* config/i960/vxworks960.mt: add remote-vx960.o.
[deliverable/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Parse a C expression from text in a string,
22 and return the result as a struct expression pointer.
23 That structure contains arithmetic operations in reverse polish,
24 with constants represented by operations that are followed by special data.
25 See expression.h for the details of the format.
26 What is important here is that it can be built up sequentially
27 during the process of parsing; the lower levels of the tree always
28 come first in the result.
29
30 Note that malloc's and realloc's in this file are transformed to
31 xmalloc and xrealloc respectively by the same sed command in the
32 makefile that remaps any other malloc/realloc inserted by the parser
33 generator. Doing this with #defines and trying to control the interaction
34 with include files (<malloc.h> and <stdlib.h> for example) just became
35 too messy, particularly when such includes can be inserted at random
36 times by the parser generator. */
37
38 %{
39
40 #include "defs.h"
41 #include <string.h>
42 #include "expression.h"
43 #include "value.h"
44 #include "parser-defs.h"
45 #include "language.h"
46 #include "c-lang.h"
47 #include "bfd.h" /* Required by objfiles.h. */
48 #include "symfile.h" /* Required by objfiles.h. */
49 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
50
51 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
52 as well as gratuitiously global symbol names, so we can have multiple
53 yacc generated parsers in gdb. Note that these are only the variables
54 produced by yacc. If other parser generators (bison, byacc, etc) produce
55 additional global names that conflict at link time, then those parser
56 generators need to be fixed instead of adding those names to this list. */
57
58 #define yymaxdepth c_maxdepth
59 #define yyparse c_parse
60 #define yylex c_lex
61 #define yyerror c_error
62 #define yylval c_lval
63 #define yychar c_char
64 #define yydebug c_debug
65 #define yypact c_pact
66 #define yyr1 c_r1
67 #define yyr2 c_r2
68 #define yydef c_def
69 #define yychk c_chk
70 #define yypgo c_pgo
71 #define yyact c_act
72 #define yyexca c_exca
73 #define yyerrflag c_errflag
74 #define yynerrs c_nerrs
75 #define yyps c_ps
76 #define yypv c_pv
77 #define yys c_s
78 #define yy_yys c_yys
79 #define yystate c_state
80 #define yytmp c_tmp
81 #define yyv c_v
82 #define yy_yyv c_yyv
83 #define yyval c_val
84 #define yylloc c_lloc
85 #define yyreds c_reds /* With YYDEBUG defined */
86 #define yytoks c_toks /* With YYDEBUG defined */
87 #define yylhs c_yylhs
88 #define yylen c_yylen
89 #define yydefred c_yydefred
90 #define yydgoto c_yydgoto
91 #define yysindex c_yysindex
92 #define yyrindex c_yyrindex
93 #define yygindex c_yygindex
94 #define yytable c_yytable
95 #define yycheck c_yycheck
96
97 #ifndef YYDEBUG
98 #define YYDEBUG 0 /* Default to no yydebug support */
99 #endif
100
101 int
102 yyparse PARAMS ((void));
103
104 static int
105 yylex PARAMS ((void));
106
107 void
108 yyerror PARAMS ((char *));
109
110 %}
111
112 /* Although the yacc "value" of an expression is not used,
113 since the result is stored in the structure being created,
114 other node types do have values. */
115
116 %union
117 {
118 LONGEST lval;
119 struct {
120 LONGEST val;
121 struct type *type;
122 } typed_val;
123 double dval;
124 struct symbol *sym;
125 struct type *tval;
126 struct stoken sval;
127 struct ttype tsym;
128 struct symtoken ssym;
129 int voidval;
130 struct block *bval;
131 enum exp_opcode opcode;
132 struct internalvar *ivar;
133
134 struct type **tvec;
135 int *ivec;
136 }
137
138 %{
139 /* YYSTYPE gets defined by %union */
140 static int
141 parse_number PARAMS ((char *, int, int, YYSTYPE *));
142 %}
143
144 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
145 %type <lval> rcurly
146 %type <tval> type typebase
147 %type <tvec> nonempty_typelist
148 /* %type <bval> block */
149
150 /* Fancy type parsing. */
151 %type <voidval> func_mod direct_abs_decl abs_decl
152 %type <tval> ptype
153 %type <lval> array_mod
154
155 %token <typed_val> INT
156 %token <dval> FLOAT
157
158 /* Both NAME and TYPENAME tokens represent symbols in the input,
159 and both convey their data as strings.
160 But a TYPENAME is a string that happens to be defined as a typedef
161 or builtin type name (such as int or char)
162 and a NAME is any other symbol.
163 Contexts where this distinction is not important can use the
164 nonterminal "name", which matches either NAME or TYPENAME. */
165
166 %token <sval> STRING
167 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
168 %token <tsym> TYPENAME
169 %type <sval> name
170 %type <ssym> name_not_typename
171 %type <tsym> typename
172
173 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
174 but which would parse as a valid number in the current input radix.
175 E.g. "c" when input_radix==16. Depending on the parse, it will be
176 turned into a name or into a number. */
177
178 %token <ssym> NAME_OR_INT
179
180 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
181 %token TEMPLATE
182 %token ERROR
183
184 /* Special type cases, put in to allow the parser to distinguish different
185 legal basetypes. */
186 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD
187 %token <lval> LAST REGNAME
188
189 %token <ivar> VARIABLE
190
191 %token <opcode> ASSIGN_MODIFY
192
193 /* C++ */
194 %token THIS
195
196 %left ','
197 %left ABOVE_COMMA
198 %right '=' ASSIGN_MODIFY
199 %right '?'
