merge from gcc
[deliverable/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989-2000, 2003-2004, 2006-2012 Free Software
3 Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Parse a C expression from text in a string,
21 and return the result as a struct expression pointer.
22 That structure contains arithmetic operations in reverse polish,
23 with constants represented by operations that are followed by special data.
24 See expression.h for the details of the format.
25 What is important here is that it can be built up sequentially
26 during the process of parsing; the lower levels of the tree always
27 come first in the result.
28
29 Note that malloc's and realloc's in this file are transformed to
30 xmalloc and xrealloc respectively by the same sed command in the
31 makefile that remaps any other malloc/realloc inserted by the parser
32 generator. Doing this with #defines and trying to control the interaction
33 with include files (<malloc.h> and <stdlib.h> for example) just became
34 too messy, particularly when such includes can be inserted at random
35 times by the parser generator. */
36
37 %{
38
39 #include "defs.h"
40 #include "gdb_string.h"
41 #include <ctype.h>
42 #include "expression.h"
43 #include "value.h"
44 #include "parser-defs.h"
45 #include "language.h"
46 #include "c-lang.h"
47 #include "bfd.h" /* Required by objfiles.h. */
48 #include "symfile.h" /* Required by objfiles.h. */
49 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
50 #include "charset.h"
51 #include "block.h"
52 #include "cp-support.h"
53 #include "dfp.h"
54 #include "gdb_assert.h"
55 #include "macroscope.h"
56
57 #define parse_type builtin_type (parse_gdbarch)
58
59 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
60 as well as gratuitiously global symbol names, so we can have multiple
61 yacc generated parsers in gdb. Note that these are only the variables
62 produced by yacc. If other parser generators (bison, byacc, etc) produce
63 additional global names that conflict at link time, then those parser
64 generators need to be fixed instead of adding those names to this list. */
65
66 #define yymaxdepth c_maxdepth
67 #define yyparse c_parse_internal
68 #define yylex c_lex
69 #define yyerror c_error
70 #define yylval c_lval
71 #define yychar c_char
72 #define yydebug c_debug
73 #define yypact c_pact
74 #define yyr1 c_r1
75 #define yyr2 c_r2
76 #define yydef c_def
77 #define yychk c_chk
78 #define yypgo c_pgo
79 #define yyact c_act
80 #define yyexca c_exca
81 #define yyerrflag c_errflag
82 #define yynerrs c_nerrs
83 #define yyps c_ps
84 #define yypv c_pv
85 #define yys c_s
86 #define yy_yys c_yys
87 #define yystate c_state
88 #define yytmp c_tmp
89 #define yyv c_v
90 #define yy_yyv c_yyv
91 #define yyval c_val
92 #define yylloc c_lloc
93 #define yyreds c_reds /* With YYDEBUG defined */
94 #define yytoks c_toks /* With YYDEBUG defined */
95 #define yyname c_name /* With YYDEBUG defined */
96 #define yyrule c_rule /* With YYDEBUG defined */
97 #define yylhs c_yylhs
98 #define yylen c_yylen
99 #define yydefred c_yydefred
100 #define yydgoto c_yydgoto
101 #define yysindex c_yysindex
102 #define yyrindex c_yyrindex
103 #define yygindex c_yygindex
104 #define yytable c_yytable
105 #define yycheck c_yycheck
106
107 #ifndef YYDEBUG
108 #define YYDEBUG 1 /* Default to yydebug support */
109 #endif
110
111 #define YYFPRINTF parser_fprintf
112
113 int yyparse (void);
114
115 static int yylex (void);
116
117 void yyerror (char *);
118
119 %}
120
121 /* Although the yacc "value" of an expression is not used,
122 since the result is stored in the structure being created,
123 other node types do have values. */
124
125 %union
126 {
127 LONGEST lval;
128 struct {
129 LONGEST val;
130 struct type *type;
131 } typed_val_int;
132 struct {
133 DOUBLEST dval;
134 struct type *type;
135 } typed_val_float;
136 struct {
137 gdb_byte val[16];
138 struct type *type;
139 } typed_val_decfloat;
140 struct symbol *sym;
141 struct type *tval;
142 struct stoken sval;
143 struct typed_stoken tsval;
144 struct ttype tsym;
145 struct symtoken ssym;
146 int voidval;
147 struct block *bval;
148 enum exp_opcode opcode;
149 struct internalvar *ivar;
150
151 struct stoken_vector svec;
152 struct type **tvec;
153 int *ivec;
154 }
155
156 %{
157 /* YYSTYPE gets defined by %union */
158 static int parse_number (char *, int, int, YYSTYPE *);
159 static struct stoken operator_stoken (const char *);
160 %}
161
162 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
163 %type <lval> rcurly
164 %type <tval> type typebase
165 %type <tvec> nonempty_typelist
166 /* %type <bval> block */
167
168 /* Fancy type parsing. */
169 %type <voidval> func_mod direct_abs_decl abs_decl
170 %type <tval> ptype
171 %type <lval> array_mod
172
173 %token <typed_val_int> INT
174 %token <typed_val_float> FLOAT
175 %token <typed_val_decfloat> DECFLOAT
176
177 /* Both NAME and TYPENAME tokens represent symbols in the input,
178 and both convey their data as strings.
179 But a TYPENAME is a string that happens to be defined as a typedef
180 or builtin type name (such as int or char)
181 and a NAME is any other symbol.
182 Contexts where this distinction is not important can use the
183 nonterminal "name", which matches either NAME or TYPENAME. */
184
185 %token <tsval> STRING
186 %token <tsval> CHAR
187 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
188 %token <ssym> UNKNOWN_CPP_NAME
189 %token <voidval> COMPLETE
190 %token <tsym> TYPENAME
191 %type <sval> name
192 %type <svec> string_exp
193 %type <ssym> name_not_typename
194 %type <tsym> typename
195
196 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
197 but which would parse as a valid number in the current input radix.
198 E.g. "c" when input_radix==16. Depending on the parse, it will be
199 turned into a name or into a number. */
200
201 %token <ssym> NAME_OR_INT
202
203 %token OPERATOR
204 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
205 %token TEMPLATE
206 %token ERROR
207 %token NEW DELETE
208 %type <sval> operator
209 %token REINTERPRET_CAST DYNAMIC_CAST STATIC_CAST CONST_CAST
210 %token ENTRY
211
212 /* Special type cases, put in to allow the parser to distinguish different
213 legal basetypes. */
214 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD
215
216 %token <sval> VARIABLE
217
218 %token <opcode> ASSIGN_MODIFY
219
220 /* C++ */
221 %token TRUEKEYWORD
222 %token FALSEKEYWORD
223
224
225 %left ','
226 %left ABOVE_COMMA
227 %right '=' ASSIGN_MODIFY
228 %right '?'
229 %left OROR
230 %left ANDAND
231 %left '|'
232 %left '^'
233 %left '&'
234 %left EQUAL NOTEQUAL
235 %left '<' '>' LEQ GEQ
236 %left LSH RSH
237 %left '@'
238 %left '+' '-'
239 %left '*' '/' '%'
240 %right UNARY INCREMENT DECREMENT
241 %right ARROW ARROW_STAR '.' DOT_STAR '[' '('
242 %token <ssym> BLOCKNAME
243 %token <bval> FILENAME
244 %type <bval> block
245 %left COLONCOLON
246
247 \f
248 %%
249
250 start : exp1
251 | type_exp
252 ;
253
254 type_exp: type
255 { write_exp_elt_opcode(OP_TYPE);
256 write_exp_elt_type($1);
257 write_exp_elt_opcode(OP_TYPE);}
258 ;
259
260 /* Expressions, including the comma operator. */
261 exp1 : exp
262 | exp1 ',' exp
263 { write_exp_elt_opcode (BINOP_COMMA); }
264 ;
265
266 /* Expressions, not including the comma operator. */
267 exp : '*' exp %prec UNARY
268 { write_exp_elt_opcode (UNOP_IND); }
269 ;
270
271 exp : '&' exp %prec UNARY
272 { write_exp_elt_opcode (UNOP_ADDR); }
273 ;
274
275 exp : '-' exp %prec UNARY
276 { write_exp_elt_opcode (UNOP_NEG); }
277 ;
278
279 exp : '+' exp %prec UNARY
280 { write_exp_elt_opcode (UNOP_PLUS); }
281 ;
282
283 exp : '!' exp %prec UNARY
284 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
285 ;
286
287 exp : '~' exp %prec UNARY
288 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
289 ;
290
291 exp : INCREMENT exp %prec UNARY
292 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
293 ;
294
295 exp : DECREMENT exp %prec UNARY
296 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
297 ;
298
299 exp : exp INCREMENT %prec UNARY
300 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
301 ;
302
303 exp : exp DECREMENT %prec UNARY
304 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
305 ;
306
307 exp : SIZEOF exp %prec UNARY
308 { write_exp_elt_opcode (UNOP_SIZEOF); }
309 ;
310
311 exp : exp ARROW name
312 { write_exp_elt_opcode (STRUCTOP_PTR);
313 write_exp_string ($3);
314 write_exp_elt_opcode (STRUCTOP_PTR); }
315 ;
316
317 exp : exp ARROW name COMPLETE
318 { mark_struct_expression ();
319 write_exp_elt_opcode (STRUCTOP_PTR);
320 write_exp_string ($3);
321 write_exp_elt_opcode (STRUCTOP_PTR); }
322 ;
323
324 exp : exp ARROW COMPLETE
325 { struct stoken s;
326 mark_struct_expression ();
327 write_exp_elt_opcode (STRUCTOP_PTR);
328 s.ptr = "";
329 s.length = 0;
330 write_exp_string (s);
331 write_exp_elt_opcode (STRUCTOP_PTR); }
332 ;
333
