* sem-ops.h (U{DIV,MOD}[BHSD]I): Use unsigned division.
[deliverable/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1993, 1994, 1996, 1997
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* Parse a C expression from text in a string,
22 and return the result as a struct expression pointer.
23 That structure contains arithmetic operations in reverse polish,
24 with constants represented by operations that are followed by special data.
25 See expression.h for the details of the format.
26 What is important here is that it can be built up sequentially
27 during the process of parsing; the lower levels of the tree always
28 come first in the result.
29
30 Note that malloc's and realloc's in this file are transformed to
31 xmalloc and xrealloc respectively by the same sed command in the
32 makefile that remaps any other malloc/realloc inserted by the parser
33 generator. Doing this with #defines and trying to control the interaction
34 with include files (<malloc.h> and <stdlib.h> for example) just became
35 too messy, particularly when such includes can be inserted at random
36 times by the parser generator. */
37
38 %{
39
40 #include "defs.h"
41 #include "gdb_string.h"
42 #include <ctype.h>
43 #include "expression.h"
44 #include "value.h"
45 #include "parser-defs.h"
46 #include "language.h"
47 #include "c-lang.h"
48 #include "bfd.h" /* Required by objfiles.h. */
49 #include "symfile.h" /* Required by objfiles.h. */
50 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
51
52 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
53 as well as gratuitiously global symbol names, so we can have multiple
54 yacc generated parsers in gdb. Note that these are only the variables
55 produced by yacc. If other parser generators (bison, byacc, etc) produce
56 additional global names that conflict at link time, then those parser
57 generators need to be fixed instead of adding those names to this list. */
58
59 #define yymaxdepth c_maxdepth
60 #define yyparse c_parse
61 #define yylex c_lex
62 #define yyerror c_error
63 #define yylval c_lval
64 #define yychar c_char
65 #define yydebug c_debug
66 #define yypact c_pact
67 #define yyr1 c_r1
68 #define yyr2 c_r2
69 #define yydef c_def
70 #define yychk c_chk
71 #define yypgo c_pgo
72 #define yyact c_act
73 #define yyexca c_exca
74 #define yyerrflag c_errflag
75 #define yynerrs c_nerrs
76 #define yyps c_ps
77 #define yypv c_pv
78 #define yys c_s
79 #define yy_yys c_yys
80 #define yystate c_state
81 #define yytmp c_tmp
82 #define yyv c_v
83 #define yy_yyv c_yyv
84 #define yyval c_val
85 #define yylloc c_lloc
86 #define yyreds c_reds /* With YYDEBUG defined */
87 #define yytoks c_toks /* With YYDEBUG defined */
88 #define yylhs c_yylhs
89 #define yylen c_yylen
90 #define yydefred c_yydefred
91 #define yydgoto c_yydgoto
92 #define yysindex c_yysindex
93 #define yyrindex c_yyrindex
94 #define yygindex c_yygindex
95 #define yytable c_yytable
96 #define yycheck c_yycheck
97
98 #ifndef YYDEBUG
99 #define YYDEBUG 0 /* Default to no yydebug support */
100 #endif
101
102 int
103 yyparse PARAMS ((void));
104
105 static int
106 yylex PARAMS ((void));
107
108 void
109 yyerror PARAMS ((char *));
110
111 %}
112
113 /* Although the yacc "value" of an expression is not used,
114 since the result is stored in the structure being created,
115 other node types do have values. */
116
117 %union
118 {
119 LONGEST lval;
120 struct {
121 LONGEST val;
122 struct type *type;
123 } typed_val_int;
124 struct {
125 DOUBLEST dval;
126 struct type *type;
127 } typed_val_float;
128 struct symbol *sym;
129 struct type *tval;
130 struct stoken sval;
131 struct ttype tsym;
132 struct symtoken ssym;
133 int voidval;
134 struct block *bval;
135 enum exp_opcode opcode;
136 struct internalvar *ivar;
137
138 struct type **tvec;
139 int *ivec;
140 }
141
142 %{
143 /* YYSTYPE gets defined by %union */
144 static int
145 parse_number PARAMS ((char *, int, int, YYSTYPE *));
146 %}
147
148 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
149 %type <lval> rcurly
150 %type <tval> type typebase
151 %type <tvec> nonempty_typelist
152 /* %type <bval> block */
153
154 /* Fancy type parsing. */
155 %type <voidval> func_mod direct_abs_decl abs_decl
156 %type <tval> ptype
157 %type <lval> array_mod
158
159 %token <typed_val_int> INT
160 %token <typed_val_float> FLOAT
161
162 /* Both NAME and TYPENAME tokens represent symbols in the input,
163 and both convey their data as strings.
164 But a TYPENAME is a string that happens to be defined as a typedef
165 or builtin type name (such as int or char)
166 and a NAME is any other symbol.
167 Contexts where this distinction is not important can use the
168 nonterminal "name", which matches either NAME or TYPENAME. */
169
170 %token <sval> STRING
171 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
172 %token <tsym> TYPENAME
173 %type <sval> name
174 %type <ssym> name_not_typename
175 %type <tsym> typename
176
177 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
178 but which would parse as a valid number in the current input radix.
179 E.g. "c" when input_radix==16. Depending on the parse, it will be
180 turned into a name or into a number. */
181
182 %token <ssym> NAME_OR_INT
183
184 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
185 %token TEMPLATE
186 %token ERROR
187
188 /* Special type cases, put in to allow the parser to distinguish different
189 legal basetypes. */
190 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD
191
192 %token <voidval> VARIABLE
193
194 %token <opcode> ASSIGN_MODIFY
195
196 /* C++ */
197 %token THIS
198
199 %left ','
200 %left ABOVE_COMMA
201 %right '=' ASSIGN_MODIFY
202 %right '?'