200 %left OROR
201 %left ANDAND
202 %left '|'
203 %left '^'
204 %left '&'
205 %left EQUAL NOTEQUAL
206 %left '<' '>' LEQ GEQ
207 %left LSH RSH
208 %left '@'
209 %left '+' '-'
210 %left '*' '/' '%'
211 %right UNARY INCREMENT DECREMENT
212 %right ARROW '.' '[' '('
213 %token <ssym> BLOCKNAME
214 %type <bval> block
215 %left COLONCOLON
216
217 \f
218 %%
219
220 start : exp1
221 | type_exp
222 ;
223
224 type_exp: type
225 { write_exp_elt_opcode(OP_TYPE);
226 write_exp_elt_type($1);
227 write_exp_elt_opcode(OP_TYPE);}
228 ;
229
230 /* Expressions, including the comma operator. */
231 exp1 : exp
232 | exp1 ',' exp
233 { write_exp_elt_opcode (BINOP_COMMA); }
234 ;
235
236 /* Expressions, not including the comma operator. */
237 exp : '*' exp %prec UNARY
238 { write_exp_elt_opcode (UNOP_IND); }
239
240 exp : '&' exp %prec UNARY
241 { write_exp_elt_opcode (UNOP_ADDR); }
242
243 exp : '-' exp %prec UNARY
244 { write_exp_elt_opcode (UNOP_NEG); }
245 ;
246
247 exp : '!' exp %prec UNARY
248 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
249 ;
250
251 exp : '~' exp %prec UNARY
252 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
253 ;
254
255 exp : INCREMENT exp %prec UNARY
256 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
257 ;
258
259 exp : DECREMENT exp %prec UNARY
260 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
261 ;
262
263 exp : exp INCREMENT %prec UNARY
264 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
265 ;
266
267 exp : exp DECREMENT %prec UNARY
268 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
269 ;
270
271 exp : SIZEOF exp %prec UNARY
272 { write_exp_elt_opcode (UNOP_SIZEOF); }
273 ;
274
275 exp : exp ARROW name
276 { write_exp_elt_opcode (STRUCTOP_PTR);
277 write_exp_string ($3);
278 write_exp_elt_opcode (STRUCTOP_PTR); }
279 ;
280
281 exp : exp ARROW qualified_name
282 { /* exp->type::name becomes exp->*(&type::name) */
283 /* Note: this doesn't work if name is a
284 static member! FIXME */
285 write_exp_elt_opcode (UNOP_ADDR);
286 write_exp_elt_opcode (STRUCTOP_MPTR); }
287 ;
288 exp : exp ARROW '*' exp
289 { write_exp_elt_opcode (STRUCTOP_MPTR); }
290 ;
291
292 exp : exp '.' name
293 { write_exp_elt_opcode (STRUCTOP_STRUCT);
294 write_exp_string ($3);
295 write_exp_elt_opcode (STRUCTOP_STRUCT); }
296 ;
297
298 exp : exp '.' qualified_name
299 { /* exp.type::name becomes exp.*(&type::name) */
300 /* Note: this doesn't work if name is a
301 static member! FIXME */
302 write_exp_elt_opcode (UNOP_ADDR);
303 write_exp_elt_opcode (STRUCTOP_MEMBER); }
304 ;
305
306 exp : exp '.' '*' exp
307 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
308 ;
309
310 exp : exp '[' exp1 ']'
311 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
312 ;
313
314 exp : exp '('
315 /* This is to save the value of arglist_len
316 being accumulated by an outer function call. */
317 { start_arglist (); }
318 arglist ')' %prec ARROW
319 { write_exp_elt_opcode (OP_FUNCALL);
320 write_exp_elt_longcst ((LONGEST) end_arglist ());
321 write_exp_elt_opcode (OP_FUNCALL); }
322 ;
323
324 lcurly : '{'
325 { start_arglist (); }
326 ;
327
328 arglist :
329 ;
330
331 arglist : exp
332 { arglist_len = 1; }
333 ;
334
335 arglist : arglist ',' exp %prec ABOVE_COMMA
336 { arglist_len++; }
337 ;
338
339 rcurly : '}'
340 { $$ = end_arglist () - 1; }
341 ;
342 exp : lcurly arglist rcurly %prec ARROW
343 { write_exp_elt_opcode (OP_ARRAY);
344 write_exp_elt_longcst ((LONGEST) 0);
345 write_exp_elt_longcst ((LONGEST) $3);
346 write_exp_elt_opcode (OP_ARRAY); }
347 ;
348
349 exp : lcurly type rcurly exp %prec UNARY
350 { write_exp_elt_opcode (UNOP_MEMVAL);
351 write_exp_elt_type ($2);
352 write_exp_elt_opcode (UNOP_MEMVAL); }
353 ;
354
355 exp : '(' type ')' exp %prec UNARY
356 { write_exp_elt_opcode (UNOP_CAST);
357 write_exp_elt_type ($2);
358 write_exp_elt_opcode (UNOP_CAST); }
359 ;
360
361 exp : '(' exp1 ')'
362 { }
363 ;
364
365 /* Binary operators in order of decreasing precedence. */
366
367 exp : exp '@' exp
368 { write_exp_elt_opcode (BINOP_REPEAT); }
369 ;
370
371 exp : exp '*' exp
372 { write_exp_elt_opcode (BINOP_MUL); }
373 ;
374
375 exp : exp '/' exp
376 { write_exp_elt_opcode (BINOP_DIV); }
377 ;
378
379 exp : exp '%' exp
380 { write_exp_elt_opcode (BINOP_REM); }
381 ;
382
383 exp : exp '+' exp
384 { write_exp_elt_opcode (BINOP_ADD); }
385 ;
386
387 exp : exp '-' exp
388 { write_exp_elt_opcode (BINOP_SUB); }
389 ;
390
391 exp : exp LSH exp
392 { write_exp_elt_opcode (BINOP_LSH); }
393 ;
394
395 exp : exp RSH exp
396 { write_exp_elt_opcode (BINOP_RSH); }
397 ;
398
399 exp : exp EQUAL exp
400 { write_exp_elt_opcode (BINOP_EQUAL); }
401 ;
402
403 exp : exp NOTEQUAL exp
404 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
405 ;
406
407 exp : exp LEQ exp
408 { write_exp_elt_opcode (BINOP_LEQ); }
409 ;
410
411 exp : exp GEQ exp
412 { write_exp_elt_opcode (BINOP_GEQ); }
413 ;
414
415 exp : exp '<' exp
416 { write_exp_elt_opcode (BINOP_LESS); }
417 ;
418
419 exp : exp '>' exp
420 { write_exp_elt_opcode (BINOP_GTR); }
421 ;
422
423 exp : exp '&' exp
424 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
425 ;
426
427 exp : exp '^' exp
428 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
429 ;
430
431 exp : exp '|' exp
432 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
433 ;
434
435 exp : exp ANDAND exp
436 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
437 ;
438
439 exp : exp OROR exp
440 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
441 ;
442
443 exp : exp '?' exp ':' exp %prec '?'
