)(*sp++));
522 write_exp_elt_opcode (OP_LONG);
523 }
524 write_exp_elt_opcode (OP_LONG);
525 write_exp_elt_type (builtin_type_char);
526 write_exp_elt_longcst ((LONGEST)'\0');
527 write_exp_elt_opcode (OP_LONG);
528 write_exp_elt_opcode (OP_ARRAY);
529 write_exp_elt_longcst ((LONGEST) 0);
530 write_exp_elt_longcst ((LONGEST) ($1.length));
531 write_exp_elt_opcode (OP_ARRAY); }
532 ;
533
534 /* C++. */
535 exp : THIS
536 { write_exp_elt_opcode (OP_THIS);
537 write_exp_elt_opcode (OP_THIS); }
538 ;
539
540 /* end of C++. */
541
542 block : BLOCKNAME
543 {
544 if ($1.sym != 0)
545 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
546 else
547 {
548 struct symtab *tem =
549 lookup_symtab (copy_name ($1.stoken));
550 if (tem)
551 $$ = BLOCKVECTOR_BLOCK (BLOCKVECTOR (tem), STATIC_BLOCK);
552 else
553 error ("No file or function \"%s\".",
554 copy_name ($1.stoken));
555 }
556 }
557 ;
558
559 block : block COLONCOLON name
560 { struct symbol *tem
561 = lookup_symbol (copy_name ($3), $1,
562 VAR_NAMESPACE, (int *) NULL,
563 (struct symtab **) NULL);
564 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
565 error ("No function \"%s\" in specified context.",
566 copy_name ($3));
567 $$ = SYMBOL_BLOCK_VALUE (tem); }
568 ;
569
570 variable: block COLONCOLON name
571 { struct symbol *sym;
572 sym = lookup_symbol (copy_name ($3), $1,
573 VAR_NAMESPACE, (int *) NULL,
574 (struct symtab **) NULL);
575 if (sym == 0)
576 error ("No symbol \"%s\" in specified context.",
577 copy_name ($3));
578
579 write_exp_elt_opcode (OP_VAR_VALUE);
580 /* block_found is set by lookup_symbol. */
581 write_exp_elt_block (block_found);
582 write_exp_elt_sym (sym);
583 write_exp_elt_opcode (OP_VAR_VALUE); }
584 ;
585
586 qualified_name: typebase COLONCOLON name
587 {
588 struct type *type = $1;
589 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
590 && TYPE_CODE (type) != TYPE_CODE_UNION)
591 error ("`%s' is not defined as an aggregate type.",
592 TYPE_NAME (type));
593
594 write_exp_elt_opcode (OP_SCOPE);
595 write_exp_elt_type (type);
596 write_exp_string ($3);
597 write_exp_elt_opcode (OP_SCOPE);
598 }
599 | typebase COLONCOLON '~' name
600 {
601 struct type *type = $1;
602 struct stoken tmp_token;
603 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
604 && TYPE_CODE (type) != TYPE_CODE_UNION)
605 error ("`%s' is not defined as an aggregate type.",
606 TYPE_NAME (type));
607
608 if (!STREQ (type_name_no_tag (type), $4.ptr))
609 error ("invalid destructor `%s::~%s'",
610 type_name_no_tag (type), $4.ptr);
611
612 tmp_token.ptr = (char*) alloca ($4.length + 2);
613 tmp_token.length = $4.length + 1;
614 tmp_token.ptr[0] = '~';
615 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
616 tmp_token.ptr[tmp_token.length] = 0;
617 write_exp_elt_opcode (OP_SCOPE);
618 write_exp_elt_type (type);
619 write_exp_string (tmp_token);
620 write_exp_elt_opcode (OP_SCOPE);
621 }
622 ;
623
624 variable: qualified_name
625 | COLONCOLON name
626 {
627 char *name = copy_name ($2);
628 struct symbol *sym;
629 struct minimal_symbol *msymbol;
630
631 sym =
632 lookup_symbol (name, (const struct block *) NULL,
633 VAR_NAMESPACE, (int *) NULL,
634 (struct symtab **) NULL);
635 if (sym)
636 {
637 write_exp_elt_opcode (OP_VAR_VALUE);
638 write_exp_elt_block (NULL);
639 write_exp_elt_sym (sym);
640 write_exp_elt_opcode (OP_VAR_VALUE);
641 break;
642 }
643
644 msymbol = lookup_minimal_symbol (name, NULL, NULL);
645 if (msymbol != NULL)
