8860dfc784b22b0b75dc8a124db62f6a66041004
[deliverable/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* Parse a C expression from text in a string,
21 and return the result as a struct expression pointer.
22 That structure contains arithmetic operations in reverse polish,
23 with constants represented by operations that are followed by special data.
24 See expression.h for the details of the format.
25 What is important here is that it can be built up sequentially
26 during the process of parsing; the lower levels of the tree always
27 come first in the result.
28
29 Note that malloc's and realloc's in this file are transformed to
30 xmalloc and xrealloc respectively by the same sed command in the
31 makefile that remaps any other malloc/realloc inserted by the parser
32 generator. Doing this with #defines and trying to control the interaction
33 with include files (<malloc.h> and <stdlib.h> for example) just became
34 too messy, particularly when such includes can be inserted at random
35 times by the parser generator. */
36
37 %{
38
39 #include "defs.h"
40 #include "expression.h"
41 #include "value.h"
42 #include "parser-defs.h"
43 #include "language.h"
44 #include "c-lang.h"
45 #include "bfd.h" /* Required by objfiles.h. */
46 #include "symfile.h" /* Required by objfiles.h. */
47 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
48
49 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
50 as well as gratuitiously global symbol names, so we can have multiple
51 yacc generated parsers in gdb. Note that these are only the variables
52 produced by yacc. If other parser generators (bison, byacc, etc) produce
53 additional global names that conflict at link time, then those parser
54 generators need to be fixed instead of adding those names to this list. */
55
56 #define yymaxdepth c_maxdepth
57 #define yyparse c_parse
58 #define yylex c_lex
59 #define yyerror c_error
60 #define yylval c_lval
61 #define yychar c_char
62 #define yydebug c_debug
63 #define yypact c_pact
64 #define yyr1 c_r1
65 #define yyr2 c_r2
66 #define yydef c_def
67 #define yychk c_chk
68 #define yypgo c_pgo
69 #define yyact c_act
70 #define yyexca c_exca
71 #define yyerrflag c_errflag
72 #define yynerrs c_nerrs
73 #define yyps c_ps
74 #define yypv c_pv
75 #define yys c_s
76 #define yy_yys c_yys
77 #define yystate c_state
78 #define yytmp c_tmp
79 #define yyv c_v
80 #define yy_yyv c_yyv
81 #define yyval c_val
82 #define yylloc c_lloc
83 #define yyreds c_reds /* With YYDEBUG defined */
84 #define yytoks c_toks /* With YYDEBUG defined */
85
86 #ifndef YYDEBUG
87 #define YYDEBUG 0 /* Default to no yydebug support */
88 #endif
89
90 int
91 yyparse PARAMS ((void));
92
93 static int
94 yylex PARAMS ((void));
95
96 void
97 yyerror PARAMS ((char *));
98
99 %}
100
101 /* Although the yacc "value" of an expression is not used,
102 since the result is stored in the structure being created,
103 other node types do have values. */
104
105 %union
106 {
107 LONGEST lval;
108 struct {
109 LONGEST val;
110 struct type *type;
111 } typed_val;
112 double dval;
113 struct symbol *sym;
114 struct type *tval;
115 struct stoken sval;
116 struct ttype tsym;
117 struct symtoken ssym;
118 int voidval;
119 struct block *bval;
120 enum exp_opcode opcode;
121 struct internalvar *ivar;
122
123 struct type **tvec;
124 int *ivec;
125 }
126
127 %{
128 /* YYSTYPE gets defined by %union */
129 static int
130 parse_number PARAMS ((char *, int, int, YYSTYPE *));
131 %}
132
133 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
134 %type <lval> rcurly
135 %type <tval> type typebase
136 %type <tvec> nonempty_typelist
137 /* %type <bval> block */
138
139 /* Fancy type parsing. */
140 %type <voidval> func_mod direct_abs_decl abs_decl
141 %type <tval> ptype
142 %type <lval> array_mod
143
144 %token <typed_val> INT
145 %token <dval> FLOAT
146
147 /* Both NAME and TYPENAME tokens represent symbols in the input,
148 and both convey their data as strings.
149 But a TYPENAME is a string that happens to be defined as a typedef
150 or builtin type name (such as int or char)
151 and a NAME is any other symbol.
152 Contexts where this distinction is not important can use the
153 nonterminal "name", which matches either NAME or TYPENAME. */
154
155 %token <sval> STRING
156 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
157 %token <tsym> TYPENAME
158 %type <sval> name
159 %type <ssym> name_not_typename
160 %type <tsym> typename
161
162 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
163 but which would parse as a valid number in the current input radix.
164 E.g. "c" when input_radix==16. Depending on the parse, it will be
165 turned into a name or into a number. */
166
167 %token <ssym> NAME_OR_INT
168
169 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
170 %token TEMPLATE
171 %token ERROR
172
173 /* Special type cases, put in to allow the parser to distinguish different
174 legal basetypes. */
175 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD
176 %token <lval> LAST REGNAME
177
178 %token <ivar> VARIABLE
179
180 %token <opcode> ASSIGN_MODIFY
181
182 /* C++ */
183 %token THIS
184
185 %left ','
186 %left ABOVE_COMMA
187 %right '=' ASSIGN_MODIFY
188 %right '?'