444 { write_exp_elt_opcode (TERNOP_COND); }
445 ;
446
447 exp : exp '=' exp
448 { write_exp_elt_opcode (BINOP_ASSIGN); }
449 ;
450
451 exp : exp ASSIGN_MODIFY exp
452 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
453 write_exp_elt_opcode ($2);
454 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
455 ;
456
457 exp : INT
458 { write_exp_elt_opcode (OP_LONG);
459 write_exp_elt_type ($1.type);
460 write_exp_elt_longcst ((LONGEST)($1.val));
461 write_exp_elt_opcode (OP_LONG); }
462 ;
463
464 exp : NAME_OR_INT
465 { YYSTYPE val;
466 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
467 write_exp_elt_opcode (OP_LONG);
468 write_exp_elt_type (val.typed_val.type);
469 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
470 write_exp_elt_opcode (OP_LONG);
471 }
472 ;
473
474
475 exp : FLOAT
476 { write_exp_elt_opcode (OP_DOUBLE);
477 write_exp_elt_type (builtin_type_double);
478 write_exp_elt_dblcst ($1);
479 write_exp_elt_opcode (OP_DOUBLE); }
480 ;
481
482 exp : variable
483 ;
484
485 exp : LAST
486 { write_exp_elt_opcode (OP_LAST);
487 write_exp_elt_longcst ((LONGEST) $1);
488 write_exp_elt_opcode (OP_LAST); }
489 ;
490
491 exp : REGNAME
492 { write_exp_elt_opcode (OP_REGISTER);
493 write_exp_elt_longcst ((LONGEST) $1);
494 write_exp_elt_opcode (OP_REGISTER); }
495 ;
496
497 exp : VARIABLE
498 { write_exp_elt_opcode (OP_INTERNALVAR);
499 write_exp_elt_intern ($1);
500 write_exp_elt_opcode (OP_INTERNALVAR); }
501 ;
502
503 exp : SIZEOF '(' type ')' %prec UNARY
504 { write_exp_elt_opcode (OP_LONG);
505 write_exp_elt_type (builtin_type_int);
506 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
507 write_exp_elt_opcode (OP_LONG); }
508 ;
509
510 exp : STRING
511 { /* C strings are converted into array constants with
512 an explicit null byte added at the end. Thus
513 the array upper bound is the string length.
514 There is no such thing in C as a completely empty
515 string. */
516 char *sp = $1.ptr; int count = $1.length;
517 while (count-- > 0)
518 {
519 write_exp_elt_opcode (OP_LONG);
520 write_exp_elt_type (builtin_type_char);
521 write_exp_elt_longcst ((LONGEST)(*sp++));
522 write_exp_elt_opcode (OP_LONG);
523 }
524 write_exp_elt_opcode (OP_LONG);
525 write_exp_elt_type (builtin_type_char);
526 write_exp_elt_longcst ((LONGEST)'\0');
527 write_exp_elt_opcode (OP_LONG);
528 write_exp_elt_opcode (OP_ARRAY);
529 write_exp_elt_longcst ((LONGEST) 0);
530 write_exp_elt_longcst ((LONGEST) ($1.length));
531 write_exp_elt_opcode (OP_ARRAY); }
532 ;
533
534 /* C++. */
535 exp : THIS
536 { write_exp_elt_opcode (OP_THIS);
537 write_exp_elt_opcode (OP_THIS); }
538 ;
539
540 /* end of C++. */
541
542 block : BLOCKNAME
543 {
544 if ($1.sym != 0)
545 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
546 else
547 {
548 struct symtab *tem =
549 lookup_symtab (copy_name ($1.stoken));
550 if (tem)
551 $$ = BLOCKVECTOR_BLOCK
552 (BLOCKVECTOR (tem), STATIC_BLOCK);
553 else
554 error ("No file or function \"%s\".",
555 copy_name ($1.stoken));
556 }
557 }
558 ;
559
560 block : block COLONCOLON name
561 { struct symbol *tem
562 = lookup_symbol (copy_name ($3), $1,
563 VAR_NAMESPACE, (int *) NULL,
564 (struct symtab **) NULL);
565 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
566 error ("No function \"%s\" in specified context.",
567 copy_name ($3));
568 $$ = SYMBOL_BLOCK_VALUE (tem); }
569 ;
570
571 variable: block COLONCOLON name
572 { struct symbol *sym;
573 sym = lookup_symbol (copy_name ($3), $1,
574 VAR_NAMESPACE, (int *) NULL,
575 (struct symtab **) NULL);
576 if (sym == 0)
577 error ("No symbol \"%s\" in specified context.",
578 copy_name ($3));
579
580 write_exp_elt_opcode (OP_VAR_VALUE);
581 /* block_found is set by lookup_symbol. */
582 write_exp_elt_block (block_found);
583 write_exp_elt_sym (sym);
584 write_exp_elt_opcode (OP_VAR_VALUE); }
585 ;
586
587 qualified_name: typebase COLONCOLON name
588 {
589 struct type *type = $1;
590 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
591 && TYPE_CODE (type) != TYPE_CODE_UNION)
592 error ("`%s' is not defined as an aggregate type.",
593 TYPE_NAME (type));
594
595 write_exp_elt_opcode (OP_SCOPE);
596 write_exp_elt_type (type);
597 write_exp_string ($3);
598 write_exp_elt_opcode (OP_SCOPE);
599 }
600 | typebase COLONCOLON '~' name
601 {
602 struct type *type = $1;
603 struct stoken tmp_token;
604 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
605 && TYPE_CODE (type) != TYPE_CODE_UNION)
606 error ("`%s' is not defined as an aggregate type.",
607 TYPE_NAME (type));
608
609 if (!STREQ (type_name_no_tag (type), $4.ptr))
610 error ("invalid destructor `%s::~%s'",
611 type_name_no_tag (type), $4.ptr);
612
613 tmp_token.ptr = (char*) alloca ($4.length + 2);
614 tmp_token.length = $4.length + 1;
615 tmp_token.ptr[0] = '~';
616 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
617 tmp_token.ptr[tmp_token.length] = 0;
618 write_exp_elt_opcode (OP_SCOPE);
619 write_exp_elt_type (type);
620 write_exp_string (tmp_token);