203 %left OROR
204 %left ANDAND
205 %left '|'
206 %left '^'
207 %left '&'
208 %left EQUAL NOTEQUAL
209 %left '<' '>' LEQ GEQ
210 %left LSH RSH
211 %left '@'
212 %left '+' '-'
213 %left '*' '/' '%'
214 %right UNARY INCREMENT DECREMENT
215 %right ARROW '.' '[' '('
216 %token <ssym> BLOCKNAME
217 %type <bval> block
218 %left COLONCOLON
219
220 \f
221 %%
222
223 start : exp1
224 | type_exp
225 ;
226
227 type_exp: type
228 { write_exp_elt_opcode(OP_TYPE);
229 write_exp_elt_type($1);
230 write_exp_elt_opcode(OP_TYPE);}
231 ;
232
233 /* Expressions, including the comma operator. */
234 exp1 : exp
235 | exp1 ',' exp
236 { write_exp_elt_opcode (BINOP_COMMA); }
237 ;
238
239 /* Expressions, not including the comma operator. */
240 exp : '*' exp %prec UNARY
241 { write_exp_elt_opcode (UNOP_IND); }
242
243 exp : '&' exp %prec UNARY
244 { write_exp_elt_opcode (UNOP_ADDR); }
245
246 exp : '-' exp %prec UNARY
247 { write_exp_elt_opcode (UNOP_NEG); }
248 ;
249
250 exp : '!' exp %prec UNARY
251 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
252 ;
253
254 exp : '~' exp %prec UNARY
255 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
256 ;
257
258 exp : INCREMENT exp %prec UNARY
259 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
260 ;
261
262 exp : DECREMENT exp %prec UNARY
263 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
264 ;
265
266 exp : exp INCREMENT %prec UNARY
267 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
268 ;
269
270 exp : exp DECREMENT %prec UNARY
271 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
272 ;
273
274 exp : SIZEOF exp %prec UNARY
275 { write_exp_elt_opcode (UNOP_SIZEOF); }
276 ;
277
278 exp : exp ARROW name
279 { write_exp_elt_opcode (STRUCTOP_PTR);
280 write_exp_string ($3);
281 write_exp_elt_opcode (STRUCTOP_PTR); }
282 ;
283
284 exp : exp ARROW qualified_name
285 { /* exp->type::name becomes exp->*(&type::name) */
286 /* Note: this doesn't work if name is a
287 static member! FIXME */
288 write_exp_elt_opcode (UNOP_ADDR);
289 write_exp_elt_opcode (STRUCTOP_MPTR); }
290 ;
291 exp : exp ARROW '*' exp
292 { write_exp_elt_opcode (STRUCTOP_MPTR); }
293 ;
294
295 exp : exp '.' name
296 { write_exp_elt_opcode (STRUCTOP_STRUCT);
297 write_exp_string ($3);
298 write_exp_elt_opcode (STRUCTOP_STRUCT); }
299 ;
300
301 exp : exp '.' qualified_name
302 { /* exp.type::name becomes exp.*(&type::name) */
303 /* Note: this doesn't work if name is a
304 static member! FIXME */
305 write_exp_elt_opcode (UNOP_ADDR);
306 write_exp_elt_opcode (STRUCTOP_MEMBER); }
307 ;
308
309 exp : exp '.' '*' exp
310 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
311 ;
312
313 exp : exp '[' exp1 ']'
314 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
315 ;
316
317 exp : exp '('
318 /* This is to save the value of arglist_len
319 being accumulated by an outer function call. */
320 { start_arglist (); }
321 arglist ')' %prec ARROW
322 { write_exp_elt_opcode (OP_FUNCALL);
323 write_exp_elt_longcst ((LONGEST) end_arglist ());
324 write_exp_elt_opcode (OP_FUNCALL); }
325 ;
326
327 lcurly : '{'
328 { start_arglist (); }
329 ;
330
331 arglist :
332 ;
333
334 arglist : exp
335 { arglist_len = 1; }
336 ;
337
338 arglist : arglist ',' exp %prec ABOVE_COMMA
339 { arglist_len++; }
340 ;
341
342 rcurly : '}'
343 { $$ = end_arglist () - 1; }
344 ;
345 exp : lcurly arglist rcurly %prec ARROW
346 { write_exp_elt_opcode (OP_ARRAY);
347 write_exp_elt_longcst ((LONGEST) 0);
348 write_exp_elt_longcst ((LONGEST) $3);
349 write_exp_elt_opcode (OP_ARRAY); }
350 ;
351
352 exp : lcurly type rcurly exp %prec UNARY
353 { write_exp_elt_opcode (UNOP_MEMVAL);
354 write_exp_elt_type ($2);
355 write_exp_elt_opcode (UNOP_MEMVAL); }
356 ;
357
358 exp : '(' type ')' exp %prec UNARY
359 { write_exp_elt_opcode (UNOP_CAST);
360 write_exp_elt_type ($2);
361 write_exp_elt_opcode (UNOP_CAST); }
362 ;
363
364 exp : '(' exp1 ')'
365 { }
366 ;
367
368 /* Binary operators in order of decreasing precedence. */
369
370 exp : exp '@' exp
371 { write_exp_elt_opcode (BINOP_REPEAT); }
372 ;
373
374 exp : exp '*' exp
375 { write_exp_elt_opcode (BINOP_MUL); }
376 ;
377
378 exp : exp '/' exp
379 { write_exp_elt_opcode (BINOP_DIV); }
380 ;
381
382 exp : exp '%' exp
383 { write_exp_elt_opcode (BINOP_REM); }
384 ;
385
386 exp : exp '+' exp
387 { write_exp_elt_opcode (BINOP_ADD); }
388 ;
389
390 exp : exp '-' exp
391 { write_exp_elt_opcode (BINOP_SUB); }
392 ;
393
394 exp : exp LSH exp
395 { write_exp_elt_opcode (BINOP_LSH); }
396 ;
397
398 exp : exp RSH exp
399 { write_exp_elt_opcode (BINOP_RSH); }
400 ;
401
402 exp : exp EQUAL exp
403 { write_exp_elt_opcode (BINOP_EQUAL); }
404 ;
405
406 exp : exp NOTEQUAL exp
407 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
408 ;
409
410 exp : exp LEQ exp
411 { write_exp_elt_opcode (BINOP_LEQ); }
412 ;
413
414 exp : exp GEQ exp
415 { write_exp_elt_opcode (BINOP_GEQ); }
416 ;
417
418 exp : exp '<' exp
419 { write_exp_elt_opcode (BINOP_LESS); }
420 ;
421
422 exp : exp '>' exp
423 { write_exp_elt_opcode (BINOP_GTR); }
424 ;
425
426 exp : exp '&' exp
427 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
428 ;
429
430 exp : exp '^' exp
431 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
432 ;
433
434 exp : exp '|' exp
435 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
436 ;
437
438 exp : exp ANDAND exp
439 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
440 ;
441
442 exp : exp OROR exp
443 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
444 ;
445
446 exp : exp '?' exp ':' exp %prec '?'