189 %left OROR
190 %left ANDAND
191 %left '|'
192 %left '^'
193 %left '&'
194 %left EQUAL NOTEQUAL
195 %left '<' '>' LEQ GEQ
196 %left LSH RSH
197 %left '@'
198 %left '+' '-'
199 %left '*' '/' '%'
200 %right UNARY INCREMENT DECREMENT
201 %right ARROW '.' '[' '('
202 %token <ssym> BLOCKNAME
203 %type <bval> block
204 %left COLONCOLON
205
206 \f
207 %%
208
209 start : exp1
210 | type_exp
211 ;
212
213 type_exp: type
214 { write_exp_elt_opcode(OP_TYPE);
215 write_exp_elt_type($1);
216 write_exp_elt_opcode(OP_TYPE);}
217 ;
218
219 /* Expressions, including the comma operator. */
220 exp1 : exp
221 | exp1 ',' exp
222 { write_exp_elt_opcode (BINOP_COMMA); }
223 ;
224
225 /* Expressions, not including the comma operator. */
226 exp : '*' exp %prec UNARY
227 { write_exp_elt_opcode (UNOP_IND); }
228
229 exp : '&' exp %prec UNARY
230 { write_exp_elt_opcode (UNOP_ADDR); }
231
232 exp : '-' exp %prec UNARY
233 { write_exp_elt_opcode (UNOP_NEG); }
234 ;
235
236 exp : '!' exp %prec UNARY
237 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
238 ;
239
240 exp : '~' exp %prec UNARY
241 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
242 ;
243
244 exp : INCREMENT exp %prec UNARY
245 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
246 ;
247
248 exp : DECREMENT exp %prec UNARY
249 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
250 ;
251
252 exp : exp INCREMENT %prec UNARY
253 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
254 ;
255
256 exp : exp DECREMENT %prec UNARY
257 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
258 ;
259
260 exp : SIZEOF exp %prec UNARY
261 { write_exp_elt_opcode (UNOP_SIZEOF); }
262 ;
263
264 exp : exp ARROW name
265 { write_exp_elt_opcode (STRUCTOP_PTR);
266 write_exp_string ($3);
267 write_exp_elt_opcode (STRUCTOP_PTR); }
268 ;
269
270 exp : exp ARROW qualified_name
271 { /* exp->type::name becomes exp->*(&type::name) */
272 /* Note: this doesn't work if name is a
273 static member! FIXME */
274 write_exp_elt_opcode (UNOP_ADDR);
275 write_exp_elt_opcode (STRUCTOP_MPTR); }
276 ;
277 exp : exp ARROW '*' exp
278 { write_exp_elt_opcode (STRUCTOP_MPTR); }
279 ;
280
281 exp : exp '.' name
282 { write_exp_elt_opcode (STRUCTOP_STRUCT);
283 write_exp_string ($3);
284 write_exp_elt_opcode (STRUCTOP_STRUCT); }
285 ;
286
287 exp : exp '.' qualified_name
288 { /* exp.type::name becomes exp.*(&type::name) */
289 /* Note: this doesn't work if name is a
290 static member! FIXME */
291 write_exp_elt_opcode (UNOP_ADDR);
292 write_exp_elt_opcode (STRUCTOP_MEMBER); }
293 ;
294
295 exp : exp '.' '*' exp
296 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
297 ;
298
299 exp : exp '[' exp1 ']'
300 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
301 ;
302
303 exp : exp '('
304 /* This is to save the value of arglist_len
305 being accumulated by an outer function call. */
306 { start_arglist (); }
307 arglist ')' %prec ARROW
308 { write_exp_elt_opcode (OP_FUNCALL);
309 write_exp_elt_longcst ((LONGEST) end_arglist ());
310 write_exp_elt_opcode (OP_FUNCALL); }
311 ;
312
313 lcurly : '{'
314 { start_arglist (); }
315 ;
316
317 arglist :
318 ;
319
320 arglist : exp
321 { arglist_len = 1; }
322 ;
323
324 arglist : arglist ',' exp %prec ABOVE_COMMA
325 { arglist_len++; }
326 ;
327
328 rcurly : '}'
329 { $$ = end_arglist () - 1; }
330 ;
331 exp : lcurly arglist rcurly %prec ARROW
332 { write_exp_elt_opcode (OP_ARRAY);
333 write_exp_elt_longcst ((LONGEST) 0);
334 write_exp_elt_longcst ((LONGEST) $3);
335 write_exp_elt_opcode (OP_ARRAY); }
336 ;
337
338 exp : lcurly type rcurly exp %prec UNARY
339 { write_exp_elt_opcode (UNOP_MEMVAL);
340 write_exp_elt_type ($2);
341 write_exp_elt_opcode (UNOP_MEMVAL); }
342 ;
343
344 exp : '(' type ')' exp %prec UNARY
345 { write_exp_elt_opcode (UNOP_CAST);
346 write_exp_elt_type ($2);
347 write_exp_elt_opcode (UNOP_CAST); }
348 ;
349
350 exp : '(' exp1 ')'
351 { }
352 ;
353
354 /* Binary operators in order of decreasing precedence. */
355
356 exp : exp '@' exp
357 { write_exp_elt_opcode (BINOP_REPEAT); }
358 ;
359
360 exp : exp '*' exp
361 { write_exp_elt_opcode (BINOP_MUL); }
362 ;
363
364 exp : exp '/' exp
365 { write_exp_elt_opcode (BINOP_DIV); }
366 ;
367
368 exp : exp '%' exp
369 { write_exp_elt_opcode (BINOP_REM); }
370 ;
371
372 exp : exp '+' exp
373 { write_exp_elt_opcode (BINOP_ADD); }
374 ;
375
376 exp : exp '-' exp
377 { write_exp_elt_opcode (BINOP_SUB); }
378 ;
379
380 exp : exp LSH exp
381 { write_exp_elt_opcode (BINOP_LSH); }
382 ;
383
384 exp : exp RSH exp
385 { write_exp_elt_opcode (BINOP_RSH); }
386 ;
387
388 exp : exp EQUAL exp
389 { write_exp_elt_opcode (BINOP_EQUAL); }
390 ;
391
392 exp : exp NOTEQUAL exp
393 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
394 ;
395
396 exp : exp LEQ exp
397 { write_exp_elt_opcode (BINOP_LEQ); }
398 ;
399
400 exp : exp GEQ exp
401 { write_exp_elt_opcode (BINOP_GEQ); }
402 ;
403
404 exp : exp '<' exp
405 { write_exp_elt_opcode (BINOP_LESS); }
406 ;
407
408 exp : exp '>' exp
409 { write_exp_elt_opcode (BINOP_GTR); }
410 ;
411
412 exp : exp '&' exp
413 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
414 ;
415
416 exp : exp '^' exp
417 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
418 ;
419
420 exp : exp '|' exp
421 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
422 ;
423
424 exp : exp ANDAND exp
425 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
426 ;
427
428 exp : exp OROR exp
429 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
430 ;
431
432 exp : exp '?' exp ':' exp %prec '?'