621 write_exp_elt_opcode (OP_SCOPE);
622 }
623 ;
624
625 variable: qualified_name
626 | COLONCOLON name
627 {
628 char *name = copy_name ($2);
629 struct symbol *sym;
630 struct minimal_symbol *msymbol;
631
632 sym =
633 lookup_symbol (name, (const struct block *) NULL,
634 VAR_NAMESPACE, (int *) NULL,
635 (struct symtab **) NULL);
636 if (sym)
637 {
638 write_exp_elt_opcode (OP_VAR_VALUE);
639 write_exp_elt_block (NULL);
640 write_exp_elt_sym (sym);
641 write_exp_elt_opcode (OP_VAR_VALUE);
642 break;
643 }
644
645 msymbol = lookup_minimal_symbol (name, NULL, NULL);
646 if (msymbol != NULL)
647 {
648 write_exp_msymbol (msymbol,
649 lookup_function_type (builtin_type_int),
650 builtin_type_int);
651 }
652 else
653 if (!have_full_symbols () && !have_partial_symbols ())
654 error ("No symbol table is loaded. Use the \"file\" command.");
655 else
656 error ("No symbol \"%s\" in current context.", name);
657 }
658 ;
659
660 variable: name_not_typename
661 { struct symbol *sym = $1.sym;
662
663 if (sym)
664 {
665 if (symbol_read_needs_frame (sym))
666 {
667 if (innermost_block == 0 ||
668 contained_in (block_found,
669 innermost_block))
670 innermost_block = block_found;
671 }
672
673 write_exp_elt_opcode (OP_VAR_VALUE);
674 /* We want to use the selected frame, not
675 another more inner frame which happens to
676 be in the same block. */
677 write_exp_elt_block (NULL);
678 write_exp_elt_sym (sym);
679 write_exp_elt_opcode (OP_VAR_VALUE);
680 }
681 else if ($1.is_a_field_of_this)
682 {
683 /* C++: it hangs off of `this'. Must
684 not inadvertently convert from a method call
685 to data ref. */
686 if (innermost_block == 0 ||
687 contained_in (block_found, innermost_block))
688 innermost_block = block_found;
689 write_exp_elt_opcode (OP_THIS);
690 write_exp_elt_opcode (OP_THIS);
691 write_exp_elt_opcode (STRUCTOP_PTR);
692 write_exp_string ($1.stoken);
693 write_exp_elt_opcode (STRUCTOP_PTR);
694 }
695 else
696 {
697 struct minimal_symbol *msymbol;
698 register char *arg = copy_name ($1.stoken);
699
700 msymbol =
701 lookup_minimal_symbol (arg, NULL, NULL);
702 if (msymbol != NULL)
703 {
704 write_exp_msymbol (msymbol,
705 lookup_function_type (builtin_type_int),
706 builtin_type_int);
707 }
708 else if (!have_full_symbols () && !have_partial_symbols ())
709 error ("No symbol table is loaded. Use the \"file\" command.");
710 else
711 error ("No symbol \"%s\" in current context.",
712 copy_name ($1.stoken));
713 }
714 }
715 ;
716
717
718 ptype : typebase
719 /* "const" and "volatile" are curently ignored. A type qualifier
720 before the type is currently handled in the typebase rule.
721 The reason for recognizing these here (shift/reduce conflicts)
722 might be obsolete now that some pointer to member rules have
723 been deleted. */
724 | typebase CONST_KEYWORD
725 | typebase VOLATILE_KEYWORD
726 | typebase abs_decl
727 { $$ = follow_types ($1); }
728 | typebase CONST_KEYWORD abs_decl
729 { $$ = follow_types ($1); }
730 | typebase VOLATILE_KEYWORD abs_decl
731 { $$ = follow_types ($1); }
732 ;
733
734 abs_decl: '*'
735 { push_type (tp_pointer); $$ = 0; }
736 | '*' abs_decl
737 { push_type (tp_pointer); $$ = $2; }
738 | '&'
739 { push_type (tp_reference); $$ = 0; }
740 | '&' abs_decl
741 { push_type (tp_reference); $$ = $2; }
742 | direct_abs_decl
743 ;
744
745 direct_abs_decl: '(' abs_decl ')'
746 { $$ = $2; }
747 | direct_abs_decl array_mod
748 {
749 push_type_int ($2);
750 push_type (tp_array);
751 }
752 | array_mod
753 {
754 push_type_int ($1);
755 push_type (tp_array);
756 $$ = 0;
757 }
758
759 | direct_abs_decl func_mod
760 { push_type (tp_function); }
761 | func_mod
762 { push_type (tp_function); }
763 ;
764
765 array_mod: '[' ']'
766 { $$ = -1; }
767 | '[' INT ']'
768 { $$ = $2.val; }
769 ;
770
771 func_mod: '(' ')'
772 { $$ = 0; }
773 | '(' nonempty_typelist ')'
774 { free ((PTR)$2); $$ = 0; }
775 ;
776
777 /* We used to try to recognize more pointer to member types here, but
778 that didn't work (shift/reduce conflicts meant that these rules never
779 got executed). The problem is that
780 int (foo::bar::baz::bizzle)
781 is a function type but
782 int (foo::bar::baz::bizzle::*)
783 is a pointer to member type. Stroustrup loses again! */
784
785 type : ptype
786 | typebase COLONCOLON '*'
787 { $$ = lookup_member_type (builtin_type_int, $1); }
788 ;
789
790 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
791 : TYPENAME
792 { $$ = $1.type; }
793 | INT_KEYWORD
794 { $$ = builtin_type_int; }
795 | LONG
796 { $$ = builtin_type_long; }
797 | SHORT
798 { $$ = builtin_type_short; }
799 | LONG INT_KEYWORD
800 { $$ = builtin_type_long; }
801 | UNSIGNED LONG INT_KEYWORD
802 { $$ = builtin_type_unsigned_long; }
803 | LONG LONG
804 { $$ = builtin_type_long_long; }
805 | LONG LONG INT_KEYWORD
806 { $$ = builtin_type_long_long; }
807 | UNSIGNED LONG LONG
808 { $$ = builtin_type_unsigned_long_long; }
809 | UNSIGNED LONG LONG INT_KEYWORD
810 { $$ = builtin_type_unsigned_long_long; }
811 | SHORT INT_KEYWORD