447 { write_exp_elt_opcode (TERNOP_COND); }
448 ;
449
450 exp : exp '=' exp
451 { write_exp_elt_opcode (BINOP_ASSIGN); }
452 ;
453
454 exp : exp ASSIGN_MODIFY exp
455 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
456 write_exp_elt_opcode ($2);
457 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
458 ;
459
460 exp : INT
461 { write_exp_elt_opcode (OP_LONG);
462 write_exp_elt_type ($1.type);
463 write_exp_elt_longcst ((LONGEST)($1.val));
464 write_exp_elt_opcode (OP_LONG); }
465 ;
466
467 exp : NAME_OR_INT
468 { YYSTYPE val;
469 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
470 write_exp_elt_opcode (OP_LONG);
471 write_exp_elt_type (val.typed_val_int.type);
472 write_exp_elt_longcst ((LONGEST)val.typed_val_int.val);
473 write_exp_elt_opcode (OP_LONG);
474 }
475 ;
476
477
478 exp : FLOAT
479 { write_exp_elt_opcode (OP_DOUBLE);
480 write_exp_elt_type ($1.type);
481 write_exp_elt_dblcst ($1.dval);
482 write_exp_elt_opcode (OP_DOUBLE); }
483 ;
484
485 exp : variable
486 ;
487
488 exp : VARIABLE
489 /* Already written by write_dollar_variable. */
490 ;
491
492 exp : SIZEOF '(' type ')' %prec UNARY
493 { write_exp_elt_opcode (OP_LONG);
494 write_exp_elt_type (builtin_type_int);
495 CHECK_TYPEDEF ($3);
496 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
497 write_exp_elt_opcode (OP_LONG); }
498 ;
499
500 exp : STRING
501 { /* C strings are converted into array constants with
502 an explicit null byte added at the end. Thus
503 the array upper bound is the string length.
504 There is no such thing in C as a completely empty
505 string. */
506 char *sp = $1.ptr; int count = $1.length;
507 while (count-- > 0)
508 {
509 write_exp_elt_opcode (OP_LONG);
510 write_exp_elt_type (builtin_type_char);
511 write_exp_elt_longcst ((LONGEST)(*sp++));
512 write_exp_elt_opcode (OP_LONG);
513 }
514 write_exp_elt_opcode (OP_LONG);
515 write_exp_elt_type (builtin_type_char);
516 write_exp_elt_longcst ((LONGEST)'\0');
517 write_exp_elt_opcode (OP_LONG);
518 write_exp_elt_opcode (OP_ARRAY);
519 write_exp_elt_longcst ((LONGEST) 0);
520 write_exp_elt_longcst ((LONGEST) ($1.length));
521 write_exp_elt_opcode (OP_ARRAY); }
522 ;
523
524 /* C++. */
525 exp : THIS
526 { write_exp_elt_opcode (OP_THIS);
527 write_exp_elt_opcode (OP_THIS); }
528 ;
529
530 /* end of C++. */
531
532 block : BLOCKNAME
533 {
534 if ($1.sym != 0)
535 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
536 else
537 {
538 struct symtab *tem =
539 lookup_symtab (copy_name ($1.stoken));
540 if (tem)
541 $$ = BLOCKVECTOR_BLOCK (BLOCKVECTOR (tem), STATIC_BLOCK);
542 else
543 error ("No file or function \"%s\".",
544 copy_name ($1.stoken));
545 }
546 }
547 ;
548
549 block : block COLONCOLON name
550 { struct symbol *tem
551 = lookup_symbol (copy_name ($3), $1,
552 VAR_NAMESPACE, (int *) NULL,
553 (struct symtab **) NULL);
554 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
555 error ("No function \"%s\" in specified context.",
556 copy_name ($3));
557 $$ = SYMBOL_BLOCK_VALUE (tem); }
558 ;
559
560 variable: block COLONCOLON name
561 { struct symbol *sym;
562 sym = lookup_symbol (copy_name ($3), $1,
563 VAR_NAMESPACE, (int *) NULL,
564 (struct symtab **) NULL);
565 if (sym == 0)
566 error ("No symbol \"%s\" in specified context.",
567 copy_name ($3));
568
569 write_exp_elt_opcode (OP_VAR_VALUE);
570 /* block_found is set by lookup_symbol. */
571 write_exp_elt_block (block_found);
572 write_exp_elt_sym (sym);
573 write_exp_elt_opcode (OP_VAR_VALUE); }
574 ;
575
576 qualified_name: typebase COLONCOLON name
577 {
578 struct type *type = $1;
579 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
580 && TYPE_CODE (type) != TYPE_CODE_UNION)
581 error ("`%s' is not defined as an aggregate type.",
582 TYPE_NAME (type));
583
584 write_exp_elt_opcode (OP_SCOPE);
585 write_exp_elt_type (type);
586 write_exp_string ($3);
587 write_exp_elt_opcode (OP_SCOPE);
588 }
589 | typebase COLONCOLON '~' name
590 {
591 struct type *type = $1;
592 struct stoken tmp_token;
593 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
594 && TYPE_CODE (type) != TYPE_CODE_UNION)
595 error ("`%s' is not defined as an aggregate type.",
596 TYPE_NAME (type));
597
598 tmp_token.ptr = (char*) alloca ($4.length + 2);
599 tmp_token.length = $4.length + 1;
600 tmp_token.ptr[0] = '~';
601 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
602 tmp_token.ptr[tmp_token.length] = 0;
603
604 /* Check for valid destructor name. */
605 destructor_name_p (tmp_token.ptr, type);
606 write_exp_elt_opcode (OP_SCOPE);
607 write_exp_elt_type (type);
608 write_exp_string (tmp_token);
609 write_exp_elt_opcode (OP_SCOPE);
610 }
611 ;
612
613 variable: qualified_name
614 | COLONCOLON name
615 {
616 char *name = copy_name ($2);
617 struct symbol *sym;
618 struct minimal_symbol *msymbol;
619
620 sym =
621 lookup_symbol (name, (const struct block *) NULL,
622 VAR_NAMESPACE, (int *) NULL,
623 (struct symtab **) NULL);
624 if (sym)
625 {
626 write_exp_elt_opcode (OP_VAR_VALUE);
627 write_exp_elt_block (NULL);
628 write_exp_elt_sym (sym);
629 write_exp_elt_opcode (OP_VAR_VALUE);
630 break;
631 }
632
633 msymbol = lookup_minimal_symbol (name, NULL, NULL);
634 if (msymbol != NULL)
635 {
636 write_exp_msymbol (msymbol,
637 lookup_function_type (builtin_type_int),
638 builtin_type_int);
639 }
640 else
641 if (!have_full_symbols () && !have_partial_symbols ())
642 error ("No symbol table is loaded. Use the \"file\" command.");
643 else
644 error ("No symbol \"%s\" in current context.", name);
645 }
646 ;
647
648 variable: name_not_typename
649 { struct symbol *sym = $1.sym;
650
651 if (sym)
652 {
653 if (symbol_read_needs_frame (sym))
654 {
655 if (innermost_block == 0 ||
656 contained_in (block_found,
657 innermost_block))
658 innermost_block = block_found;
659 }
660
661 write_exp_elt_opcode (OP_VAR_VALUE);
662 /* We want to use the selected frame, not
663 another more inner frame which happens to
664 be in the same block. */
665 write_exp_elt_block (NULL);
666 write_exp_elt_sym (sym);
667 write_exp_elt_opcode (OP_VAR_VALUE);