433 { write_exp_elt_opcode (TERNOP_COND); }
434 ;
435
436 exp : exp '=' exp
437 { write_exp_elt_opcode (BINOP_ASSIGN); }
438 ;
439
440 exp : exp ASSIGN_MODIFY exp
441 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
442 write_exp_elt_opcode ($2);
443 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
444 ;
445
446 exp : INT
447 { write_exp_elt_opcode (OP_LONG);
448 write_exp_elt_type ($1.type);
449 write_exp_elt_longcst ((LONGEST)($1.val));
450 write_exp_elt_opcode (OP_LONG); }
451 ;
452
453 exp : NAME_OR_INT
454 { YYSTYPE val;
455 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
456 write_exp_elt_opcode (OP_LONG);
457 write_exp_elt_type (val.typed_val.type);
458 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
459 write_exp_elt_opcode (OP_LONG);
460 }
461 ;
462
463
464 exp : FLOAT
465 { write_exp_elt_opcode (OP_DOUBLE);
466 write_exp_elt_type (builtin_type_double);
467 write_exp_elt_dblcst ($1);
468 write_exp_elt_opcode (OP_DOUBLE); }
469 ;
470
471 exp : variable
472 ;
473
474 exp : LAST
475 { write_exp_elt_opcode (OP_LAST);
476 write_exp_elt_longcst ((LONGEST) $1);
477 write_exp_elt_opcode (OP_LAST); }
478 ;
479
480 exp : REGNAME
481 { write_exp_elt_opcode (OP_REGISTER);
482 write_exp_elt_longcst ((LONGEST) $1);
483 write_exp_elt_opcode (OP_REGISTER); }
484 ;
485
486 exp : VARIABLE
487 { write_exp_elt_opcode (OP_INTERNALVAR);
488 write_exp_elt_intern ($1);
489 write_exp_elt_opcode (OP_INTERNALVAR); }
490 ;
491
492 exp : SIZEOF '(' type ')' %prec UNARY
493 { write_exp_elt_opcode (OP_LONG);
494 write_exp_elt_type (builtin_type_int);
495 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
496 write_exp_elt_opcode (OP_LONG); }
497 ;
498
499 exp : STRING
500 { /* C strings are converted into array constants with
501 an explicit null byte added at the end. Thus
502 the array upper bound is the string length.
503 There is no such thing in C as a completely empty
504 string. */
505 char *sp = $1.ptr; int count = $1.length;
506 while (count-- > 0)
507 {
508 write_exp_elt_opcode (OP_LONG);
509 write_exp_elt_type (builtin_type_char);
510 write_exp_elt_longcst ((LONGEST)(*sp++));
511 write_exp_elt_opcode (OP_LONG);
512 }
513 write_exp_elt_opcode (OP_LONG);
514 write_exp_elt_type (builtin_type_char);
515 write_exp_elt_longcst ((LONGEST)'\0');
516 write_exp_elt_opcode (OP_LONG);
517 write_exp_elt_opcode (OP_ARRAY);
518 write_exp_elt_longcst ((LONGEST) 0);
519 write_exp_elt_longcst ((LONGEST) ($1.length));
520 write_exp_elt_opcode (OP_ARRAY); }
521 ;
522
523 /* C++. */
524 exp : THIS
525 { write_exp_elt_opcode (OP_THIS);
526 write_exp_elt_opcode (OP_THIS); }
527 ;
528
529 /* end of C++. */
530
531 block : BLOCKNAME
532 {
533 if ($1.sym != 0)
534 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
535 else
536 {
537 struct symtab *tem =
538 lookup_symtab (copy_name ($1.stoken));
539 if (tem)
540 $$ = BLOCKVECTOR_BLOCK
541 (BLOCKVECTOR (tem), STATIC_BLOCK);
542 else
543 error ("No file or function \"%s\".",
544 copy_name ($1.stoken));
545 }
546 }
547 ;
548
549 block : block COLONCOLON name
550 { struct symbol *tem
551 = lookup_symbol (copy_name ($3), $1,
552 VAR_NAMESPACE, (int *) NULL,
553 (struct symtab **) NULL);
554 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
555 error ("No function \"%s\" in specified context.",
556 copy_name ($3));
557 $$ = SYMBOL_BLOCK_VALUE (tem); }
558 ;
559
560 variable: block COLONCOLON name
561 { struct symbol *sym;
562 sym = lookup_symbol (copy_name ($3), $1,
563 VAR_NAMESPACE, (int *) NULL,
564 (struct symtab **) NULL);
565 if (sym == 0)
566 error ("No symbol \"%s\" in specified context.",
567 copy_name ($3));
568
569 write_exp_elt_opcode (OP_VAR_VALUE);
570 /* block_found is set by lookup_symbol. */
571 write_exp_elt_block (block_found);
572 write_exp_elt_sym (sym);
573 write_exp_elt_opcode (OP_VAR_VALUE); }
574 ;
575
576 qualified_name: typebase COLONCOLON name
577 {
578 struct type *type = $1;
579 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
580 && TYPE_CODE (type) != TYPE_CODE_UNION)
581 error ("`%s' is not defined as an aggregate type.",
582 TYPE_NAME (type));
583
584 write_exp_elt_opcode (OP_SCOPE);
585 write_exp_elt_type (type);
586 write_exp_string ($3);
587 write_exp_elt_opcode (OP_SCOPE);
588 }
589 | typebase COLONCOLON '~' name
590 {
591 struct type *type = $1;
592 struct stoken tmp_token;
593 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
594 && TYPE_CODE (type) != TYPE_CODE_UNION)
595 error ("`%s' is not defined as an aggregate type.",
596 TYPE_NAME (type));
597
598 if (!STREQ (type_name_no_tag (type), $4.ptr))
599 error ("invalid destructor `%s::~%s'",
600 type_name_no_tag (type), $4.ptr);
601
602 tmp_token.ptr = (char*) alloca ($4.length + 2);
603 tmp_token.length = $4.length + 1;
604 tmp_token.ptr[0] = '~';
605 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
606 tmp_token.ptr[tmp_token.length] = 0;
607 write_exp_elt_opcode (OP_SCOPE);
608 write_exp_elt_type (type);
609 write_exp_string (tmp_token);