334 exp : exp ARROW qualified_name
335 { /* exp->type::name becomes exp->*(&type::name) */
336 /* Note: this doesn't work if name is a
337 static member! FIXME */
338 write_exp_elt_opcode (UNOP_ADDR);
339 write_exp_elt_opcode (STRUCTOP_MPTR); }
340 ;
341
342 exp : exp ARROW_STAR exp
343 { write_exp_elt_opcode (STRUCTOP_MPTR); }
344 ;
345
346 exp : exp '.' name
347 { write_exp_elt_opcode (STRUCTOP_STRUCT);
348 write_exp_string ($3);
349 write_exp_elt_opcode (STRUCTOP_STRUCT); }
350 ;
351
352 exp : exp '.' name COMPLETE
353 { mark_struct_expression ();
354 write_exp_elt_opcode (STRUCTOP_STRUCT);
355 write_exp_string ($3);
356 write_exp_elt_opcode (STRUCTOP_STRUCT); }
357 ;
358
359 exp : exp '.' COMPLETE
360 { struct stoken s;
361 mark_struct_expression ();
362 write_exp_elt_opcode (STRUCTOP_STRUCT);
363 s.ptr = "";
364 s.length = 0;
365 write_exp_string (s);
366 write_exp_elt_opcode (STRUCTOP_STRUCT); }
367 ;
368
369 exp : exp '.' qualified_name
370 { /* exp.type::name becomes exp.*(&type::name) */
371 /* Note: this doesn't work if name is a
372 static member! FIXME */
373 write_exp_elt_opcode (UNOP_ADDR);
374 write_exp_elt_opcode (STRUCTOP_MEMBER); }
375 ;
376
377 exp : exp DOT_STAR exp
378 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
379 ;
380
381 exp : exp '[' exp1 ']'
382 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
383 ;
384
385 exp : exp '('
386 /* This is to save the value of arglist_len
387 being accumulated by an outer function call. */
388 { start_arglist (); }
389 arglist ')' %prec ARROW
390 { write_exp_elt_opcode (OP_FUNCALL);
391 write_exp_elt_longcst ((LONGEST) end_arglist ());
392 write_exp_elt_opcode (OP_FUNCALL); }
393 ;
394
395 exp : UNKNOWN_CPP_NAME '('
396 {
397 /* This could potentially be a an argument defined
398 lookup function (Koenig). */
399 write_exp_elt_opcode (OP_ADL_FUNC);
400 write_exp_elt_block (expression_context_block);
401 write_exp_elt_sym (NULL); /* Placeholder. */
402 write_exp_string ($1.stoken);
403 write_exp_elt_opcode (OP_ADL_FUNC);
404
405 /* This is to save the value of arglist_len
406 being accumulated by an outer function call. */
407
408 start_arglist ();
409 }
410 arglist ')' %prec ARROW
411 {
412 write_exp_elt_opcode (OP_FUNCALL);
413 write_exp_elt_longcst ((LONGEST) end_arglist ());
414 write_exp_elt_opcode (OP_FUNCALL);
415 }
416 ;
417
418 lcurly : '{'
419 { start_arglist (); }
420 ;
421
422 arglist :
423 ;
424
425 arglist : exp
426 { arglist_len = 1; }
427 ;
428
429 arglist : arglist ',' exp %prec ABOVE_COMMA
430 { arglist_len++; }
431 ;
432
433 exp : exp '(' nonempty_typelist ')' const_or_volatile
434 { int i;
435 write_exp_elt_opcode (TYPE_INSTANCE);
436 write_exp_elt_longcst ((LONGEST) $<ivec>3[0]);
437 for (i = 0; i < $<ivec>3[0]; ++i)
438 write_exp_elt_type ($<tvec>3[i + 1]);
439 write_exp_elt_longcst((LONGEST) $<ivec>3[0]);
440 write_exp_elt_opcode (TYPE_INSTANCE);
441 free ($3);
442 }
443 ;
444
445 rcurly : '}'
446 { $$ = end_arglist () - 1; }
447 ;
448 exp : lcurly arglist rcurly %prec ARROW
449 { write_exp_elt_opcode (OP_ARRAY);
450 write_exp_elt_longcst ((LONGEST) 0);
451 write_exp_elt_longcst ((LONGEST) $3);
452 write_exp_elt_opcode (OP_ARRAY); }
453 ;
454
455 exp : lcurly type rcurly exp %prec UNARY
456 { write_exp_elt_opcode (UNOP_MEMVAL);
457 write_exp_elt_type ($2);
458 write_exp_elt_opcode (UNOP_MEMVAL); }
459 ;
460
461 exp : '(' type ')' exp %prec UNARY
462 { write_exp_elt_opcode (UNOP_CAST);
463 write_exp_elt_type ($2);
464 write_exp_elt_opcode (UNOP_CAST); }
465 ;
466
467 exp : '(' exp1 ')'
468 { }
469 ;
470
471 /* Binary operators in order of decreasing precedence. */
472
473 exp : exp '@' exp
474 { write_exp_elt_opcode (BINOP_REPEAT); }
475 ;
476
477 exp : exp '*' exp
478 { write_exp_elt_opcode (BINOP_MUL); }
479 ;
480
481 exp : exp '/' exp
482 { write_exp_elt_opcode (BINOP_DIV); }
483 ;
484
485 exp : exp '%' exp
486 { write_exp_elt_opcode (BINOP_REM); }
487 ;
488
489 exp : exp '+' exp
490 { write_exp_elt_opcode (BINOP_ADD); }
491 ;
492
493 exp : exp '-' exp
494 { write_exp_elt_opcode (BINOP_SUB); }
495 ;
496
497 exp : exp LSH exp
498 { write_exp_elt_opcode (BINOP_LSH); }
499 ;
500
501 exp : exp RSH exp
502 { write_exp_elt_opcode (BINOP_RSH); }
503 ;
504
505 exp : exp EQUAL exp
506 { write_exp_elt_opcode (BINOP_EQUAL); }
507 ;
508
509 exp : exp NOTEQUAL exp
510 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
511 ;
512
513 exp : exp LEQ exp
514 { write_exp_elt_opcode (BINOP_LEQ); }
515 ;
516
517 exp : exp GEQ exp
518 { write_exp_elt_opcode (BINOP_GEQ); }
519 ;
520
521 exp : exp '<' exp
522 { write_exp_elt_opcode (BINOP_LESS); }
523 ;
524
525 exp : exp '>' exp
526 { write_exp_elt_opcode (BINOP_GTR); }
527 ;
528
529 exp : exp '&' exp
530 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
531 ;
532
533 exp : exp '^' exp
534 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
535 ;
536
537 exp : exp '|' exp
538 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
539 ;
540
541 exp : exp ANDAND exp
542 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
543 ;
544
545 exp : exp OROR exp
546 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
547 ;
548
549 exp : exp '?' exp ':' exp %prec '?'
550 { write_exp_elt_opcode (TERNOP_COND); }
551 ;
552
553 exp : exp '=' exp
554 { write_exp_elt_opcode (BINOP_ASSIGN); }
555 ;
556
557 exp : exp ASSIGN_MODIFY exp
558 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
559 write_exp_elt_opcode ($2);
560 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
561 ;
562
563 exp : INT
564 { write_exp_elt_opcode (OP_LONG);
565 write_exp_elt_type ($1.type);
566 write_exp_elt_longcst ((LONGEST)($1.val));
567 write_exp_elt_opcode (OP_LONG); }
568 ;
569
570 exp : CHAR
571 {
572 struct stoken_vector vec;
573 vec.len = 1;
574 vec.tokens = &$1;
575 write_exp_string_vector ($1.type, &vec);
576 }
577 ;
578
579 exp : NAME_OR_INT
580 { YYSTYPE val;
581 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
582 write_exp_elt_opcode (OP_LONG);
583 write_exp_elt_type (val.typed_val_int.type);
584 write_exp_elt_longcst ((LONGEST)val.typed_val_int.val);
585 write_exp_elt_opcode (OP_LONG);
586 }
587 ;
588
589
590 exp : FLOAT
591 { write_exp_elt_opcode (OP_DOUBLE);
592 write_exp_elt_type ($1.type);
593 write_exp_elt_dblcst ($1.dval);
594 write_exp_elt_opcode (OP_DOUBLE); }
595 ;
596
597 exp : DECFLOAT
598 { write_exp_elt_opcode (OP_DECFLOAT);
599 write_exp_elt_type ($1.type);
600 write_exp_elt_decfloatcst ($1.val);
601 write_exp_elt_opcode (OP_DECFLOAT); }
602 ;
603
604 exp : variable
605 ;
606
607 exp : VARIABLE
608 {
609 write_dollar_variable ($1);
610 }
611 ;
612
613 exp : SIZEOF '(' type ')' %prec UNARY
614 { write_exp_elt_opcode (OP_LONG);
615 write_exp_elt_type (lookup_signed_typename
616 (parse_language, parse_gdbarch,
617 "int"));
618 CHECK_TYPEDEF ($3);
619 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
620 write_exp_elt_opcode (OP_LONG); }
621 ;
622
623 exp : REINTERPRET_CAST '<' type '>' '(' exp ')' %prec UNARY
624 { write_exp_elt_opcode (UNOP_REINTERPRET_CAST);
625 write_exp_elt_type ($3);
626 write_exp_elt_opcode (UNOP_REINTERPRET_CAST); }
627 ;
628
629 exp : STATIC_CAST '<' type '>' '(' exp ')' %prec UNARY
630 { write_exp_elt_opcode (UNOP_CAST);
631 write_exp_elt_type ($3);
632 write_exp_elt_opcode (UNOP_CAST); }
633 ;
634
635 exp : DYNAMIC_CAST '<' type '>' '(' exp ')' %prec UNARY
636 { write_exp_elt_opcode (UNOP_DYNAMIC_CAST);
637 write_exp_elt_type ($3);
638 write_exp_elt_opcode (UNOP_DYNAMIC_CAST); }
639 ;
640
641 exp : CONST_CAST '<' type '>' '(' exp ')' %prec UNARY
642 { /* We could do more error checking here, but
643 it doesn't seem worthwhile. */
644 write_exp_elt_opcode (UNOP_CAST);
645 write_exp_elt_type ($3);
646 write_exp_elt_opcode (UNOP_CAST); }
647 ;
648
649 string_exp:
650 STRING
651 {
652 /* We copy the string here, and not in the
653 lexer, to guarantee that we do not leak a
654 string. Note that we follow the
655 NUL-termination convention of the
656 lexer. */
657 struct typed_stoken *vec = XNEW (struct typed_stoken);
658 $$.len = 1;
659 $$.tokens = vec;
660
661 vec->type = $1.type;
662 vec->length = $1.length;
663 vec->ptr = malloc ($1.length + 1);
664 memcpy (vec->ptr, $1.ptr, $1.length + 1);
665 }
666
667 | string_exp STRING
668 {
669 /* Note that we NUL-terminate here, but just
670 for convenience. */
671 char *p;
672 ++$$.len;
673 $$.tokens = realloc ($$.tokens,
674 $$.len * sizeof (struct typed_stoken));
675
676 p = malloc ($2.length + 1);
677 memcpy (p, $2.ptr, $2.length + 1);
678
679 $$.tokens[$$.len - 1].type = $2.type;
680 $$.tokens[$$.len - 1].length = $2.length;
681 $$.tokens[$$.len - 1].ptr = p;
682 }
683 ;
684
685 exp : string_exp
686 {
687 int i;
688 enum c_string_type type = C_STRING;
689
690 for (i = 0; i < $1.len; ++i)
691 {
692 switch ($1.tokens[i].type)
693 {
694 case C_STRING:
695 break;
696 case C_WIDE_STRING:
697 case C_STRING_16:
698 case C_STRING_32:
699 if (type != C_STRING
700 && type != $1.tokens[i].type)
701 error (_("Undefined string concatenation."));
702 type = $1.tokens[i].type;
703 break;
704 default:
705 /* internal error */
706 internal_error (__FILE__, __LINE__,
707 "unrecognized type in string concatenation");
708 }
709 }
710
711 write_exp_string_vector (type, &$1);
712 for (i = 0; i < $1.len; ++i)
713 free ($1.tokens[i].ptr);
714 free ($1.tokens);
715 }
716 ;
717
718 /* C++. */
719 exp : TRUEKEYWORD
720 { write_exp_elt_opcode (OP_LONG);
721 write_exp_elt_type (parse_type->builtin_bool);
722 write_exp_elt_longcst ((LONGEST) 1);
723 write_exp_elt_opcode (OP_LONG); }
724 ;
725
726 exp : FALSEKEYWORD
727 { write_exp_elt_opcode (OP_LONG);
728 write_exp_elt_type (parse_type->builtin_bool);
729 write_exp_elt_longcst ((LONGEST) 0);
730 write_exp_elt_opcode (OP_LONG); }
731 ;
732
733 /* end of C++. */
734
735 block : BLOCKNAME
736 {
737 if ($1.sym)
738 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
739 else
740 error (_("No file or function \"%s\"."),
741 copy_name ($1.stoken));
742 }
743 | FILENAME
744 {
745 $$ = $1;
746 }
747 ;
748
749 block : block COLONCOLON name
750 { struct symbol *tem
751 = lookup_symbol (copy_name ($3), $1,
752 VAR_DOMAIN, (int *) NULL);
753 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
754 error (_("No function \"%s\" in specified context."),
755 copy_name ($3));
756 $$ = SYMBOL_BLOCK_VALUE (tem); }
757 ;
758
759 variable: name_not_typename ENTRY
760 { struct symbol *sym = $1.sym;
761
762 if (sym == NULL || !SYMBOL_IS_ARGUMENT (sym)
763 || !symbol_read_needs_frame (sym))
764 error (_("@entry can be used only for function "
765 "parameters, not for \"%s\""),
766 copy_name ($1.stoken));
767
768 write_exp_elt_opcode (OP_VAR_ENTRY_VALUE);
769 write_exp_elt_sym (sym);
770 write_exp_elt_opcode (OP_VAR_ENTRY_VALUE);
771 }
772 ;
773
774 variable: block COLONCOLON name
775 { struct symbol *sym;
776 sym = lookup_symbol (copy_name ($3), $1,
777 VAR_DOMAIN, (int *) NULL);
778 if (sym == 0)
779 error (_("No symbol \"%s\" in specified context."),
780 copy_name ($3));
781 if (symbol_read_needs_frame (sym))
782 {
783 if (innermost_block == 0
784 || contained_in (block_found,
785 innermost_block))
786 innermost_block = block_found;
787 }
788
789 write_exp_elt_opcode (OP_VAR_VALUE);
790 /* block_found is set by lookup_symbol. */
791 write_exp_elt_block (block_found);
792 write_exp_elt_sym (sym);
793 write_exp_elt_opcode (OP_VAR_VALUE); }
794 ;
795
796 qualified_name: TYPENAME COLONCOLON name
797 {
798 struct type *type = $1.type;
799 CHECK_TYPEDEF (type);
800 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
801 && TYPE_CODE (type) != TYPE_CODE_UNION
802 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
803 error (_("`%s' is not defined as an aggregate type."),
804 TYPE_NAME (type));
805
806 write_exp_elt_opcode (OP_SCOPE);
807 write_exp_elt_type (type);
808 write_exp_string ($3);
809 write_exp_elt_opcode (OP_SCOPE);
810 }
811 | TYPENAME COLONCOLON '~' name
812 {
813 struct type *type = $1.type;
814 struct stoken tmp_token;
815 CHECK_TYPEDEF (type);
816 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
817 && TYPE_CODE (type) != TYPE_CODE_UNION
818 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
819 error (_("`%s' is not defined as an aggregate type."),
820 TYPE_NAME (type));
821
822 tmp_token.ptr = (char*) alloca ($4.length + 2);
823 tmp_token.length = $4.length + 1;
824 tmp_token.ptr[0] = '~';
825 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
826 tmp_token.ptr[tmp_token.length] = 0;
827
828 /* Check for valid destructor name. */
829 destructor_name_p (tmp_token.ptr, $1.type);
830 write_exp_elt_opcode (OP_SCOPE);
831 write_exp_elt_type (type);
832 write_exp_string (tmp_token);
833 write_exp_elt_opcode (OP_SCOPE);
834 }
835 | TYPENAME COLONCOLON name COLONCOLON name
836 {
837 char *copy = copy_name ($3);
838 error (_("No type \"%s\" within class "
839 "or namespace \"%s\"."),
840 copy, TYPE_NAME ($1.type));
841 }
842 ;
843
844 variable: qualified_name
845 | COLONCOLON name_not_typename
846 {
847 char *name = copy_name ($2.stoken);
848 struct symbol *sym;
849 struct minimal_symbol *msymbol;
850
851 sym =
852 lookup_symbol (name, (const struct block *) NULL,
853 VAR_DOMAIN, (int *) NULL);
854 if (sym)
855 {
856 write_exp_elt_opcode (OP_VAR_VALUE);
857 write_exp_elt_block (NULL);
858 write_exp_elt_sym (sym);
859 write_exp_elt_opcode (OP_VAR_VALUE);
860 break;
861 }
862
863 msymbol = lookup_minimal_symbol (name, NULL, NULL);
864 if (msymbol != NULL)
865 write_exp_msymbol (msymbol);
866 else if (!have_full_symbols () && !have_partial_symbols ())
867 error (_("No symbol table is loaded. Use the \"file\" command."));
868 else
869 error (_("No symbol \"%s\" in current context."), name);
870 }
871 ;
872
873 variable: name_not_typename
874 { struct symbol *sym = $1.sym;
875
876 if (sym)
877 {
878 if (symbol_read_needs_frame (sym))
879 {
880 if (innermost_block == 0
881 || contained_in (block_found,
882 innermost_block))
883 innermost_block = block_found;
884 }
885
886 write_exp_elt_opcode (OP_VAR_VALUE);
887 /* We want to use the selected frame, not
888 another more inner frame which happens to
889 be in the same block. */
890 write_exp_elt_block (NULL);
891 write_exp_elt_sym (sym);
892 write_exp_elt_opcode (OP_VAR_VALUE);
893 }
894 else if ($1.is_a_field_of_this)
895 {
896 /* C++: it hangs off of `this'. Must
897 not inadvertently convert from a method call
898 to data ref. */
899 if (innermost_block == 0
900 || contained_in (block_found,
901 innermost_block))
902 innermost_block = block_found;
903 write_exp_elt_opcode (OP_THIS);
904 write_exp_elt_opcode (OP_THIS);
905 write_exp_elt_opcode (STRUCTOP_PTR);
906 write_exp_string ($1.stoken);
907 write_exp_elt_opcode (STRUCTOP_PTR);
908 }
909 else
910 {
911 struct minimal_symbol *msymbol;
912 char *arg = copy_name ($1.stoken);
913
914 msymbol =
915 lookup_minimal_symbol (arg, NULL, NULL);
916 if (msymbol != NULL)
917 write_exp_msymbol (msymbol);
918 else if (!have_full_symbols () && !have_partial_symbols ())
919 error (_("No symbol table is loaded. Use the \"file\" command."));
920 else
921 error (_("No symbol \"%s\" in current context."),
922 copy_name ($1.stoken));
923 }
924 }
925 ;
926
927 space_identifier : '@' NAME
928 { push_type_address_space (copy_name ($2.stoken));
929 push_type (tp_space_identifier);
930 }
931 ;
932
933 const_or_volatile: const_or_volatile_noopt
934 |
935 ;
936
937 cv_with_space_id : const_or_volatile space_identifier const_or_volatile
938 ;
939
940 const_or_volatile_or_space_identifier_noopt: cv_with_space_id
941 | const_or_volatile_noopt
942 ;
943
944 const_or_volatile_or_space_identifier:
945 const_or_volatile_or_space_identifier_noopt
946 |
947 ;
948
949 abs_decl: '*'
950 { push_type (tp_pointer); $$ = 0; }
951 | '*' abs_decl
952 { push_type (tp_pointer); $$ = $2; }
953 | '&'
954 { push_type (tp_reference); $$ = 0; }
955 | '&' abs_decl
956 { push_type (tp_reference); $$ = $2; }
957 | direct_abs_decl
958 ;
959
960 direct_abs_decl: '(' abs_decl ')'
961 { $$ = $2; }
962 | direct_abs_decl array_mod
963 {
964 push_type_int ($2);
965 push_type (tp_array);
966 }
967 | array_mod
968 {
969 push_type_int ($1);
970 push_type (tp_array);
971 $$ = 0;
972 }
973
974 | direct_abs_decl func_mod
975 { push_type (tp_function); }
976 | func_mod
977 { push_type (tp_function); }
978 ;
979
980 array_mod: '[' ']'
981 { $$ = -1; }
982 | '[' INT ']'
983 { $$ = $2.val; }
984 ;
985
986 func_mod: '(' ')'
987 { $$ = 0; }
988 | '(' nonempty_typelist ')'
989 { free ($2); $$ = 0; }
990 ;
991
992 /* We used to try to recognize pointer to member types here, but
993 that didn't work (shift/reduce conflicts meant that these rules never
994 got executed). The problem is that
995 int (foo::bar::baz::bizzle)
996 is a function type but
997 int (foo::bar::baz::bizzle::*)
998 is a pointer to member type. Stroustrup loses again! */
999
1000 type : ptype
1001 ;
1002
1003 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
1004 : TYPENAME
1005 { $$ = $1.type; }
1006 | INT_KEYWORD
1007 { $$ = lookup_signed_typename (parse_language,
1008 parse_gdbarch,
1009 "int"); }
1010 | LONG
1011 { $$ = lookup_signed_typename (parse_language,
1012 parse_gdbarch,
1013 "long"); }
1014 | SHORT
1015 { $$ = lookup_signed_typename (parse_language,
1016 parse_gdbarch,
1017 "short"); }
1018 | LONG INT_KEYWORD
1019 { $$ = lookup_signed_typename (parse_language,
1020 parse_gdbarch,
1021 "long"); }
1022 | LONG SIGNED_KEYWORD INT_KEYWORD
1023 { $$ = lookup_signed_typename (parse_language,
1024 parse_gdbarch,
1025 "long"); }
1026 | LONG SIGNED_KEYWORD
1027 { $$ = lookup_signed_typename (parse_language,
1028 parse_gdbarch,
1029 "long"); }
1030 | SIGNED_KEYWORD LONG INT_KEYWORD
1031 { $$ = lookup_signed_typename (parse_language,
1032 parse_gdbarch,
1033 "long"); }
1034 | UNSIGNED LONG INT_KEYWORD