668 }
669 else if ($1.is_a_field_of_this)
670 {
671 /* C++: it hangs off of `this'. Must
672 not inadvertently convert from a method call
673 to data ref. */
674 if (innermost_block == 0 ||
675 contained_in (block_found, innermost_block))
676 innermost_block = block_found;
677 write_exp_elt_opcode (OP_THIS);
678 write_exp_elt_opcode (OP_THIS);
679 write_exp_elt_opcode (STRUCTOP_PTR);
680 write_exp_string ($1.stoken);
681 write_exp_elt_opcode (STRUCTOP_PTR);
682 }
683 else
684 {
685 struct minimal_symbol *msymbol;
686 register char *arg = copy_name ($1.stoken);
687
688 msymbol =
689 lookup_minimal_symbol (arg, NULL, NULL);
690 if (msymbol != NULL)
691 {
692 write_exp_msymbol (msymbol,
693 lookup_function_type (builtin_type_int),
694 builtin_type_int);
695 }
696 else if (!have_full_symbols () && !have_partial_symbols ())
697 error ("No symbol table is loaded. Use the \"file\" command.");
698 else
699 error ("No symbol \"%s\" in current context.",
700 copy_name ($1.stoken));
701 }
702 }
703 ;
704
705
706 ptype : typebase
707 /* "const" and "volatile" are curently ignored. A type qualifier
708 before the type is currently handled in the typebase rule.
709 The reason for recognizing these here (shift/reduce conflicts)
710 might be obsolete now that some pointer to member rules have
711 been deleted. */
712 | typebase CONST_KEYWORD
713 | typebase VOLATILE_KEYWORD
714 | typebase abs_decl
715 { $$ = follow_types ($1); }
716 | typebase CONST_KEYWORD abs_decl
717 { $$ = follow_types ($1); }
718 | typebase VOLATILE_KEYWORD abs_decl
719 { $$ = follow_types ($1); }
720 ;
721
722 abs_decl: '*'
723 { push_type (tp_pointer); $$ = 0; }
724 | '*' abs_decl
725 { push_type (tp_pointer); $$ = $2; }
726 | '&'
727 { push_type (tp_reference); $$ = 0; }
728 | '&' abs_decl
729 { push_type (tp_reference); $$ = $2; }
730 | direct_abs_decl
731 ;
732
733 direct_abs_decl: '(' abs_decl ')'
734 { $$ = $2; }
735 | direct_abs_decl array_mod
736 {
737 push_type_int ($2);
738 push_type (tp_array);
739 }
740 | array_mod
741 {
742 push_type_int ($1);
743 push_type (tp_array);
744 $$ = 0;
745 }
746
747 | direct_abs_decl func_mod
748 { push_type (tp_function); }
749 | func_mod
750 { push_type (tp_function); }
751 ;
752
753 array_mod: '[' ']'
754 { $$ = -1; }
755 | '[' INT ']'
756 { $$ = $2.val; }
757 ;
758
759 func_mod: '(' ')'
760 { $$ = 0; }
761 | '(' nonempty_typelist ')'
762 { free ((PTR)$2); $$ = 0; }
763 ;
764
765 /* We used to try to recognize more pointer to member types here, but
766 that didn't work (shift/reduce conflicts meant that these rules never
767 got executed). The problem is that
768 int (foo::bar::baz::bizzle)
769 is a function type but
770 int (foo::bar::baz::bizzle::*)
771 is a pointer to member type. Stroustrup loses again! */
772
773 type : ptype
774 | typebase COLONCOLON '*'
775 { $$ = lookup_member_type (builtin_type_int, $1); }
776 ;
777
778 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
779 : TYPENAME
780 { $$ = $1.type; }
781 | INT_KEYWORD
782 { $$ = builtin_type_int; }
783 | LONG
784 { $$ = builtin_type_long; }
785 | SHORT
786 { $$ = builtin_type_short; }
787 | LONG INT_KEYWORD
788 { $$ = builtin_type_long; }
789 | UNSIGNED LONG INT_KEYWORD
790 { $$ = builtin_type_unsigned_long; }
791 | LONG LONG
792 { $$ = builtin_type_long_long; }
793 | LONG LONG INT_KEYWORD
794 { $$ = builtin_type_long_long; }
795 | UNSIGNED LONG LONG
796 { $$ = builtin_type_unsigned_long_long; }
797 | UNSIGNED LONG LONG INT_KEYWORD
798 { $$ = builtin_type_unsigned_long_long; }
799 | SHORT INT_KEYWORD
800 { $$ = builtin_type_short; }
801 | UNSIGNED SHORT INT_KEYWORD
802 { $$ = builtin_type_unsigned_short; }
803 | DOUBLE_KEYWORD
804 { $$ = builtin_type_double; }
805 | LONG DOUBLE_KEYWORD
806 { $$ = builtin_type_long_double; }
807 | STRUCT name
808 { $$ = lookup_struct (copy_name ($2),
809 expression_context_block); }
810 | CLASS name
811 { $$ = lookup_struct (copy_name ($2),
812 expression_context_block); }
813 | UNION name
814 { $$ = lookup_union (copy_name ($2),
815 expression_context_block); }
816 | ENUM name
817 { $$ = lookup_enum (copy_name ($2),
818 expression_context_block); }
819 | UNSIGNED typename
820 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
821 | UNSIGNED
822 { $$ = builtin_type_unsigned_int; }
823 | SIGNED_KEYWORD typename
824 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
825 | SIGNED_KEYWORD
826 { $$ = builtin_type_int; }
827 | TEMPLATE name '<' type '>'
828 { $$ = lookup_template_type(copy_name($2), $4,
829 expression_context_block);
830 }
831 /* "const" and "volatile" are curently ignored. A type qualifier
832 after the type is handled in the ptype rule. I think these could
833 be too. */
834 | CONST_KEYWORD typebase { $$ = $2; }
835 | VOLATILE_KEYWORD typebase { $$ = $2; }
836 ;
837
838 typename: TYPENAME
839 | INT_KEYWORD
840 {
841 $$.stoken.ptr = "int";
842 $$.stoken.length = 3;
843 $$.type = builtin_type_int;
844 }
845 | LONG
846 {
847 $$.stoken.ptr = "long";
848 $$.stoken.length = 4;
849 $$.type = builtin_type_long;
850 }
851 | SHORT
852 {
853 $$.stoken.ptr = "short";
854 $$.stoken.length = 5;
855 $$.type = builtin_type_short;
856 }
857 ;
858
859 nonempty_typelist
860 : type
861 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
862 $<ivec>$[0] = 1; /* Number of types in vector */
863 $$[1] = $1;
864 }
865 | nonempty_typelist ',' type
866 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
867 $$ = (struct type **) realloc ((char *) $1, len);
868 $$[$<ivec>$[0]] = $3;
869 }
870 ;
871
872 name : NAME { $$ = $1.stoken; }
873 | BLOCKNAME { $$ = $1.stoken; }
874 | TYPENAME { $$ = $1.stoken; }
875 | NAME_OR_INT { $$ = $1.stoken; }
876 ;
877
878 name_not_typename : NAME
879 | BLOCKNAME
880 /* These would be useful if name_not_typename was useful, but it is just
881 a fake for "variable", so these cause reduce/reduce conflicts because
882 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
883 =exp) or just an exp. If name_not_typename was ever used in an lvalue
884 context where only a name could occur, this might be useful.