610 write_exp_elt_opcode (OP_SCOPE);
611 }
612 ;
613
614 variable: qualified_name
615 | COLONCOLON name
616 {
617 char *name = copy_name ($2);
618 struct symbol *sym;
619 struct minimal_symbol *msymbol;
620
621 sym =
622 lookup_symbol (name, (const struct block *) NULL,
623 VAR_NAMESPACE, (int *) NULL,
624 (struct symtab **) NULL);
625 if (sym)
626 {
627 write_exp_elt_opcode (OP_VAR_VALUE);
628 write_exp_elt_block (NULL);
629 write_exp_elt_sym (sym);
630 write_exp_elt_opcode (OP_VAR_VALUE);
631 break;
632 }
633
634 msymbol = lookup_minimal_symbol (name,
635 (struct objfile *) NULL);
636 if (msymbol != NULL)
637 {
638 write_exp_msymbol (msymbol,
639 lookup_function_type (builtin_type_int),
640 builtin_type_int);
641 }
642 else
643 if (!have_full_symbols () && !have_partial_symbols ())
644 error ("No symbol table is loaded. Use the \"file\" command.");
645 else
646 error ("No symbol \"%s\" in current context.", name);
647 }
648 ;
649
650 variable: name_not_typename
651 { struct symbol *sym = $1.sym;
652
653 if (sym)
654 {
655 if (symbol_read_needs_frame (sym))
656 {
657 if (innermost_block == 0 ||
658 contained_in (block_found,
659 innermost_block))
660 innermost_block = block_found;
661 }
662
663 write_exp_elt_opcode (OP_VAR_VALUE);
664 /* We want to use the selected frame, not
665 another more inner frame which happens to
666 be in the same block. */
667 write_exp_elt_block (NULL);
668 write_exp_elt_sym (sym);
669 write_exp_elt_opcode (OP_VAR_VALUE);
670 }
671 else if ($1.is_a_field_of_this)
672 {
673 /* C++: it hangs off of `this'. Must
674 not inadvertently convert from a method call
675 to data ref. */
676 if (innermost_block == 0 ||
677 contained_in (block_found, innermost_block))
678 innermost_block = block_found;
679 write_exp_elt_opcode (OP_THIS);
680 write_exp_elt_opcode (OP_THIS);
681 write_exp_elt_opcode (STRUCTOP_PTR);
682 write_exp_string ($1.stoken);
683 write_exp_elt_opcode (STRUCTOP_PTR);
684 }
685 else
686 {
687 struct minimal_symbol *msymbol;
688 register char *arg = copy_name ($1.stoken);
689
690 msymbol = lookup_minimal_symbol (arg,
691 (struct objfile *) NULL);
692 if (msymbol != NULL)
693 {
694 write_exp_msymbol (msymbol,
695 lookup_function_type (builtin_type_int),
696 builtin_type_int);
697 }
698 else if (!have_full_symbols () && !have_partial_symbols ())
699 error ("No symbol table is loaded. Use the \"file\" command.");
700 else
701 error ("No symbol \"%s\" in current context.",
702 copy_name ($1.stoken));
703 }
704 }
705 ;
706
707
708 ptype : typebase
709 /* "const" and "volatile" are curently ignored. A type qualifier
710 before the type is currently handled in the typebase rule.
711 The reason for recognizing these here (shift/reduce conflicts)
712 might be obsolete now that some pointer to member rules have
713 been deleted. */
714 | typebase CONST_KEYWORD
715 | typebase VOLATILE_KEYWORD
716 | typebase abs_decl
717 { $$ = follow_types ($1); }
718 | typebase CONST_KEYWORD abs_decl
719 { $$ = follow_types ($1); }
720 | typebase VOLATILE_KEYWORD abs_decl
721 { $$ = follow_types ($1); }
722 ;
723
724 abs_decl: '*'
725 { push_type (tp_pointer); $$ = 0; }
726 | '*' abs_decl
727 { push_type (tp_pointer); $$ = $2; }
728 | '&'
729 { push_type (tp_reference); $$ = 0; }
730 | '&' abs_decl
731 { push_type (tp_reference); $$ = $2; }
732 | direct_abs_decl
733 ;
734
735 direct_abs_decl: '(' abs_decl ')'
736 { $$ = $2; }
737 | direct_abs_decl array_mod
738 {
739 push_type_int ($2);
740 push_type (tp_array);
741 }
742 | array_mod
743 {
744 push_type_int ($1);
745 push_type (tp_array);
746 $$ = 0;
747 }
748
749 | direct_abs_decl func_mod
750 { push_type (tp_function); }
751 | func_mod
752 { push_type (tp_function); }
753 ;
754
755 array_mod: '[' ']'
756 { $$ = -1; }
757 | '[' INT ']'
758 { $$ = $2.val; }
759 ;
760
761 func_mod: '(' ')'
762 { $$ = 0; }
763 | '(' nonempty_typelist ')'
764 { free ((PTR)$2); $$ = 0; }
765 ;
766
767 /* We used to try to recognize more pointer to member types here, but
768 that didn't work (shift/reduce conflicts meant that these rules never
769 got executed). The problem is that
770 int (foo::bar::baz::bizzle)
771 is a function type but
772 int (foo::bar::baz::bizzle::*)
773 is a pointer to member type. Stroustrup loses again! */
774
775 type : ptype
776 | typebase COLONCOLON '*'
777 { $$ = lookup_member_type (builtin_type_int, $1); }
778 ;
779
780 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
781 : TYPENAME
782 { $$ = $1.type; }
783 | INT_KEYWORD
784 { $$ = builtin_type_int; }
785 | LONG
786 { $$ = builtin_type_long; }
787 | SHORT
788 { $$ = builtin_type_short; }
789 | LONG INT_KEYWORD
790 { $$ = builtin_type_long; }
791 | UNSIGNED LONG INT_KEYWORD
792 { $$ = builtin_type_unsigned_long; }
793 | LONG LONG
794 { $$ = builtin_type_long_long; }
795 | LONG LONG INT_KEYWORD
796 { $$ = builtin_type_long_long; }
797 | UNSIGNED LONG LONG
798 { $$ = builtin_type_unsigned_long_long; }
799 | UNSIGNED LONG LONG INT_KEYWORD
800 { $$ = builtin_type_unsigned_long_long; }
