2011-11-23 Thomas Klein <th.r.klein@web.de>
[deliverable/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2003, 2004, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* Parse a C expression from text in a string,
22 and return the result as a struct expression pointer.
23 That structure contains arithmetic operations in reverse polish,
24 with constants represented by operations that are followed by special data.
25 See expression.h for the details of the format.
26 What is important here is that it can be built up sequentially
27 during the process of parsing; the lower levels of the tree always
28 come first in the result.
29
30 Note that malloc's and realloc's in this file are transformed to
31 xmalloc and xrealloc respectively by the same sed command in the
32 makefile that remaps any other malloc/realloc inserted by the parser
33 generator. Doing this with #defines and trying to control the interaction
34 with include files (<malloc.h> and <stdlib.h> for example) just became
35 too messy, particularly when such includes can be inserted at random
36 times by the parser generator. */
37
38 %{
39
40 #include "defs.h"
41 #include "gdb_string.h"
42 #include <ctype.h>
43 #include "expression.h"
44 #include "value.h"
45 #include "parser-defs.h"
46 #include "language.h"
47 #include "c-lang.h"
48 #include "bfd.h" /* Required by objfiles.h. */
49 #include "symfile.h" /* Required by objfiles.h. */
50 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
51 #include "charset.h"
52 #include "block.h"
53 #include "cp-support.h"
54 #include "dfp.h"
55 #include "gdb_assert.h"
56 #include "macroscope.h"
57
58 #define parse_type builtin_type (parse_gdbarch)
59
60 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
61 as well as gratuitiously global symbol names, so we can have multiple
62 yacc generated parsers in gdb. Note that these are only the variables
63 produced by yacc. If other parser generators (bison, byacc, etc) produce
64 additional global names that conflict at link time, then those parser
65 generators need to be fixed instead of adding those names to this list. */
66
67 #define yymaxdepth c_maxdepth
68 #define yyparse c_parse_internal
69 #define yylex c_lex
70 #define yyerror c_error
71 #define yylval c_lval
72 #define yychar c_char
73 #define yydebug c_debug
74 #define yypact c_pact
75 #define yyr1 c_r1
76 #define yyr2 c_r2
77 #define yydef c_def
78 #define yychk c_chk
79 #define yypgo c_pgo
80 #define yyact c_act
81 #define yyexca c_exca
82 #define yyerrflag c_errflag
83 #define yynerrs c_nerrs
84 #define yyps c_ps
85 #define yypv c_pv
86 #define yys c_s
87 #define yy_yys c_yys
88 #define yystate c_state
89 #define yytmp c_tmp
90 #define yyv c_v
91 #define yy_yyv c_yyv
92 #define yyval c_val
93 #define yylloc c_lloc
94 #define yyreds c_reds /* With YYDEBUG defined */
95 #define yytoks c_toks /* With YYDEBUG defined */
96 #define yyname c_name /* With YYDEBUG defined */
97 #define yyrule c_rule /* With YYDEBUG defined */
98 #define yylhs c_yylhs
99 #define yylen c_yylen
100 #define yydefred c_yydefred
101 #define yydgoto c_yydgoto
102 #define yysindex c_yysindex
103 #define yyrindex c_yyrindex
104 #define yygindex c_yygindex
105 #define yytable c_yytable
106 #define yycheck c_yycheck
107
108 #ifndef YYDEBUG
109 #define YYDEBUG 1 /* Default to yydebug support */
110 #endif
111
112 #define YYFPRINTF parser_fprintf
113
114 int yyparse (void);
115
116 static int yylex (void);
117
118 void yyerror (char *);
119
120 %}
121
122 /* Although the yacc "value" of an expression is not used,
123 since the result is stored in the structure being created,
124 other node types do have values. */
125
126 %union
127 {
128 LONGEST lval;
129 struct {
130 LONGEST val;
131 struct type *type;
132 } typed_val_int;
133 struct {
134 DOUBLEST dval;
135 struct type *type;
136 } typed_val_float;
137 struct {
138 gdb_byte val[16];
139 struct type *type;
140 } typed_val_decfloat;
141 struct symbol *sym;
142 struct type *tval;
143 struct stoken sval;
144 struct typed_stoken tsval;
145 struct ttype tsym;
146 struct symtoken ssym;
147 int voidval;
148 struct block *bval;
149 enum exp_opcode opcode;
150 struct internalvar *ivar;
151
152 struct stoken_vector svec;
153 struct type **tvec;
154 int *ivec;
155 }
156
157 %{
158 /* YYSTYPE gets defined by %union */
159 static int parse_number (char *, int, int, YYSTYPE *);
160 static struct stoken operator_stoken (const char *);
161 %}
162
163 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
164 %type <lval> rcurly
165 %type <tval> type typebase
166 %type <tvec> nonempty_typelist
167 /* %type <bval> block */
168
169 /* Fancy type parsing. */
170 %type <voidval> func_mod direct_abs_decl abs_decl
171 %type <tval> ptype
172 %type <lval> array_mod
173
174 %token <typed_val_int> INT
175 %token <typed_val_float> FLOAT
176 %token <typed_val_decfloat> DECFLOAT
177
178 /* Both NAME and TYPENAME tokens represent symbols in the input,
179 and both convey their data as strings.
180 But a TYPENAME is a string that happens to be defined as a typedef
181 or builtin type name (such as int or char)
182 and a NAME is any other symbol.
183 Contexts where this distinction is not important can use the
184 nonterminal "name", which matches either NAME or TYPENAME. */
185
186 %token <tsval> STRING
187 %token <tsval> CHAR
188 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
189 %token <ssym> UNKNOWN_CPP_NAME
190 %token <voidval> COMPLETE
191 %token <tsym> TYPENAME
192 %type <sval> name
193 %type <svec> string_exp
194 %type <ssym> name_not_typename
195 %type <tsym> typename
196
197 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
198 but which would parse as a valid number in the current input radix.
199 E.g. "c" when input_radix==16. Depending on the parse, it will be
200 turned into a name or into a number. */
201
202 %token <ssym> NAME_OR_INT
203
204 %token OPERATOR
205 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
206 %token TEMPLATE
207 %token ERROR
208 %token NEW DELETE
209 %type <sval> operator
210 %token REINTERPRET_CAST DYNAMIC_CAST STATIC_CAST CONST_CAST
211 %token ENTRY
212
213 /* Special type cases, put in to allow the parser to distinguish different
214 legal basetypes. */
215 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD
216
217 %token <sval> VARIABLE
218
219 %token <opcode> ASSIGN_MODIFY
220
221 /* C++ */
222 %token TRUEKEYWORD
223 %token FALSEKEYWORD
224
225
226 %left ','
227 %left ABOVE_COMMA
228 %right '=' ASSIGN_MODIFY
229 %right '?'
230 %left OROR
231 %left ANDAND
232 %left '|'
233 %left '^'
234 %left '&'
235 %left EQUAL NOTEQUAL
236 %left '<' '>' LEQ GEQ
237 %left LSH RSH
238 %left '@'
239 %left '+' '-'
240 %left '*' '/' '%'
241 %right UNARY INCREMENT DECREMENT
242 %right ARROW ARROW_STAR '.' DOT_STAR '[' '('
243 %token <ssym> BLOCKNAME
244 %token <bval> FILENAME
245 %type <bval> block
246 %left COLONCOLON
247
248 \f
249 %%
250
251 start : exp1
252 | type_exp
253 ;
254
255 type_exp: type
256 { write_exp_elt_opcode(OP_TYPE);
257 write_exp_elt_type($1);
258 write_exp_elt_opcode(OP_TYPE);}
259 ;
260
261 /* Expressions, including the comma operator. */
262 exp1 : exp
263 | exp1 ',' exp
264 { write_exp_elt_opcode (BINOP_COMMA); }
265 ;
266
267 /* Expressions, not including the comma operator. */
268 exp : '*' exp %prec UNARY
269 { write_exp_elt_opcode (UNOP_IND); }
270 ;
271
272 exp : '&' exp %prec UNARY
273 { write_exp_elt_opcode (UNOP_ADDR); }
274 ;
275
276 exp : '-' exp %prec UNARY
277 { write_exp_elt_opcode (UNOP_NEG); }
278 ;
279
280 exp : '+' exp %prec UNARY
281 { write_exp_elt_opcode (UNOP_PLUS); }
282 ;
283
284 exp : '!' exp %prec UNARY
285 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
286 ;
287
288 exp : '~' exp %prec UNARY
289 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
290 ;
291
292 exp : INCREMENT exp %prec UNARY
293 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
294 ;
295
296 exp : DECREMENT exp %prec UNARY
297 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
298 ;
299
300 exp : exp INCREMENT %prec UNARY
301 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
302 ;
303
304 exp : exp DECREMENT %prec UNARY
305 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
306 ;
307
308 exp : SIZEOF exp %prec UNARY
309 { write_exp_elt_opcode (UNOP_SIZEOF); }
310 ;
311
312 exp : exp ARROW name
313 { write_exp_elt_opcode (STRUCTOP_PTR);
314 write_exp_string ($3);
315 write_exp_elt_opcode (STRUCTOP_PTR); }
316 ;
317
318 exp : exp ARROW name COMPLETE
319 { mark_struct_expression ();
320 write_exp_elt_opcode (STRUCTOP_PTR);
321 write_exp_string ($3);
322 write_exp_elt_opcode (STRUCTOP_PTR); }
323 ;
324
325 exp : exp ARROW COMPLETE
326 { struct stoken s;
327 mark_struct_expression ();
328 write_exp_elt_opcode (STRUCTOP_PTR);
329 s.ptr = "";
330 s.length = 0;
331 write_exp_string (s);