885 | NAME_OR_INT
886 */
887 ;
888
889 %%
890
891 /* Take care of parsing a number (anything that starts with a digit).
892 Set yylval and return the token type; update lexptr.
893 LEN is the number of characters in it. */
894
895 /*** Needs some error checking for the float case ***/
896
897 static int
898 parse_number (p, len, parsed_float, putithere)
899 register char *p;
900 register int len;
901 int parsed_float;
902 YYSTYPE *putithere;
903 {
904 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
905 here, and we do kind of silly things like cast to unsigned. */
906 register LONGEST n = 0;
907 register LONGEST prevn = 0;
908 ULONGEST un;
909
910 register int i = 0;
911 register int c;
912 register int base = input_radix;
913 int unsigned_p = 0;
914
915 /* Number of "L" suffixes encountered. */
916 int long_p = 0;
917
918 /* We have found a "L" or "U" suffix. */
919 int found_suffix = 0;
920
921 ULONGEST high_bit;
922 struct type *signed_type;
923 struct type *unsigned_type;
924
925 if (parsed_float)
926 {
927 /* It's a float since it contains a point or an exponent. */
928 char c;
929 int num = 0; /* number of tokens scanned by scanf */
930 char saved_char = p[len];
931
932 p[len] = 0; /* null-terminate the token */
933 if (sizeof (putithere->typed_val_float.dval) <= sizeof (float))
934 num = sscanf (p, "%g%c", (float *) &putithere->typed_val_float.dval,&c);
935 else if (sizeof (putithere->typed_val_float.dval) <= sizeof (double))
936 num = sscanf (p, "%lg%c", (double *) &putithere->typed_val_float.dval,&c);
937 else
938 {
939 #ifdef PRINTF_HAS_LONG_DOUBLE
940 num = sscanf (p, "%Lg%c", &putithere->typed_val_float.dval,&c);
941 #else
942 /* Scan it into a double, then assign it to the long double.
943 This at least wins with values representable in the range
944 of doubles. */
945 double temp;
946 num = sscanf (p, "%lg%c", &temp,&c);
947 putithere->typed_val_float.dval = temp;
948 #endif
949 }
950 p[len] = saved_char; /* restore the input stream */
951 if (num != 1) /* check scanf found ONLY a float ... */
952 return ERROR;
953 /* See if it has `f' or `l' suffix (float or long double). */
954
955 c = tolower (p[len - 1]);
956
957 if (c == 'f')
958 putithere->typed_val_float.type = builtin_type_float;
959 else if (c == 'l')
960 putithere->typed_val_float.type = builtin_type_long_double;
961 else if (isdigit (c) || c == '.')
962 putithere->typed_val_float.type = builtin_type_double;
963 else
964 return ERROR;
965
966 return FLOAT;
967 }
968
969 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
970 if (p[0] == '0')
971 switch (p[1])
972 {
973 case 'x':
974 case 'X':
975 if (len >= 3)
976 {
977 p += 2;
978 base = 16;
979 len -= 2;
980 }
981 break;
982
983 case 't':
984 case 'T':
985 case 'd':
986 case 'D':
987 if (len >= 3)
988 {
989 p += 2;
990 base = 10;
991 len -= 2;
992 }
993 break;
994
995 default:
996 base = 8;
997 break;
998 }
999
1000 while (len-- > 0)
1001 {
1002 c = *p++;
1003 if (c >= 'A' && c <= 'Z')
1004 c += 'a' - 'A';
1005 if (c != 'l' && c != 'u')
1006 n *= base;
1007 if (c >= '0' && c <= '9')
1008 {
1009 if (found_suffix)
1010 return ERROR;
1011 n += i = c - '0';
1012 }
1013 else
1014 {
1015 if (base > 10 && c >= 'a' && c <= 'f')
1016 {
1017 if (found_suffix)
1018 return ERROR;
1019 n += i = c - 'a' + 10;
1020 }
1021 else if (c == 'l')
1022 {
1023 ++long_p;
1024 found_suffix = 1;
1025 }
1026 else if (c == 'u')
1027 {
1028 unsigned_p = 1;
1029 found_suffix = 1;
1030 }
1031 else
1032 return ERROR; /* Char not a digit */
1033 }
1034 if (i >= base)
1035 return ERROR; /* Invalid digit in this base */
1036
1037 /* Portably test for overflow (only works for nonzero values, so make
1038 a second check for zero). FIXME: Can't we just make n and prevn
1039 unsigned and avoid this? */
1040 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1041 unsigned_p = 1; /* Try something unsigned */
1042
1043 /* Portably test for unsigned overflow.