1035 { $$ = lookup_unsigned_typename (parse_language,
1036 parse_gdbarch,
1037 "long"); }
1038 | LONG UNSIGNED INT_KEYWORD
1039 { $$ = lookup_unsigned_typename (parse_language,
1040 parse_gdbarch,
1041 "long"); }
1042 | LONG UNSIGNED
1043 { $$ = lookup_unsigned_typename (parse_language,
1044 parse_gdbarch,
1045 "long"); }
1046 | LONG LONG
1047 { $$ = lookup_signed_typename (parse_language,
1048 parse_gdbarch,
1049 "long long"); }
1050 | LONG LONG INT_KEYWORD
1051 { $$ = lookup_signed_typename (parse_language,
1052 parse_gdbarch,
1053 "long long"); }
1054 | LONG LONG SIGNED_KEYWORD INT_KEYWORD
1055 { $$ = lookup_signed_typename (parse_language,
1056 parse_gdbarch,
1057 "long long"); }
1058 | LONG LONG SIGNED_KEYWORD
1059 { $$ = lookup_signed_typename (parse_language,
1060 parse_gdbarch,
1061 "long long"); }
1062 | SIGNED_KEYWORD LONG LONG
1063 { $$ = lookup_signed_typename (parse_language,
1064 parse_gdbarch,
1065 "long long"); }
1066 | SIGNED_KEYWORD LONG LONG INT_KEYWORD
1067 { $$ = lookup_signed_typename (parse_language,
1068 parse_gdbarch,
1069 "long long"); }
1070 | UNSIGNED LONG LONG
1071 { $$ = lookup_unsigned_typename (parse_language,
1072 parse_gdbarch,
1073 "long long"); }
1074 | UNSIGNED LONG LONG INT_KEYWORD
1075 { $$ = lookup_unsigned_typename (parse_language,
1076 parse_gdbarch,
1077 "long long"); }
1078 | LONG LONG UNSIGNED
1079 { $$ = lookup_unsigned_typename (parse_language,
1080 parse_gdbarch,
1081 "long long"); }
1082 | LONG LONG UNSIGNED INT_KEYWORD
1083 { $$ = lookup_unsigned_typename (parse_language,
1084 parse_gdbarch,
1085 "long long"); }
1086 | SHORT INT_KEYWORD
1087 { $$ = lookup_signed_typename (parse_language,
1088 parse_gdbarch,
1089 "short"); }
1090 | SHORT SIGNED_KEYWORD INT_KEYWORD
1091 { $$ = lookup_signed_typename (parse_language,
1092 parse_gdbarch,
1093 "short"); }
1094 | SHORT SIGNED_KEYWORD
1095 { $$ = lookup_signed_typename (parse_language,
1096 parse_gdbarch,
1097 "short"); }
1098 | UNSIGNED SHORT INT_KEYWORD
1099 { $$ = lookup_unsigned_typename (parse_language,
1100 parse_gdbarch,
1101 "short"); }
1102 | SHORT UNSIGNED
1103 { $$ = lookup_unsigned_typename (parse_language,
1104 parse_gdbarch,
1105 "short"); }
1106 | SHORT UNSIGNED INT_KEYWORD
1107 { $$ = lookup_unsigned_typename (parse_language,
1108 parse_gdbarch,
1109 "short"); }
1110 | DOUBLE_KEYWORD
1111 { $$ = lookup_typename (parse_language, parse_gdbarch,
1112 "double", (struct block *) NULL,
1113 0); }
1114 | LONG DOUBLE_KEYWORD
1115 { $$ = lookup_typename (parse_language, parse_gdbarch,
1116 "long double",
1117 (struct block *) NULL, 0); }
1118 | STRUCT name
1119 { $$ = lookup_struct (copy_name ($2),
1120 expression_context_block); }
1121 | CLASS name
1122 { $$ = lookup_struct (copy_name ($2),
1123 expression_context_block); }
1124 | UNION name
1125 { $$ = lookup_union (copy_name ($2),
1126 expression_context_block); }
1127 | ENUM name
1128 { $$ = lookup_enum (copy_name ($2),
1129 expression_context_block); }
1130 | UNSIGNED typename
1131 { $$ = lookup_unsigned_typename (parse_language,
1132 parse_gdbarch,
1133 TYPE_NAME($2.type)); }
1134 | UNSIGNED
1135 { $$ = lookup_unsigned_typename (parse_language,
1136 parse_gdbarch,
1137 "int"); }
1138 | SIGNED_KEYWORD typename
1139 { $$ = lookup_signed_typename (parse_language,
1140 parse_gdbarch,
1141 TYPE_NAME($2.type)); }
1142 | SIGNED_KEYWORD
1143 { $$ = lookup_signed_typename (parse_language,
1144 parse_gdbarch,
1145 "int"); }
1146 /* It appears that this rule for templates is never
1147 reduced; template recognition happens by lookahead
1148 in the token processing code in yylex. */
1149 | TEMPLATE name '<' type '>'
1150 { $$ = lookup_template_type(copy_name($2), $4,
1151 expression_context_block);
1152 }
1153 | const_or_volatile_or_space_identifier_noopt typebase
1154 { $$ = follow_types ($2); }
1155 | typebase const_or_volatile_or_space_identifier_noopt
1156 { $$ = follow_types ($1); }
1157 ;
1158
1159 typename: TYPENAME
1160 | INT_KEYWORD
1161 {
1162 $$.stoken.ptr = "int";
1163 $$.stoken.length = 3;
1164 $$.type = lookup_signed_typename (parse_language,
1165 parse_gdbarch,
1166 "int");
1167 }
1168 | LONG
1169 {
1170 $$.stoken.ptr = "long";
1171 $$.stoken.length = 4;
1172 $$.type = lookup_signed_typename (parse_language,
1173 parse_gdbarch,
1174 "long");
1175 }
1176 | SHORT
1177 {
1178 $$.stoken.ptr = "short";
1179 $$.stoken.length = 5;
1180 $$.type = lookup_signed_typename (parse_language,
1181 parse_gdbarch,
1182 "short");
1183 }
1184 ;
1185
1186 nonempty_typelist
1187 : type
1188 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
1189 $<ivec>$[0] = 1; /* Number of types in vector */
1190 $$[1] = $1;
1191 }
1192 | nonempty_typelist ',' type
1193 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
1194 $$ = (struct type **) realloc ((char *) $1, len);
1195 $$[$<ivec>$[0]] = $3;
1196 }
1197 ;
1198
1199 ptype : typebase
1200 | ptype const_or_volatile_or_space_identifier abs_decl const_or_volatile_or_space_identifier
1201 { $$ = follow_types ($1); }
1202 ;
1203
1204 const_and_volatile: CONST_KEYWORD VOLATILE_KEYWORD
1205 | VOLATILE_KEYWORD CONST_KEYWORD
1206 ;
1207
1208 const_or_volatile_noopt: const_and_volatile
1209 { push_type (tp_const);
1210 push_type (tp_volatile);
1211 }
1212 | CONST_KEYWORD
1213 { push_type (tp_const); }
1214 | VOLATILE_KEYWORD
1215 { push_type (tp_volatile); }
1216 ;
1217
1218 operator: OPERATOR NEW
1219 { $$ = operator_stoken (" new"); }
1220 | OPERATOR DELETE
1221 { $$ = operator_stoken (" delete "); }
1222 | OPERATOR NEW '[' ']'
1223 { $$ = operator_stoken (" new[]"); }
1224 | OPERATOR DELETE '[' ']'
1225 { $$ = operator_stoken (" delete[] "); }
1226 | OPERATOR '+'
1227 { $$ = operator_stoken ("+"); }
1228 | OPERATOR '-'
1229 { $$ = operator_stoken ("-"); }
1230 | OPERATOR '*'
1231 { $$ = operator_stoken ("*"); }
1232 | OPERATOR '/'
1233 { $$ = operator_stoken ("/"); }
1234 | OPERATOR '%'
1235 { $$ = operator_stoken ("%"); }
1236 | OPERATOR '^'
1237 { $$ = operator_stoken ("^"); }
1238 | OPERATOR '&'
1239 { $$ = operator_stoken ("&"); }
1240 | OPERATOR '|'
1241 { $$ = operator_stoken ("|"); }
1242 | OPERATOR '~'
1243 { $$ = operator_stoken ("~"); }
1244 | OPERATOR '!'
1245 { $$ = operator_stoken ("!"); }
1246 | OPERATOR '='
1247 { $$ = operator_stoken ("="); }
1248 | OPERATOR '<'
1249 { $$ = operator_stoken ("<"); }
1250 | OPERATOR '>'
1251 { $$ = operator_stoken (">"); }
1252 | OPERATOR ASSIGN_MODIFY
1253 { const char *op = "unknown";
1254 switch ($2)
1255 {
1256 case BINOP_RSH:
1257 op = ">>=";
1258 break;
1259 case BINOP_LSH:
1260 op = "<<=";
1261 break;
1262 case BINOP_ADD:
1263 op = "+=";
1264 break;
1265 case BINOP_SUB:
1266 op = "-=";
1267 break;
1268 case BINOP_MUL:
1269 op = "*=";
1270 break;
1271 case BINOP_DIV:
1272 op = "/=";
1273 break;
1274 case BINOP_REM:
1275 op = "%=";
1276 break;
1277 case BINOP_BITWISE_IOR:
1278 op = "|=";
1279 break;
1280 case BINOP_BITWISE_AND:
1281 op = "&=";
1282 break;
1283 case BINOP_BITWISE_XOR:
1284 op = "^=";
1285 break;
1286 default:
1287 break;
1288 }
1289
1290 $$ = operator_stoken (op);
1291 }
1292 | OPERATOR LSH
1293 { $$ = operator_stoken ("<<"); }
1294 | OPERATOR RSH
1295 { $$ = operator_stoken (">>"); }
1296 | OPERATOR EQUAL
1297 { $$ = operator_stoken ("=="); }
1298 | OPERATOR NOTEQUAL
1299 { $$ = operator_stoken ("!="); }
1300 | OPERATOR LEQ
1301 { $$ = operator_stoken ("<="); }
1302 | OPERATOR GEQ
1303 { $$ = operator_stoken (">="); }
1304 | OPERATOR ANDAND
1305 { $$ = operator_stoken ("&&"); }
1306 | OPERATOR OROR
1307 { $$ = operator_stoken ("||"); }
1308 | OPERATOR INCREMENT
1309 { $$ = operator_stoken ("++"); }
1310 | OPERATOR DECREMENT
1311 { $$ = operator_stoken ("--"); }
1312 | OPERATOR ','
1313 { $$ = operator_stoken (","); }
1314 | OPERATOR ARROW_STAR
1315 { $$ = operator_stoken ("->*"); }
1316 | OPERATOR ARROW
1317 { $$ = operator_stoken ("->"); }
1318 | OPERATOR '(' ')'
1319 { $$ = operator_stoken ("()"); }
1320 | OPERATOR '[' ']'
1321 { $$ = operator_stoken ("[]"); }
1322 | OPERATOR ptype
1323 { char *name;
1324 long length;
1325 struct ui_file *buf = mem_fileopen ();
1326
1327 c_print_type ($2, NULL, buf, -1, 0);
1328 name = ui_file_xstrdup (buf, &length);
1329 ui_file_delete (buf);
1330 $$ = operator_stoken (name);
1331 free (name);
1332 }
1333 ;
1334
1335
1336
1337 name : NAME { $$ = $1.stoken; }
1338 | BLOCKNAME { $$ = $1.stoken; }
1339 | TYPENAME { $$ = $1.stoken; }
1340 | NAME_OR_INT { $$ = $1.stoken; }
1341 | UNKNOWN_CPP_NAME { $$ = $1.stoken; }
1342 | operator { $$ = $1; }
1343 ;
1344
1345 name_not_typename : NAME
1346 | BLOCKNAME
1347 /* These would be useful if name_not_typename was useful, but it is just
1348 a fake for "variable", so these cause reduce/reduce conflicts because
1349 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
1350 =exp) or just an exp. If name_not_typename was ever used in an lvalue
1351 context where only a name could occur, this might be useful.