332 write_exp_elt_opcode (STRUCTOP_PTR); }
333 ;
334
335 exp : exp ARROW qualified_name
336 { /* exp->type::name becomes exp->*(&type::name) */
337 /* Note: this doesn't work if name is a
338 static member! FIXME */
339 write_exp_elt_opcode (UNOP_ADDR);
340 write_exp_elt_opcode (STRUCTOP_MPTR); }
341 ;
342
343 exp : exp ARROW_STAR exp
344 { write_exp_elt_opcode (STRUCTOP_MPTR); }
345 ;
346
347 exp : exp '.' name
348 { write_exp_elt_opcode (STRUCTOP_STRUCT);
349 write_exp_string ($3);
350 write_exp_elt_opcode (STRUCTOP_STRUCT); }
351 ;
352
353 exp : exp '.' name COMPLETE
354 { mark_struct_expression ();
355 write_exp_elt_opcode (STRUCTOP_STRUCT);
356 write_exp_string ($3);
357 write_exp_elt_opcode (STRUCTOP_STRUCT); }
358 ;
359
360 exp : exp '.' COMPLETE
361 { struct stoken s;
362 mark_struct_expression ();
363 write_exp_elt_opcode (STRUCTOP_STRUCT);
364 s.ptr = "";
365 s.length = 0;
366 write_exp_string (s);
367 write_exp_elt_opcode (STRUCTOP_STRUCT); }
368 ;
369
370 exp : exp '.' qualified_name
371 { /* exp.type::name becomes exp.*(&type::name) */
372 /* Note: this doesn't work if name is a
373 static member! FIXME */
374 write_exp_elt_opcode (UNOP_ADDR);
375 write_exp_elt_opcode (STRUCTOP_MEMBER); }
376 ;
377
378 exp : exp DOT_STAR exp
379 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
380 ;
381
382 exp : exp '[' exp1 ']'
383 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
384 ;
385
386 exp : exp '('
387 /* This is to save the value of arglist_len
388 being accumulated by an outer function call. */
389 { start_arglist (); }
390 arglist ')' %prec ARROW
391 { write_exp_elt_opcode (OP_FUNCALL);
392 write_exp_elt_longcst ((LONGEST) end_arglist ());
393 write_exp_elt_opcode (OP_FUNCALL); }
394 ;
395
396 exp : UNKNOWN_CPP_NAME '('
397 {
398 /* This could potentially be a an argument defined
399 lookup function (Koenig). */
400 write_exp_elt_opcode (OP_ADL_FUNC);
401 write_exp_elt_block (expression_context_block);
402 write_exp_elt_sym (NULL); /* Placeholder. */
403 write_exp_string ($1.stoken);
404 write_exp_elt_opcode (OP_ADL_FUNC);
405
406 /* This is to save the value of arglist_len
407 being accumulated by an outer function call. */
408
409 start_arglist ();
410 }
411 arglist ')' %prec ARROW
412 {
413 write_exp_elt_opcode (OP_FUNCALL);
414 write_exp_elt_longcst ((LONGEST) end_arglist ());
415 write_exp_elt_opcode (OP_FUNCALL);
416 }
417 ;
418
419 lcurly : '{'
420 { start_arglist (); }
421 ;
422
423 arglist :
424 ;
425
426 arglist : exp
427 { arglist_len = 1; }
428 ;
429
430 arglist : arglist ',' exp %prec ABOVE_COMMA
431 { arglist_len++; }
432 ;
433
434 exp : exp '(' nonempty_typelist ')' const_or_volatile
435 { int i;
436 write_exp_elt_opcode (TYPE_INSTANCE);
437 write_exp_elt_longcst ((LONGEST) $<ivec>3[0]);
438 for (i = 0; i < $<ivec>3[0]; ++i)
439 write_exp_elt_type ($<tvec>3[i + 1]);
440 write_exp_elt_longcst((LONGEST) $<ivec>3[0]);
441 write_exp_elt_opcode (TYPE_INSTANCE);
442 free ($3);
443 }
444 ;
445
446 rcurly : '}'
447 { $$ = end_arglist () - 1; }
448 ;
449 exp : lcurly arglist rcurly %prec ARROW
450 { write_exp_elt_opcode (OP_ARRAY);
451 write_exp_elt_longcst ((LONGEST) 0);
452 write_exp_elt_longcst ((LONGEST) $3);
453 write_exp_elt_opcode (OP_ARRAY); }
454 ;
455
456 exp : lcurly type rcurly exp %prec UNARY
457 { write_exp_elt_opcode (UNOP_MEMVAL);
458 write_exp_elt_type ($2);
459 write_exp_elt_opcode (UNOP_MEMVAL); }
460 ;
461
462 exp : '(' type ')' exp %prec UNARY
463 { write_exp_elt_opcode (UNOP_CAST);
464 write_exp_elt_type ($2);
465 write_exp_elt_opcode (UNOP_CAST); }
466 ;
467
468 exp : '(' exp1 ')'
469 { }
470 ;
471
472 /* Binary operators in order of decreasing precedence. */
473
474 exp : exp '@' exp
475 { write_exp_elt_opcode (BINOP_REPEAT); }
476 ;
477
478 exp : exp '*' exp
479 { write_exp_elt_opcode (BINOP_MUL); }
480 ;
481
482 exp : exp '/' exp
483 { write_exp_elt_opcode (BINOP_DIV); }
484 ;
485
486 exp : exp '%' exp
487 { write_exp_elt_opcode (BINOP_REM); }
488 ;
489
490 exp : exp '+' exp
491 { write_exp_elt_opcode (BINOP_ADD); }
492 ;
493
494 exp : exp '-' exp
495 { write_exp_elt_opcode (BINOP_SUB); }
496 ;
497
498 exp : exp LSH exp
499 { write_exp_elt_opcode (BINOP_LSH); }
500 ;
501
502 exp : exp RSH exp
503 { write_exp_elt_opcode (BINOP_RSH); }
504 ;
505
506 exp : exp EQUAL exp
507 { write_exp_elt_opcode (BINOP_EQUAL); }
508 ;
509
510 exp : exp NOTEQUAL exp
511 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
512 ;
513
514 exp : exp LEQ exp
515 { write_exp_elt_opcode (BINOP_LEQ); }
516 ;
517
518 exp : exp GEQ exp
519 { write_exp_elt_opcode (BINOP_GEQ); }
520 ;
521
522 exp : exp '<' exp
523 { write_exp_elt_opcode (BINOP_LESS); }
524 ;
525
526 exp : exp '>' exp
527 { write_exp_elt_opcode (BINOP_GTR); }
528 ;
529
530 exp : exp '&' exp
531 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
532 ;
533
534 exp : exp '^' exp
535 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
536 ;
537
538 exp : exp '|' exp
539 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
540 ;
541
542 exp : exp ANDAND exp
543 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
544 ;
545
546 exp : exp OROR exp
547 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
548 ;
549
550 exp : exp '?' exp ':' exp %prec '?'
551 { write_exp_elt_opcode (TERNOP_COND); }
552 ;
553
554 exp : exp '=' exp
555 { write_exp_elt_opcode (BINOP_ASSIGN); }
556 ;
557
558 exp : exp ASSIGN_MODIFY exp
559 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
560 write_exp_elt_opcode ($2);
561 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
562 ;
563
564 exp : INT
565 { write_exp_elt_opcode (OP_LONG);
566 write_exp_elt_type ($1.type);
567 write_exp_elt_longcst ((LONGEST)($1.val));
568 write_exp_elt_opcode (OP_LONG); }
569 ;
570
571 exp : CHAR
572 {
573 struct stoken_vector vec;
574 vec.len = 1;
575 vec.tokens = &$1;
576 write_exp_string_vector ($1.type, &vec);
577 }
578 ;
579
580 exp : NAME_OR_INT
581 { YYSTYPE val;
582 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
583 write_exp_elt_opcode (OP_LONG);
584 write_exp_elt_type (val.typed_val_int.type);
585 write_exp_elt_longcst ((LONGEST)val.typed_val_int.val);
586 write_exp_elt_opcode (OP_LONG);
587 }
588 ;
589
590
591 exp : FLOAT
592 { write_exp_elt_opcode (OP_DOUBLE);
593 write_exp_elt_type ($1.type);
594 write_exp_elt_dblcst ($1.dval);
595 write_exp_elt_opcode (OP_DOUBLE); }
596 ;
597
598 exp : DECFLOAT
599 { write_exp_elt_opcode (OP_DECFLOAT);
600 write_exp_elt_type ($1.type);
601 write_exp_elt_decfloatcst ($1.val);
602 write_exp_elt_opcode (OP_DECFLOAT); }
603 ;
604
605 exp : variable
606 ;
607
608 exp : VARIABLE
609 {
610 write_dollar_variable ($1);
611 }
612 ;
613
614 exp : SIZEOF '(' type ')' %prec UNARY
615 { write_exp_elt_opcode (OP_LONG);
616 write_exp_elt_type (lookup_signed_typename
617 (parse_language, parse_gdbarch,
618 "int"));
619 CHECK_TYPEDEF ($3);
620 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
621 write_exp_elt_opcode (OP_LONG); }
622 ;
623
624 exp : REINTERPRET_CAST '<' type '>' '(' exp ')' %prec UNARY
625 { write_exp_elt_opcode (UNOP_REINTERPRET_CAST);
626 write_exp_elt_type ($3);
627 write_exp_elt_opcode (UNOP_REINTERPRET_CAST); }
628 ;
629
630 exp : STATIC_CAST '<' type '>' '(' exp ')' %prec UNARY
631 { write_exp_elt_opcode (UNOP_CAST);
632 write_exp_elt_type ($3);
633 write_exp_elt_opcode (UNOP_CAST); }
634 ;
635
636 exp : DYNAMIC_CAST '<' type '>' '(' exp ')' %prec UNARY
637 { write_exp_elt_opcode (UNOP_DYNAMIC_CAST);
638 write_exp_elt_type ($3);
639 write_exp_elt_opcode (UNOP_DYNAMIC_CAST); }
640 ;
641
642 exp : CONST_CAST '<' type '>' '(' exp ')' %prec UNARY
643 { /* We could do more error checking here, but
644 it doesn't seem worthwhile. */
645 write_exp_elt_opcode (UNOP_CAST);
646 write_exp_elt_type ($3);
647 write_exp_elt_opcode (UNOP_CAST); }
648 ;
649
650 string_exp:
651 STRING
652 {
653 /* We copy the string here, and not in the
654 lexer, to guarantee that we do not leak a
655 string. Note that we follow the
656 NUL-termination convention of the
657 lexer. */
658 struct typed_stoken *vec = XNEW (struct typed_stoken);
659 $$.len = 1;
660 $$.tokens = vec;
661
662 vec->type = $1.type;
663 vec->length = $1.length;
664 vec->ptr = malloc ($1.length + 1);
665 memcpy (vec->ptr, $1.ptr, $1.length + 1);
666 }
667
668 | string_exp STRING
669 {
670 /* Note that we NUL-terminate here, but just
671 for convenience. */
672 char *p;
673 ++$$.len;
674 $$.tokens = realloc ($$.tokens,
675 $$.len * sizeof (struct typed_stoken));
676
677 p = malloc ($2.length + 1);
678 memcpy (p, $2.ptr, $2.length + 1);
679
680 $$.tokens[$$.len - 1].type = $2.type;
681 $$.tokens[$$.len - 1].length = $2.length;
682 $$.tokens[$$.len - 1].ptr = p;
683 }
684 ;
685
686 exp : string_exp
687 {
688 int i;
689 enum c_string_type type = C_STRING;
690
691 for (i = 0; i < $1.len; ++i)
692 {
693 switch ($1.tokens[i].type)
694 {