1044 FIXME: This check is wrong; for example it doesn't find overflow
1045 on 0x123456789 when LONGEST is 32 bits. */
1046 if (c != 'l' && c != 'u' && n != 0)
1047 {
1048 if ((unsigned_p && (ULONGEST) prevn >= (ULONGEST) n))
1049 error ("Numeric constant too large.");
1050 }
1051 prevn = n;
1052 }
1053
1054 /* An integer constant is an int, a long, or a long long. An L
1055 suffix forces it to be long; an LL suffix forces it to be long
1056 long. If not forced to a larger size, it gets the first type of
1057 the above that it fits in. To figure out whether it fits, we
1058 shift it right and see whether anything remains. Note that we
1059 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1060 operation, because many compilers will warn about such a shift
1061 (which always produces a zero result). Sometimes TARGET_INT_BIT
1062 or TARGET_LONG_BIT will be that big, sometimes not. To deal with
1063 the case where it is we just always shift the value more than
1064 once, with fewer bits each time. */
1065
1066 un = (ULONGEST)n >> 2;
1067 if (long_p == 0
1068 && (un >> (TARGET_INT_BIT - 2)) == 0)
1069 {
1070 high_bit = ((ULONGEST)1) << (TARGET_INT_BIT-1);
1071
1072 /* A large decimal (not hex or octal) constant (between INT_MAX
1073 and UINT_MAX) is a long or unsigned long, according to ANSI,
1074 never an unsigned int, but this code treats it as unsigned
1075 int. This probably should be fixed. GCC gives a warning on
1076 such constants. */
1077
1078 unsigned_type = builtin_type_unsigned_int;
1079 signed_type = builtin_type_int;
1080 }
1081 else if (long_p <= 1
1082 && (un >> (TARGET_LONG_BIT - 2)) == 0)
1083 {
1084 high_bit = ((ULONGEST)1) << (TARGET_LONG_BIT-1);
1085 unsigned_type = builtin_type_unsigned_long;
1086 signed_type = builtin_type_long;
1087 }
1088 else
1089 {
1090 high_bit = (((ULONGEST)1)
1091 << (TARGET_LONG_LONG_BIT - 32 - 1)
1092 << 16
1093 << 16);
1094 if (high_bit == 0)
1095 /* A long long does not fit in a LONGEST. */
1096 high_bit =
1097 (ULONGEST)1 << (sizeof (LONGEST) * HOST_CHAR_BIT - 1);
1098 unsigned_type = builtin_type_unsigned_long_long;
1099 signed_type = builtin_type_long_long;
1100 }
1101
1102 putithere->typed_val_int.val = n;
1103
1104 /* If the high bit of the worked out type is set then this number
1105 has to be unsigned. */
1106
1107 if (unsigned_p || (n & high_bit))
1108 {
1109 putithere->typed_val_int.type = unsigned_type;
1110 }
1111 else
1112 {
1113 putithere->typed_val_int.type = signed_type;
1114 }
1115
1116 return INT;
1117 }
1118
1119 struct token
1120 {
1121 char *operator;
1122 int token;
1123 enum exp_opcode opcode;
1124 };
1125
1126 static const struct token tokentab3[] =
1127 {
1128 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1129 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1130 };
1131
1132 static const struct token tokentab2[] =
1133 {
1134 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1135 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1136 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1137 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1138 {"%=", ASSIGN_MODIFY, BINOP_REM},
1139 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1140 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1141 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1142 {"++", INCREMENT, BINOP_END},
1143 {"--", DECREMENT, BINOP_END},
1144 {"->", ARROW, BINOP_END},
1145 {"&&", ANDAND, BINOP_END},
1146 {"||", OROR, BINOP_END},
1147 {"::", COLONCOLON, BINOP_END},
1148 {"<<", LSH, BINOP_END},
1149 {">>", RSH, BINOP_END},
1150 {"==", EQUAL, BINOP_END},
1151 {"!=", NOTEQUAL, BINOP_END},
1152 {"<=", LEQ, BINOP_END},
1153 {">=", GEQ, BINOP_END}
1154 };
1155
1156 /* Read one token, getting characters through lexptr. */
1157
1158 static int
1159 yylex ()
1160 {
1161 int c;
1162 int namelen;
1163 unsigned int i;
1164 char *tokstart;
1165 char *tokptr;
1166 int tempbufindex;
1167 static char *tempbuf;
1168 static int tempbufsize;
1169
1170 retry:
1171
1172 tokstart = lexptr;
1173 /* See if it is a special token of length 3. */
1174 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1175 if (STREQN (tokstart, tokentab3[i].operator, 3))
1176 {
1177 lexptr += 3;
1178 yylval.opcode = tokentab3[i].opcode;
1179 return tokentab3[i].token;
1180 }
1181
1182 /* See if it is a special token of length 2. */
1183 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1184 if (STREQN (tokstart, tokentab2[i].operator, 2))
1185 {
1186 lexptr += 2;
1187 yylval.opcode = tokentab2[i].opcode;
1188 return tokentab2[i].token;
1189 }
1190
1191 switch (c = *tokstart)
1192 {
1193 case 0:
1194 return 0;
1195
1196 case ' ':
1197 case '\t':
1198 case '\n':
1199 lexptr++;
1200 goto retry;
1201
1202 case '\'':
1203 /* We either have a character constant ('0' or '\177' for example)
1204 or we have a quoted symbol reference ('foo(int,int)' in C++
1205 for example). */
1206 lexptr++;
1207 c = *lexptr++;
1208 if (c == '\\')
1209 c = parse_escape (&lexptr);
1210 else if (c == '\'')
1211 error ("Empty character constant.");
1212
1213 yylval.typed_val_int.val = c;
1214 yylval.typed_val_int.type = builtin_type_char;
1215
1216 c = *lexptr++;
1217 if (c != '\'')
1218 {
1219 namelen = skip_quoted (tokstart) - tokstart;
1220 if (namelen > 2)
1221 {
1222 lexptr = tokstart + namelen;
1223 if (lexptr[-1] != '\'')
1224 error ("Unmatched single quote.");
1225 namelen -= 2;
1226 tokstart++;
1227 goto tryname;
1228 }
1229 error ("Invalid character constant.");
1230 }
1231 return INT;
1232
1233 case '(':
1234 paren_depth++;
1235 lexptr++;
1236 return c;
1237
1238 case ')':
1239 if (paren_depth == 0)
1240 return 0;
1241 paren_depth--;
1242 lexptr++;
1243 return c;
1244
1245 case ',':
1246 if (comma_terminates && paren_depth == 0)
1247 return 0;
1248 lexptr++;
1249 return c;
1250
1251 case '.':
1252 /* Might be a floating point number. */
1253 if (lexptr[1] < '0' || lexptr[1] > '9')
1254 goto symbol; /* Nope, must be a symbol. */
1255 /* FALL THRU into number case. */
1256
1257 case '0':
1258 case '1':
1259 case '2':
1260 case '3':
1261 case '4':
1262 case '5':
1263 case '6':
1264 case '7':
1265 case '8':
1266 case '9':
1267 {
1268 /* It's a number. */
1269 int got_dot = 0, got_e = 0, toktype;
1270 register char *p = tokstart;
1271 int hex = input_radix > 10;
1272
1273 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1274 {
1275 p += 2;
1276 hex = 1;
1277 }
1278 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1279 {
1280 p += 2;
1281 hex = 0;
1282 }
1283
1284 for (;; ++p)
1285 {
1286 /* This test includes !hex because 'e' is a valid hex digit
1287 and thus does not indicate a floating point number when
1288 the radix is hex. */
1289 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1290 got_dot = got_e = 1;
1291 /* This test does not include !hex, because a '.' always indicates
1292 a decimal floating point number regardless of the radix. */
1293 else if (!got_dot && *p == '.')