812 { $$ = builtin_type_short; }
813 | UNSIGNED SHORT INT_KEYWORD
814 { $$ = builtin_type_unsigned_short; }
815 | STRUCT name
816 { $$ = lookup_struct (copy_name ($2),
817 expression_context_block); }
818 | CLASS name
819 { $$ = lookup_struct (copy_name ($2),
820 expression_context_block); }
821 | UNION name
822 { $$ = lookup_union (copy_name ($2),
823 expression_context_block); }
824 | ENUM name
825 { $$ = lookup_enum (copy_name ($2),
826 expression_context_block); }
827 | UNSIGNED typename
828 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
829 | UNSIGNED
830 { $$ = builtin_type_unsigned_int; }
831 | SIGNED_KEYWORD typename
832 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
833 | SIGNED_KEYWORD
834 { $$ = builtin_type_int; }
835 | TEMPLATE name '<' type '>'
836 { $$ = lookup_template_type(copy_name($2), $4,
837 expression_context_block);
838 }
839 /* "const" and "volatile" are curently ignored. A type qualifier
840 after the type is handled in the ptype rule. I think these could
841 be too. */
842 | CONST_KEYWORD typebase { $$ = $2; }
843 | VOLATILE_KEYWORD typebase { $$ = $2; }
844 ;
845
846 typename: TYPENAME
847 | INT_KEYWORD
848 {
849 $$.stoken.ptr = "int";
850 $$.stoken.length = 3;
851 $$.type = builtin_type_int;
852 }
853 | LONG
854 {
855 $$.stoken.ptr = "long";
856 $$.stoken.length = 4;
857 $$.type = builtin_type_long;
858 }
859 | SHORT
860 {
861 $$.stoken.ptr = "short";
862 $$.stoken.length = 5;
863 $$.type = builtin_type_short;
864 }
865 ;
866
867 nonempty_typelist
868 : type
869 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
870 $<ivec>$[0] = 1; /* Number of types in vector */
871 $$[1] = $1;
872 }
873 | nonempty_typelist ',' type
874 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
875 $$ = (struct type **) realloc ((char *) $1, len);
876 $$[$<ivec>$[0]] = $3;
877 }
878 ;
879
880 name : NAME { $$ = $1.stoken; }
881 | BLOCKNAME { $$ = $1.stoken; }
882 | TYPENAME { $$ = $1.stoken; }
883 | NAME_OR_INT { $$ = $1.stoken; }
884 ;
885
886 name_not_typename : NAME
887 | BLOCKNAME
888 /* These would be useful if name_not_typename was useful, but it is just
889 a fake for "variable", so these cause reduce/reduce conflicts because
890 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
891 =exp) or just an exp. If name_not_typename was ever used in an lvalue
892 context where only a name could occur, this might be useful.
893 | NAME_OR_INT
894 */
895 ;
896
897 %%
898
899 /* Take care of parsing a number (anything that starts with a digit).
900 Set yylval and return the token type; update lexptr.
901 LEN is the number of characters in it. */
902
903 /*** Needs some error checking for the float case ***/
904
905 static int
906 parse_number (p, len, parsed_float, putithere)
907 register char *p;
908 register int len;
909 int parsed_float;
910 YYSTYPE *putithere;
911 {
912 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
913 here, and we do kind of silly things like cast to unsigned. */
914 register LONGEST n = 0;
915 register LONGEST prevn = 0;
916 unsigned LONGEST un;
917
918 register int i = 0;
919 register int c;
920 register int base = input_radix;
921 int unsigned_p = 0;
922
923 /* Number of "L" suffixes encountered. */
924 int long_p = 0;
925
926 /* We have found a "L" or "U" suffix. */
927 int found_suffix = 0;
928
929 unsigned LONGEST high_bit;
930 struct type *signed_type;
931 struct type *unsigned_type;
932
933 if (parsed_float)
934 {
935 /* It's a float since it contains a point or an exponent. */
936 putithere->dval = atof (p);
937 return FLOAT;
938 }
939
940 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
941 if (p[0] == '0')
942 switch (p[1])
943 {
944 case 'x':
945 case 'X':
946 if (len >= 3)
947 {
948 p += 2;
949 base = 16;
950 len -= 2;
951 }
952 break;
953
954 case 't':
955 case 'T':
956 case 'd':
957 case 'D':
958 if (len >= 3)
959 {
960 p += 2;
961 base = 10;
962 len -= 2;
963 }
964 break;
965
966 default:
967 base = 8;
968 break;
969 }
970
971 while (len-- > 0)
972 {
973 c = *p++;
974 if (c >= 'A' && c <= 'Z')
975 c += 'a' - 'A';
976 if (c != 'l' && c != 'u')
977 n *= base;
978 if (c >= '0' && c <= '9')
979 {
980 if (found_suffix)
981 return ERROR;
982 n += i = c - '0';
983 }
984 else
985 {
986 if (base > 10 && c >= 'a' && c <= 'f')
987 {
988 if (found_suffix)
989 return ERROR;
990 n += i = c - 'a' + 10;
991 }
992 else if (c == 'l')
993 {
994 ++long_p;
995 found_suffix = 1;
996 }
997 else if (c == 'u')
998 {
999 unsigned_p = 1;
1000 found_suffix = 1;
1001 }
1002 else
1003 return ERROR; /* Char not a digit */
1004 }
1005 if (i >= base)
1006 return ERROR; /* Invalid digit in this base */
1007
1008 /* Portably test for overflow (only works for nonzero values, so make
1009 a second check for zero). FIXME: Can't we just make n and prevn
1010 unsigned and avoid this? */
1011 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1012 unsigned_p = 1; /* Try something unsigned */
1013
1014 /* Portably test for unsigned overflow.