646 {
647 write_exp_msymbol (msymbol,
648 lookup_function_type (builtin_type_int),
649 builtin_type_int);
650 }
651 else
652 if (!have_full_symbols () && !have_partial_symbols ())
653 error ("No symbol table is loaded. Use the \"file\" command.");
654 else
655 error ("No symbol \"%s\" in current context.", name);
656 }
657 ;
658
659 variable: name_not_typename
660 { struct symbol *sym = $1.sym;
661
662 if (sym)
663 {
664 if (symbol_read_needs_frame (sym))
665 {
666 if (innermost_block == 0 ||
667 contained_in (block_found,
668 innermost_block))
669 innermost_block = block_found;
670 }
671
672 write_exp_elt_opcode (OP_VAR_VALUE);
673 /* We want to use the selected frame, not
674 another more inner frame which happens to
675 be in the same block. */
676 write_exp_elt_block (NULL);
677 write_exp_elt_sym (sym);
678 write_exp_elt_opcode (OP_VAR_VALUE);
679 }
680 else if ($1.is_a_field_of_this)
681 {
682 /* C++: it hangs off of `this'. Must
683 not inadvertently convert from a method call
684 to data ref. */
685 if (innermost_block == 0 ||
686 contained_in (block_found, innermost_block))
687 innermost_block = block_found;
688 write_exp_elt_opcode (OP_THIS);
689 write_exp_elt_opcode (OP_THIS);
690 write_exp_elt_opcode (STRUCTOP_PTR);
691 write_exp_string ($1.stoken);
692 write_exp_elt_opcode (STRUCTOP_PTR);
693 }
694 else
695 {
696 struct minimal_symbol *msymbol;
697 register char *arg = copy_name ($1.stoken);
698
699 msymbol =
700 lookup_minimal_symbol (arg, NULL, NULL);
701 if (msymbol != NULL)
702 {
703 write_exp_msymbol (msymbol,
704 lookup_function_type (builtin_type_int),
705 builtin_type_int);
706 }
707 else if (!have_full_symbols () && !have_partial_symbols ())
708 error ("No symbol table is loaded. Use the \"file\" command.");
709 else
710 error ("No symbol \"%s\" in current context.",
711 copy_name ($1.stoken));
712 }
713 }
714 ;
715
716
717 ptype : typebase
718 /* "const" and "volatile" are curently ignored. A type qualifier
719 before the type is currently handled in the typebase rule.
720 The reason for recognizing these here (shift/reduce conflicts)
721 might be obsolete now that some pointer to member rules have
722 been deleted. */
723 | typebase CONST_KEYWORD
724 | typebase VOLATILE_KEYWORD
725 | typebase abs_decl
726 { $$ = follow_types ($1); }
727 | typebase CONST_KEYWORD abs_decl
728 { $$ = follow_types ($1); }
729 | typebase VOLATILE_KEYWORD abs_decl
730 { $$ = follow_types ($1); }
731 ;
732
733 abs_decl: '*'
734 { push_type (tp_pointer); $$ = 0; }
735 | '*' abs_decl
736 { push_type (tp_pointer); $$ = $2; }
737 | '&'
738 { push_type (tp_reference); $$ = 0; }
739 | '&' abs_decl
740 { push_type (tp_reference); $$ = $2; }
741 | direct_abs_decl
742 ;
743
744 direct_abs_decl: '(' abs_decl ')'
745 { $$ = $2; }
746 | direct_abs_decl array_mod
747 {
748 push_type_int ($2);
749 push_type (tp_array);
750 }
751 | array_mod
752 {
753 push_type_int ($1);
754 push_type (tp_array);
755 $$ = 0;
756 }
757
758 | direct_abs_decl func_mod
759 { push_type (tp_function); }
760 | func_mod
761 { push_type (tp_function); }
762 ;
763
764 array_mod: '[' ']'
765 { $$ = -1; }
766 | '[' INT ']'
767 { $$ = $2.val; }
768 ;
769
770 func_mod: '(' ')'
771 { $$ = 0; }
772 | '(' nonempty_typelist ')'
773 { free ((PTR)$2); $$ = 0; }
774 ;
775
776 /* We used to try to recognize more pointer to member types here, but
777 that didn't work (shift/reduce conflicts meant that these rules never
778 got executed). The problem is that