695 case C_STRING:
696 break;
697 case C_WIDE_STRING:
698 case C_STRING_16:
699 case C_STRING_32:
700 if (type != C_STRING
701 && type != $1.tokens[i].type)
702 error (_("Undefined string concatenation."));
703 type = $1.tokens[i].type;
704 break;
705 default:
706 /* internal error */
707 internal_error (__FILE__, __LINE__,
708 "unrecognized type in string concatenation");
709 }
710 }
711
712 write_exp_string_vector (type, &$1);
713 for (i = 0; i < $1.len; ++i)
714 free ($1.tokens[i].ptr);
715 free ($1.tokens);
716 }
717 ;
718
719 /* C++. */
720 exp : TRUEKEYWORD
721 { write_exp_elt_opcode (OP_LONG);
722 write_exp_elt_type (parse_type->builtin_bool);
723 write_exp_elt_longcst ((LONGEST) 1);
724 write_exp_elt_opcode (OP_LONG); }
725 ;
726
727 exp : FALSEKEYWORD
728 { write_exp_elt_opcode (OP_LONG);
729 write_exp_elt_type (parse_type->builtin_bool);
730 write_exp_elt_longcst ((LONGEST) 0);
731 write_exp_elt_opcode (OP_LONG); }
732 ;
733
734 /* end of C++. */
735
736 block : BLOCKNAME
737 {
738 if ($1.sym)
739 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
740 else
741 error (_("No file or function \"%s\"."),
742 copy_name ($1.stoken));
743 }
744 | FILENAME
745 {
746 $$ = $1;
747 }
748 ;
749
750 block : block COLONCOLON name
751 { struct symbol *tem
752 = lookup_symbol (copy_name ($3), $1,
753 VAR_DOMAIN, (int *) NULL);
754 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
755 error (_("No function \"%s\" in specified context."),
756 copy_name ($3));
757 $$ = SYMBOL_BLOCK_VALUE (tem); }
758 ;
759
760 variable: name_not_typename ENTRY
761 { struct symbol *sym = $1.sym;
762
763 if (sym == NULL || !SYMBOL_IS_ARGUMENT (sym)
764 || !symbol_read_needs_frame (sym))
765 error (_("@entry can be used only for function "
766 "parameters, not for \"%s\""),
767 copy_name ($1.stoken));
768
769 write_exp_elt_opcode (OP_VAR_ENTRY_VALUE);
770 write_exp_elt_sym (sym);
771 write_exp_elt_opcode (OP_VAR_ENTRY_VALUE);
772 }
773 ;
774
775 variable: block COLONCOLON name
776 { struct symbol *sym;
777 sym = lookup_symbol (copy_name ($3), $1,
778 VAR_DOMAIN, (int *) NULL);
779 if (sym == 0)
780 error (_("No symbol \"%s\" in specified context."),
781 copy_name ($3));
782
783 write_exp_elt_opcode (OP_VAR_VALUE);
784 /* block_found is set by lookup_symbol. */
785 write_exp_elt_block (block_found);
786 write_exp_elt_sym (sym);
787 write_exp_elt_opcode (OP_VAR_VALUE); }
788 ;
789
790 qualified_name: TYPENAME COLONCOLON name
791 {
792 struct type *type = $1.type;
793 CHECK_TYPEDEF (type);
794 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
795 && TYPE_CODE (type) != TYPE_CODE_UNION
796 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
797 error (_("`%s' is not defined as an aggregate type."),
798 TYPE_NAME (type));
799
800 write_exp_elt_opcode (OP_SCOPE);
801 write_exp_elt_type (type);
802 write_exp_string ($3);
803 write_exp_elt_opcode (OP_SCOPE);
804 }
805 | TYPENAME COLONCOLON '~' name
806 {
807 struct type *type = $1.type;
808 struct stoken tmp_token;
809 CHECK_TYPEDEF (type);
810 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
811 && TYPE_CODE (type) != TYPE_CODE_UNION
812 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
813 error (_("`%s' is not defined as an aggregate type."),
814 TYPE_NAME (type));
815
816 tmp_token.ptr = (char*) alloca ($4.length + 2);
817 tmp_token.length = $4.length + 1;
818 tmp_token.ptr[0] = '~';
819 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
820 tmp_token.ptr[tmp_token.length] = 0;
821
822 /* Check for valid destructor name. */
823 destructor_name_p (tmp_token.ptr, $1.type);
824 write_exp_elt_opcode (OP_SCOPE);
825 write_exp_elt_type (type);
826 write_exp_string (tmp_token);
827 write_exp_elt_opcode (OP_SCOPE);
828 }
829 | TYPENAME COLONCOLON name COLONCOLON name
830 {
831 char *copy = copy_name ($3);
832 error (_("No type \"%s\" within class "
833 "or namespace \"%s\"."),
834 copy, TYPE_NAME ($1.type));
835 }
836 ;
837
838 variable: qualified_name
839 | COLONCOLON name_not_typename
840 {
841 char *name = copy_name ($2.stoken);
842 struct symbol *sym;
843 struct minimal_symbol *msymbol;
844
845 sym =
846 lookup_symbol (name, (const struct block *) NULL,
847 VAR_DOMAIN, (int *) NULL);
848 if (sym)
849 {
850 write_exp_elt_opcode (OP_VAR_VALUE);
851 write_exp_elt_block (NULL);
852 write_exp_elt_sym (sym);
853 write_exp_elt_opcode (OP_VAR_VALUE);
854 break;
855 }
856
857 msymbol = lookup_minimal_symbol (name, NULL, NULL);
858 if (msymbol != NULL)
859 write_exp_msymbol (msymbol);
860 else if (!have_full_symbols () && !have_partial_symbols ())
861 error (_("No symbol table is loaded. Use the \"file\" command."));
862 else
863 error (_("No symbol \"%s\" in current context."), name);
864 }
865 ;
866
867 variable: name_not_typename
868 { struct symbol *sym = $1.sym;
869
870 if (sym)
871 {
872 if (symbol_read_needs_frame (sym))
873 {
874 if (innermost_block == 0
875 || contained_in (block_found,
876 innermost_block))
877 innermost_block = block_found;
878 }
879
880 write_exp_elt_opcode (OP_VAR_VALUE);
881 /* We want to use the selected frame, not
882 another more inner frame which happens to
883 be in the same block. */
884 write_exp_elt_block (NULL);
885 write_exp_elt_sym (sym);
886 write_exp_elt_opcode (OP_VAR_VALUE);
887 }
888 else if ($1.is_a_field_of_this)
889 {
890 /* C++: it hangs off of `this'. Must
891 not inadvertently convert from a method call
892 to data ref. */
893 if (innermost_block == 0
894 || contained_in (block_found,
895 innermost_block))
896 innermost_block = block_found;
897 write_exp_elt_opcode (OP_THIS);
898 write_exp_elt_opcode (OP_THIS);
899 write_exp_elt_opcode (STRUCTOP_PTR);
900 write_exp_string ($1.stoken);
901 write_exp_elt_opcode (STRUCTOP_PTR);
902 }
903 else
904 {
905 struct minimal_symbol *msymbol;
906 char *arg = copy_name ($1.stoken);
907
908 msymbol =
909 lookup_minimal_symbol (arg, NULL, NULL);
910 if (msymbol != NULL)
911 write_exp_msymbol (msymbol);
912 else if (!have_full_symbols () && !have_partial_symbols ())
913 error (_("No symbol table is loaded. Use the \"file\" command."));
914 else
915 error (_("No symbol \"%s\" in current context."),
916 copy_name ($1.stoken));
917 }
918 }
919 ;
920
921 space_identifier : '@' NAME
922 { push_type_address_space (copy_name ($2.stoken));
923 push_type (tp_space_identifier);
924 }
925 ;
926
927 const_or_volatile: const_or_volatile_noopt
928 |
929 ;
930
931 cv_with_space_id : const_or_volatile space_identifier const_or_volatile
932 ;
933
934 const_or_volatile_or_space_identifier_noopt: cv_with_space_id
935 | const_or_volatile_noopt
936 ;
937
938 const_or_volatile_or_space_identifier:
939 const_or_volatile_or_space_identifier_noopt
940 |
941 ;
942
943 abs_decl: '*'
944 { push_type (tp_pointer); $$ = 0; }
945 | '*' abs_decl
946 { push_type (tp_pointer); $$ = $2; }
947 | '&'
948 { push_type (tp_reference); $$ = 0; }
949 | '&' abs_decl
950 { push_type (tp_reference); $$ = $2; }
951 | direct_abs_decl
952 ;
953
954 direct_abs_decl: '(' abs_decl ')'
955 { $$ = $2; }
956 | direct_abs_decl array_mod
957 {
958 push_type_int ($2);
959 push_type (tp_array);
960 }
961 | array_mod
962 {
963 push_type_int ($1);
964 push_type (tp_array);
965 $$ = 0;
966 }
967
968 | direct_abs_decl func_mod
969 { push_type (tp_function); }
970 | func_mod
971 { push_type (tp_function); }
972 ;
973
974 array_mod: '[' ']'
975 { $$ = -1; }
976 | '[' INT ']'
977 { $$ = $2.val; }
978 ;
979
980 func_mod: '(' ')'
981 { $$ = 0; }
982 | '(' nonempty_typelist ')'
983 { free ($2); $$ = 0; }
984 ;
985
986 /* We used to try to recognize pointer to member types here, but
987 that didn't work (shift/reduce conflicts meant that these rules never
988 got executed). The problem is that
989 int (foo::bar::baz::bizzle)
990 is a function type but
991 int (foo::bar::baz::bizzle::*)
992 is a pointer to member type. Stroustrup loses again! */
993
994 type : ptype
995 ;
996
997 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
998 : TYPENAME
999 { $$ = $1.type; }
1000 | INT_KEYWORD
1001 { $$ = lookup_signed_typename (parse_language,
1002 parse_gdbarch,
1003 "int"); }
1004 | LONG
1005 { $$ = lookup_signed_typename (parse_language,
1006 parse_gdbarch,
1007 "long"); }
1008 | SHORT
1009 { $$ = lookup_signed_typename (parse_language,
1010 parse_gdbarch,
1011 "short"); }
1012 | LONG INT_KEYWORD
1013 { $$ = lookup_signed_typename (parse_language,
1014 parse_gdbarch,
1015 "long"); }
1016 | LONG SIGNED_KEYWORD INT_KEYWORD
1017 { $$ = lookup_signed_typename (parse_language,
1018 parse_gdbarch,
1019 "long"); }
1020 | LONG SIGNED_KEYWORD
1021 { $$ = lookup_signed_typename (parse_language,
1022 parse_gdbarch,
1023 "long"); }
1024 | SIGNED_KEYWORD LONG INT_KEYWORD
1025 { $$ = lookup_signed_typename (parse_language,
1026 parse_gdbarch,
1027 "long"); }
1028 | UNSIGNED LONG INT_KEYWORD
1029 { $$ = lookup_unsigned_typename (parse_language,