1015 FIXME: This check is wrong; for example it doesn't find overflow
1016 on 0x123456789 when LONGEST is 32 bits. */
1017 if (c != 'l' && c != 'u' && n != 0)
1018 {
1019 if ((unsigned_p && (unsigned LONGEST) prevn >= (unsigned LONGEST) n))
1020 error ("Numeric constant too large.");
1021 }
1022 prevn = n;
1023 }
1024
1025 /* An integer constant is an int, a long, or a long long. An L
1026 suffix forces it to be long; an LL suffix forces it to be long
1027 long. If not forced to a larger size, it gets the first type of
1028 the above that it fits in. To figure out whether it fits, we
1029 shift it right and see whether anything remains. Note that we
1030 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1031 operation, because many compilers will warn about such a shift
1032 (which always produces a zero result). Sometimes TARGET_INT_BIT
1033 or TARGET_LONG_BIT will be that big, sometimes not. To deal with
1034 the case where it is we just always shift the value more than
1035 once, with fewer bits each time. */
1036
1037 un = (unsigned LONGEST)n >> 2;
1038 if (long_p == 0
1039 && (un >> (TARGET_INT_BIT - 2)) == 0)
1040 {
1041 high_bit = ((unsigned LONGEST)1) << (TARGET_INT_BIT-1);
1042
1043 /* A large decimal (not hex or octal) constant (between INT_MAX
1044 and UINT_MAX) is a long or unsigned long, according to ANSI,
1045 never an unsigned int, but this code treats it as unsigned
1046 int. This probably should be fixed. GCC gives a warning on
1047 such constants. */
1048
1049 unsigned_type = builtin_type_unsigned_int;
1050 signed_type = builtin_type_int;
1051 }
1052 else if (long_p <= 1
1053 && (un >> (TARGET_LONG_BIT - 2)) == 0)
1054 {
1055 high_bit = ((unsigned LONGEST)1) << (TARGET_LONG_BIT-1);
1056 unsigned_type = builtin_type_unsigned_long;
1057 signed_type = builtin_type_long;
1058 }
1059 else
1060 {
1061 high_bit = (((unsigned LONGEST)1)
1062 << (TARGET_LONG_LONG_BIT - 32 - 1)
1063 << 16
1064 << 16);
1065 if (high_bit == 0)
1066 /* A long long does not fit in a LONGEST. */
1067 high_bit =
1068 (unsigned LONGEST)1 << (sizeof (LONGEST) * HOST_CHAR_BIT - 1);
1069 unsigned_type = builtin_type_unsigned_long_long;
1070 signed_type = builtin_type_long_long;
1071 }
1072
1073 putithere->typed_val.val = n;
1074
1075 /* If the high bit of the worked out type is set then this number
1076 has to be unsigned. */
1077
1078 if (unsigned_p || (n & high_bit))
1079 {
1080 putithere->typed_val.type = unsigned_type;
1081 }
1082 else
1083 {
1084 putithere->typed_val.type = signed_type;
1085 }
1086
1087 return INT;
1088 }
1089
1090 struct token
1091 {
1092 char *operator;
1093 int token;
1094 enum exp_opcode opcode;
1095 };
1096
1097 static const struct token tokentab3[] =
1098 {
1099 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1100 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1101 };
1102
1103 static const struct token tokentab2[] =
1104 {
1105 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1106 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1107 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1108 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1109 {"%=", ASSIGN_MODIFY, BINOP_REM},
1110 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1111 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1112 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1113 {"++", INCREMENT, BINOP_END},
1114 {"--", DECREMENT, BINOP_END},
1115 {"->", ARROW, BINOP_END},
1116 {"&&", ANDAND, BINOP_END},
1117 {"||", OROR, BINOP_END},
1118 {"::", COLONCOLON, BINOP_END},
1119 {"<<", LSH, BINOP_END},
1120 {">>", RSH, BINOP_END},
1121 {"==", EQUAL, BINOP_END},
1122 {"!=", NOTEQUAL, BINOP_END},
1123 {"<=", LEQ, BINOP_END},
1124 {">=", GEQ, BINOP_END}
1125 };
1126
1127 /* Read one token, getting characters through lexptr. */
1128
1129 static int
1130 yylex ()
1131 {
1132 int c;
1133 int namelen;
1134 unsigned int i;
1135 char *tokstart;
1136 char *tokptr;
1137 int tempbufindex;
1138 static char *tempbuf;
1139 static int tempbufsize;
1140
1141 retry:
1142
1143 tokstart = lexptr;
1144 /* See if it is a special token of length 3. */
1145 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1146 if (STREQN (tokstart, tokentab3[i].operator, 3))
1147 {
1148 lexptr += 3;
1149 yylval.opcode = tokentab3[i].opcode;
1150 return tokentab3[i].token;
1151 }
1152
1153 /* See if it is a special token of length 2. */
1154 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1155 if (STREQN (tokstart, tokentab2[i].operator, 2))
1156 {
1157 lexptr += 2;
1158 yylval.opcode = tokentab2[i].opcode;
1159 return tokentab2[i].token;
1160 }
1161
1162 switch (c = *tokstart)
1163 {
1164 case 0:
1165 return 0;
1166
1167 case ' ':
1168 case '\t':
1169 case '\n':
1170 lexptr++;
1171 goto retry;
1172
1173 case '\'':
1174 /* We either have a character constant ('0' or '\177' for example)
1175 or we have a quoted symbol reference ('foo(int,int)' in C++
1176 for example). */
1177 lexptr++;
1178 c = *lexptr++;
1179 if (c == '\\')
1180 c = parse_escape (&lexptr);
1181
1182 yylval.typed_val.val = c;
1183 yylval.typed_val.type = builtin_type_char;
1184
1185 c = *lexptr++;
1186 if (c != '\'')
1187 {
1188 namelen = skip_quoted (tokstart) - tokstart;
1189 if (namelen > 2)
1190 {
1191 lexptr = tokstart + namelen;
1192 if (lexptr[-1] != '\'')
1193 error ("Unmatched single quote.");
1194 namelen -= 2;
1195 tokstart++;
1196 goto tryname;
1197 }
1198 error ("Invalid character constant.");
1199 }
1200 return INT;
1201
1202 case '(':
1203 paren_depth++;
1204 lexptr++;
1205 return c;
1206
1207 case ')':
1208 if (paren_depth == 0)
1209 return 0;
1210 paren_depth--;
1211 lexptr++;
1212 return c;
1213
1214 case ',':
1215 if (comma_terminates && paren_depth == 0)
1216 return 0;
1217 lexptr++;
1218 return c;
1219
1220 case '.':
1221 /* Might be a floating point number. */
1222 if (lexptr[1] < '0' || lexptr[1] > '9')
1223 goto symbol; /* Nope, must be a symbol. */
1224 /* FALL THRU into number case. */
1225
1226 case '0':
1227 case '1':
1228 case '2':
1229 case '3':
1230 case '4':
1231 case '5':
1232 case '6':
1233 case '7':
1234 case '8':
1235 case '9':
1236 {
1237 /* It's a number. */
1238 int got_dot = 0, got_e = 0, toktype;
1239 register char *p = tokstart;
1240 int hex = input_radix > 10;
1241
1242 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1243 {
1244 p += 2;
1245 hex = 1;
1246 }
1247 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1248 {
1249 p += 2;
1250 hex = 0;
1251 }
1252
1253 for (;; ++p)
1254 {
1255 /* This test includes !hex because 'e' is a valid hex digit
1256 and thus does not indicate a floating point number when
1257 the radix is hex. */
1258 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1259 got_dot = got_e = 1;
1260 /* This test does not include !hex, because a '.' always indicates
1261 a decimal floating point number regardless of the radix. */
1262 else if (!got_dot && *p == '.')