779 int (foo::bar::baz::bizzle)
780 is a function type but
781 int (foo::bar::baz::bizzle::*)
782 is a pointer to member type. Stroustrup loses again! */
783
784 type : ptype
785 | typebase COLONCOLON '*'
786 { $$ = lookup_member_type (builtin_type_int, $1); }
787 ;
788
789 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
790 : TYPENAME
791 { $$ = $1.type; }
792 | INT_KEYWORD
793 { $$ = builtin_type_int; }
794 | LONG
795 { $$ = builtin_type_long; }
796 | SHORT
797 { $$ = builtin_type_short; }
798 | LONG INT_KEYWORD
799 { $$ = builtin_type_long; }
800 | UNSIGNED LONG INT_KEYWORD
801 { $$ = builtin_type_unsigned_long; }
802 | LONG LONG
803 { $$ = builtin_type_long_long; }
804 | LONG LONG INT_KEYWORD
805 { $$ = builtin_type_long_long; }
806 | UNSIGNED LONG LONG
807 { $$ = builtin_type_unsigned_long_long; }
808 | UNSIGNED LONG LONG INT_KEYWORD
809 { $$ = builtin_type_unsigned_long_long; }
810 | SHORT INT_KEYWORD
811 { $$ = builtin_type_short; }
812 | UNSIGNED SHORT INT_KEYWORD
813 { $$ = builtin_type_unsigned_short; }
814 | STRUCT name
815 { $$ = lookup_struct (copy_name ($2),
816 expression_context_block); }
817 | CLASS name
818 { $$ = lookup_struct (copy_name ($2),
819 expression_context_block); }
820 | UNION name
821 { $$ = lookup_union (copy_name ($2),
822 expression_context_block); }
823 | ENUM name
824 { $$ = lookup_enum (copy_name ($2),
825 expression_context_block); }
826 | UNSIGNED typename
827 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
828 | UNSIGNED
829 { $$ = builtin_type_unsigned_int; }
830 | SIGNED_KEYWORD typename
831 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
832 | SIGNED_KEYWORD
833 { $$ = builtin_type_int; }
834 | TEMPLATE name '<' type '>'
835 { $$ = lookup_template_type(copy_name($2), $4,
836 expression_context_block);
837 }
838 /* "const" and "volatile" are curently ignored. A type qualifier
839 after the type is handled in the ptype rule. I think these could
840 be too. */
841 | CONST_KEYWORD typebase { $$ = $2; }
842 | VOLATILE_KEYWORD typebase { $$ = $2; }
843 ;
844
845 typename: TYPENAME
846 | INT_KEYWORD
847 {
848 $$.stoken.ptr = "int";
849 $$.stoken.length = 3;
850 $$.type = builtin_type_int;
851 }
852 | LONG
853 {
854 $$.stoken.ptr = "long";
855 $$.stoken.length = 4;
856 $$.type = builtin_type_long;
857 }
858 | SHORT
859 {
860 $$.stoken.ptr = "short";
861 $$.stoken.length = 5;
862 $$.type = builtin_type_short;
863 }
864 ;
865
866 nonempty_typelist
867 : type
868 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
869 $<ivec>$[0] = 1; /* Number of types in vector */
870 $$[1] = $1;
871 }
872 | nonempty_typelist ',' type
873 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
874 $$ = (struct type **) realloc ((char *) $1, len);
875 $$[$<ivec>$[0]] = $3;
876 }
877 ;
878
879 name : NAME { $$ = $1.stoken; }
880 | BLOCKNAME { $$ = $1.stoken; }
881 | TYPENAME { $$ = $1.stoken; }
882 | NAME_OR_INT { $$ = $1.stoken; }
883 ;
884
885 name_not_typename : NAME
886 | BLOCKNAME
887 /* These would be useful if name_not_typename was useful, but it is just
888 a fake for "variable", so these cause reduce/reduce conflicts because
889 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
890 =exp) or just an exp. If name_not_typename was ever used in an lvalue
891 context where only a name could occur, this might be useful.
892 | NAME_OR_INT
893 */
894 ;
895
896 %%
897
898 /* Take care of parsing a number (anything that starts with a digit).