1030 parse_gdbarch,
1031 "long"); }
1032 | LONG UNSIGNED INT_KEYWORD
1033 { $$ = lookup_unsigned_typename (parse_language,
1034 parse_gdbarch,
1035 "long"); }
1036 | LONG UNSIGNED
1037 { $$ = lookup_unsigned_typename (parse_language,
1038 parse_gdbarch,
1039 "long"); }
1040 | LONG LONG
1041 { $$ = lookup_signed_typename (parse_language,
1042 parse_gdbarch,
1043 "long long"); }
1044 | LONG LONG INT_KEYWORD
1045 { $$ = lookup_signed_typename (parse_language,
1046 parse_gdbarch,
1047 "long long"); }
1048 | LONG LONG SIGNED_KEYWORD INT_KEYWORD
1049 { $$ = lookup_signed_typename (parse_language,
1050 parse_gdbarch,
1051 "long long"); }
1052 | LONG LONG SIGNED_KEYWORD
1053 { $$ = lookup_signed_typename (parse_language,
1054 parse_gdbarch,
1055 "long long"); }
1056 | SIGNED_KEYWORD LONG LONG
1057 { $$ = lookup_signed_typename (parse_language,
1058 parse_gdbarch,
1059 "long long"); }
1060 | SIGNED_KEYWORD LONG LONG INT_KEYWORD
1061 { $$ = lookup_signed_typename (parse_language,
1062 parse_gdbarch,
1063 "long long"); }
1064 | UNSIGNED LONG LONG
1065 { $$ = lookup_unsigned_typename (parse_language,
1066 parse_gdbarch,
1067 "long long"); }
1068 | UNSIGNED LONG LONG INT_KEYWORD
1069 { $$ = lookup_unsigned_typename (parse_language,
1070 parse_gdbarch,
1071 "long long"); }
1072 | LONG LONG UNSIGNED
1073 { $$ = lookup_unsigned_typename (parse_language,
1074 parse_gdbarch,
1075 "long long"); }
1076 | LONG LONG UNSIGNED INT_KEYWORD
1077 { $$ = lookup_unsigned_typename (parse_language,
1078 parse_gdbarch,
1079 "long long"); }
1080 | SHORT INT_KEYWORD
1081 { $$ = lookup_signed_typename (parse_language,
1082 parse_gdbarch,
1083 "short"); }
1084 | SHORT SIGNED_KEYWORD INT_KEYWORD
1085 { $$ = lookup_signed_typename (parse_language,
1086 parse_gdbarch,
1087 "short"); }
1088 | SHORT SIGNED_KEYWORD
1089 { $$ = lookup_signed_typename (parse_language,
1090 parse_gdbarch,
1091 "short"); }
1092 | UNSIGNED SHORT INT_KEYWORD
1093 { $$ = lookup_unsigned_typename (parse_language,
1094 parse_gdbarch,
1095 "short"); }
1096 | SHORT UNSIGNED
1097 { $$ = lookup_unsigned_typename (parse_language,
1098 parse_gdbarch,
1099 "short"); }
1100 | SHORT UNSIGNED INT_KEYWORD
1101 { $$ = lookup_unsigned_typename (parse_language,
1102 parse_gdbarch,
1103 "short"); }
1104 | DOUBLE_KEYWORD
1105 { $$ = lookup_typename (parse_language, parse_gdbarch,
1106 "double", (struct block *) NULL,
1107 0); }
1108 | LONG DOUBLE_KEYWORD
1109 { $$ = lookup_typename (parse_language, parse_gdbarch,
1110 "long double",
1111 (struct block *) NULL, 0); }
1112 | STRUCT name
1113 { $$ = lookup_struct (copy_name ($2),
1114 expression_context_block); }
1115 | CLASS name
1116 { $$ = lookup_struct (copy_name ($2),
1117 expression_context_block); }
1118 | UNION name
1119 { $$ = lookup_union (copy_name ($2),
1120 expression_context_block); }
1121 | ENUM name
1122 { $$ = lookup_enum (copy_name ($2),
1123 expression_context_block); }
1124 | UNSIGNED typename
1125 { $$ = lookup_unsigned_typename (parse_language,
1126 parse_gdbarch,
1127 TYPE_NAME($2.type)); }
1128 | UNSIGNED
1129 { $$ = lookup_unsigned_typename (parse_language,
1130 parse_gdbarch,
1131 "int"); }
1132 | SIGNED_KEYWORD typename
1133 { $$ = lookup_signed_typename (parse_language,
1134 parse_gdbarch,
1135 TYPE_NAME($2.type)); }
1136 | SIGNED_KEYWORD
1137 { $$ = lookup_signed_typename (parse_language,
1138 parse_gdbarch,
1139 "int"); }
1140 /* It appears that this rule for templates is never
1141 reduced; template recognition happens by lookahead
1142 in the token processing code in yylex. */
1143 | TEMPLATE name '<' type '>'
1144 { $$ = lookup_template_type(copy_name($2), $4,
1145 expression_context_block);
1146 }
1147 | const_or_volatile_or_space_identifier_noopt typebase
1148 { $$ = follow_types ($2); }
1149 | typebase const_or_volatile_or_space_identifier_noopt
1150 { $$ = follow_types ($1); }
1151 ;
1152
1153 typename: TYPENAME
1154 | INT_KEYWORD
1155 {
1156 $$.stoken.ptr = "int";
1157 $$.stoken.length = 3;
1158 $$.type = lookup_signed_typename (parse_language,
1159 parse_gdbarch,
1160 "int");
1161 }
1162 | LONG
1163 {
1164 $$.stoken.ptr = "long";
1165 $$.stoken.length = 4;
1166 $$.type = lookup_signed_typename (parse_language,
1167 parse_gdbarch,
1168 "long");
1169 }
1170 | SHORT
1171 {
1172 $$.stoken.ptr = "short";
1173 $$.stoken.length = 5;
1174 $$.type = lookup_signed_typename (parse_language,
1175 parse_gdbarch,
1176 "short");
1177 }
1178 ;
1179
1180 nonempty_typelist
1181 : type
1182 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
1183 $<ivec>$[0] = 1; /* Number of types in vector */
1184 $$[1] = $1;
1185 }
1186 | nonempty_typelist ',' type
1187 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
1188 $$ = (struct type **) realloc ((char *) $1, len);
1189 $$[$<ivec>$[0]] = $3;
1190 }
1191 ;
1192
1193 ptype : typebase
1194 | ptype const_or_volatile_or_space_identifier abs_decl const_or_volatile_or_space_identifier
1195 { $$ = follow_types ($1); }
1196 ;
1197
1198 const_and_volatile: CONST_KEYWORD VOLATILE_KEYWORD
1199 | VOLATILE_KEYWORD CONST_KEYWORD
1200 ;
1201
1202 const_or_volatile_noopt: const_and_volatile
1203 { push_type (tp_const);
1204 push_type (tp_volatile);
1205 }
1206 | CONST_KEYWORD
1207 { push_type (tp_const); }
1208 | VOLATILE_KEYWORD
1209 { push_type (tp_volatile); }
1210 ;
1211
1212 operator: OPERATOR NEW
1213 { $$ = operator_stoken (" new"); }
1214 | OPERATOR DELETE
1215 { $$ = operator_stoken (" delete"); }
1216 | OPERATOR NEW '[' ']'
1217 { $$ = operator_stoken (" new[]"); }
1218 | OPERATOR DELETE '[' ']'
1219 { $$ = operator_stoken (" delete[]"); }
1220 | OPERATOR '+'
1221 { $$ = operator_stoken ("+"); }
1222 | OPERATOR '-'
1223 { $$ = operator_stoken ("-"); }
1224 | OPERATOR '*'
1225 { $$ = operator_stoken ("*"); }
1226 | OPERATOR '/'
1227 { $$ = operator_stoken ("/"); }
1228 | OPERATOR '%'
1229 { $$ = operator_stoken ("%"); }
1230 | OPERATOR '^'
1231 { $$ = operator_stoken ("^"); }
1232 | OPERATOR '&'
1233 { $$ = operator_stoken ("&"); }
1234 | OPERATOR '|'
1235 { $$ = operator_stoken ("|"); }
1236 | OPERATOR '~'
1237 { $$ = operator_stoken ("~"); }
1238 | OPERATOR '!'
1239 { $$ = operator_stoken ("!"); }
1240 | OPERATOR '='
1241 { $$ = operator_stoken ("="); }
1242 | OPERATOR '<'
1243 { $$ = operator_stoken ("<"); }
1244 | OPERATOR '>'
1245 { $$ = operator_stoken (">"); }
1246 | OPERATOR ASSIGN_MODIFY
1247 { const char *op = "unknown";
1248 switch ($2)
1249 {
1250 case BINOP_RSH:
1251 op = ">>=";
1252 break;
1253 case BINOP_LSH:
1254 op = "<<=";
1255 break;
1256 case BINOP_ADD:
1257 op = "+=";
1258 break;
1259 case BINOP_SUB:
1260 op = "-=";
1261 break;
1262 case BINOP_MUL:
1263 op = "*=";
1264 break;
1265 case BINOP_DIV:
1266 op = "/=";
1267 break;
1268 case BINOP_REM:
1269 op = "%=";
1270 break;
1271 case BINOP_BITWISE_IOR:
1272 op = "|=";
1273 break;
1274 case BINOP_BITWISE_AND:
1275 op = "&=";
1276 break;
1277 case BINOP_BITWISE_XOR:
1278 op = "^=";
1279 break;
1280 default:
1281 break;
1282 }
1283
1284 $$ = operator_stoken (op);
1285 }
1286 | OPERATOR LSH
1287 { $$ = operator_stoken ("<<"); }
1288 | OPERATOR RSH
1289 { $$ = operator_stoken (">>"); }
1290 | OPERATOR EQUAL
1291 { $$ = operator_stoken ("=="); }
1292 | OPERATOR NOTEQUAL
1293 { $$ = operator_stoken ("!="); }
1294 | OPERATOR LEQ
1295 { $$ = operator_stoken ("<="); }
1296 | OPERATOR GEQ
1297 { $$ = operator_stoken (">="); }
1298 | OPERATOR ANDAND
1299 { $$ = operator_stoken ("&&"); }
1300 | OPERATOR OROR
1301 { $$ = operator_stoken ("||"); }
1302 | OPERATOR INCREMENT
1303 { $$ = operator_stoken ("++"); }
1304 | OPERATOR DECREMENT
1305 { $$ = operator_stoken ("--"); }
1306 | OPERATOR ','
1307 { $$ = operator_stoken (","); }
1308 | OPERATOR ARROW_STAR
1309 { $$ = operator_stoken ("->*"); }
1310 | OPERATOR ARROW
1311 { $$ = operator_stoken ("->"); }
1312 | OPERATOR '(' ')'
1313 { $$ = operator_stoken ("()"); }
1314 | OPERATOR '[' ']'
1315 { $$ = operator_stoken ("[]"); }
1316 | OPERATOR ptype
1317 { char *name;
1318 long length;
1319 struct ui_file *buf = mem_fileopen ();
1320
1321 c_print_type ($2, NULL, buf, -1, 0);
1322 name = ui_file_xstrdup (buf, &length);
1323 ui_file_delete (buf);
1324 $$ = operator_stoken (name);
1325 free (name);
1326 }
1327 ;
1328
1329
1330
1331 name : NAME { $$ = $1.stoken; }
1332 | BLOCKNAME { $$ = $1.stoken; }
1333 | TYPENAME { $$ = $1.stoken; }
1334 | NAME_OR_INT { $$ = $1.stoken; }
1335 | UNKNOWN_CPP_NAME { $$ = $1.stoken; }
1336 | operator { $$ = $1; }
1337 ;
1338
1339 name_not_typename : NAME
1340 | BLOCKNAME
1341 /* These would be useful if name_not_typename was useful, but it is just
1342 a fake for "variable", so these cause reduce/reduce conflicts because
1343 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
1344 =exp) or just an exp. If name_not_typename was ever used in an lvalue
1345 context where only a name could occur, this might be useful.