1294 got_dot = 1;
1295 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1296 && (*p == '-' || *p == '+'))
1297 /* This is the sign of the exponent, not the end of the
1298 number. */
1299 continue;
1300 /* We will take any letters or digits. parse_number will
1301 complain if past the radix, or if L or U are not final. */
1302 else if ((*p < '0' || *p > '9')
1303 && ((*p < 'a' || *p > 'z')
1304 && (*p < 'A' || *p > 'Z')))
1305 break;
1306 }
1307 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1308 if (toktype == ERROR)
1309 {
1310 char *err_copy = (char *) alloca (p - tokstart + 1);
1311
1312 memcpy (err_copy, tokstart, p - tokstart);
1313 err_copy[p - tokstart] = 0;
1314 error ("Invalid number \"%s\".", err_copy);
1315 }
1316 lexptr = p;
1317 return toktype;
1318 }
1319
1320 case '+':
1321 case '-':
1322 case '*':
1323 case '/':
1324 case '%':
1325 case '|':
1326 case '&':
1327 case '^':
1328 case '~':
1329 case '!':
1330 case '@':
1331 case '<':
1332 case '>':
1333 case '[':
1334 case ']':
1335 case '?':
1336 case ':':
1337 case '=':
1338 case '{':
1339 case '}':
1340 symbol:
1341 lexptr++;
1342 return c;
1343
1344 case '"':
1345
1346 /* Build the gdb internal form of the input string in tempbuf,
1347 translating any standard C escape forms seen. Note that the
1348 buffer is null byte terminated *only* for the convenience of
1349 debugging gdb itself and printing the buffer contents when
1350 the buffer contains no embedded nulls. Gdb does not depend
1351 upon the buffer being null byte terminated, it uses the length
1352 string instead. This allows gdb to handle C strings (as well
1353 as strings in other languages) with embedded null bytes */
1354
1355 tokptr = ++tokstart;
1356 tempbufindex = 0;
1357
1358 do {
1359 /* Grow the static temp buffer if necessary, including allocating
1360 the first one on demand. */
1361 if (tempbufindex + 1 >= tempbufsize)
1362 {
1363 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1364 }
1365 switch (*tokptr)
1366 {
1367 case '\0':
1368 case '"':
1369 /* Do nothing, loop will terminate. */
1370 break;
1371 case '\\':
1372 tokptr++;
1373 c = parse_escape (&tokptr);
1374 if (c == -1)
1375 {
1376 continue;
1377 }
1378 tempbuf[tempbufindex++] = c;
1379 break;
1380 default:
1381 tempbuf[tempbufindex++] = *tokptr++;
1382 break;
1383 }
1384 } while ((*tokptr != '"') && (*tokptr != '\0'));
1385 if (*tokptr++ != '"')
1386 {
1387 error ("Unterminated string in expression.");
1388 }
1389 tempbuf[tempbufindex] = '\0'; /* See note above */
1390 yylval.sval.ptr = tempbuf;
1391 yylval.sval.length = tempbufindex;
1392 lexptr = tokptr;
1393 return (STRING);
1394 }
1395
1396 if (!(c == '_' || c == '$'
1397 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1398 /* We must have come across a bad character (e.g. ';'). */
1399 error ("Invalid character '%c' in expression.", c);
1400
1401 /* It's a name. See how long it is. */
1402 namelen = 0;
1403 for (c = tokstart[namelen];
1404 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1405 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
1406 {
1407 /* Template parameter lists are part of the name.
1408 FIXME: This mishandles `print $a<4&&$a>3'. */
1409
1410 if (c == '<')
1411 {
1412 int i = namelen;
1413 int nesting_level = 1;
1414 while (tokstart[++i])
1415 {
1416 if (tokstart[i] == '<')
1417 nesting_level++;
1418 else if (tokstart[i] == '>')
1419 {
1420 if (--nesting_level == 0)
1421 break;
1422 }
1423 }
1424 if (tokstart[i] == '>')
1425 namelen = i;
1426 else
1427 break;
1428 }
1429 c = tokstart[++namelen];
1430 }
1431
1432 /* The token "if" terminates the expression and is NOT
1433 removed from the input stream. */
1434 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1435 {
1436 return 0;
1437 }
1438
1439 lexptr += namelen;
1440
1441 tryname:
1442
1443 /* Catch specific keywords. Should be done with a data structure. */
1444 switch (namelen)
1445 {
1446 case 8:
1447 if (STREQN (tokstart, "unsigned", 8))
1448 return UNSIGNED;
1449 if (current_language->la_language == language_cplus
1450 && STREQN (tokstart, "template", 8))
1451 return TEMPLATE;
1452 if (STREQN (tokstart, "volatile", 8))
1453 return VOLATILE_KEYWORD;
1454 break;
1455 case 6:
1456 if (STREQN (tokstart, "struct", 6))
1457 return STRUCT;
1458 if (STREQN (tokstart, "signed", 6))
1459 return SIGNED_KEYWORD;
1460 if (STREQN (tokstart, "sizeof", 6))
1461 return SIZEOF;
1462 if (STREQN (tokstart, "double", 6))
1463 return DOUBLE_KEYWORD;
1464 break;
1465 case 5:
1466 if (current_language->la_language == language_cplus
1467 && STREQN (tokstart, "class", 5))
1468 return CLASS;
1469 if (STREQN (tokstart, "union", 5))
1470 return UNION;
1471 if (STREQN (tokstart, "short", 5))
1472 return SHORT;
1473 if (STREQN (tokstart, "const", 5))
1474 return CONST_KEYWORD;
1475 break;
1476 case 4:
1477 if (STREQN (tokstart, "enum", 4))
1478 return ENUM;
1479 if (STREQN (tokstart, "long", 4))
1480 return LONG;
1481 if (current_language->la_language == language_cplus
1482 && STREQN (tokstart, "this", 4))
1483 {
1484 static const char this_name[] =
1485 { CPLUS_MARKER, 't', 'h', 'i', 's', '\0' };
1486
1487 if (lookup_symbol (this_name, expression_context_block,
1488 VAR_NAMESPACE, (int *) NULL,
1489 (struct symtab **) NULL))
1490 return THIS;
1491 }
1492 break;
1493 case 3:
1494 if (STREQN (tokstart, "int", 3))
1495 return INT_KEYWORD;
1496 break;
1497 default:
1498 break;
1499 }
1500
1501 yylval.sval.ptr = tokstart;
1502 yylval.sval.length = namelen;
1503
1504 if (*tokstart == '$')
1505 {
1506 write_dollar_variable (yylval.sval);
1507 return VARIABLE;
1508 }
1509
1510 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1511 functions or symtabs. If this is not so, then ...