899 Set yylval and return the token type; update lexptr.
900 LEN is the number of characters in it. */
901
902 /*** Needs some error checking for the float case ***/
903
904 static int
905 parse_number (p, len, parsed_float, putithere)
906 register char *p;
907 register int len;
908 int parsed_float;
909 YYSTYPE *putithere;
910 {
911 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
912 here, and we do kind of silly things like cast to unsigned. */
913 register LONGEST n = 0;
914 register LONGEST prevn = 0;
915 unsigned LONGEST un;
916
917 register int i = 0;
918 register int c;
919 register int base = input_radix;
920 int unsigned_p = 0;
921
922 /* Number of "L" suffixes encountered. */
923 int long_p = 0;
924
925 /* We have found a "L" or "U" suffix. */
926 int found_suffix = 0;
927
928 unsigned LONGEST high_bit;
929 struct type *signed_type;
930 struct type *unsigned_type;
931
932 if (parsed_float)
933 {
934 /* It's a float since it contains a point or an exponent. */
935 putithere->dval = atof (p);
936 return FLOAT;
937 }
938
939 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
940 if (p[0] == '0')
941 switch (p[1])
942 {
943 case 'x':
944 case 'X':
945 if (len >= 3)
946 {
947 p += 2;
948 base = 16;
949 len -= 2;
950 }
951 break;
952
953 case 't':
954 case 'T':
955 case 'd':
956 case 'D':
957 if (len >= 3)
958 {
959 p += 2;
960 base = 10;
961 len -= 2;
962 }
963 break;
964
965 default:
966 base = 8;
967 break;
968 }
969
970 while (len-- > 0)
971 {
972 c = *p++;
973 if (c >= 'A' && c <= 'Z')
974 c += 'a' - 'A';
975 if (c != 'l' && c != 'u')
976 n *= base;
977 if (c >= '0' && c <= '9')
978 {
979 if (found_suffix)
980 return ERROR;
981 n += i = c - '0';
982 }
983 else
984 {
985 if (base > 10 && c >= 'a' && c <= 'f')
986 {
987 if (found_suffix)
988 return ERROR;
989 n += i = c - 'a' + 10;
990 }
991 else if (c == 'l')
992 {
993 ++long_p;
994 found_suffix = 1;
995 }
996 else if (c == 'u')
997 {
998 unsigned_p = 1;
999 found_suffix = 1;
1000 }
1001 else
1002 return ERROR; /* Char not a digit */
1003 }
1004 if (i >= base)
1005 return ERROR; /* Invalid digit in this base */
1006
1007 /* Portably test for overflow (only works for nonzero values, so make
1008 a second check for zero). FIXME: Can't we just make n and prevn
1009 unsigned and avoid this? */
1010 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1011 unsigned_p = 1; /* Try something unsigned */
1012
1013 /* Portably test for unsigned overflow.
1014 FIXME: This check is wrong; for example it doesn't find overflow
1015 on 0x123456789 when LONGEST is 32 bits. */
1016 if (c != 'l' && c != 'u' && n != 0)
1017 {
1018 if ((unsigned_p && (unsigned LONGEST) prevn >= (unsigned LONGEST) n))
1019 error ("Numeric constant too large.");
1020 }
1021 prevn = n;
1022 }
1023
1024 /* An integer constant is an int, a long, or a long long. An L
1025 suffix forces it to be long; an LL suffix forces it to be long
1026 long. If not forced to a larger size, it gets the first type of
1027 the above that it fits in. To figure out whether it fits, we
1028 shift it right and see whether anything remains. Note that we
1029 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1030 operation, because many compilers will warn about such a shift
1031 (which always produces a zero result). Sometimes TARGET_INT_BIT
1032 or TARGET_LONG_BIT will be that big, sometimes not. To deal with
1033 the case where it is we just always shift the value more than
1034 once, with fewer bits each time. */
1035
1036 un = (unsigned LONGEST)n >> 2;
1037 if (long_p == 0
1038 && (un >> (TARGET_INT_BIT - 2)) == 0)
1039 {
1040 high_bit = ((unsigned LONGEST)1) << (TARGET_INT_BIT-1);
1041
1042 /* A large decimal (not hex or octal) constant (between INT_MAX
1043 and UINT_MAX) is a long or unsigned long, according to ANSI,
1044 never an unsigned int, but this code treats it as unsigned
1045 int. This probably should be fixed. GCC gives a warning on
1046 such constants. */
1047
1048 unsigned_type = builtin_type_unsigned_int;
1049 signed_type = builtin_type_int;
1050 }
1051 else if (long_p <= 1
1052 && (un >> (TARGET_LONG_BIT - 2)) == 0)
1053 {
1054 high_bit = ((unsigned LONGEST)1) << (TARGET_LONG_BIT-1);
1055 unsigned_type = builtin_type_unsigned_long;
1056 signed_type = builtin_type_long;
1057 }
1058 else
1059 {
1060 high_bit = (((unsigned LONGEST)1)
1061 << (TARGET_LONG_LONG_BIT - 32 - 1)
1062 << 16
1063 << 16);
1064 if (high_bit == 0)
1065 /* A long long does not fit in a LONGEST. */
1066 high_bit =
1067 (unsigned LONGEST)1 << (sizeof (LONGEST) * HOST_CHAR_BIT - 1);
1068 unsigned_type = builtin_type_unsigned_long_long;
1069 signed_type = builtin_type_long_long;
1070 }
1071
1072 putithere->typed_val.val = n;
1073