801 | SHORT INT_KEYWORD
802 { $$ = builtin_type_short; }
803 | UNSIGNED SHORT INT_KEYWORD
804 { $$ = builtin_type_unsigned_short; }
805 | STRUCT name
806 { $$ = lookup_struct (copy_name ($2),
807 expression_context_block); }
808 | CLASS name
809 { $$ = lookup_struct (copy_name ($2),
810 expression_context_block); }
811 | UNION name
812 { $$ = lookup_union (copy_name ($2),
813 expression_context_block); }
814 | ENUM name
815 { $$ = lookup_enum (copy_name ($2),
816 expression_context_block); }
817 | UNSIGNED typename
818 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
819 | UNSIGNED
820 { $$ = builtin_type_unsigned_int; }
821 | SIGNED_KEYWORD typename
822 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
823 | SIGNED_KEYWORD
824 { $$ = builtin_type_int; }
825 | TEMPLATE name '<' type '>'
826 { $$ = lookup_template_type(copy_name($2), $4,
827 expression_context_block);
828 }
829 /* "const" and "volatile" are curently ignored. A type qualifier
830 after the type is handled in the ptype rule. I think these could
831 be too. */
832 | CONST_KEYWORD typebase { $$ = $2; }
833 | VOLATILE_KEYWORD typebase { $$ = $2; }
834 ;
835
836 typename: TYPENAME
837 | INT_KEYWORD
838 {
839 $$.stoken.ptr = "int";
840 $$.stoken.length = 3;
841 $$.type = builtin_type_int;
842 }
843 | LONG
844 {
845 $$.stoken.ptr = "long";
846 $$.stoken.length = 4;
847 $$.type = builtin_type_long;
848 }
849 | SHORT
850 {
851 $$.stoken.ptr = "short";
852 $$.stoken.length = 5;
853 $$.type = builtin_type_short;
854 }
855 ;
856
857 nonempty_typelist
858 : type
859 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
860 $<ivec>$[0] = 1; /* Number of types in vector */
861 $$[1] = $1;
862 }
863 | nonempty_typelist ',' type
864 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
865 $$ = (struct type **) realloc ((char *) $1, len);
866 $$[$<ivec>$[0]] = $3;
867 }
868 ;
869
870 name : NAME { $$ = $1.stoken; }
871 | BLOCKNAME { $$ = $1.stoken; }
872 | TYPENAME { $$ = $1.stoken; }
873 | NAME_OR_INT { $$ = $1.stoken; }
874 ;
875
876 name_not_typename : NAME
877 | BLOCKNAME
878 /* These would be useful if name_not_typename was useful, but it is just
879 a fake for "variable", so these cause reduce/reduce conflicts because
880 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
881 =exp) or just an exp. If name_not_typename was ever used in an lvalue
882 context where only a name could occur, this might be useful.
883 | NAME_OR_INT
884 */
885 ;
886
887 %%
888
889 /* Take care of parsing a number (anything that starts with a digit).
890 Set yylval and return the token type; update lexptr.
891 LEN is the number of characters in it. */
892
893 /*** Needs some error checking for the float case ***/
894
895 static int
896 parse_number (p, len, parsed_float, putithere)
897 register char *p;
898 register int len;
899 int parsed_float;
900 YYSTYPE *putithere;
901 {
902 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
903 here, and we do kind of silly things like cast to unsigned. */
904 register LONGEST n = 0;
905 register LONGEST prevn = 0;
906 unsigned LONGEST un;
907
908 register int i = 0;
909 register int c;
910 register int base = input_radix;
911 int unsigned_p = 0;
912
913 /* Number of "L" suffixes encountered. */
914 int long_p = 0;
915
916 /* We have found a "L" or "U" suffix. */
917 int found_suffix = 0;
918
919 unsigned LONGEST high_bit;
920 struct type *signed_type;
921 struct type *unsigned_type;
922
923 if (parsed_float)
924 {
925 /* It's a float since it contains a point or an exponent. */
926 putithere->dval = atof (p);
927 return FLOAT;
928 }
929
930 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
931 if (p[0] == '0')
932 switch (p[1])
933 {
934 case 'x':
935 case 'X':
936 if (len >= 3)
937 {
938 p += 2;
939 base = 16;
940 len -= 2;
941 }
942 break;
943
944 case 't':
945 case 'T':
946 case 'd':
947 case 'D':
948 if (len >= 3)
949 {
950 p += 2;
951 base = 10;
952 len -= 2;
953 }
954 break;
955
956 default:
957 base = 8;
958 break;
959 }
960
961 while (len-- > 0)
962 {
963 c = *p++;
964 if (c >= 'A' && c <= 'Z')
965 c += 'a' - 'A';
966 if (c != 'l' && c != 'u')
967 n *= base;
968 if (c >= '0' && c <= '9')
969 {
970 if (found_suffix)
971 return ERROR;
972 n += i = c - '0';
973 }
974 else
975 {
976 if (base > 10 && c >= 'a' && c <= 'f')
977 {
978 if (found_suffix)
979 return ERROR;
980 n += i = c - 'a' + 10;
981 }
982 else if (c == 'l')
983 {
984 ++long_p;
985 found_suffix = 1;
986 }
987 else if (c == 'u')
988 {
989 unsigned_p = 1;
990 found_suffix = 1;
991 }
992 else
993 return ERROR; /* Char not a digit */
994 }
995 if (i >= base)
996 return ERROR; /* Invalid digit in this base */
997
998 /* Portably test for overflow (only works for nonzero values, so make
999 a second check for zero). FIXME: Can't we just make n and prevn
1000 unsigned and avoid this? */
1001 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1002 unsigned_p = 1; /* Try something unsigned */
1003
1004 /* Portably test for unsigned overflow.