1346 | NAME_OR_INT
1347 */
1348 | operator
1349 {
1350 $$.stoken = $1;
1351 $$.sym = lookup_symbol ($1.ptr,
1352 expression_context_block,
1353 VAR_DOMAIN,
1354 &$$.is_a_field_of_this);
1355 }
1356 | UNKNOWN_CPP_NAME
1357 ;
1358
1359 %%
1360
1361 /* Returns a stoken of the operator name given by OP (which does not
1362 include the string "operator"). */
1363 static struct stoken
1364 operator_stoken (const char *op)
1365 {
1366 static const char *operator_string = "operator";
1367 struct stoken st = { NULL, 0 };
1368 st.length = strlen (operator_string) + strlen (op);
1369 st.ptr = malloc (st.length + 1);
1370 strcpy (st.ptr, operator_string);
1371 strcat (st.ptr, op);
1372
1373 /* The toplevel (c_parse) will free the memory allocated here. */
1374 make_cleanup (free, st.ptr);
1375 return st;
1376 };
1377
1378 /* Take care of parsing a number (anything that starts with a digit).
1379 Set yylval and return the token type; update lexptr.
1380 LEN is the number of characters in it. */
1381
1382 /*** Needs some error checking for the float case ***/
1383
1384 static int
1385 parse_number (char *p, int len, int parsed_float, YYSTYPE *putithere)
1386 {
1387 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
1388 here, and we do kind of silly things like cast to unsigned. */
1389 LONGEST n = 0;
1390 LONGEST prevn = 0;
1391 ULONGEST un;
1392
1393 int i = 0;
1394 int c;
1395 int base = input_radix;
1396 int unsigned_p = 0;
1397
1398 /* Number of "L" suffixes encountered. */
1399 int long_p = 0;
1400
1401 /* We have found a "L" or "U" suffix. */
1402 int found_suffix = 0;
1403
1404 ULONGEST high_bit;
1405 struct type *signed_type;
1406 struct type *unsigned_type;
1407
1408 if (parsed_float)
1409 {
1410 const char *suffix;
1411 int suffix_len;
1412
1413 /* If it ends at "df", "dd" or "dl", take it as type of decimal floating
1414 point. Return DECFLOAT. */
1415
1416 if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'f')
1417 {
1418 p[len - 2] = '\0';
1419 putithere->typed_val_decfloat.type
1420 = parse_type->builtin_decfloat;
1421 decimal_from_string (putithere->typed_val_decfloat.val, 4,
1422 gdbarch_byte_order (parse_gdbarch), p);
1423 p[len - 2] = 'd';
1424 return DECFLOAT;
1425 }
1426
1427 if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'd')
1428 {
1429 p[len - 2] = '\0';
1430 putithere->typed_val_decfloat.type
1431 = parse_type->builtin_decdouble;
1432 decimal_from_string (putithere->typed_val_decfloat.val, 8,
1433 gdbarch_byte_order (parse_gdbarch), p);
1434 p[len - 2] = 'd';
1435 return DECFLOAT;
1436 }
1437
1438 if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'l')
1439 {
1440 p[len - 2] = '\0';
1441 putithere->typed_val_decfloat.type
1442 = parse_type->builtin_declong;
1443 decimal_from_string (putithere->typed_val_decfloat.val, 16,
1444 gdbarch_byte_order (parse_gdbarch), p);
1445 p[len - 2] = 'd';
1446 return DECFLOAT;
1447 }
1448
1449 if (! parse_c_float (parse_gdbarch, p, len,
1450 &putithere->typed_val_float.dval,
1451 &putithere->typed_val_float.type))
1452 return ERROR;
1453 return FLOAT;
1454 }
1455
1456 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
1457 if (p[0] == '0')
1458 switch (p[1])
1459 {
1460 case 'x':
1461 case 'X':
1462 if (len >= 3)
1463 {
1464 p += 2;
1465 base = 16;
1466 len -= 2;
1467 }
1468 break;
1469
1470 case 'b':
1471 case 'B':
1472 if (len >= 3)
1473 {
1474 p += 2;
1475 base = 2;
1476 len -= 2;
1477 }
1478 break;
1479
1480 case 't':
1481 case 'T':
1482 case 'd':
1483 case 'D':
1484 if (len >= 3)
1485 {
1486 p += 2;
1487 base = 10;
1488 len -= 2;
1489 }
1490 break;
1491
1492 default:
1493 base = 8;
1494 break;
1495 }
1496
1497 while (len-- > 0)
1498 {
1499 c = *p++;
1500 if (c >= 'A' && c <= 'Z')
1501 c += 'a' - 'A';
1502 if (c != 'l' && c != 'u')
1503 n *= base;
1504 if (c >= '0' && c <= '9')
1505 {
1506 if (found_suffix)
1507 return ERROR;
1508 n += i = c - '0';
1509 }
1510 else
1511 {
1512 if (base > 10 && c >= 'a' && c <= 'f')
1513 {
1514 if (found_suffix)
1515 return ERROR;
1516 n += i = c - 'a' + 10;
1517 }
1518 else if (c == 'l')
1519 {
1520 ++long_p;
1521 found_suffix = 1;
1522 }
1523 else if (c == 'u')
1524 {
1525 unsigned_p = 1;
1526 found_suffix = 1;
1527 }
1528 else
1529 return ERROR; /* Char not a digit */
1530 }
1531 if (i >= base)
1532 return ERROR; /* Invalid digit in this base */
1533
1534 /* Portably test for overflow (only works for nonzero values, so make
1535 a second check for zero). FIXME: Can't we just make n and prevn
1536 unsigned and avoid this? */
1537 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1538 unsigned_p = 1; /* Try something unsigned */
1539
1540 /* Portably test for unsigned overflow.
1541 FIXME: This check is wrong; for example it doesn't find overflow
1542 on 0x123456789 when LONGEST is 32 bits. */
1543 if (c != 'l' && c != 'u' && n != 0)
1544 {
1545 if ((unsigned_p && (ULONGEST) prevn >= (ULONGEST) n))
1546 error (_("Numeric constant too large."));
1547 }
1548 prevn = n;
1549 }
1550
1551 /* An integer constant is an int, a long, or a long long. An L
1552 suffix forces it to be long; an LL suffix forces it to be long
1553 long. If not forced to a larger size, it gets the first type of
1554 the above that it fits in. To figure out whether it fits, we
1555 shift it right and see whether anything remains. Note that we
1556 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1557 operation, because many compilers will warn about such a shift
1558 (which always produces a zero result). Sometimes gdbarch_int_bit
1559 or gdbarch_long_bit will be that big, sometimes not. To deal with
1560 the case where it is we just always shift the value more than
1561 once, with fewer bits each time. */
1562
1563 un = (ULONGEST)n >> 2;
1564 if (long_p == 0
1565 && (un >> (gdbarch_int_bit (parse_gdbarch) - 2)) == 0)
1566 {
1567 high_bit = ((ULONGEST)1) << (gdbarch_int_bit (parse_gdbarch) - 1);
1568
1569 /* A large decimal (not hex or octal) constant (between INT_MAX
1570 and UINT_MAX) is a long or unsigned long, according to ANSI,
1571 never an unsigned int, but this code treats it as unsigned
1572 int. This probably should be fixed. GCC gives a warning on
1573 such constants. */
1574
1575 unsigned_type = parse_type->builtin_unsigned_int;
1576 signed_type = parse_type->builtin_int;
1577 }
1578 else if (long_p <= 1
1579 && (un >> (gdbarch_long_bit (parse_gdbarch) - 2)) == 0)
1580 {
1581 high_bit = ((ULONGEST)1) << (gdbarch_long_bit (parse_gdbarch) - 1);
1582 unsigned_type = parse_type->builtin_unsigned_long;
1583 signed_type = parse_type->builtin_long;
1584 }
1585 else
1586 {
1587 int shift;
1588 if (sizeof (ULONGEST) * HOST_CHAR_BIT
1589 < gdbarch_long_long_bit (parse_gdbarch))
1590 /* A long long does not fit in a LONGEST. */
1591 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
1592 else
1593 shift = (gdbarch_long_long_bit (parse_gdbarch) - 1);
1594 high_bit = (ULONGEST) 1 << shift;
1595 unsigned_type = parse_type->builtin_unsigned_long_long;
1596 signed_type = parse_type->builtin_long_long;
1597 }
1598
1599 putithere->typed_val_int.val = n;
1600
1601 /* If the high bit of the worked out type is set then this number
1602 has to be unsigned. */
1603
1604 if (unsigned_p || (n & high_bit))
1605 {
1606 putithere->typed_val_int.type = unsigned_type;
1607 }
1608 else
1609 {
1610 putithere->typed_val_int.type = signed_type;
1611 }
1612
1613 return INT;
1614 }
1615
1616 /* Temporary obstack used for holding strings. */
1617 static struct obstack tempbuf;
1618 static int tempbuf_init;
1619
1620 /* Parse a C escape sequence. The initial backslash of the sequence
1621 is at (*PTR)[-1]. *PTR will be updated to point to just after the
1622 last character of the sequence. If OUTPUT is not NULL, the
1623 translated form of the escape sequence will be written there. If
1624 OUTPUT is NULL, no output is written and the call will only affect
1625 *PTR. If an escape sequence is expressed in target bytes, then the
1626 entire sequence will simply be copied to OUTPUT. Return 1 if any
1627 character was emitted, 0 otherwise. */
1628
1629 int
1630 c_parse_escape (char **ptr, struct obstack *output)
1631 {
1632 char *tokptr = *ptr;
1633 int result = 1;
1634
1635 /* Some escape sequences undergo character set conversion. Those we
1636 translate here. */
1637 switch (*tokptr)
1638 {
1639 /* Hex escapes do not undergo character set conversion, so keep
1640 the escape sequence for later. */
1641 case 'x':
1642 if (output)
1643 obstack_grow_str (output, "\\x");
1644 ++tokptr;
1645 if (!isxdigit (*tokptr))
1646 error (_("\\x escape without a following hex digit"));
1647 while (isxdigit (*tokptr))
1648 {
1649 if (output)
1650 obstack_1grow (output, *tokptr);
1651 ++tokptr;
1652 }
1653 break;
1654
1655 /* Octal escapes do not undergo character set conversion, so
1656 keep the escape sequence for later. */
1657 case '0':
1658 case '1':
1659 case '2':
1660 case '3':
1661 case '4':
1662 case '5':
1663 case '6':
1664 case '7':
1665 {
1666 int i;
1667 if (output)
1668 obstack_grow_str (output, "\\");
1669 for (i = 0;