1074 /* If the high bit of the worked out type is set then this number
1075 has to be unsigned. */
1076
1077 if (unsigned_p || (n & high_bit))
1078 {
1079 putithere->typed_val.type = unsigned_type;
1080 }
1081 else
1082 {
1083 putithere->typed_val.type = signed_type;
1084 }
1085
1086 return INT;
1087 }
1088
1089 struct token
1090 {
1091 char *operator;
1092 int token;
1093 enum exp_opcode opcode;
1094 };
1095
1096 static const struct token tokentab3[] =
1097 {
1098 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1099 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1100 };
1101
1102 static const struct token tokentab2[] =
1103 {
1104 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1105 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1106 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1107 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1108 {"%=", ASSIGN_MODIFY, BINOP_REM},
1109 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1110 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1111 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1112 {"++", INCREMENT, BINOP_END},
1113 {"--", DECREMENT, BINOP_END},
1114 {"->", ARROW, BINOP_END},
1115 {"&&", ANDAND, BINOP_END},
1116 {"||", OROR, BINOP_END},
1117 {"::", COLONCOLON, BINOP_END},
1118 {"<<", LSH, BINOP_END},
1119 {">>", RSH, BINOP_END},
1120 {"==", EQUAL, BINOP_END},
1121 {"!=", NOTEQUAL, BINOP_END},
1122 {"<=", LEQ, BINOP_END},
1123 {">=", GEQ, BINOP_END}
1124 };
1125
1126 /* Read one token, getting characters through lexptr. */
1127
1128 static int
1129 yylex ()
1130 {
1131 int c;
1132 int namelen;
1133 unsigned int i;
1134 char *tokstart;
1135 char *tokptr;
1136 int tempbufindex;
1137 static char *tempbuf;
1138 static int tempbufsize;
1139
1140 retry:
1141
1142 tokstart = lexptr;
1143 /* See if it is a special token of length 3. */
1144 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1145 if (STREQN (tokstart, tokentab3[i].operator, 3))
1146 {
1147 lexptr += 3;
1148 yylval.opcode = tokentab3[i].opcode;
1149 return tokentab3[i].token;
1150 }
1151
1152 /* See if it is a special token of length 2. */
1153 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1154 if (STREQN (tokstart, tokentab2[i].operator, 2))
1155 {
1156 lexptr += 2;
1157 yylval.opcode = tokentab2[i].opcode;
1158 return tokentab2[i].token;
1159 }
1160
1161 switch (c = *tokstart)
1162 {
1163 case 0:
1164 return 0;
1165
1166 case ' ':
1167 case '\t':
1168 case '\n':
1169 lexptr++;
1170 goto retry;
1171
1172 case '\'':
1173 /* We either have a character constant ('0' or '\177' for example)
1174 or we have a quoted symbol reference ('foo(int,int)' in C++
1175 for example). */
1176 lexptr++;
1177 c = *lexptr++;
1178 if (c == '\\')
1179 c = parse_escape (&lexptr);
1180 else if (c == '\'')
1181 error ("Empty character constant.");
1182
1183 yylval.typed_val.val = c;
1184 yylval.typed_val.type = builtin_type_char;
1185
1186 c = *lexptr++;
1187 if (c != '\'')
1188 {
1189 namelen = skip_quoted (tokstart) - tokstart;
1190 if (namelen > 2)
1191 {
1192 lexptr = tokstart + namelen;
1193 if (lexptr[-1] != '\'')
1194 error ("Unmatched single quote.");
1195 namelen -= 2;
1196 tokstart++;
1197 goto tryname;
1198 }
1199 error ("Invalid character constant.");
1200 }
1201 return INT;
1202
1203 case '(':
1204 paren_depth++;
1205 lexptr++;
1206 return c;
1207
1208 case ')':
1209 if (paren_depth == 0)
1210 return 0;
1211 paren_depth--;
1212 lexptr++;
1213 return c;
1214
1215 case ',':
1216 if (comma_terminates && paren_depth == 0)
1217 return 0;
1218 lexptr++;
1219 return c;
1220
1221 case '.':
1222 /* Might be a floating point number. */
1223 if (lexptr[1] < '0' || lexptr[1] > '9')
1224 goto symbol; /* Nope, must be a symbol. */
1225 /* FALL THRU into number case. */
1226
1227 case '0':
1228 case '1':
1229 case '2':
1230 case '3':
1231 case '4':
1232 case '5':
1233 case '6':
1234 case '7':
1235 case '8':
1236 case '9':
1237 {
1238 /* It's a number. */
1239 int got_dot = 0, got_e = 0, toktype;
1240 register char *p = tokstart;
1241 int hex = input_radix > 10;
1242
1243 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1244 {
1245 p += 2;
1246 hex = 1;
1247 }
1248 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1249 {
1250 p += 2;
1251 hex = 0;
1252 }
1253
1254 for (;; ++p)
1255 {
1256 /* This test includes !hex because 'e' is a valid hex digit
1257 and thus does not indicate a floating point number when
1258 the radix is hex. */
1259 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1260 got_dot = got_e = 1;
1261 /* This test does not include !hex, because a '.' always indicates
1262 a decimal floating point number regardless of the radix. */
1263 else if (!got_dot && *p == '.')