1005 FIXME: This check is wrong; for example it doesn't find overflow
1006 on 0x123456789 when LONGEST is 32 bits. */
1007 if (c != 'l' && c != 'u' && n != 0)
1008 {
1009 if ((unsigned_p && (unsigned LONGEST) prevn >= (unsigned LONGEST) n))
1010 error ("Numeric constant too large.");
1011 }
1012 prevn = n;
1013 }
1014
1015 /* An integer constant is an int, a long, or a long long. An L
1016 suffix forces it to be long; an LL suffix forces it to be long
1017 long. If not forced to a larger size, it gets the first type of
1018 the above that it fits in. To figure out whether it fits, we
1019 shift it right and see whether anything remains. Note that we
1020 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1021 operation, because many compilers will warn about such a shift
1022 (which always produces a zero result). Sometimes TARGET_INT_BIT
1023 or TARGET_LONG_BIT will be that big, sometimes not. To deal with
1024 the case where it is we just always shift the value more than
1025 once, with fewer bits each time. */
1026
1027 un = (unsigned LONGEST)n >> 2;
1028 if (long_p == 0
1029 && (un >> (TARGET_INT_BIT - 2)) == 0)
1030 {
1031 high_bit = ((unsigned LONGEST)1) << (TARGET_INT_BIT-1);
1032
1033 /* A large decimal (not hex or octal) constant (between INT_MAX
1034 and UINT_MAX) is a long or unsigned long, according to ANSI,
1035 never an unsigned int, but this code treats it as unsigned
1036 int. This probably should be fixed. GCC gives a warning on
1037 such constants. */
1038
1039 unsigned_type = builtin_type_unsigned_int;
1040 signed_type = builtin_type_int;
1041 }
1042 else if (long_p <= 1
1043 && (un >> (TARGET_LONG_BIT - 2)) == 0)
1044 {
1045 high_bit = ((unsigned LONGEST)1) << (TARGET_LONG_BIT-1);
1046 unsigned_type = builtin_type_unsigned_long;
1047 signed_type = builtin_type_long;
1048 }
1049 else
1050 {
1051 high_bit = (((unsigned LONGEST)1)
1052 << (TARGET_LONG_LONG_BIT - 32 - 1)
1053 << 16
1054 << 16);
1055 if (high_bit == 0)
1056 /* A long long does not fit in a LONGEST. */
1057 high_bit = (unsigned LONGEST)1 << sizeof (LONGEST) * HOST_CHAR_BIT - 1;
1058 unsigned_type = builtin_type_unsigned_long_long;
1059 signed_type = builtin_type_long_long;
1060 }
1061
1062 putithere->typed_val.val = n;
1063
1064 /* If the high bit of the worked out type is set then this number
1065 has to be unsigned. */
1066
1067 if (unsigned_p || (n & high_bit))
1068 {
1069 putithere->typed_val.type = unsigned_type;
1070 }
1071 else
1072 {
1073 putithere->typed_val.type = signed_type;
1074 }
1075
1076 return INT;
1077 }
1078
1079 struct token
1080 {
1081 char *operator;
1082 int token;
1083 enum exp_opcode opcode;
1084 };
1085
1086 static const struct token tokentab3[] =
1087 {
1088 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1089 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1090 };
1091
1092 static const struct token tokentab2[] =
1093 {
1094 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1095 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1096 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1097 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1098 {"%=", ASSIGN_MODIFY, BINOP_REM},
1099 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1100 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1101 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1102 {"++", INCREMENT, BINOP_END},
1103 {"--", DECREMENT, BINOP_END},
1104 {"->", ARROW, BINOP_END},
1105 {"&&", ANDAND, BINOP_END},
1106 {"||", OROR, BINOP_END},
1107 {"::", COLONCOLON, BINOP_END},
1108 {"<<", LSH, BINOP_END},
1109 {">>", RSH, BINOP_END},
1110 {"==", EQUAL, BINOP_END},
1111 {"!=", NOTEQUAL, BINOP_END},
1112 {"<=", LEQ, BINOP_END},
1113 {">=", GEQ, BINOP_END}
1114 };
1115
1116 /* Read one token, getting characters through lexptr. */
1117
1118 static int
1119 yylex ()
1120 {
1121 int c;
1122 int namelen;
1123 unsigned int i;
1124 char *tokstart;
1125 char *tokptr;
1126 int tempbufindex;
1127 static char *tempbuf;
1128 static int tempbufsize;
1129
1130 retry:
1131
1132 tokstart = lexptr;
1133 /* See if it is a special token of length 3. */
1134 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1135 if (STREQN (tokstart, tokentab3[i].operator, 3))
1136 {
1137 lexptr += 3;
1138 yylval.opcode = tokentab3[i].opcode;
1139 return tokentab3[i].token;
1140 }
1141
1142 /* See if it is a special token of length 2. */
1143 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1144 if (STREQN (tokstart, tokentab2[i].operator, 2))
1145 {
1146 lexptr += 2;
1147 yylval.opcode = tokentab2[i].opcode;
1148 return tokentab2[i].token;
1149 }
1150
1151 switch (c = *tokstart)
1152 {
1153 case 0:
1154 return 0;
1155
1156 case ' ':
1157 case '\t':
1158 case '\n':
1159 lexptr++;
1160 goto retry;
1161
1162 case '\'':
1163 /* We either have a character constant ('0' or '\177' for example)
1164 or we have a quoted symbol reference ('foo(int,int)' in C++
1165 for example). */
1166 lexptr++;
1167 c = *lexptr++;
1168 if (c == '\\')
1169 c = parse_escape (&lexptr);
1170
1171 yylval.typed_val.val = c;
1172 yylval.typed_val.type = builtin_type_char;
1173
1174 c = *lexptr++;
1175 if (c != '\'')
1176 {
1177 namelen = skip_quoted (tokstart) - tokstart;
1178 if (namelen > 2)
1179 {
1180 lexptr = tokstart + namelen;
1181 if (lexptr[-1] != '\'')
1182 error ("Unmatched single quote.");
1183 namelen -= 2;
1184 tokstart++;
1185 goto tryname;
1186 }
1187 error ("Invalid character constant.");
1188 }
1189 return INT;
1190
1191 case '(':
1192 paren_depth++;
1193 lexptr++;
1194 return c;
1195
1196 case ')':
1197 if (paren_depth == 0)
1198 return 0;
1199 paren_depth--;
1200 lexptr++;
1201 return c;
1202
1203 case ',':
1204 if (comma_terminates && paren_depth == 0)
1205 return 0;
1206 lexptr++;
1207 return c;
1208
1209 case '.':
1210 /* Might be a floating point number. */
1211 if (lexptr[1] < '0' || lexptr[1] > '9')
1212 goto symbol; /* Nope, must be a symbol. */
1213 /* FALL THRU into number case. */
1214
1215 case '0':
1216 case '1':
1217 case '2':
1218 case '3':
1219 case '4':
1220 case '5':
1221 case '6':
1222 case '7':
1223 case '8':
1224 case '9':
1225 {
1226 /* It's a number. */
1227 int got_dot = 0, got_e = 0, toktype;
1228 register char *p = tokstart;
1229 int hex = input_radix > 10;
1230
1231 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1232 {
1233 p += 2;
1234 hex = 1;
1235 }
1236 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1237 {
1238 p += 2;
1239 hex = 0;
1240 }
1241
1242 for (;; ++p)
1243 {
1244 /* This test includes !hex because 'e' is a valid hex digit
1245 and thus does not indicate a floating point number when
1246 the radix is hex. */
1247 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1248 got_dot = got_e = 1;
1249 /* This test does not include !hex, because a '.' always indicates
1250 a decimal floating point number regardless of the radix. */
1251 else if (!got_dot && *p == '.')