1352 | NAME_OR_INT
1353 */
1354 | operator
1355 {
1356 $$.stoken = $1;
1357 $$.sym = lookup_symbol ($1.ptr,
1358 expression_context_block,
1359 VAR_DOMAIN,
1360 &$$.is_a_field_of_this);
1361 }
1362 | UNKNOWN_CPP_NAME
1363 ;
1364
1365 %%
1366
1367 /* Returns a stoken of the operator name given by OP (which does not
1368 include the string "operator"). */
1369 static struct stoken
1370 operator_stoken (const char *op)
1371 {
1372 static const char *operator_string = "operator";
1373 struct stoken st = { NULL, 0 };
1374 st.length = strlen (operator_string) + strlen (op);
1375 st.ptr = malloc (st.length + 1);
1376 strcpy (st.ptr, operator_string);
1377 strcat (st.ptr, op);
1378
1379 /* The toplevel (c_parse) will free the memory allocated here. */
1380 make_cleanup (free, st.ptr);
1381 return st;
1382 };
1383
1384 /* Take care of parsing a number (anything that starts with a digit).
1385 Set yylval and return the token type; update lexptr.
1386 LEN is the number of characters in it. */
1387
1388 /*** Needs some error checking for the float case ***/
1389
1390 static int
1391 parse_number (char *p, int len, int parsed_float, YYSTYPE *putithere)
1392 {
1393 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
1394 here, and we do kind of silly things like cast to unsigned. */
1395 LONGEST n = 0;
1396 LONGEST prevn = 0;
1397 ULONGEST un;
1398
1399 int i = 0;
1400 int c;
1401 int base = input_radix;
1402 int unsigned_p = 0;
1403
1404 /* Number of "L" suffixes encountered. */
1405 int long_p = 0;
1406
1407 /* We have found a "L" or "U" suffix. */
1408 int found_suffix = 0;
1409
1410 ULONGEST high_bit;
1411 struct type *signed_type;
1412 struct type *unsigned_type;
1413
1414 if (parsed_float)
1415 {
1416 const char *suffix;
1417 int suffix_len;
1418
1419 /* If it ends at "df", "dd" or "dl", take it as type of decimal floating
1420 point. Return DECFLOAT. */
1421
1422 if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'f')
1423 {
1424 p[len - 2] = '\0';
1425 putithere->typed_val_decfloat.type
1426 = parse_type->builtin_decfloat;
1427 decimal_from_string (putithere->typed_val_decfloat.val, 4,
1428 gdbarch_byte_order (parse_gdbarch), p);
1429 p[len - 2] = 'd';
1430 return DECFLOAT;
1431 }
1432
1433 if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'd')
1434 {
1435 p[len - 2] = '\0';
1436 putithere->typed_val_decfloat.type
1437 = parse_type->builtin_decdouble;
1438 decimal_from_string (putithere->typed_val_decfloat.val, 8,
1439 gdbarch_byte_order (parse_gdbarch), p);
1440 p[len - 2] = 'd';
1441 return DECFLOAT;
1442 }
1443
1444 if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'l')
1445 {
1446 p[len - 2] = '\0';
1447 putithere->typed_val_decfloat.type
1448 = parse_type->builtin_declong;
1449 decimal_from_string (putithere->typed_val_decfloat.val, 16,
1450 gdbarch_byte_order (parse_gdbarch), p);
1451 p[len - 2] = 'd';
1452 return DECFLOAT;
1453 }
1454
1455 if (! parse_c_float (parse_gdbarch, p, len,
1456 &putithere->typed_val_float.dval,
1457 &putithere->typed_val_float.type))
1458 return ERROR;
1459 return FLOAT;
1460 }
1461
1462 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
1463 if (p[0] == '0')
1464 switch (p[1])
1465 {
1466 case 'x':
1467 case 'X':
1468 if (len >= 3)
1469 {
1470 p += 2;
1471 base = 16;
1472 len -= 2;
1473 }
1474 break;
1475
1476 case 'b':
1477 case 'B':
1478 if (len >= 3)
1479 {
1480 p += 2;
1481 base = 2;
1482 len -= 2;
1483 }
1484 break;
1485
1486 case 't':
1487 case 'T':
1488 case 'd':
1489 case 'D':
1490 if (len >= 3)
1491 {
1492 p += 2;
1493 base = 10;
1494 len -= 2;
1495 }
1496 break;
1497
1498 default:
1499 base = 8;
1500 break;
1501 }
1502
1503 while (len-- > 0)
1504 {
1505 c = *p++;
1506 if (c >= 'A' && c <= 'Z')
1507 c += 'a' - 'A';
1508 if (c != 'l' && c != 'u')
1509 n *= base;
1510 if (c >= '0' && c <= '9')
1511 {
1512 if (found_suffix)
1513 return ERROR;
1514 n += i = c - '0';
1515 }
1516 else
1517 {
1518 if (base > 10 && c >= 'a' && c <= 'f')
1519 {
1520 if (found_suffix)
1521 return ERROR;
1522 n += i = c - 'a' + 10;
1523 }
1524 else if (c == 'l')
1525 {
1526 ++long_p;
1527 found_suffix = 1;
1528 }
1529 else if (c == 'u')
1530 {
1531 unsigned_p = 1;
1532 found_suffix = 1;
1533 }
1534 else
1535 return ERROR; /* Char not a digit */
1536 }
1537 if (i >= base)
1538 return ERROR; /* Invalid digit in this base */
1539
1540 /* Portably test for overflow (only works for nonzero values, so make
1541 a second check for zero). FIXME: Can't we just make n and prevn
1542 unsigned and avoid this? */
1543 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1544 unsigned_p = 1; /* Try something unsigned */
1545
1546 /* Portably test for unsigned overflow.
1547 FIXME: This check is wrong; for example it doesn't find overflow
1548 on 0x123456789 when LONGEST is 32 bits. */
1549 if (c != 'l' && c != 'u' && n != 0)
1550 {
1551 if ((unsigned_p && (ULONGEST) prevn >= (ULONGEST) n))
1552 error (_("Numeric constant too large."));
1553 }
1554 prevn = n;
1555 }
1556
1557 /* An integer constant is an int, a long, or a long long. An L
1558 suffix forces it to be long; an LL suffix forces it to be long
1559 long. If not forced to a larger size, it gets the first type of
1560 the above that it fits in. To figure out whether it fits, we
1561 shift it right and see whether anything remains. Note that we
1562 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1563 operation, because many compilers will warn about such a shift
1564 (which always produces a zero result). Sometimes gdbarch_int_bit
1565 or gdbarch_long_bit will be that big, sometimes not. To deal with
1566 the case where it is we just always shift the value more than
1567 once, with fewer bits each time. */
1568
1569 un = (ULONGEST)n >> 2;
1570 if (long_p == 0
1571 && (un >> (gdbarch_int_bit (parse_gdbarch) - 2)) == 0)
1572 {
1573 high_bit = ((ULONGEST)1) << (gdbarch_int_bit (parse_gdbarch) - 1);
1574
1575 /* A large decimal (not hex or octal) constant (between INT_MAX
1576 and UINT_MAX) is a long or unsigned long, according to ANSI,
1577 never an unsigned int, but this code treats it as unsigned
1578 int. This probably should be fixed. GCC gives a warning on
1579 such constants. */
1580
1581 unsigned_type = parse_type->builtin_unsigned_int;
1582 signed_type = parse_type->builtin_int;
1583 }
1584 else if (long_p <= 1
1585 && (un >> (gdbarch_long_bit (parse_gdbarch) - 2)) == 0)
1586 {
1587 high_bit = ((ULONGEST)1) << (gdbarch_long_bit (parse_gdbarch) - 1);
1588 unsigned_type = parse_type->builtin_unsigned_long;
1589 signed_type = parse_type->builtin_long;
1590 }
1591 else
1592 {
1593 int shift;
1594 if (sizeof (ULONGEST) * HOST_CHAR_BIT
1595 < gdbarch_long_long_bit (parse_gdbarch))
1596 /* A long long does not fit in a LONGEST. */
1597 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
1598 else
1599 shift = (gdbarch_long_long_bit (parse_gdbarch) - 1);
1600 high_bit = (ULONGEST) 1 << shift;
1601 unsigned_type = parse_type->builtin_unsigned_long_long;
1602 signed_type = parse_type->builtin_long_long;
1603 }
1604
1605 putithere->typed_val_int.val = n;
1606
1607 /* If the high bit of the worked out type is set then this number
1608 has to be unsigned. */
1609
1610 if (unsigned_p || (n & high_bit))
1611 {
1612 putithere->typed_val_int.type = unsigned_type;
1613 }
1614 else
1615 {
1616 putithere->typed_val_int.type = signed_type;
1617 }
1618
1619 return INT;
1620 }
1621
1622 /* Temporary obstack used for holding strings. */
1623 static struct obstack tempbuf;
1624 static int tempbuf_init;
1625
1626 /* Parse a C escape sequence. The initial backslash of the sequence
1627 is at (*PTR)[-1]. *PTR will be updated to point to just after the
1628 last character of the sequence. If OUTPUT is not NULL, the
1629 translated form of the escape sequence will be written there. If
1630 OUTPUT is NULL, no output is written and the call will only affect
1631 *PTR. If an escape sequence is expressed in target bytes, then the
1632 entire sequence will simply be copied to OUTPUT. Return 1 if any
1633 character was emitted, 0 otherwise. */
1634
1635 int
1636 c_parse_escape (char **ptr, struct obstack *output)
1637 {
1638 char *tokptr = *ptr;
1639 int result = 1;
1640
1641 /* Some escape sequences undergo character set conversion. Those we
1642 translate here. */
1643 switch (*tokptr)
1644 {
1645 /* Hex escapes do not undergo character set conversion, so keep
1646 the escape sequence for later. */
1647 case 'x':
1648 if (output)
1649 obstack_grow_str (output, "\\x");
1650 ++tokptr;
1651 if (!isxdigit (*tokptr))
1652 error (_("\\x escape without a following hex digit"));
1653 while (isxdigit (*tokptr))
1654 {
1655 if (output)
1656 obstack_1grow (output, *tokptr);
1657 ++tokptr;
1658 }
1659 break;
1660
1661 /* Octal escapes do not undergo character set conversion, so
1662 keep the escape sequence for later. */
1663 case '0':
1664 case '1':
1665 case '2':
1666 case '3':
1667 case '4':
1668 case '5':
1669 case '6':
1670 case '7':
1671 {
1672 int i;
1673 if (output)
1674 obstack_grow_str (output, "\\");
1675 for (i = 0;