1264 got_dot = 1;
1265 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1266 && (*p == '-' || *p == '+'))
1267 /* This is the sign of the exponent, not the end of the
1268 number. */
1269 continue;
1270 /* We will take any letters or digits. parse_number will
1271 complain if past the radix, or if L or U are not final. */
1272 else if ((*p < '0' || *p > '9')
1273 && ((*p < 'a' || *p > 'z')
1274 && (*p < 'A' || *p > 'Z')))
1275 break;
1276 }
1277 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1278 if (toktype == ERROR)
1279 {
1280 char *err_copy = (char *) alloca (p - tokstart + 1);
1281
1282 memcpy (err_copy, tokstart, p - tokstart);
1283 err_copy[p - tokstart] = 0;
1284 error ("Invalid number \"%s\".", err_copy);
1285 }
1286 lexptr = p;
1287 return toktype;
1288 }
1289
1290 case '+':
1291 case '-':
1292 case '*':
1293 case '/':
1294 case '%':
1295 case '|':
1296 case '&':
1297 case '^':
1298 case '~':
1299 case '!':
1300 case '@':
1301 case '<':
1302 case '>':
1303 case '[':
1304 case ']':
1305 case '?':
1306 case ':':
1307 case '=':
1308 case '{':
1309 case '}':
1310 symbol:
1311 lexptr++;
1312 return c;
1313
1314 case '"':
1315
1316 /* Build the gdb internal form of the input string in tempbuf,
1317 translating any standard C escape forms seen. Note that the
1318 buffer is null byte terminated *only* for the convenience of
1319 debugging gdb itself and printing the buffer contents when
1320 the buffer contains no embedded nulls. Gdb does not depend
1321 upon the buffer being null byte terminated, it uses the length
1322 string instead. This allows gdb to handle C strings (as well
1323 as strings in other languages) with embedded null bytes */
1324
1325 tokptr = ++tokstart;
1326 tempbufindex = 0;
1327
1328 do {
1329 /* Grow the static temp buffer if necessary, including allocating
1330 the first one on demand. */
1331 if (tempbufindex + 1 >= tempbufsize)
1332 {
1333 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1334 }
1335 switch (*tokptr)
1336 {
1337 case '\0':
1338 case '"':
1339 /* Do nothing, loop will terminate. */
1340 break;
1341 case '\\':
1342 tokptr++;
1343 c = parse_escape (&tokptr);
1344 if (c == -1)
1345 {
1346 continue;
1347 }
1348 tempbuf[tempbufindex++] = c;
1349 break;
1350 default:
1351 tempbuf[tempbufindex++] = *tokptr++;
1352 break;
1353 }
1354 } while ((*tokptr != '"') && (*tokptr != '\0'));
1355 if (*tokptr++ != '"')
1356 {
1357 error ("Unterminated string in expression.");
1358 }
1359 tempbuf[tempbufindex] = '\0'; /* See note above */
1360 yylval.sval.ptr = tempbuf;
1361 yylval.sval.length = tempbufindex;
1362 lexptr = tokptr;
1363 return (STRING);
1364 }
1365
1366 if (!(c == '_' || c == '$'
1367 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1368 /* We must have come across a bad character (e.g. ';'). */
1369 error ("Invalid character '%c' in expression.", c);
1370
1371 /* It's a name. See how long it is. */
1372 namelen = 0;
1373 for (c = tokstart[namelen];
1374 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1375 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
1376 {
1377 if (c == '<')
1378 {
1379 int i = namelen;
1380 while (tokstart[++i] && tokstart[i] != '>');
1381 if (tokstart[i] == '>')
1382 namelen = i;
1383 }
1384 c = tokstart[++namelen];
1385 }
1386
1387 /* The token "if" terminates the expression and is NOT
1388 removed from the input stream. */
1389 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1390 {
1391 return 0;
1392 }
1393
1394 lexptr += namelen;
1395
1396 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
1397 and $$digits (equivalent to $<-digits> if you could type that).