1512 Use token-type TYPENAME for symbols that happen to be defined
1513 currently as names of types; NAME for other symbols.
1514 The caller is not constrained to care about the distinction. */
1515 {
1516 char *tmp = copy_name (yylval.sval);
1517 struct symbol *sym;
1518 int is_a_field_of_this = 0;
1519 int hextype;
1520
1521 sym = lookup_symbol (tmp, expression_context_block,
1522 VAR_NAMESPACE,
1523 current_language->la_language == language_cplus
1524 ? &is_a_field_of_this : (int *) NULL,
1525 (struct symtab **) NULL);
1526 /* Call lookup_symtab, not lookup_partial_symtab, in case there are
1527 no psymtabs (coff, xcoff, or some future change to blow away the
1528 psymtabs once once symbols are read). */
1529 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
1530 lookup_symtab (tmp))
1531 {
1532 yylval.ssym.sym = sym;
1533 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1534 return BLOCKNAME;
1535 }
1536 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1537 {
1538 #if 1
1539 /* Despite the following flaw, we need to keep this code enabled.
1540 Because we can get called from check_stub_method, if we don't
1541 handle nested types then it screws many operations in any
1542 program which uses nested types. */
1543 /* In "A::x", if x is a member function of A and there happens
1544 to be a type (nested or not, since the stabs don't make that
1545 distinction) named x, then this code incorrectly thinks we
1546 are dealing with nested types rather than a member function. */
1547
1548 char *p;
1549 char *namestart;
1550 struct symbol *best_sym;
1551
1552 /* Look ahead to detect nested types. This probably should be
1553 done in the grammar, but trying seemed to introduce a lot
1554 of shift/reduce and reduce/reduce conflicts. It's possible
1555 that it could be done, though. Or perhaps a non-grammar, but
1556 less ad hoc, approach would work well. */
1557
1558 /* Since we do not currently have any way of distinguishing
1559 a nested type from a non-nested one (the stabs don't tell
1560 us whether a type is nested), we just ignore the
1561 containing type. */
1562
1563 p = lexptr;
1564 best_sym = sym;
1565 while (1)
1566 {
1567 /* Skip whitespace. */
1568 while (*p == ' ' || *p == '\t' || *p == '\n')
1569 ++p;
1570 if (*p == ':' && p[1] == ':')
1571 {
1572 /* Skip the `::'. */
1573 p += 2;
1574 /* Skip whitespace. */
1575 while (*p == ' ' || *p == '\t' || *p == '\n')
1576 ++p;
1577 namestart = p;
1578 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1579 || (*p >= 'a' && *p <= 'z')
1580 || (*p >= 'A' && *p <= 'Z'))
1581 ++p;
1582 if (p != namestart)
1583 {
1584 struct symbol *cur_sym;
1585 /* As big as the whole rest of the expression, which is
1586 at least big enough. */
1587 char *ncopy = alloca (strlen (tmp)+strlen (namestart)+3);
1588 char *tmp1;
1589
1590 tmp1 = ncopy;
1591 memcpy (tmp1, tmp, strlen (tmp));
1592 tmp1 += strlen (tmp);
1593 memcpy (tmp1, "::", 2);
1594 tmp1 += 2;
1595 memcpy (tmp1, namestart, p - namestart);
1596 tmp1[p - namestart] = '\0';
1597 cur_sym = lookup_symbol (ncopy, expression_context_block,
1598 VAR_NAMESPACE, (int *) NULL,
1599 (struct symtab **) NULL);
1600 if (cur_sym)
1601 {
1602 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1603 {
1604 best_sym = cur_sym;
1605 lexptr = p;
1606 }
1607 else
1608 break;
1609 }
1610 else
1611 break;
1612 }
1613 else
1614 break;
1615 }
1616 else
1617 break;
1618 }
1619
1620 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1621 #else /* not 0 */
1622 yylval.tsym.type = SYMBOL_TYPE (sym);
1623 #endif /* not 0 */
1624 return TYPENAME;
1625 }
1626 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1627 return TYPENAME;
1628
1629 /* Input names that aren't symbols but ARE valid hex numbers,
1630 when the input radix permits them, can be names or numbers
1631 depending on the parse. Note we support radixes > 16 here. */
1632 if (!sym &&
1633 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1634 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1635 {
1636 YYSTYPE newlval; /* Its value is ignored. */
1637 hextype = parse_number (tokstart, namelen, 0, &newlval);
1638 if (hextype == INT)
1639 {
1640 yylval.ssym.sym = sym;
1641 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1642 return NAME_OR_INT;
1643 }
1644 }
1645
1646 /* Any other kind of symbol */
1647 yylval.ssym.sym = sym;
1648 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1649 return NAME;
1650 }
1651 }
1652
1653 void
1654 yyerror (msg)
1655 char *msg;
1656 {
1657 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
1658 }
This page took 0.156709 seconds and 4 git commands to generate.