1670 i < 3 && isdigit (*tokptr) && *tokptr != '8' && *tokptr != '9';
1671 ++i)
1672 {
1673 if (output)
1674 obstack_1grow (output, *tokptr);
1675 ++tokptr;
1676 }
1677 }
1678 break;
1679
1680 /* We handle UCNs later. We could handle them here, but that
1681 would mean a spurious error in the case where the UCN could
1682 be converted to the target charset but not the host
1683 charset. */
1684 case 'u':
1685 case 'U':
1686 {
1687 char c = *tokptr;
1688 int i, len = c == 'U' ? 8 : 4;
1689 if (output)
1690 {
1691 obstack_1grow (output, '\\');
1692 obstack_1grow (output, *tokptr);
1693 }
1694 ++tokptr;
1695 if (!isxdigit (*tokptr))
1696 error (_("\\%c escape without a following hex digit"), c);
1697 for (i = 0; i < len && isxdigit (*tokptr); ++i)
1698 {
1699 if (output)
1700 obstack_1grow (output, *tokptr);
1701 ++tokptr;
1702 }
1703 }
1704 break;
1705
1706 /* We must pass backslash through so that it does not
1707 cause quoting during the second expansion. */
1708 case '\\':
1709 if (output)
1710 obstack_grow_str (output, "\\\\");
1711 ++tokptr;
1712 break;
1713
1714 /* Escapes which undergo conversion. */
1715 case 'a':
1716 if (output)
1717 obstack_1grow (output, '\a');
1718 ++tokptr;
1719 break;
1720 case 'b':
1721 if (output)
1722 obstack_1grow (output, '\b');
1723 ++tokptr;
1724 break;
1725 case 'f':
1726 if (output)
1727 obstack_1grow (output, '\f');
1728 ++tokptr;
1729 break;
1730 case 'n':
1731 if (output)
1732 obstack_1grow (output, '\n');
1733 ++tokptr;
1734 break;
1735 case 'r':
1736 if (output)
1737 obstack_1grow (output, '\r');
1738 ++tokptr;
1739 break;
1740 case 't':
1741 if (output)
1742 obstack_1grow (output, '\t');
1743 ++tokptr;
1744 break;
1745 case 'v':
1746 if (output)
1747 obstack_1grow (output, '\v');
1748 ++tokptr;
1749 break;
1750
1751 /* GCC extension. */
1752 case 'e':
1753 if (output)
1754 obstack_1grow (output, HOST_ESCAPE_CHAR);
1755 ++tokptr;
1756 break;
1757
1758 /* Backslash-newline expands to nothing at all. */
1759 case '\n':
1760 ++tokptr;
1761 result = 0;
1762 break;
1763
1764 /* A few escapes just expand to the character itself. */
1765 case '\'':
1766 case '\"':
1767 case '?':
1768 /* GCC extensions. */
1769 case '(':
1770 case '{':
1771 case '[':
1772 case '%':
1773 /* Unrecognized escapes turn into the character itself. */
1774 default:
1775 if (output)
1776 obstack_1grow (output, *tokptr);
1777 ++tokptr;
1778 break;
1779 }
1780 *ptr = tokptr;
1781 return result;
1782 }
1783
1784 /* Parse a string or character literal from TOKPTR. The string or
1785 character may be wide or unicode. *OUTPTR is set to just after the
1786 end of the literal in the input string. The resulting token is
1787 stored in VALUE. This returns a token value, either STRING or
1788 CHAR, depending on what was parsed. *HOST_CHARS is set to the
1789 number of host characters in the literal. */
1790 static int
1791 parse_string_or_char (char *tokptr, char **outptr, struct typed_stoken *value,
1792 int *host_chars)
1793 {
1794 int quote;
1795 enum c_string_type type;
1796
1797 /* Build the gdb internal form of the input string in tempbuf. Note
1798 that the buffer is null byte terminated *only* for the
1799 convenience of debugging gdb itself and printing the buffer
1800 contents when the buffer contains no embedded nulls. Gdb does
1801 not depend upon the buffer being null byte terminated, it uses
1802 the length string instead. This allows gdb to handle C strings
1803 (as well as strings in other languages) with embedded null
1804 bytes */
1805
1806 if (!tempbuf_init)
1807 tempbuf_init = 1;
1808 else
1809 obstack_free (&tempbuf, NULL);
1810 obstack_init (&tempbuf);
1811
1812 /* Record the string type. */
1813 if (*tokptr == 'L')
1814 {
1815 type = C_WIDE_STRING;
1816 ++tokptr;
1817 }
1818 else if (*tokptr == 'u')
1819 {
1820 type = C_STRING_16;
1821 ++tokptr;
1822 }
1823 else if (*tokptr == 'U')
1824 {
1825 type = C_STRING_32;
1826 ++tokptr;
1827 }
1828 else
1829 type = C_STRING;
1830
1831 /* Skip the quote. */
1832 quote = *tokptr;
1833 if (quote == '\'')
1834 type |= C_CHAR;
1835 ++tokptr;
1836
1837 *host_chars = 0;
1838
1839 while (*tokptr)
1840 {
1841 char c = *tokptr;
1842 if (c == '\\')
1843 {
1844 ++tokptr;
1845 *host_chars += c_parse_escape (&tokptr, &tempbuf);
1846 }
1847 else if (c == quote)
1848 break;
1849 else
1850 {
1851 obstack_1grow (&tempbuf, c);
1852 ++tokptr;
1853 /* FIXME: this does the wrong thing with multi-byte host
1854 characters. We could use mbrlen here, but that would
1855 make "set host-charset" a bit less useful. */
1856 ++*host_chars;
1857 }
1858 }
1859
1860 if (*tokptr != quote)
1861 {
1862 if (quote == '"')
1863 error (_("Unterminated string in expression."));
1864 else
1865 error (_("Unmatched single quote."));
1866 }
1867 ++tokptr;
1868
1869 value->type = type;
1870 value->ptr = obstack_base (&tempbuf);
1871 value->length = obstack_object_size (&tempbuf);
1872
1873 *outptr = tokptr;
1874
1875 return quote == '"' ? STRING : CHAR;
1876 }
1877
1878 struct token
1879 {
1880 char *operator;
1881 int token;
1882 enum exp_opcode opcode;
1883 int cxx_only;
1884 };
1885
1886 static const struct token tokentab3[] =
1887 {
1888 {">>=", ASSIGN_MODIFY, BINOP_RSH, 0},
1889 {"<<=", ASSIGN_MODIFY, BINOP_LSH, 0},
1890 {"->*", ARROW_STAR, BINOP_END, 1}
1891 };
1892
1893 static const struct token tokentab2[] =
1894 {
1895 {"+=", ASSIGN_MODIFY, BINOP_ADD, 0},
1896 {"-=", ASSIGN_MODIFY, BINOP_SUB, 0},
1897 {"*=", ASSIGN_MODIFY, BINOP_MUL, 0},
1898 {"/=", ASSIGN_MODIFY, BINOP_DIV, 0},
1899 {"%=", ASSIGN_MODIFY, BINOP_REM, 0},
1900 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR, 0},
1901 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND, 0},
1902 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR, 0},
1903 {"++", INCREMENT, BINOP_END, 0},
1904 {"--", DECREMENT, BINOP_END, 0},
1905 {"->", ARROW, BINOP_END, 0},
1906 {"&&", ANDAND, BINOP_END, 0},
1907 {"||", OROR, BINOP_END, 0},
1908 /* "::" is *not* only C++: gdb overrides its meaning in several
1909 different ways, e.g., 'filename'::func, function::variable. */
1910 {"::", COLONCOLON, BINOP_END, 0},
1911 {"<<", LSH, BINOP_END, 0},
1912 {">>", RSH, BINOP_END, 0},
1913 {"==", EQUAL, BINOP_END, 0},
1914 {"!=", NOTEQUAL, BINOP_END, 0},
1915 {"<=", LEQ, BINOP_END, 0},
1916 {">=", GEQ, BINOP_END, 0},
1917 {".*", DOT_STAR, BINOP_END, 1}
1918 };
1919
1920 /* Identifier-like tokens. */
1921 static const struct token ident_tokens[] =
1922 {
1923 {"unsigned", UNSIGNED, OP_NULL, 0},
1924 {"template", TEMPLATE, OP_NULL, 1},
1925 {"volatile", VOLATILE_KEYWORD, OP_NULL, 0},
1926 {"struct", STRUCT, OP_NULL, 0},
1927 {"signed", SIGNED_KEYWORD, OP_NULL, 0},
1928 {"sizeof", SIZEOF, OP_NULL, 0},
1929 {"double", DOUBLE_KEYWORD, OP_NULL, 0},
1930 {"false", FALSEKEYWORD, OP_NULL, 1},
1931 {"class", CLASS, OP_NULL, 1},
1932 {"union", UNION, OP_NULL, 0},
1933 {"short", SHORT, OP_NULL, 0},
1934 {"const", CONST_KEYWORD, OP_NULL, 0},
1935 {"enum", ENUM, OP_NULL, 0},
1936 {"long", LONG, OP_NULL, 0},
1937 {"true", TRUEKEYWORD, OP_NULL, 1},
1938 {"int", INT_KEYWORD, OP_NULL, 0},
1939 {"new", NEW, OP_NULL, 1},
1940 {"delete", DELETE, OP_NULL, 1},
1941 {"operator", OPERATOR, OP_NULL, 1},
1942
1943 {"and", ANDAND, BINOP_END, 1},
1944 {"and_eq", ASSIGN_MODIFY, BINOP_BITWISE_AND, 1},
1945 {"bitand", '&', OP_NULL, 1},
1946 {"bitor", '|', OP_NULL, 1},
1947 {"compl", '~', OP_NULL, 1},
1948 {"not", '!', OP_NULL, 1},
1949 {"not_eq", NOTEQUAL, BINOP_END, 1},
1950 {"or", OROR, BINOP_END, 1},
1951 {"or_eq", ASSIGN_MODIFY, BINOP_BITWISE_IOR, 1},
1952 {"xor", '^', OP_NULL, 1},
1953 {"xor_eq", ASSIGN_MODIFY, BINOP_BITWISE_XOR, 1},
1954
1955 {"const_cast", CONST_CAST, OP_NULL, 1 },
1956 {"dynamic_cast", DYNAMIC_CAST, OP_NULL, 1 },
1957 {"static_cast", STATIC_CAST, OP_NULL, 1 },
1958 {"reinterpret_cast", REINTERPRET_CAST, OP_NULL, 1 }
1959 };
1960
1961 /* When we find that lexptr (the global var defined in parse.c) is
1962 pointing at a macro invocation, we expand the invocation, and call
1963 scan_macro_expansion to save the old lexptr here and point lexptr
1964 into the expanded text. When we reach the end of that, we call
1965 end_macro_expansion to pop back to the value we saved here. The
1966 macro expansion code promises to return only fully-expanded text,
1967 so we don't need to "push" more than one level.
1968
1969 This is disgusting, of course. It would be cleaner to do all macro
1970 expansion beforehand, and then hand that to lexptr. But we don't
1971 really know where the expression ends. Remember, in a command like
1972
1973 (gdb) break *ADDRESS if CONDITION
1974
1975 we evaluate ADDRESS in the scope of the current frame, but we
1976 evaluate CONDITION in the scope of the breakpoint's location. So
1977 it's simply wrong to try to macro-expand the whole thing at once. */
1978 static char *macro_original_text;
1979
1980 /* We save all intermediate macro expansions on this obstack for the
1981 duration of a single parse. The expansion text may sometimes have
1982 to live past the end of the expansion, due to yacc lookahead.