1252 got_dot = 1;
1253 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1254 && (*p == '-' || *p == '+'))
1255 /* This is the sign of the exponent, not the end of the
1256 number. */
1257 continue;
1258 /* We will take any letters or digits. parse_number will
1259 complain if past the radix, or if L or U are not final. */
1260 else if ((*p < '0' || *p > '9')
1261 && ((*p < 'a' || *p > 'z')
1262 && (*p < 'A' || *p > 'Z')))
1263 break;
1264 }
1265 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1266 if (toktype == ERROR)
1267 {
1268 char *err_copy = (char *) alloca (p - tokstart + 1);
1269
1270 memcpy (err_copy, tokstart, p - tokstart);
1271 err_copy[p - tokstart] = 0;
1272 error ("Invalid number \"%s\".", err_copy);
1273 }
1274 lexptr = p;
1275 return toktype;
1276 }
1277
1278 case '+':
1279 case '-':
1280 case '*':
1281 case '/':
1282 case '%':
1283 case '|':
1284 case '&':
1285 case '^':
1286 case '~':
1287 case '!':
1288 case '@':
1289 case '<':
1290 case '>':
1291 case '[':
1292 case ']':
1293 case '?':
1294 case ':':
1295 case '=':
1296 case '{':
1297 case '}':
1298 symbol:
1299 lexptr++;
1300 return c;
1301
1302 case '"':
1303
1304 /* Build the gdb internal form of the input string in tempbuf,
1305 translating any standard C escape forms seen. Note that the
1306 buffer is null byte terminated *only* for the convenience of
1307 debugging gdb itself and printing the buffer contents when
1308 the buffer contains no embedded nulls. Gdb does not depend
1309 upon the buffer being null byte terminated, it uses the length
1310 string instead. This allows gdb to handle C strings (as well
1311 as strings in other languages) with embedded null bytes */
1312
1313 tokptr = ++tokstart;
1314 tempbufindex = 0;
1315
1316 do {
1317 /* Grow the static temp buffer if necessary, including allocating
1318 the first one on demand. */
1319 if (tempbufindex + 1 >= tempbufsize)
1320 {
1321 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1322 }
1323 switch (*tokptr)
1324 {
1325 case '\0':
1326 case '"':
1327 /* Do nothing, loop will terminate. */
1328 break;
1329 case '\\':
1330 tokptr++;
1331 c = parse_escape (&tokptr);
1332 if (c == -1)
1333 {
1334 continue;
1335 }
1336 tempbuf[tempbufindex++] = c;
1337 break;
1338 default:
1339 tempbuf[tempbufindex++] = *tokptr++;
1340 break;
1341 }
1342 } while ((*tokptr != '"') && (*tokptr != '\0'));
1343 if (*tokptr++ != '"')
1344 {
1345 error ("Unterminated string in expression.");
1346 }
1347 tempbuf[tempbufindex] = '\0'; /* See note above */
1348 yylval.sval.ptr = tempbuf;
1349 yylval.sval.length = tempbufindex;
1350 lexptr = tokptr;
1351 return (STRING);
1352 }
1353
1354 if (!(c == '_' || c == '$'
1355 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1356 /* We must have come across a bad character (e.g. ';'). */
1357 error ("Invalid character '%c' in expression.", c);
1358
1359 /* It's a name. See how long it is. */
1360 namelen = 0;
1361 for (c = tokstart[namelen];
1362 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1363 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1364 c = tokstart[++namelen])
1365 ;
1366
1367 /* The token "if" terminates the expression and is NOT
1368 removed from the input stream. */
1369 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1370 {
1371 return 0;
1372 }
1373
1374 lexptr += namelen;
1375
1376 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
1377 and $$digits (equivalent to $<-digits> if you could type that).
1378 Make token type LAST, and put the number (the digits) in yylval. */
1379
1380 tryname:
1381 if (*tokstart == '$')
1382 {
1383 register int negate = 0;
1384 c = 1;
1385 /* Double dollar means negate the number and add -1 as well.
1386 Thus $$ alone means -1. */
1387 if (namelen >= 2 && tokstart[1] == '$')
1388 {
1389 negate = 1;
1390 c = 2;
1391 }
1392 if (c == namelen)
1393 {
1394 /* Just dollars (one or two) */
1395 yylval.lval = - negate;
1396 return LAST;
1397 }
1398 /* Is the rest of the token digits? */
1399 for (; c < namelen; c++)
1400 if (!(tokstart[c] >= '0' && tokstart[c] <= '9'))
1401 break;
1402 if (c == namelen)
1403 {
1404 yylval.lval = atoi (tokstart + 1 + negate);
1405 if (negate)
1406 yylval.lval = - yylval.lval;
1407 return LAST;
1408 }
1409 }
1410
1411 /* Handle tokens that refer to machine registers:
1412 $ followed by a register name. */
1413
1414 if (*tokstart == '$') {
1415 for (c = 0; c < NUM_REGS; c++)
1416 if (namelen - 1 == strlen (reg_names[c])
1417 && STREQN (tokstart + 1, reg_names[c], namelen - 1))
1418 {
1419 yylval.lval = c;
1420 return REGNAME;
1421 }
1422 for (c = 0; c < num_std_regs; c++)
1423 if (namelen - 1 == strlen (std_regs[c].name)
1424 && STREQN (tokstart + 1, std_regs[c].name, namelen - 1))
1425 {
1426 yylval.lval = std_regs[c].regnum;
1427 return REGNAME;
1428 }
1429 }
1430 /* Catch specific keywords. Should be done with a data structure. */
1431 switch (namelen)
1432 {
1433 case 8:
1434 if (STREQN (tokstart, "unsigned", 8))
1435 return UNSIGNED;
1436 if (current_language->la_language == language_cplus
1437 && STREQN (tokstart, "template", 8))
1438 return TEMPLATE;
1439 if (STREQN (tokstart, "volatile", 8))
1440 return VOLATILE_KEYWORD;
1441 break;
1442 case 6:
1443 if (STREQN (tokstart, "struct", 6))
1444 return STRUCT;
1445 if (STREQN (tokstart, "signed", 6))
1446 return SIGNED_KEYWORD;
1447 if (STREQN (tokstart, "sizeof", 6))
1448 return SIZEOF;
1449 break;
1450 case 5:
1451 if (current_language->la_language == language_cplus
1452 && STREQN (tokstart, "class", 5))
1453 return CLASS;
1454 if (STREQN (tokstart, "union", 5))
1455 return UNION;
1456 if (STREQN (tokstart, "short", 5))
1457 return SHORT;
1458 if (STREQN (tokstart, "const", 5))
1459 return CONST_KEYWORD;
1460 break;
1461 case 4:
1462 if (STREQN (tokstart, "enum", 4))
1463 return ENUM;
1464 if (STREQN (tokstart, "long", 4))
1465 return LONG;
1466 if (current_language->la_language == language_cplus
1467 && STREQN (tokstart, "this", 4))
1468 {
1469 static const char this_name[] =
1470 { CPLUS_MARKER, 't', 'h', 'i', 's', '\0' };
1471
1472 if (lookup_symbol (this_name, expression_context_block,
1473 VAR_NAMESPACE, (int *) NULL,
1474 (struct symtab **) NULL))
1475 return THIS;
1476 }
1477 break;
1478 case 3:
1479 if (STREQN (tokstart, "int", 3))
1480 return INT_KEYWORD;
1481 break;
1482 default:
1483 break;
1484 }
1485
1486 yylval.sval.ptr = tokstart;
1487 yylval.sval.length = namelen;
1488
1489 /* Any other names starting in $ are debugger internal variables. */
1490
1491 if (*tokstart == '$')
1492 {
1493 yylval.ivar = lookup_internalvar (copy_name (yylval.sval) + 1);
1494 return VARIABLE;
1495 }
1496
1497 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1498 functions or symtabs. If this is not so, then ...