1263 got_dot = 1;
1264 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1265 && (*p == '-' || *p == '+'))
1266 /* This is the sign of the exponent, not the end of the
1267 number. */
1268 continue;
1269 /* We will take any letters or digits. parse_number will
1270 complain if past the radix, or if L or U are not final. */
1271 else if ((*p < '0' || *p > '9')
1272 && ((*p < 'a' || *p > 'z')
1273 && (*p < 'A' || *p > 'Z')))
1274 break;
1275 }
1276 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1277 if (toktype == ERROR)
1278 {
1279 char *err_copy = (char *) alloca (p - tokstart + 1);
1280
1281 memcpy (err_copy, tokstart, p - tokstart);
1282 err_copy[p - tokstart] = 0;
1283 error ("Invalid number \"%s\".", err_copy);
1284 }
1285 lexptr = p;
1286 return toktype;
1287 }
1288
1289 case '+':
1290 case '-':
1291 case '*':
1292 case '/':
1293 case '%':
1294 case '|':
1295 case '&':
1296 case '^':
1297 case '~':
1298 case '!':
1299 case '@':
1300 case '<':
1301 case '>':
1302 case '[':
1303 case ']':
1304 case '?':
1305 case ':':
1306 case '=':
1307 case '{':
1308 case '}':
1309 symbol:
1310 lexptr++;
1311 return c;
1312
1313 case '"':
1314
1315 /* Build the gdb internal form of the input string in tempbuf,
1316 translating any standard C escape forms seen. Note that the
1317 buffer is null byte terminated *only* for the convenience of
1318 debugging gdb itself and printing the buffer contents when
1319 the buffer contains no embedded nulls. Gdb does not depend
1320 upon the buffer being null byte terminated, it uses the length
1321 string instead. This allows gdb to handle C strings (as well
1322 as strings in other languages) with embedded null bytes */
1323
1324 tokptr = ++tokstart;
1325 tempbufindex = 0;
1326
1327 do {
1328 /* Grow the static temp buffer if necessary, including allocating
1329 the first one on demand. */
1330 if (tempbufindex + 1 >= tempbufsize)
1331 {
1332 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1333 }
1334 switch (*tokptr)
1335 {
1336 case '\0':
1337 case '"':
1338 /* Do nothing, loop will terminate. */
1339 break;
1340 case '\\':
1341 tokptr++;
1342 c = parse_escape (&tokptr);
1343 if (c == -1)
1344 {
1345 continue;
1346 }
1347 tempbuf[tempbufindex++] = c;
1348 break;
1349 default:
1350 tempbuf[tempbufindex++] = *tokptr++;
1351 break;
1352 }
1353 } while ((*tokptr != '"') && (*tokptr != '\0'));
1354 if (*tokptr++ != '"')
1355 {
1356 error ("Unterminated string in expression.");
1357 }
1358 tempbuf[tempbufindex] = '\0'; /* See note above */
1359 yylval.sval.ptr = tempbuf;
1360 yylval.sval.length = tempbufindex;
1361 lexptr = tokptr;
1362 return (STRING);
1363 }
1364
1365 if (!(c == '_' || c == '$'
1366 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1367 /* We must have come across a bad character (e.g. ';'). */
1368 error ("Invalid character '%c' in expression.", c);
1369
1370 /* It's a name. See how long it is. */
1371 namelen = 0;
1372 for (c = tokstart[namelen];
1373 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1374 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
1375 {
1376 if (c == '<')
1377 {
1378 int i = namelen;
1379 while (tokstart[++i] && tokstart[i] != '>');
1380 if (tokstart[i] == '>')
1381 namelen = i;
1382 }
1383 c = tokstart[++namelen];
1384 }
1385
1386 /* The token "if" terminates the expression and is NOT
1387 removed from the input stream. */
1388 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1389 {
1390 return 0;
1391 }
1392
1393 lexptr += namelen;
1394
1395 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
1396 and $$digits (equivalent to $<-digits> if you could type that).
1397 Make token type LAST, and put the number (the digits) in yylval. */
1398
1399 tryname:
1400 if (*tokstart == '$')
1401 {
1402 register int negate = 0;
1403 c = 1;
1404 /* Double dollar means negate the number and add -1 as well.
1405 Thus $$ alone means -1. */
1406 if (namelen >= 2 && tokstart[1] == '$')
1407 {
1408 negate = 1;
1409 c = 2;
1410 }
1411 if (c == namelen)
1412 {
1413 /* Just dollars (one or two) */
1414 yylval.lval = - negate;
1415 return LAST;
1416 }
1417 /* Is the rest of the token digits? */
1418 for (; c < namelen; c++)
1419 if (!(tokstart[c] >= '0' && tokstart[c] <= '9'))
1420 break;
1421 if (c == namelen)
1422 {
1423 yylval.lval = atoi (tokstart + 1 + negate);
1424 if (negate)
1425 yylval.lval = - yylval.lval;
1426 return LAST;
1427 }
1428 }
1429
1430 /* Handle tokens that refer to machine registers:
1431 $ followed by a register name. */
1432
1433 if (*tokstart == '$') {
1434 for (c = 0; c < NUM_REGS; c++)
1435 if (namelen - 1 == strlen (reg_names[c])
1436 && STREQN (tokstart + 1, reg_names[c], namelen - 1))
1437 {
1438 yylval.lval = c;
1439 return REGNAME;
1440 }
1441 for (c = 0; c < num_std_regs; c++)
1442 if (namelen - 1 == strlen (std_regs[c].name)
1443 && STREQN (tokstart + 1, std_regs[c].name, namelen - 1))
1444 {
1445 yylval.lval = std_regs[c].regnum;
1446 return REGNAME;
1447 }
1448 }
1449 /* Catch specific keywords. Should be done with a data structure. */
1450 switch (namelen)
1451 {
1452 case 8:
1453 if (STREQN (tokstart, "unsigned", 8))
1454 return UNSIGNED;
1455 if (current_language->la_language == language_cplus
1456 && STREQN (tokstart, "template", 8))
1457 return TEMPLATE;
1458 if (STREQN (tokstart, "volatile", 8))
1459 return VOLATILE_KEYWORD;
1460 break;
1461 case 6:
1462 if (STREQN (tokstart, "struct", 6))
1463 return STRUCT;
1464 if (STREQN (tokstart, "signed", 6))
1465 return SIGNED_KEYWORD;
1466 if (STREQN (tokstart, "sizeof", 6))
1467 return SIZEOF;
1468 break;
1469 case 5:
1470 if (current_language->la_language == language_cplus
1471 && STREQN (tokstart, "class", 5))
1472 return CLASS;
1473 if (STREQN (tokstart, "union", 5))
1474 return UNION;
1475 if (STREQN (tokstart, "short", 5))
1476 return SHORT;
1477 if (STREQN (tokstart, "const", 5))
1478 return CONST_KEYWORD;
1479 break;
1480 case 4:
1481 if (STREQN (tokstart, "enum", 4))
1482 return ENUM;
1483 if (STREQN (tokstart, "long", 4))
1484 return LONG;
1485 if (current_language->la_language == language_cplus
1486 && STREQN (tokstart, "this", 4))
1487 {
1488 static const char this_name[] =
1489 { CPLUS_MARKER, 't', 'h', 'i', 's', '\0' };
1490
1491 if (lookup_symbol (this_name, expression_context_block,
1492 VAR_NAMESPACE, (int *) NULL,
1493 (struct symtab **) NULL))
1494 return THIS;
1495 }
1496 break;
1497 case 3:
1498 if (STREQN (tokstart, "int", 3))
1499 return INT_KEYWORD;
1500 break;
1501 default:
1502 break;
1503 }
1504
1505 yylval.sval.ptr = tokstart;
1506 yylval.sval.length = namelen;
1507
1508 /* Any other names starting in $ are debugger internal variables. */
1509
1510 if (*tokstart == '$')
1511 {
1512 yylval.ivar = lookup_internalvar (copy_name (yylval.sval) + 1);
1513 return VARIABLE;
1514 }
1515
1516 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1517 functions or symtabs. If this is not so, then ...