1676 i < 3 && isdigit (*tokptr) && *tokptr != '8' && *tokptr != '9';
1677 ++i)
1678 {
1679 if (output)
1680 obstack_1grow (output, *tokptr);
1681 ++tokptr;
1682 }
1683 }
1684 break;
1685
1686 /* We handle UCNs later. We could handle them here, but that
1687 would mean a spurious error in the case where the UCN could
1688 be converted to the target charset but not the host
1689 charset. */
1690 case 'u':
1691 case 'U':
1692 {
1693 char c = *tokptr;
1694 int i, len = c == 'U' ? 8 : 4;
1695 if (output)
1696 {
1697 obstack_1grow (output, '\\');
1698 obstack_1grow (output, *tokptr);
1699 }
1700 ++tokptr;
1701 if (!isxdigit (*tokptr))
1702 error (_("\\%c escape without a following hex digit"), c);
1703 for (i = 0; i < len && isxdigit (*tokptr); ++i)
1704 {
1705 if (output)
1706 obstack_1grow (output, *tokptr);
1707 ++tokptr;
1708 }
1709 }
1710 break;
1711
1712 /* We must pass backslash through so that it does not
1713 cause quoting during the second expansion. */
1714 case '\\':
1715 if (output)
1716 obstack_grow_str (output, "\\\\");
1717 ++tokptr;
1718 break;
1719
1720 /* Escapes which undergo conversion. */
1721 case 'a':
1722 if (output)
1723 obstack_1grow (output, '\a');
1724 ++tokptr;
1725 break;
1726 case 'b':
1727 if (output)
1728 obstack_1grow (output, '\b');
1729 ++tokptr;
1730 break;
1731 case 'f':
1732 if (output)
1733 obstack_1grow (output, '\f');
1734 ++tokptr;
1735 break;
1736 case 'n':
1737 if (output)
1738 obstack_1grow (output, '\n');
1739 ++tokptr;
1740 break;
1741 case 'r':
1742 if (output)
1743 obstack_1grow (output, '\r');
1744 ++tokptr;
1745 break;
1746 case 't':
1747 if (output)
1748 obstack_1grow (output, '\t');
1749 ++tokptr;
1750 break;
1751 case 'v':
1752 if (output)
1753 obstack_1grow (output, '\v');
1754 ++tokptr;
1755 break;
1756
1757 /* GCC extension. */
1758 case 'e':
1759 if (output)
1760 obstack_1grow (output, HOST_ESCAPE_CHAR);
1761 ++tokptr;
1762 break;
1763
1764 /* Backslash-newline expands to nothing at all. */
1765 case '\n':
1766 ++tokptr;
1767 result = 0;
1768 break;
1769
1770 /* A few escapes just expand to the character itself. */
1771 case '\'':
1772 case '\"':
1773 case '?':
1774 /* GCC extensions. */
1775 case '(':
1776 case '{':
1777 case '[':
1778 case '%':
1779 /* Unrecognized escapes turn into the character itself. */
1780 default:
1781 if (output)
1782 obstack_1grow (output, *tokptr);
1783 ++tokptr;
1784 break;
1785 }
1786 *ptr = tokptr;
1787 return result;
1788 }
1789
1790 /* Parse a string or character literal from TOKPTR. The string or
1791 character may be wide or unicode. *OUTPTR is set to just after the
1792 end of the literal in the input string. The resulting token is
1793 stored in VALUE. This returns a token value, either STRING or
1794 CHAR, depending on what was parsed. *HOST_CHARS is set to the
1795 number of host characters in the literal. */
1796 static int
1797 parse_string_or_char (char *tokptr, char **outptr, struct typed_stoken *value,
1798 int *host_chars)
1799 {
1800 int quote;
1801 enum c_string_type type;
1802
1803 /* Build the gdb internal form of the input string in tempbuf. Note
1804 that the buffer is null byte terminated *only* for the
1805 convenience of debugging gdb itself and printing the buffer
1806 contents when the buffer contains no embedded nulls. Gdb does
1807 not depend upon the buffer being null byte terminated, it uses
1808 the length string instead. This allows gdb to handle C strings
1809 (as well as strings in other languages) with embedded null
1810 bytes */
1811
1812 if (!tempbuf_init)
1813 tempbuf_init = 1;
1814 else
1815 obstack_free (&tempbuf, NULL);
1816 obstack_init (&tempbuf);
1817
1818 /* Record the string type. */
1819 if (*tokptr == 'L')
1820 {
1821 type = C_WIDE_STRING;
1822 ++tokptr;
1823 }
1824 else if (*tokptr == 'u')
1825 {
1826 type = C_STRING_16;
1827 ++tokptr;
1828 }
1829 else if (*tokptr == 'U')
1830 {
1831 type = C_STRING_32;
1832 ++tokptr;
1833 }
1834 else
1835 type = C_STRING;
1836
1837 /* Skip the quote. */
1838 quote = *tokptr;
1839 if (quote == '\'')
1840 type |= C_CHAR;
1841 ++tokptr;
1842
1843 *host_chars = 0;
1844
1845 while (*tokptr)
1846 {
1847 char c = *tokptr;
1848 if (c == '\\')
1849 {
1850 ++tokptr;
1851 *host_chars += c_parse_escape (&tokptr, &tempbuf);
1852 }
1853 else if (c == quote)
1854 break;
1855 else
1856 {
1857 obstack_1grow (&tempbuf, c);
1858 ++tokptr;
1859 /* FIXME: this does the wrong thing with multi-byte host
1860 characters. We could use mbrlen here, but that would
1861 make "set host-charset" a bit less useful. */
1862 ++*host_chars;
1863 }
1864 }
1865
1866 if (*tokptr != quote)
1867 {
1868 if (quote == '"')
1869 error (_("Unterminated string in expression."));
1870 else
1871 error (_("Unmatched single quote."));
1872 }
1873 ++tokptr;
1874
1875 value->type = type;
1876 value->ptr = obstack_base (&tempbuf);
1877 value->length = obstack_object_size (&tempbuf);
1878
1879 *outptr = tokptr;
1880
1881 return quote == '"' ? STRING : CHAR;
1882 }
1883
1884 struct token
1885 {
1886 char *operator;
1887 int token;
1888 enum exp_opcode opcode;
1889 int cxx_only;
1890 };
1891
1892 static const struct token tokentab3[] =
1893 {
1894 {">>=", ASSIGN_MODIFY, BINOP_RSH, 0},
1895 {"<<=", ASSIGN_MODIFY, BINOP_LSH, 0},
1896 {"->*", ARROW_STAR, BINOP_END, 1}
1897 };
1898
1899 static const struct token tokentab2[] =
1900 {
1901 {"+=", ASSIGN_MODIFY, BINOP_ADD, 0},
1902 {"-=", ASSIGN_MODIFY, BINOP_SUB, 0},
1903 {"*=", ASSIGN_MODIFY, BINOP_MUL, 0},
1904 {"/=", ASSIGN_MODIFY, BINOP_DIV, 0},
1905 {"%=", ASSIGN_MODIFY, BINOP_REM, 0},
1906 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR, 0},
1907 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND, 0},
1908 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR, 0},
1909 {"++", INCREMENT, BINOP_END, 0},
1910 {"--", DECREMENT, BINOP_END, 0},
1911 {"->", ARROW, BINOP_END, 0},
1912 {"&&", ANDAND, BINOP_END, 0},
1913 {"||", OROR, BINOP_END, 0},
1914 /* "::" is *not* only C++: gdb overrides its meaning in several
1915 different ways, e.g., 'filename'::func, function::variable. */
1916 {"::", COLONCOLON, BINOP_END, 0},
1917 {"<<", LSH, BINOP_END, 0},
1918 {">>", RSH, BINOP_END, 0},
1919 {"==", EQUAL, BINOP_END, 0},
1920 {"!=", NOTEQUAL, BINOP_END, 0},
1921 {"<=", LEQ, BINOP_END, 0},
1922 {">=", GEQ, BINOP_END, 0},
1923 {".*", DOT_STAR, BINOP_END, 1}
1924 };
1925
1926 /* Identifier-like tokens. */
1927 static const struct token ident_tokens[] =
1928 {
1929 {"unsigned", UNSIGNED, OP_NULL, 0},
1930 {"template", TEMPLATE, OP_NULL, 1},
1931 {"volatile", VOLATILE_KEYWORD, OP_NULL, 0},
1932 {"struct", STRUCT, OP_NULL, 0},
1933 {"signed", SIGNED_KEYWORD, OP_NULL, 0},
1934 {"sizeof", SIZEOF, OP_NULL, 0},
1935 {"double", DOUBLE_KEYWORD, OP_NULL, 0},
1936 {"false", FALSEKEYWORD, OP_NULL, 1},
1937 {"class", CLASS, OP_NULL, 1},
1938 {"union", UNION, OP_NULL, 0},
1939 {"short", SHORT, OP_NULL, 0},
1940 {"const", CONST_KEYWORD, OP_NULL, 0},
1941 {"enum", ENUM, OP_NULL, 0},
1942 {"long", LONG, OP_NULL, 0},
1943 {"true", TRUEKEYWORD, OP_NULL, 1},
1944 {"int", INT_KEYWORD, OP_NULL, 0},
1945 {"new", NEW, OP_NULL, 1},
1946 {"delete", DELETE, OP_NULL, 1},
1947 {"operator", OPERATOR, OP_NULL, 1},
1948
1949 {"and", ANDAND, BINOP_END, 1},
1950 {"and_eq", ASSIGN_MODIFY, BINOP_BITWISE_AND, 1},
1951 {"bitand", '&', OP_NULL, 1},
1952 {"bitor", '|', OP_NULL, 1},
1953 {"compl", '~', OP_NULL, 1},
1954 {"not", '!', OP_NULL, 1},
1955 {"not_eq", NOTEQUAL, BINOP_END, 1},
1956 {"or", OROR, BINOP_END, 1},
1957 {"or_eq", ASSIGN_MODIFY, BINOP_BITWISE_IOR, 1},
1958 {"xor", '^', OP_NULL, 1},
1959 {"xor_eq", ASSIGN_MODIFY, BINOP_BITWISE_XOR, 1},
1960
1961 {"const_cast", CONST_CAST, OP_NULL, 1 },
1962 {"dynamic_cast", DYNAMIC_CAST, OP_NULL, 1 },
1963 {"static_cast", STATIC_CAST, OP_NULL, 1 },
1964 {"reinterpret_cast", REINTERPRET_CAST, OP_NULL, 1 }
1965 };
1966
1967 /* When we find that lexptr (the global var defined in parse.c) is
1968 pointing at a macro invocation, we expand the invocation, and call
1969 scan_macro_expansion to save the old lexptr here and point lexptr
1970 into the expanded text. When we reach the end of that, we call
1971 end_macro_expansion to pop back to the value we saved here. The
1972 macro expansion code promises to return only fully-expanded text,
1973 so we don't need to "push" more than one level.
1974
1975 This is disgusting, of course. It would be cleaner to do all macro
1976 expansion beforehand, and then hand that to lexptr. But we don't
1977 really know where the expression ends. Remember, in a command like
1978
1979 (gdb) break *ADDRESS if CONDITION
1980
1981 we evaluate ADDRESS in the scope of the current frame, but we
1982 evaluate CONDITION in the scope of the breakpoint's location. So
1983 it's simply wrong to try to macro-expand the whole thing at once. */
1984 static char *macro_original_text;
1985
1986 /* We save all intermediate macro expansions on this obstack for the
1987 duration of a single parse. The expansion text may sometimes have
1988 to live past the end of the expansion, due to yacc lookahead.