1499 Use token-type TYPENAME for symbols that happen to be defined
1500 currently as names of types; NAME for other symbols.
1501 The caller is not constrained to care about the distinction. */
1502 {
1503 char *tmp = copy_name (yylval.sval);
1504 struct symbol *sym;
1505 int is_a_field_of_this = 0;
1506 int hextype;
1507
1508 sym = lookup_symbol (tmp, expression_context_block,
1509 VAR_NAMESPACE,
1510 current_language->la_language == language_cplus
1511 ? &is_a_field_of_this : (int *) NULL,
1512 (struct symtab **) NULL);
1513 /* Call lookup_symtab, not lookup_partial_symtab, in case there are
1514 no psymtabs (coff, xcoff, or some future change to blow away the
1515 psymtabs once once symbols are read). */
1516 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
1517 lookup_symtab (tmp))
1518 {
1519 yylval.ssym.sym = sym;
1520 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1521 return BLOCKNAME;
1522 }
1523 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1524 {
1525 #if 1
1526 /* Despite the following flaw, we need to keep this code enabled.
1527 Because we can get called from check_stub_method, if we don't
1528 handle nested types then it screws many operations in any
1529 program which uses nested types. */
1530 /* In "A::x", if x is a member function of A and there happens
1531 to be a type (nested or not, since the stabs don't make that
1532 distinction) named x, then this code incorrectly thinks we
1533 are dealing with nested types rather than a member function. */
1534
1535 char *p;
1536 char *namestart;
1537 struct symbol *best_sym;
1538
1539 /* Look ahead to detect nested types. This probably should be
1540 done in the grammar, but trying seemed to introduce a lot
1541 of shift/reduce and reduce/reduce conflicts. It's possible
1542 that it could be done, though. Or perhaps a non-grammar, but
1543 less ad hoc, approach would work well. */
1544
1545 /* Since we do not currently have any way of distinguishing
1546 a nested type from a non-nested one (the stabs don't tell
1547 us whether a type is nested), we just ignore the
1548 containing type. */
1549
1550 p = lexptr;
1551 best_sym = sym;
1552 while (1)
1553 {
1554 /* Skip whitespace. */
1555 while (*p == ' ' || *p == '\t' || *p == '\n')
1556 ++p;
1557 if (*p == ':' && p[1] == ':')
1558 {
1559 /* Skip the `::'. */
1560 p += 2;
1561 /* Skip whitespace. */
1562 while (*p == ' ' || *p == '\t' || *p == '\n')
1563 ++p;
1564 namestart = p;
1565 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1566 || (*p >= 'a' && *p <= 'z')
1567 || (*p >= 'A' && *p <= 'Z'))
1568 ++p;
1569 if (p != namestart)
1570 {
1571 struct symbol *cur_sym;
1572 /* As big as the whole rest of the expression, which is
1573 at least big enough. */
1574 char *tmp = alloca (strlen (namestart));
1575
1576 memcpy (tmp, namestart, p - namestart);
1577 tmp[p - namestart] = '\0';
1578 cur_sym = lookup_symbol (tmp, expression_context_block,
1579 VAR_NAMESPACE, (int *) NULL,
1580 (struct symtab **) NULL);
1581 if (cur_sym)
1582 {
1583 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1584 {
1585 best_sym = cur_sym;
1586 lexptr = p;
1587 }
1588 else
1589 break;
1590 }
1591 else
1592 break;
1593 }
1594 else
1595 break;
1596 }
1597 else
1598 break;
1599 }
1600
1601 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1602 #else /* not 0 */
1603 yylval.tsym.type = SYMBOL_TYPE (sym);
1604 #endif /* not 0 */
1605 return TYPENAME;
1606 }
1607 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1608 return TYPENAME;
1609
1610 /* Input names that aren't symbols but ARE valid hex numbers,
1611 when the input radix permits them, can be names or numbers
1612 depending on the parse. Note we support radixes > 16 here. */
1613 if (!sym &&
1614 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1615 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1616 {
1617 YYSTYPE newlval; /* Its value is ignored. */
1618 hextype = parse_number (tokstart, namelen, 0, &newlval);
1619 if (hextype == INT)
1620 {
1621 yylval.ssym.sym = sym;
1622 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1623 return NAME_OR_INT;
1624 }
1625 }
1626
1627 /* Any other kind of symbol */
1628 yylval.ssym.sym = sym;
1629 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1630 return NAME;
1631 }
1632 }
1633
1634 void
1635 yyerror (msg)
1636 char *msg;
1637 {
1638 error (msg ? msg : "Invalid syntax in expression.");
1639 }
This page took 0.063538 seconds and 4 git commands to generate.