1518 Use token-type TYPENAME for symbols that happen to be defined
1519 currently as names of types; NAME for other symbols.
1520 The caller is not constrained to care about the distinction. */
1521 {
1522 char *tmp = copy_name (yylval.sval);
1523 struct symbol *sym;
1524 int is_a_field_of_this = 0;
1525 int hextype;
1526
1527 sym = lookup_symbol (tmp, expression_context_block,
1528 VAR_NAMESPACE,
1529 current_language->la_language == language_cplus
1530 ? &is_a_field_of_this : (int *) NULL,
1531 (struct symtab **) NULL);
1532 /* Call lookup_symtab, not lookup_partial_symtab, in case there are
1533 no psymtabs (coff, xcoff, or some future change to blow away the
1534 psymtabs once once symbols are read). */
1535 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
1536 lookup_symtab (tmp))
1537 {
1538 yylval.ssym.sym = sym;
1539 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1540 return BLOCKNAME;
1541 }
1542 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1543 {
1544 #if 1
1545 /* Despite the following flaw, we need to keep this code enabled.
1546 Because we can get called from check_stub_method, if we don't
1547 handle nested types then it screws many operations in any
1548 program which uses nested types. */
1549 /* In "A::x", if x is a member function of A and there happens
1550 to be a type (nested or not, since the stabs don't make that
1551 distinction) named x, then this code incorrectly thinks we
1552 are dealing with nested types rather than a member function. */
1553
1554 char *p;
1555 char *namestart;
1556 struct symbol *best_sym;
1557
1558 /* Look ahead to detect nested types. This probably should be
1559 done in the grammar, but trying seemed to introduce a lot
1560 of shift/reduce and reduce/reduce conflicts. It's possible
1561 that it could be done, though. Or perhaps a non-grammar, but
1562 less ad hoc, approach would work well. */
1563
1564 /* Since we do not currently have any way of distinguishing
1565 a nested type from a non-nested one (the stabs don't tell
1566 us whether a type is nested), we just ignore the
1567 containing type. */
1568
1569 p = lexptr;
1570 best_sym = sym;
1571 while (1)
1572 {
1573 /* Skip whitespace. */
1574 while (*p == ' ' || *p == '\t' || *p == '\n')
1575 ++p;
1576 if (*p == ':' && p[1] == ':')
1577 {
1578 /* Skip the `::'. */
1579 p += 2;
1580 /* Skip whitespace. */
1581 while (*p == ' ' || *p == '\t' || *p == '\n')
1582 ++p;
1583 namestart = p;
1584 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1585 || (*p >= 'a' && *p <= 'z')
1586 || (*p >= 'A' && *p <= 'Z'))
1587 ++p;
1588 if (p != namestart)
1589 {
1590 struct symbol *cur_sym;
1591 /* As big as the whole rest of the expression, which is
1592 at least big enough. */
1593 char *ncopy = alloca (strlen (tmp)+strlen (namestart)+3);
1594 char *tmp1;
1595
1596 tmp1 = ncopy;
1597 memcpy (tmp1, tmp, strlen (tmp));
1598 tmp1 += strlen (tmp);
1599 memcpy (tmp1, "::", 2);
1600 tmp1 += 2;
1601 memcpy (tmp1, namestart, p - namestart);
1602 tmp1[p - namestart] = '\0';
1603 cur_sym = lookup_symbol (ncopy, expression_context_block,
1604 VAR_NAMESPACE, (int *) NULL,
1605 (struct symtab **) NULL);
1606 if (cur_sym)
1607 {
1608 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1609 {
1610 best_sym = cur_sym;
1611 lexptr = p;
1612 }
1613 else
1614 break;
1615 }
1616 else
1617 break;
1618 }
1619 else
1620 break;
1621 }
1622 else
1623 break;
1624 }
1625
1626 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1627 #else /* not 0 */
1628 yylval.tsym.type = SYMBOL_TYPE (sym);
1629 #endif /* not 0 */
1630 return TYPENAME;
1631 }
1632 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1633 return TYPENAME;
1634
1635 /* Input names that aren't symbols but ARE valid hex numbers,
1636 when the input radix permits them, can be names or numbers
1637 depending on the parse. Note we support radixes > 16 here. */
1638 if (!sym &&
1639 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1640 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1641 {
1642 YYSTYPE newlval; /* Its value is ignored. */
1643 hextype = parse_number (tokstart, namelen, 0, &newlval);
1644 if (hextype == INT)
1645 {
1646 yylval.ssym.sym = sym;
1647 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1648 return NAME_OR_INT;
1649 }
1650 }
1651
1652 /* Any other kind of symbol */
1653 yylval.ssym.sym = sym;
1654 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1655 return NAME;
1656 }
1657 }
1658
1659 void
1660 yyerror (msg)
1661 char *msg;
1662 {
1663 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
1664 }
This page took 0.067964 seconds and 4 git commands to generate.