1989 Rather than try to be clever about saving the data for a single
1990 token, we simply keep it all and delete it after parsing has
1991 completed. */
1992 static struct obstack expansion_obstack;
1993
1994 static void
1995 scan_macro_expansion (char *expansion)
1996 {
1997 char *copy;
1998
1999 /* We'd better not be trying to push the stack twice. */
2000 gdb_assert (! macro_original_text);
2001
2002 /* Copy to the obstack, and then free the intermediate
2003 expansion. */
2004 copy = obstack_copy0 (&expansion_obstack, expansion, strlen (expansion));
2005 xfree (expansion);
2006
2007 /* Save the old lexptr value, so we can return to it when we're done
2008 parsing the expanded text. */
2009 macro_original_text = lexptr;
2010 lexptr = copy;
2011 }
2012
2013
2014 static int
2015 scanning_macro_expansion (void)
2016 {
2017 return macro_original_text != 0;
2018 }
2019
2020
2021 static void
2022 finished_macro_expansion (void)
2023 {
2024 /* There'd better be something to pop back to. */
2025 gdb_assert (macro_original_text);
2026
2027 /* Pop back to the original text. */
2028 lexptr = macro_original_text;
2029 macro_original_text = 0;
2030 }
2031
2032
2033 static void
2034 scan_macro_cleanup (void *dummy)
2035 {
2036 if (macro_original_text)
2037 finished_macro_expansion ();
2038
2039 obstack_free (&expansion_obstack, NULL);
2040 }
2041
2042 /* Return true iff the token represents a C++ cast operator. */
2043
2044 static int
2045 is_cast_operator (const char *token, int len)
2046 {
2047 return (! strncmp (token, "dynamic_cast", len)
2048 || ! strncmp (token, "static_cast", len)
2049 || ! strncmp (token, "reinterpret_cast", len)
2050 || ! strncmp (token, "const_cast", len));
2051 }
2052
2053 /* The scope used for macro expansion. */
2054 static struct macro_scope *expression_macro_scope;
2055
2056 /* This is set if a NAME token appeared at the very end of the input
2057 string, with no whitespace separating the name from the EOF. This
2058 is used only when parsing to do field name completion. */
2059 static int saw_name_at_eof;
2060
2061 /* This is set if the previously-returned token was a structure
2062 operator -- either '.' or ARROW. This is used only when parsing to
2063 do field name completion. */
2064 static int last_was_structop;
2065
2066 /* Read one token, getting characters through lexptr. */
2067
2068 static int
2069 lex_one_token (void)
2070 {
2071 int c;
2072 int namelen;
2073 unsigned int i;
2074 char *tokstart;
2075 int saw_structop = last_was_structop;
2076 char *copy;
2077
2078 last_was_structop = 0;
2079
2080 retry:
2081
2082 /* Check if this is a macro invocation that we need to expand. */
2083 if (! scanning_macro_expansion ())
2084 {
2085 char *expanded = macro_expand_next (&lexptr,
2086 standard_macro_lookup,
2087 expression_macro_scope);
2088
2089 if (expanded)
2090 scan_macro_expansion (expanded);
2091 }
2092
2093 prev_lexptr = lexptr;
2094
2095 tokstart = lexptr;
2096 /* See if it is a special token of length 3. */
2097 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
2098 if (strncmp (tokstart, tokentab3[i].operator, 3) == 0)
2099 {
2100 if (tokentab3[i].cxx_only
2101 && parse_language->la_language != language_cplus)
2102 break;
2103
2104 lexptr += 3;
2105 yylval.opcode = tokentab3[i].opcode;
2106 return tokentab3[i].token;
2107 }
2108
2109 /* See if it is a special token of length 2. */
2110 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
2111 if (strncmp (tokstart, tokentab2[i].operator, 2) == 0)
2112 {
2113 if (tokentab2[i].cxx_only
2114 && parse_language->la_language != language_cplus)
2115 break;
2116
2117 lexptr += 2;
2118 yylval.opcode = tokentab2[i].opcode;
2119 if (in_parse_field && tokentab2[i].token == ARROW)
2120 last_was_structop = 1;
2121 return tokentab2[i].token;
2122 }
2123
2124 switch (c = *tokstart)
2125 {
2126 case 0:
2127 /* If we were just scanning the result of a macro expansion,
2128 then we need to resume scanning the original text.
2129 If we're parsing for field name completion, and the previous
2130 token allows such completion, return a COMPLETE token.
2131 Otherwise, we were already scanning the original text, and
2132 we're really done. */
2133 if (scanning_macro_expansion ())
2134 {
2135 finished_macro_expansion ();
2136 goto retry;
2137 }
2138 else if (saw_name_at_eof)
2139 {
2140 saw_name_at_eof = 0;
2141 return COMPLETE;
2142 }
2143 else if (saw_structop)
2144 return COMPLETE;
2145 else
2146 return 0;
2147
2148 case ' ':
2149 case '\t':
2150 case '\n':
2151 lexptr++;
2152 goto retry;
2153
2154 case '[':
2155 case '(':
2156 paren_depth++;
2157 lexptr++;
2158 return c;
2159
2160 case ']':
2161 case ')':
2162 if (paren_depth == 0)
2163 return 0;
2164 paren_depth--;
2165 lexptr++;
2166 return c;
2167
2168 case ',':
2169 if (comma_terminates
2170 && paren_depth == 0
2171 && ! scanning_macro_expansion ())
2172 return 0;
2173 lexptr++;
2174 return c;
2175
2176 case '.':
2177 /* Might be a floating point number. */
2178 if (lexptr[1] < '0' || lexptr[1] > '9')
2179 {
2180 if (in_parse_field)
2181 last_was_structop = 1;
2182 goto symbol; /* Nope, must be a symbol. */
2183 }
2184 /* FALL THRU into number case. */
2185
2186 case '0':
2187 case '1':
2188 case '2':
2189 case '3':
2190 case '4':
2191 case '5':
2192 case '6':
2193 case '7':
2194 case '8':
2195 case '9':
2196 {
2197 /* It's a number. */
2198 int got_dot = 0, got_e = 0, toktype;
2199 char *p = tokstart;
2200 int hex = input_radix > 10;
2201
2202 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
2203 {
2204 p += 2;
2205 hex = 1;
2206 }
2207 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
2208 {
2209 p += 2;
2210 hex = 0;
2211 }
2212
2213 for (;; ++p)
2214 {
2215 /* This test includes !hex because 'e' is a valid hex digit
2216 and thus does not indicate a floating point number when
2217 the radix is hex. */
2218 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
2219 got_dot = got_e = 1;
2220 /* This test does not include !hex, because a '.' always indicates
2221 a decimal floating point number regardless of the radix. */
2222 else if (!got_dot && *p == '.')
2223 got_dot = 1;
2224 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
2225 && (*p == '-' || *p == '+'))
2226 /* This is the sign of the exponent, not the end of the
2227 number. */
2228 continue;
2229 /* We will take any letters or digits. parse_number will
2230 complain if past the radix, or if L or U are not final. */
2231 else if ((*p < '0' || *p > '9')
2232 && ((*p < 'a' || *p > 'z')
2233 && (*p < 'A' || *p > 'Z')))
2234 break;
2235 }
2236 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
2237 if (toktype == ERROR)
2238 {
2239 char *err_copy = (char *) alloca (p - tokstart + 1);
2240
2241 memcpy (err_copy, tokstart, p - tokstart);
2242 err_copy[p - tokstart] = 0;
2243 error (_("Invalid number \"%s\"."), err_copy);
2244 }
2245 lexptr = p;
2246 return toktype;
2247 }
2248
2249 case '@':
2250 {
2251 char *p = &tokstart[1];
2252 size_t len = strlen ("entry");
2253
2254 while (isspace (*p))
2255 p++;
2256 if (strncmp (p, "entry", len) == 0 && !isalnum (p[len])
2257 && p[len] != '_')
2258 {
2259 lexptr = &p[len];
2260 return ENTRY;
2261 }
2262 }
2263 /* FALLTHRU */
2264 case '+':
2265 case '-':
2266 case '*':
2267 case '/':
2268 case '%':
2269 case '|':
2270 case '&':
2271 case '^':
2272 case '~':
2273 case '!':
2274 case '<':
2275 case '>':
2276 case '?':
2277 case ':':
2278 case '=':
2279 case '{':
2280 case '}':
2281 symbol:
2282 lexptr++;
2283 return c;
2284
2285 case 'L':
2286 case 'u':
2287 case 'U':
2288 if (tokstart[1] != '"' && tokstart[1] != '\'')
2289 break;
2290 /* Fall through. */
2291 case '\'':
2292 case '"':
2293 {
2294 int host_len;
2295 int result = parse_string_or_char (tokstart, &lexptr, &yylval.tsval,
2296 &host_len);
2297 if (result == CHAR)
2298 {
2299 if (host_len == 0)
2300 error (_("Empty character constant."));
2301 else if (host_len > 2 && c == '\'')
2302 {
2303 ++tokstart;
2304 namelen = lexptr - tokstart - 1;
2305 goto tryname;
2306 }
2307 else if (host_len > 1)
2308 error (_("Invalid character constant."));
2309 }
2310 return result;
2311 }
2312 }
2313
2314 if (!(c == '_' || c == '$'
2315 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
2316 /* We must have come across a bad character (e.g. ';'). */
2317 error (_("Invalid character '%c' in expression."), c);
2318
2319 /* It's a name. See how long it is. */
2320 namelen = 0;
2321 for (c = tokstart[namelen];
2322 (c == '_' || c == '$' || (c >= '0' && c <= '9')
2323 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
2324 {
2325 /* Template parameter lists are part of the name.