1398 Make token type LAST, and put the number (the digits) in yylval. */
1399
1400 tryname:
1401 if (*tokstart == '$')
1402 {
1403 register int negate = 0;
1404 c = 1;
1405 /* Double dollar means negate the number and add -1 as well.
1406 Thus $$ alone means -1. */
1407 if (namelen >= 2 && tokstart[1] == '$')
1408 {
1409 negate = 1;
1410 c = 2;
1411 }
1412 if (c == namelen)
1413 {
1414 /* Just dollars (one or two) */
1415 yylval.lval = - negate;
1416 return LAST;
1417 }
1418 /* Is the rest of the token digits? */
1419 for (; c < namelen; c++)
1420 if (!(tokstart[c] >= '0' && tokstart[c] <= '9'))
1421 break;
1422 if (c == namelen)
1423 {
1424 yylval.lval = atoi (tokstart + 1 + negate);
1425 if (negate)
1426 yylval.lval = - yylval.lval;
1427 return LAST;
1428 }
1429 }
1430
1431 /* Handle tokens that refer to machine registers:
1432 $ followed by a register name. */
1433
1434 if (*tokstart == '$') {
1435 for (c = 0; c < NUM_REGS; c++)
1436 if (namelen - 1 == strlen (reg_names[c])
1437 && STREQN (tokstart + 1, reg_names[c], namelen - 1))
1438 {
1439 yylval.lval = c;
1440 return REGNAME;
1441 }
1442 for (c = 0; c < num_std_regs; c++)
1443 if (namelen - 1 == strlen (std_regs[c].name)
1444 && STREQN (tokstart + 1, std_regs[c].name, namelen - 1))
1445 {
1446 yylval.lval = std_regs[c].regnum;
1447 return REGNAME;
1448 }
1449 }
1450 /* Catch specific keywords. Should be done with a data structure. */
1451 switch (namelen)
1452 {
1453 case 8:
1454 if (STREQN (tokstart, "unsigned", 8))
1455 return UNSIGNED;
1456 if (current_language->la_language == language_cplus
1457 && STREQN (tokstart, "template", 8))
1458 return TEMPLATE;
1459 if (STREQN (tokstart, "volatile", 8))
1460 return VOLATILE_KEYWORD;
1461 break;
1462 case 6:
1463 if (STREQN (tokstart, "struct", 6))
1464 return STRUCT;
1465 if (STREQN (tokstart, "signed", 6))
1466 return SIGNED_KEYWORD;
1467 if (STREQN (tokstart, "sizeof", 6))
1468 return SIZEOF;
1469 break;
1470 case 5:
1471 if (current_language->la_language == language_cplus
1472 && STREQN (tokstart, "class", 5))
1473 return CLASS;
1474 if (STREQN (tokstart, "union", 5))
1475 return UNION;
1476 if (STREQN (tokstart, "short", 5))
1477 return SHORT;
1478 if (STREQN (tokstart, "const", 5))
1479 return CONST_KEYWORD;
1480 break;
1481 case 4:
1482 if (STREQN (tokstart, "enum", 4))
1483 return ENUM;
1484 if (STREQN (tokstart, "long", 4))
1485 return LONG;
1486 if (current_language->la_language == language_cplus
1487 && STREQN (tokstart, "this", 4))
1488 {
1489 static const char this_name[] =
1490 { CPLUS_MARKER, 't', 'h', 'i', 's', '\0' };
1491
1492 if (lookup_symbol (this_name, expression_context_block,
1493 VAR_NAMESPACE, (int *) NULL,
1494 (struct symtab **) NULL))
1495 return THIS;
1496 }
1497 break;
1498 case 3:
1499 if (STREQN (tokstart, "int", 3))
1500 return INT_KEYWORD;
1501 break;
1502 default:
1503 break;
1504 }
1505
1506 yylval.sval.ptr = tokstart;
1507 yylval.sval.length = namelen;
1508
1509 /* Any other names starting in $ are debugger internal variables. */
1510
1511 if (*tokstart == '$')
1512 {
1513 yylval.ivar = lookup_internalvar (copy_name (yylval.sval) + 1);
1514 return VARIABLE;
1515 }
1516
1517 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1518 functions or symtabs. If this is not so, then ...
1519 Use token-type TYPENAME for symbols that happen to be defined
1520 currently as names of types; NAME for other symbols.
