ebc1ca66c7142a7fa14d93a9b23612fdf74b964d
[deliverable/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* Parse a C expression from text in a string,
21 and return the result as a struct expression pointer.
22 That structure contains arithmetic operations in reverse polish,
23 with constants represented by operations that are followed by special data.
24 See expression.h for the details of the format.
25 What is important here is that it can be built up sequentially
26 during the process of parsing; the lower levels of the tree always
27 come first in the result.
28
29 Note that malloc's and realloc's in this file are transformed to
30 xmalloc and xrealloc respectively by the same sed command in the
31 makefile that remaps any other malloc/realloc inserted by the parser
32 generator. Doing this with #defines and trying to control the interaction
33 with include files (<malloc.h> and <stdlib.h> for example) just became
34 too messy, particularly when such includes can be inserted at random
35 times by the parser generator. */
36
37 %{
38
39 #include "defs.h"
40 #include "expression.h"
41 #include "value.h"
42 #include "parser-defs.h"
43 #include "language.h"
44 #include "c-lang.h"
45 #include "bfd.h" /* Required by objfiles.h. */
46 #include "symfile.h" /* Required by objfiles.h. */
47 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
48
49 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
50 as well as gratuitiously global symbol names, so we can have multiple
51 yacc generated parsers in gdb. Note that these are only the variables
52 produced by yacc. If other parser generators (bison, byacc, etc) produce
53 additional global names that conflict at link time, then those parser
54 generators need to be fixed instead of adding those names to this list. */
55
56 #define yymaxdepth c_maxdepth
57 #define yyparse c_parse
58 #define yylex c_lex
59 #define yyerror c_error
60 #define yylval c_lval
61 #define yychar c_char
62 #define yydebug c_debug
63 #define yypact c_pact
64 #define yyr1 c_r1
65 #define yyr2 c_r2
66 #define yydef c_def
67 #define yychk c_chk
68 #define yypgo c_pgo
69 #define yyact c_act
70 #define yyexca c_exca
71 #define yyerrflag c_errflag
72 #define yynerrs c_nerrs
73 #define yyps c_ps
74 #define yypv c_pv
75 #define yys c_s
76 #define yy_yys c_yys
77 #define yystate c_state
78 #define yytmp c_tmp
79 #define yyv c_v
80 #define yy_yyv c_yyv
81 #define yyval c_val
82 #define yylloc c_lloc
83 #define yyreds c_reds /* With YYDEBUG defined */
84 #define yytoks c_toks /* With YYDEBUG defined */
85
86 #ifndef YYDEBUG
87 #define YYDEBUG 0 /* Default to no yydebug support */
88 #endif
89
90 int
91 yyparse PARAMS ((void));
92
93 static int
94 yylex PARAMS ((void));
95
96 void
97 yyerror PARAMS ((char *));
98
99 %}
100
101 /* Although the yacc "value" of an expression is not used,
102 since the result is stored in the structure being created,
103 other node types do have values. */
104
105 %union
106 {
107 LONGEST lval;
108 struct {
109 LONGEST val;
110 struct type *type;
111 } typed_val;
112 double dval;
113 struct symbol *sym;
114 struct type *tval;
115 struct stoken sval;
116 struct ttype tsym;
117 struct symtoken ssym;
118 int voidval;
119 struct block *bval;
120 enum exp_opcode opcode;
121 struct internalvar *ivar;
122
123 struct type **tvec;
124 int *ivec;
125 }
126
127 %{
128 /* YYSTYPE gets defined by %union */
129 static int
130 parse_number PARAMS ((char *, int, int, YYSTYPE *));
131 %}
132
133 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
134 %type <lval> rcurly
135 %type <tval> type typebase
136 %type <tvec> nonempty_typelist
137 /* %type <bval> block */
138
139 /* Fancy type parsing. */
140 %type <voidval> func_mod direct_abs_decl abs_decl
141 %type <tval> ptype
142 %type <lval> array_mod
143
144 %token <typed_val> INT
145 %token <dval> FLOAT
146
147 /* Both NAME and TYPENAME tokens represent symbols in the input,
148 and both convey their data as strings.
149 But a TYPENAME is a string that happens to be defined as a typedef
150 or builtin type name (such as int or char)
151 and a NAME is any other symbol.
152 Contexts where this distinction is not important can use the
153 nonterminal "name", which matches either NAME or TYPENAME. */
154
155 %token <sval> STRING
156 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
157 %token <tsym> TYPENAME
158 %type <sval> name
159 %type <ssym> name_not_typename
160 %type <tsym> typename
161
162 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
163 but which would parse as a valid number in the current input radix.