2326 FIXME: This mishandles `print $a<4&&$a>3'. */
2327
2328 if (c == '<')
2329 {
2330 if (! is_cast_operator (tokstart, namelen))
2331 {
2332 /* Scan ahead to get rest of the template specification. Note
2333 that we look ahead only when the '<' adjoins non-whitespace
2334 characters; for comparison expressions, e.g. "a < b > c",
2335 there must be spaces before the '<', etc. */
2336
2337 char * p = find_template_name_end (tokstart + namelen);
2338 if (p)
2339 namelen = p - tokstart;
2340 }
2341 break;
2342 }
2343 c = tokstart[++namelen];
2344 }
2345
2346 /* The token "if" terminates the expression and is NOT removed from
2347 the input stream. It doesn't count if it appears in the
2348 expansion of a macro. */
2349 if (namelen == 2
2350 && tokstart[0] == 'i'
2351 && tokstart[1] == 'f'
2352 && ! scanning_macro_expansion ())
2353 {
2354 return 0;
2355 }
2356
2357 /* For the same reason (breakpoint conditions), "thread N"
2358 terminates the expression. "thread" could be an identifier, but
2359 an identifier is never followed by a number without intervening
2360 punctuation. "task" is similar. Handle abbreviations of these,
2361 similarly to breakpoint.c:find_condition_and_thread. */
2362 if (namelen >= 1
2363 && (strncmp (tokstart, "thread", namelen) == 0
2364 || strncmp (tokstart, "task", namelen) == 0)
2365 && (tokstart[namelen] == ' ' || tokstart[namelen] == '\t')
2366 && ! scanning_macro_expansion ())
2367 {
2368 char *p = tokstart + namelen + 1;
2369 while (*p == ' ' || *p == '\t')
2370 p++;
2371 if (*p >= '0' && *p <= '9')
2372 return 0;
2373 }
2374
2375 lexptr += namelen;
2376
2377 tryname:
2378
2379 yylval.sval.ptr = tokstart;
2380 yylval.sval.length = namelen;
2381
2382 /* Catch specific keywords. */
2383 copy = copy_name (yylval.sval);
2384 for (i = 0; i < sizeof ident_tokens / sizeof ident_tokens[0]; i++)
2385 if (strcmp (copy, ident_tokens[i].operator) == 0)
2386 {
2387 if (ident_tokens[i].cxx_only
2388 && parse_language->la_language != language_cplus)
2389 break;
2390
2391 /* It is ok to always set this, even though we don't always
2392 strictly need to. */
2393 yylval.opcode = ident_tokens[i].opcode;
2394 return ident_tokens[i].token;
2395 }
2396
2397 if (*tokstart == '$')
2398 return VARIABLE;
2399
2400 if (in_parse_field && *lexptr == '\0')
2401 saw_name_at_eof = 1;
2402 return NAME;
2403 }
2404
2405 /* An object of this type is pushed on a FIFO by the "outer" lexer. */
2406 typedef struct
2407 {
2408 int token;
2409 YYSTYPE value;
2410 } token_and_value;
2411
2412 DEF_VEC_O (token_and_value);
2413
2414 /* A FIFO of tokens that have been read but not yet returned to the
2415 parser. */
2416 static VEC (token_and_value) *token_fifo;
2417
2418 /* Non-zero if the lexer should return tokens from the FIFO. */
2419 static int popping;
2420
2421 /* Temporary storage for c_lex; this holds symbol names as they are
2422 built up. */
2423 static struct obstack name_obstack;
2424
2425 /* Classify a NAME token. The contents of the token are in `yylval'.
2426 Updates yylval and returns the new token type. BLOCK is the block
2427 in which lookups start; this can be NULL to mean the global
2428 scope. */
2429 static int
2430 classify_name (struct block *block)
2431 {
2432 struct symbol *sym;
2433 char *copy;
2434 int is_a_field_of_this = 0;
2435
2436 copy = copy_name (yylval.sval);
2437
2438 sym = lookup_symbol (copy, block, VAR_DOMAIN,
2439 parse_language->la_language == language_cplus
2440 ? &is_a_field_of_this : (int *) NULL);
2441
2442 if (sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
2443 {
2444 yylval.ssym.sym = sym;
2445 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
2446 return BLOCKNAME;
2447 }
2448 else if (!sym)
2449 {
2450 /* See if it's a file name. */
2451 struct symtab *symtab;
2452
2453 symtab = lookup_symtab (copy);
2454 if (symtab)
2455 {
2456 yylval.bval = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), STATIC_BLOCK);
2457 return FILENAME;
2458 }
2459 }
2460
2461 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
2462 {
2463 yylval.tsym.type = SYMBOL_TYPE (sym);
2464 return TYPENAME;
2465 }
2466
2467 yylval.tsym.type
2468 = language_lookup_primitive_type_by_name (parse_language,
2469 parse_gdbarch, copy);
2470 if (yylval.tsym.type != NULL)
2471 return TYPENAME;
2472
2473 /* Input names that aren't symbols but ARE valid hex numbers, when
2474 the input radix permits them, can be names or numbers depending
2475 on the parse. Note we support radixes > 16 here. */
2476 if (!sym
2477 && ((copy[0] >= 'a' && copy[0] < 'a' + input_radix - 10)
2478 || (copy[0] >= 'A' && copy[0] < 'A' + input_radix - 10)))
2479 {
2480 YYSTYPE newlval; /* Its value is ignored. */
2481 int hextype = parse_number (copy, yylval.sval.length, 0, &newlval);
2482 if (hextype == INT)
2483 {
2484 yylval.ssym.sym = sym;
2485 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
2486 return NAME_OR_INT;
2487 }
2488 }
2489
2490 /* Any other kind of symbol */
2491 yylval.ssym.sym = sym;
2492 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
2493
2494 if (sym == NULL
2495 && parse_language->la_language == language_cplus
2496 && !is_a_field_of_this
2497 && !lookup_minimal_symbol (copy, NULL, NULL))
2498 return UNKNOWN_CPP_NAME;
2499
2500 return NAME;
2501 }
2502
2503 /* Like classify_name, but used by the inner loop of the lexer, when a
2504 name might have already been seen. FIRST_NAME is true if the token
2505 in `yylval' is the first component of a name, false otherwise. If
2506 this function returns NAME, it might not have updated `yylval'.
2507 This is ok because the caller only cares about TYPENAME. */
2508 static int
2509 classify_inner_name (struct block *block, int first_name)
2510 {
2511 struct type *type, *new_type;
2512 char *copy;
2513
2514 if (first_name)
2515 return classify_name (block);
2516
2517 type = check_typedef (yylval.tsym.type);
2518 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
2519 && TYPE_CODE (type) != TYPE_CODE_UNION
2520 && TYPE_CODE (type) != TYPE_CODE_NAMESPACE)
2521 /* We know the caller won't expect us to update yylval. */
2522 return NAME;
2523
2524 copy = copy_name (yylval.tsym.stoken);
2525 new_type = cp_lookup_nested_type (yylval.tsym.type, copy, block);
2526
2527 if (new_type == NULL)
2528 /* We know the caller won't expect us to update yylval. */
2529 return NAME;
2530
2531 yylval.tsym.type = new_type;
2532 return TYPENAME;
2533 }
2534
2535 /* The outer level of a two-level lexer. This calls the inner lexer
2536 to return tokens. It then either returns these tokens, or
2537 aggregates them into a larger token. This lets us work around a
2538 problem in our parsing approach, where the parser could not
2539 distinguish between qualified names and qualified types at the
2540 right point.
2541
2542 This approach is still not ideal, because it mishandles template
2543 types. See the comment in lex_one_token for an example. However,
2544 this is still an improvement over the earlier approach, and will
2545 suffice until we move to better parsing technology. */
2546 static int
2547 yylex (void)
2548 {
2549 token_and_value current;
2550 int first_was_coloncolon, last_was_coloncolon, first_iter;
2551
2552 if (popping && !VEC_empty (token_and_value, token_fifo))
2553 {
2554 token_and_value tv = *VEC_index (token_and_value, token_fifo, 0);
2555 VEC_ordered_remove (token_and_value, token_fifo, 0);
2556 yylval = tv.value;
2557 return tv.token;
2558 }
2559 popping = 0;
2560
2561 current.token = lex_one_token ();
2562 if (current.token == NAME)
2563 current.token = classify_name (expression_context_block);
2564 if (parse_language->la_language != language_cplus
2565 || (current.token != TYPENAME && current.token != COLONCOLON))
2566 return current.token;
2567
2568 first_was_coloncolon = current.token == COLONCOLON;
2569 last_was_coloncolon = first_was_coloncolon;
2570 obstack_free (&name_obstack, obstack_base (&name_obstack));
2571 if (!last_was_coloncolon)
2572 obstack_grow (&name_obstack, yylval.sval.ptr, yylval.sval.length);
2573 current.value = yylval;
2574 first_iter = 1;
2575 while (1)
2576 {
2577 token_and_value next;
2578
2579 next.token = lex_one_token ();
2580 next.value = yylval;
2581
2582 if (next.token == NAME && last_was_coloncolon)
2583 {
2584 int classification;
2585
2586 classification = classify_inner_name (first_was_coloncolon
2587 ? NULL
2588 : expression_context_block,
2589 first_iter);
2590 /* We keep going until we either run out of names, or until
2591 we have a qualified name which is not a type. */
2592 if (classification != TYPENAME)
2593 {
2594 /* Push the final component and leave the loop. */
2595 VEC_safe_push (token_and_value, token_fifo, &next);
2596 break;
2597 }
2598
2599 /* Update the partial name we are constructing. */
2600 if (!first_iter)
2601 {
2602 /* We don't want to put a leading "::" into the name. */
2603 obstack_grow_str (&name_obstack, "::");
2604 }
2605 obstack_grow (&name_obstack, next.value.sval.ptr,
2606 next.value.sval.length);
2607
2608 yylval.sval.ptr = obstack_base (&name_obstack);
2609 yylval.sval.length = obstack_object_size (&name_obstack);
2610 current.value = yylval;
2611 current.token = classification;
2612
2613 last_was_coloncolon = 0;
2614 }
2615 else if (next.token == COLONCOLON && !last_was_coloncolon)
2616 last_was_coloncolon = 1;
2617 else
2618 {
2619 /* We've reached the end of the name. */
2620 VEC_safe_push (token_and_value, token_fifo, &next);
2621 break;
2622 }
2623
2624 first_iter = 0;
2625 }
2626
2627 popping = 1;
2628
2629 /* If we ended with a "::", insert it too. */
2630 if (last_was_coloncolon)
2631 {
2632 token_and_value cc;
2633 memset (&cc, 0, sizeof (token_and_value));
2634 if (first_was_coloncolon && first_iter)
2635 {
2636 yylval = cc.value;
2637 return COLONCOLON;
2638 }
2639 cc.token = COLONCOLON;
2640 VEC_safe_insert (token_and_value, token_fifo, 0, &cc);
2641 }
2642
2643 yylval = current.value;
2644 yylval.sval.ptr = obstack_copy0 (&expansion_obstack,
2645 yylval.sval.ptr,
2646 yylval.sval.length);
2647 return current.token;
2648 }
2649
2650 int
2651 c_parse (void)
2652 {
2653 int result;
2654 struct cleanup *back_to = make_cleanup (free_current_contents,
2655 &expression_macro_scope);
2656
2657 /* Set up the scope for macro expansion. */
2658 expression_macro_scope = NULL;
2659
2660 if (expression_context_block)
2661 expression_macro_scope
2662 = sal_macro_scope (find_pc_line (expression_context_pc, 0));
2663 else
2664 expression_macro_scope = default_macro_scope ();
2665 if (! expression_macro_scope)
2666 expression_macro_scope = user_macro_scope ();
2667
2668 /* Initialize macro expansion code. */
2669 obstack_init (&expansion_obstack);
2670 gdb_assert (! macro_original_text);
2671 make_cleanup (scan_macro_cleanup, 0);
2672
2673 make_cleanup_restore_integer (&yydebug);
2674 yydebug = parser_debug;
2675
2676 /* Initialize some state used by the lexer. */
2677 last_was_structop = 0;
2678 saw_name_at_eof = 0;
2679
2680 VEC_free (token_and_value, token_fifo);
2681 popping = 0;
2682 obstack_init (&name_obstack);
2683 make_cleanup_obstack_free (&name_obstack);
2684
2685 result = yyparse ();
2686 do_cleanups (back_to);
2687 return result;
2688 }
2689
2690
2691 void
2692 yyerror (char *msg)
2693 {
2694 if (prev_lexptr)
2695 lexptr = prev_lexptr;
2696
2697 error (_("A %s in expression, near `%s'."), (msg ? msg : "error"), lexptr);
2698 }
This page took 0.087574 seconds and 4 git commands to generate.