1983 Rather than try to be clever about saving the data for a single
1984 token, we simply keep it all and delete it after parsing has
1985 completed. */
1986 static struct obstack expansion_obstack;
1987
1988 static void
1989 scan_macro_expansion (char *expansion)
1990 {
1991 char *copy;
1992
1993 /* We'd better not be trying to push the stack twice. */
1994 gdb_assert (! macro_original_text);
1995
1996 /* Copy to the obstack, and then free the intermediate
1997 expansion. */
1998 copy = obstack_copy0 (&expansion_obstack, expansion, strlen (expansion));
1999 xfree (expansion);
2000
2001 /* Save the old lexptr value, so we can return to it when we're done
2002 parsing the expanded text. */
2003 macro_original_text = lexptr;
2004 lexptr = copy;
2005 }
2006
2007
2008 static int
2009 scanning_macro_expansion (void)
2010 {
2011 return macro_original_text != 0;
2012 }
2013
2014
2015 static void
2016 finished_macro_expansion (void)
2017 {
2018 /* There'd better be something to pop back to. */
2019 gdb_assert (macro_original_text);
2020
2021 /* Pop back to the original text. */
2022 lexptr = macro_original_text;
2023 macro_original_text = 0;
2024 }
2025
2026
2027 static void
2028 scan_macro_cleanup (void *dummy)
2029 {
2030 if (macro_original_text)
2031 finished_macro_expansion ();
2032
2033 obstack_free (&expansion_obstack, NULL);
2034 }
2035
2036 /* Return true iff the token represents a C++ cast operator. */
2037
2038 static int
2039 is_cast_operator (const char *token, int len)
2040 {
2041 return (! strncmp (token, "dynamic_cast", len)
2042 || ! strncmp (token, "static_cast", len)
2043 || ! strncmp (token, "reinterpret_cast", len)
2044 || ! strncmp (token, "const_cast", len));
2045 }
2046
2047 /* The scope used for macro expansion. */
2048 static struct macro_scope *expression_macro_scope;
2049
2050 /* This is set if a NAME token appeared at the very end of the input
2051 string, with no whitespace separating the name from the EOF. This
2052 is used only when parsing to do field name completion. */
2053 static int saw_name_at_eof;
2054
2055 /* This is set if the previously-returned token was a structure
2056 operator -- either '.' or ARROW. This is used only when parsing to
2057 do field name completion. */
2058 static int last_was_structop;
2059
2060 /* Read one token, getting characters through lexptr. */
2061
2062 static int
2063 lex_one_token (void)
2064 {
2065 int c;
2066 int namelen;
2067 unsigned int i;
2068 char *tokstart;
2069 int saw_structop = last_was_structop;
2070 char *copy;
2071
2072 last_was_structop = 0;
2073
2074 retry:
2075
2076 /* Check if this is a macro invocation that we need to expand. */
2077 if (! scanning_macro_expansion ())
2078 {
2079 char *expanded = macro_expand_next (&lexptr,
2080 standard_macro_lookup,
2081 expression_macro_scope);
2082
2083 if (expanded)
2084 scan_macro_expansion (expanded);
2085 }
2086
2087 prev_lexptr = lexptr;
2088
2089 tokstart = lexptr;
2090 /* See if it is a special token of length 3. */
2091 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
2092 if (strncmp (tokstart, tokentab3[i].operator, 3) == 0)
2093 {
2094 if (tokentab3[i].cxx_only
2095 && parse_language->la_language != language_cplus)
2096 break;
2097
2098 lexptr += 3;
2099 yylval.opcode = tokentab3[i].opcode;
2100 return tokentab3[i].token;
2101 }
2102
2103 /* See if it is a special token of length 2. */
2104 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
2105 if (strncmp (tokstart, tokentab2[i].operator, 2) == 0)
2106 {
2107 if (tokentab2[i].cxx_only
2108 && parse_language->la_language != language_cplus)
2109 break;
2110
2111 lexptr += 2;
2112 yylval.opcode = tokentab2[i].opcode;
2113 if (in_parse_field && tokentab2[i].token == ARROW)
2114 last_was_structop = 1;
2115 return tokentab2[i].token;
2116 }
2117
2118 switch (c = *tokstart)
2119 {
2120 case 0:
2121 /* If we were just scanning the result of a macro expansion,
2122 then we need to resume scanning the original text.
2123 If we're parsing for field name completion, and the previous
2124 token allows such completion, return a COMPLETE token.
2125 Otherwise, we were already scanning the original text, and
2126 we're really done. */
2127 if (scanning_macro_expansion ())
2128 {
2129 finished_macro_expansion ();
2130 goto retry;
2131 }
2132 else if (saw_name_at_eof)
2133 {
2134 saw_name_at_eof = 0;
2135 return COMPLETE;
2136 }
2137 else if (saw_structop)
2138 return COMPLETE;
2139 else
2140 return 0;
2141
2142 case ' ':
2143 case '\t':
2144 case '\n':
2145 lexptr++;
2146 goto retry;
2147
2148 case '[':
2149 case '(':
2150 paren_depth++;
2151 lexptr++;
2152 return c;
2153
2154 case ']':
2155 case ')':
2156 if (paren_depth == 0)
2157 return 0;
2158 paren_depth--;
2159 lexptr++;
2160 return c;
2161
2162 case ',':
2163 if (comma_terminates
2164 && paren_depth == 0
2165 && ! scanning_macro_expansion ())
2166 return 0;
2167 lexptr++;
2168 return c;
2169
2170 case '.':
2171 /* Might be a floating point number. */
2172 if (lexptr[1] < '0' || lexptr[1] > '9')
2173 {
2174 if (in_parse_field)
2175 last_was_structop = 1;
2176 goto symbol; /* Nope, must be a symbol. */
2177 }
2178 /* FALL THRU into number case. */
2179
2180 case '0':
2181 case '1':
2182 case '2':
2183 case '3':
2184 case '4':
2185 case '5':
2186 case '6':
2187 case '7':
2188 case '8':
2189 case '9':
2190 {
2191 /* It's a number. */
2192 int got_dot = 0, got_e = 0, toktype;
2193 char *p = tokstart;
2194 int hex = input_radix > 10;
2195
2196 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
2197 {
2198 p += 2;
2199 hex = 1;
2200 }
2201 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
2202 {
2203 p += 2;
2204 hex = 0;
2205 }
2206
2207 for (;; ++p)
2208 {
2209 /* This test includes !hex because 'e' is a valid hex digit
2210 and thus does not indicate a floating point number when
2211 the radix is hex. */
2212 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
2213 got_dot = got_e = 1;
2214 /* This test does not include !hex, because a '.' always indicates
2215 a decimal floating point number regardless of the radix. */
2216 else if (!got_dot && *p == '.')
2217 got_dot = 1;
2218 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
2219 && (*p == '-' || *p == '+'))
2220 /* This is the sign of the exponent, not the end of the
2221 number. */
2222 continue;
2223 /* We will take any letters or digits. parse_number will
2224 complain if past the radix, or if L or U are not final. */
2225 else if ((*p < '0' || *p > '9')
2226 && ((*p < 'a' || *p > 'z')
2227 && (*p < 'A' || *p > 'Z')))
2228 break;
2229 }
2230 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
2231 if (toktype == ERROR)
2232 {
2233 char *err_copy = (char *) alloca (p - tokstart + 1);
2234
2235 memcpy (err_copy, tokstart, p - tokstart);
2236 err_copy[p - tokstart] = 0;
2237 error (_("Invalid number \"%s\"."), err_copy);
2238 }
2239 lexptr = p;
2240 return toktype;
2241 }
2242
2243 case '@':
2244 {
2245 char *p = &tokstart[1];
2246 size_t len = strlen ("entry");
2247
2248 while (isspace (*p))
2249 p++;
2250 if (strncmp (p, "entry", len) == 0 && !isalnum (p[len])
2251 && p[len] != '_')
2252 {
2253 lexptr = &p[len];
2254 return ENTRY;
2255 }
2256 }
2257 /* FALLTHRU */
2258 case '+':
2259 case '-':
2260 case '*':
2261 case '/':
2262 case '%':
2263 case '|':
2264 case '&':
2265 case '^':
2266 case '~':
2267 case '!':
2268 case '<':
2269 case '>':
2270 case '?':
2271 case ':':
2272 case '=':
2273 case '{':
2274 case '}':
2275 symbol:
2276 lexptr++;
2277 return c;
2278
2279 case 'L':
2280 case 'u':
2281 case 'U':
2282 if (tokstart[1] != '"' && tokstart[1] != '\'')
2283 break;
2284 /* Fall through. */
2285 case '\'':
2286 case '"':
2287 {
2288 int host_len;
2289 int result = parse_string_or_char (tokstart, &lexptr, &yylval.tsval,
2290 &host_len);
2291 if (result == CHAR)
2292 {
2293 if (host_len == 0)
2294 error (_("Empty character constant."));
2295 else if (host_len > 2 && c == '\'')
2296 {
2297 ++tokstart;
2298 namelen = lexptr - tokstart - 1;
2299 goto tryname;
2300 }
2301 else if (host_len > 1)
2302 error (_("Invalid character constant."));
2303 }
2304 return result;
2305 }
2306 }
2307
2308 if (!(c == '_' || c == '$'
2309 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
2310 /* We must have come across a bad character (e.g. ';'). */
2311 error (_("Invalid character '%c' in expression."), c);
2312
2313 /* It's a name. See how long it is. */
2314 namelen = 0;
2315 for (c = tokstart[namelen];
2316 (c == '_' || c == '$' || (c >= '0' && c <= '9')
2317 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
2318 {
2319 /* Template parameter lists are part of the name.