1521 The caller is not constrained to care about the distinction. */
1522 {
1523 char *tmp = copy_name (yylval.sval);
1524 struct symbol *sym;
1525 int is_a_field_of_this = 0;
1526 int hextype;
1527
1528 sym = lookup_symbol (tmp, expression_context_block,
1529 VAR_NAMESPACE,
1530 current_language->la_language == language_cplus
1531 ? &is_a_field_of_this : (int *) NULL,
1532 (struct symtab **) NULL);
1533 /* Call lookup_symtab, not lookup_partial_symtab, in case there are
1534 no psymtabs (coff, xcoff, or some future change to blow away the
1535 psymtabs once once symbols are read). */
1536 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
1537 lookup_symtab (tmp))
1538 {
1539 yylval.ssym.sym = sym;
1540 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1541 return BLOCKNAME;
1542 }
1543 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1544 {
1545 #if 1
1546 /* Despite the following flaw, we need to keep this code enabled.
1547 Because we can get called from check_stub_method, if we don't
1548 handle nested types then it screws many operations in any
1549 program which uses nested types. */
1550 /* In "A::x", if x is a member function of A and there happens
1551 to be a type (nested or not, since the stabs don't make that
1552 distinction) named x, then this code incorrectly thinks we
1553 are dealing with nested types rather than a member function. */
1554
1555 char *p;
1556 char *namestart;
1557 struct symbol *best_sym;
1558
1559 /* Look ahead to detect nested types. This probably should be
1560 done in the grammar, but trying seemed to introduce a lot
1561 of shift/reduce and reduce/reduce conflicts. It's possible
1562 that it could be done, though. Or perhaps a non-grammar, but
1563 less ad hoc, approach would work well. */
1564
1565 /* Since we do not currently have any way of distinguishing
1566 a nested type from a non-nested one (the stabs don't tell
1567 us whether a type is nested), we just ignore the
1568 containing type. */
1569
1570 p = lexptr;
1571 best_sym = sym;
1572 while (1)
1573 {
1574 /* Skip whitespace. */
1575 while (*p == ' ' || *p == '\t' || *p == '\n')
1576 ++p;
1577 if (*p == ':' && p[1] == ':')
1578 {
1579 /* Skip the `::'. */
1580 p += 2;
1581 /* Skip whitespace. */
1582 while (*p == ' ' || *p == '\t' || *p == '\n')
1583 ++p;
1584 namestart = p;
1585 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1586 || (*p >= 'a' && *p <= 'z')
1587 || (*p >= 'A' && *p <= 'Z'))
1588 ++p;
1589 if (p != namestart)
1590 {
1591 struct symbol *cur_sym;
1592 /* As big as the whole rest of the expression, which is
1593 at least big enough. */
1594 char *ncopy = alloca (strlen (tmp)+strlen (namestart)+3);
1595 char *tmp1;
1596
1597 tmp1 = ncopy;
1598 memcpy (tmp1, tmp, strlen (tmp));
1599 tmp1 += strlen (tmp);
1600 memcpy (tmp1, "::", 2);
1601 tmp1 += 2;
1602 memcpy (tmp1, namestart, p - namestart);
1603 tmp1[p - namestart] = '\0';
1604 cur_sym = lookup_symbol (ncopy, expression_context_block,
1605 VAR_NAMESPACE, (int *) NULL,
1606 (struct symtab **) NULL);
1607 if (cur_sym)
1608 {
1609 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1610 {
1611 best_sym = cur_sym;
1612 lexptr = p;
1613 }
1614 else
1615 break;
1616 }
1617 else
1618 break;
1619 }
1620 else
1621 break;
1622 }
1623 else
1624 break;
1625 }
1626
1627 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1628 #else /* not 0 */
1629 yylval.tsym.type = SYMBOL_TYPE (sym);
1630 #endif /* not 0 */
1631 return TYPENAME;
1632 }
1633 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1634 return TYPENAME;
1635
1636 /* Input names that aren't symbols but ARE valid hex numbers,
1637 when the input radix permits them, can be names or numbers
1638 depending on the parse. Note we support radixes > 16 here. */
1639 if (!sym &&
1640 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1641 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1642 {
1643 YYSTYPE newlval; /* Its value is ignored. */
1644 hextype = parse_number (tokstart, namelen, 0, &newlval);
1645 if (hextype == INT)
1646 {
1647 yylval.ssym.sym = sym;
1648 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1649 return NAME_OR_INT;
1650 }
1651 }
1652
1653 /* Any other kind of symbol */
1654 yylval.ssym.sym = sym;
1655 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1656 return NAME;
1657 }
1658 }
1659
1660 void
1661 yyerror (msg)
1662 char *msg;
1663 {
1664 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
1665 }
This page took 0.064074 seconds and 4 git commands to generate.