2320 FIXME: This mishandles `print $a<4&&$a>3'. */
2321
2322 if (c == '<')
2323 {
2324 if (! is_cast_operator (tokstart, namelen))
2325 {
2326 /* Scan ahead to get rest of the template specification. Note
2327 that we look ahead only when the '<' adjoins non-whitespace
2328 characters; for comparison expressions, e.g. "a < b > c",
2329 there must be spaces before the '<', etc. */
2330
2331 char * p = find_template_name_end (tokstart + namelen);
2332 if (p)
2333 namelen = p - tokstart;
2334 }
2335 break;
2336 }
2337 c = tokstart[++namelen];
2338 }
2339
2340 /* The token "if" terminates the expression and is NOT removed from
2341 the input stream. It doesn't count if it appears in the
2342 expansion of a macro. */
2343 if (namelen == 2
2344 && tokstart[0] == 'i'
2345 && tokstart[1] == 'f'
2346 && ! scanning_macro_expansion ())
2347 {
2348 return 0;
2349 }
2350
2351 /* For the same reason (breakpoint conditions), "thread N"
2352 terminates the expression. "thread" could be an identifier, but
2353 an identifier is never followed by a number without intervening
2354 punctuation. "task" is similar. Handle abbreviations of these,
2355 similarly to breakpoint.c:find_condition_and_thread. */
2356 if (namelen >= 1
2357 && (strncmp (tokstart, "thread", namelen) == 0
2358 || strncmp (tokstart, "task", namelen) == 0)
2359 && (tokstart[namelen] == ' ' || tokstart[namelen] == '\t')
2360 && ! scanning_macro_expansion ())
2361 {
2362 char *p = tokstart + namelen + 1;
2363 while (*p == ' ' || *p == '\t')
2364 p++;
2365 if (*p >= '0' && *p <= '9')
2366 return 0;
2367 }
2368
2369 lexptr += namelen;
2370
2371 tryname:
2372
2373 yylval.sval.ptr = tokstart;
2374 yylval.sval.length = namelen;
2375
2376 /* Catch specific keywords. */
2377 copy = copy_name (yylval.sval);
2378 for (i = 0; i < sizeof ident_tokens / sizeof ident_tokens[0]; i++)
2379 if (strcmp (copy, ident_tokens[i].operator) == 0)
2380 {
2381 if (ident_tokens[i].cxx_only
2382 && parse_language->la_language != language_cplus)
2383 break;
2384
2385 /* It is ok to always set this, even though we don't always
2386 strictly need to. */
2387 yylval.opcode = ident_tokens[i].opcode;
2388 return ident_tokens[i].token;
2389 }
2390
2391 if (*tokstart == '$')
2392 return VARIABLE;
2393
2394 if (in_parse_field && *lexptr == '\0')
2395 saw_name_at_eof = 1;
2396 return NAME;
2397 }
2398
2399 /* An object of this type is pushed on a FIFO by the "outer" lexer. */
2400 typedef struct
2401 {
2402 int token;
2403 YYSTYPE value;
2404 } token_and_value;
2405
2406 DEF_VEC_O (token_and_value);
2407
2408 /* A FIFO of tokens that have been read but not yet returned to the
2409 parser. */
2410 static VEC (token_and_value) *token_fifo;
2411
2412 /* Non-zero if the lexer should return tokens from the FIFO. */
2413 static int popping;
2414
2415 /* Temporary storage for c_lex; this holds symbol names as they are
2416 built up. */
2417 static struct obstack name_obstack;
2418
2419 /* Classify a NAME token. The contents of the token are in `yylval'.
2420 Updates yylval and returns the new token type. BLOCK is the block
2421 in which lookups start; this can be NULL to mean the global
2422 scope. */
2423 static int
2424 classify_name (struct block *block)
2425 {
2426 struct symbol *sym;
2427 char *copy;
2428 int is_a_field_of_this = 0;
2429
2430 copy = copy_name (yylval.sval);
2431
2432 sym = lookup_symbol (copy, block, VAR_DOMAIN,
2433 parse_language->la_language == language_cplus
2434 ? &is_a_field_of_this : (int *) NULL);
2435
2436 if (sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
2437 {
2438 yylval.ssym.sym = sym;
2439 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
2440 return BLOCKNAME;
2441 }
2442 else if (!sym)
2443 {
2444 /* See if it's a file name. */
2445 struct symtab *symtab;
2446
2447 symtab = lookup_symtab (copy);
2448 if (symtab)
2449 {
2450 yylval.bval = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), STATIC_BLOCK);
2451 return FILENAME;
2452 }
2453 }
2454
2455 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
2456 {
2457 yylval.tsym.type = SYMBOL_TYPE (sym);
2458 return TYPENAME;
2459 }
2460
2461 yylval.tsym.type
2462 = language_lookup_primitive_type_by_name (parse_language,
2463 parse_gdbarch, copy);
2464 if (yylval.tsym.type != NULL)
2465 return TYPENAME;
2466
2467 /* Input names that aren't symbols but ARE valid hex numbers, when
2468 the input radix permits them, can be names or numbers depending
2469 on the parse. Note we support radixes > 16 here. */
2470 if (!sym
2471 && ((copy[0] >= 'a' && copy[0] < 'a' + input_radix - 10)
2472 || (copy[0] >= 'A' && copy[0] < 'A' + input_radix - 10)))
2473 {
2474 YYSTYPE newlval; /* Its value is ignored. */
2475 int hextype = parse_number (copy, yylval.sval.length, 0, &newlval);
2476 if (hextype == INT)
2477 {
2478 yylval.ssym.sym = sym;
2479 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
2480 return NAME_OR_INT;
2481 }
2482 }
2483
2484 /* Any other kind of symbol */
2485 yylval.ssym.sym = sym;
2486 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
2487
2488 if (sym == NULL
2489 && parse_language->la_language == language_cplus
2490 && !is_a_field_of_this
2491 && !lookup_minimal_symbol (copy, NULL, NULL))
2492 return UNKNOWN_CPP_NAME;
2493
2494 return NAME;
2495 }
2496
2497 /* Like classify_name, but used by the inner loop of the lexer, when a
2498 name might have already been seen. FIRST_NAME is true if the token
2499 in `yylval' is the first component of a name, false otherwise. If
2500 this function returns NAME, it might not have updated `yylval'.
2501 This is ok because the caller only cares about TYPENAME. */
2502 static int
2503 classify_inner_name (struct block *block, int first_name)
2504 {
2505 struct type *type, *new_type;
2506 char *copy;
2507
2508 if (first_name)
2509 return classify_name (block);
2510
2511 type = check_typedef (yylval.tsym.type);
2512 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
2513 && TYPE_CODE (type) != TYPE_CODE_UNION
2514 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
2515 /* We know the caller won't expect us to update yylval. */
2516 return NAME;
2517
2518 copy = copy_name (yylval.tsym.stoken);
2519 new_type = cp_lookup_nested_type (yylval.tsym.type, copy, block);
2520
2521 if (new_type == NULL)
2522 /* We know the caller won't expect us to update yylval. */
2523 return NAME;
2524
2525 yylval.tsym.type = new_type;
2526 return TYPENAME;
2527 }
2528
2529 /* The outer level of a two-level lexer. This calls the inner lexer
2530 to return tokens. It then either returns these tokens, or
2531 aggregates them into a larger token. This lets us work around a
2532 problem in our parsing approach, where the parser could not
2533 distinguish between qualified names and qualified types at the
2534 right point.
2535
2536 This approach is still not ideal, because it mishandles template
2537 types. See the comment in lex_one_token for an example. However,
2538 this is still an improvement over the earlier approach, and will
2539 suffice until we move to better parsing technology. */
2540 static int
2541 yylex (void)
2542 {
2543 token_and_value current;
2544 int first_was_coloncolon, last_was_coloncolon, first_iter;
2545
2546 if (popping && !VEC_empty (token_and_value, token_fifo))
2547 {
2548 token_and_value tv = *VEC_index (token_and_value, token_fifo, 0);
2549 VEC_ordered_remove (token_and_value, token_fifo, 0);
2550 yylval = tv.value;
2551 return tv.token;
2552 }
2553 popping = 0;
2554
2555 current.token = lex_one_token ();
2556 if (current.token == NAME)
2557 current.token = classify_name (expression_context_block);
2558 if (parse_language->la_language != language_cplus
2559 || (current.token != TYPENAME && current.token != COLONCOLON))
2560 return current.token;
2561
2562 first_was_coloncolon = current.token == COLONCOLON;
2563 last_was_coloncolon = first_was_coloncolon;
2564 obstack_free (&name_obstack, obstack_base (&name_obstack));
2565 if (!last_was_coloncolon)
2566 obstack_grow (&name_obstack, yylval.sval.ptr, yylval.sval.length);
2567 current.value = yylval;
2568 first_iter = 1;
2569 while (1)
2570 {
2571 token_and_value next;
2572
2573 next.token = lex_one_token ();
2574 next.value = yylval;
2575
2576 if (next.token == NAME && last_was_coloncolon)
2577 {
2578 int classification;
2579
2580 classification = classify_inner_name (first_was_coloncolon
2581 ? NULL
2582 : expression_context_block,
2583 first_iter);
2584 /* We keep going until we either run out of names, or until
2585 we have a qualified name which is not a type. */
2586 if (classification != TYPENAME)
2587 {
2588 /* Push the final component and leave the loop. */
2589 VEC_safe_push (token_and_value, token_fifo, &next);
2590 break;
2591 }
2592
2593 /* Update the partial name we are constructing. */
2594 if (!first_iter)
2595 {
2596 /* We don't want to put a leading "::" into the name. */
2597 obstack_grow_str (&name_obstack, "::");
2598 }
2599 obstack_grow (&name_obstack, next.value.sval.ptr,
2600 next.value.sval.length);
2601
2602 yylval.sval.ptr = obstack_base (&name_obstack);
2603 yylval.sval.length = obstack_object_size (&name_obstack);
2604 current.value = yylval;
2605 current.token = classification;
2606
2607 last_was_coloncolon = 0;
2608 }
2609 else if (next.token == COLONCOLON && !last_was_coloncolon)
2610 last_was_coloncolon = 1;
2611 else
2612 {
2613 /* We've reached the end of the name. */
2614 VEC_safe_push (token_and_value, token_fifo, &next);
2615 break;
2616 }
2617
2618 first_iter = 0;
2619 }
2620
2621 popping = 1;
2622
2623 /* If we ended with a "::", insert it too. */
2624 if (last_was_coloncolon)
2625 {
2626 token_and_value cc;
2627 memset (&cc, 0, sizeof (token_and_value));
2628 if (first_was_coloncolon && first_iter)
2629 {
2630 yylval = cc.value;
2631 return COLONCOLON;
2632 }
2633 cc.token = COLONCOLON;
2634 VEC_safe_insert (token_and_value, token_fifo, 0, &cc);
2635 }
2636
2637 yylval = current.value;
2638 yylval.sval.ptr = obstack_copy0 (&expansion_obstack,
2639 yylval.sval.ptr,
2640 yylval.sval.length);
2641 return current.token;
2642 }
2643
2644 int
2645 c_parse (void)
2646 {
2647 int result;
2648 struct cleanup *back_to = make_cleanup (free_current_contents,
2649 &expression_macro_scope);
2650
2651 /* Set up the scope for macro expansion. */
2652 expression_macro_scope = NULL;
2653
2654 if (expression_context_block)
2655 expression_macro_scope
2656 = sal_macro_scope (find_pc_line (expression_context_pc, 0));
2657 else
2658 expression_macro_scope = default_macro_scope ();
2659 if (! expression_macro_scope)
2660 expression_macro_scope = user_macro_scope ();
2661
2662 /* Initialize macro expansion code. */
2663 obstack_init (&expansion_obstack);
2664 gdb_assert (! macro_original_text);
2665 make_cleanup (scan_macro_cleanup, 0);
2666
2667 make_cleanup_restore_integer (&yydebug);
2668 yydebug = parser_debug;
2669
2670 /* Initialize some state used by the lexer. */
2671 last_was_structop = 0;
2672 saw_name_at_eof = 0;
2673
2674 VEC_free (token_and_value, token_fifo);
2675 popping = 0;
2676 obstack_init (&name_obstack);
2677 make_cleanup_obstack_free (&name_obstack);
2678
2679 result = yyparse ();
2680 do_cleanups (back_to);
2681 return result;
2682 }
2683
2684
2685 void
2686 yyerror (char *msg)
2687 {
2688 if (prev_lexptr)
2689 lexptr = prev_lexptr;
2690
2691 error (_("A %s in expression, near `%s'."), (msg ? msg : "error"), lexptr);
2692 }
This page took 0.08777 seconds and 4 git commands to generate.