164 E.g. "c" when input_radix==16. Depending on the parse, it will be
165 turned into a name or into a number. */
166
167 %token <ssym> NAME_OR_INT
168
169 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
170 %token TEMPLATE
171 %token ERROR
172
173 /* Special type cases, put in to allow the parser to distinguish different
174 legal basetypes. */
175 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD
176 %token <lval> LAST REGNAME
177
178 %token <ivar> VARIABLE
179
180 %token <opcode> ASSIGN_MODIFY
181
182 /* C++ */
183 %token THIS
184
185 %left ','
186 %left ABOVE_COMMA
187 %right '=' ASSIGN_MODIFY
188 %right '?'
189 %left OROR
190 %left ANDAND
191 %left '|'
192 %left '^'
193 %left '&'
194 %left EQUAL NOTEQUAL
195 %left '<' '>' LEQ GEQ
196 %left LSH RSH
197 %left '@'
198 %left '+' '-'
199 %left '*' '/' '%'
200 %right UNARY INCREMENT DECREMENT
201 %right ARROW '.' '[' '('
202 %token <ssym> BLOCKNAME
203 %type <bval> block
204 %left COLONCOLON
205
206 \f
207 %%
208
209 start : exp1
210 | type_exp
211 ;
212
213 type_exp: type
214 { write_exp_elt_opcode(OP_TYPE);
215 write_exp_elt_type($1);
216 write_exp_elt_opcode(OP_TYPE);}
217 ;
218
219 /* Expressions, including the comma operator. */
220 exp1 : exp
221 | exp1 ',' exp
222 { write_exp_elt_opcode (BINOP_COMMA); }
223 ;
224
225 /* Expressions, not including the comma operator. */
226 exp : '*' exp %prec UNARY
227 { write_exp_elt_opcode (UNOP_IND); }
228
229 exp : '&' exp %prec UNARY
230 { write_exp_elt_opcode (UNOP_ADDR); }
231
232 exp : '-' exp %prec UNARY
233 { write_exp_elt_opcode (UNOP_NEG); }
234 ;
235
236 exp : '!' exp %prec UNARY
237 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
238 ;
239
240 exp : '~' exp %prec UNARY
241 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
242 ;
243
244 exp : INCREMENT exp %prec UNARY
245 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
246 ;
247
248 exp : DECREMENT exp %prec UNARY
249 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
250 ;
251
252 exp : exp INCREMENT %prec UNARY
253 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
254 ;
255
256 exp : exp DECREMENT %prec UNARY
257 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
258 ;
259
260 exp : SIZEOF exp %prec UNARY
261 { write_exp_elt_opcode (UNOP_SIZEOF); }
262 ;
263
264 exp : exp ARROW name
265 { write_exp_elt_opcode (STRUCTOP_PTR);
266 write_exp_string ($3);
267 write_exp_elt_opcode (STRUCTOP_PTR); }
268 ;
269
270 exp : exp ARROW qualified_name
271 { /* exp->type::name becomes exp->*(&type::name) */
272 /* Note: this doesn't work if name is a
273 static member! FIXME */
274 write_exp_elt_opcode (UNOP_ADDR);
275 write_exp_elt_opcode (STRUCTOP_MPTR); }
276 ;
277 exp : exp ARROW '*' exp
278 { write_exp_elt_opcode (STRUCTOP_MPTR); }
279 ;
280
281 exp : exp '.' name
282 { write_exp_elt_opcode (STRUCTOP_STRUCT);
283 write_exp_string ($3);
284 write_exp_elt_opcode (STRUCTOP_STRUCT); }
285 ;
286
287 exp : exp '.' qualified_name
288 { /* exp.type::name becomes exp.*(&type::name) */
289 /* Note: this doesn't work if name is a
290 static member! FIXME */
291 write_exp_elt_opcode (UNOP_ADDR);
292 write_exp_elt_opcode (STRUCTOP_MEMBER); }
293 ;
294
295 exp : exp '.' '*' exp
296 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
297 ;
298
299 exp : exp '[' exp1 ']'
300 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
301 ;
302
303 exp : exp '('
304 /* This is to save the value of arglist_len
305 being accumulated by an outer function call. */
306 { start_arglist (); }
307 arglist ')' %prec ARROW
308 { write_exp_elt_opcode (OP_FUNCALL);
309 write_exp_elt_longcst ((LONGEST) end_arglist ());
310 write_exp_elt_opcode (OP_FUNCALL); }
311 ;
312
313 lcurly : '{'
314 { start_arglist (); }
315 ;
316
317 arglist :
318 ;
319
320 arglist : exp
321 { arglist_len = 1; }
322 ;
323
324 arglist : arglist ',' exp %prec ABOVE_COMMA
325 { arglist_len++; }
326 ;
327
328 rcurly : '}'
329 { $$ = end_arglist () - 1; }
330 ;
331 exp : lcurly arglist rcurly %prec ARROW
332 { write_exp_elt_opcode (OP_ARRAY);
333 write_exp_elt_longcst ((LONGEST) 0);
334 write_exp_elt_longcst ((LONGEST) $3);
335 write_exp_elt_opcode (OP_ARRAY); }
336 ;
337
338 exp : lcurly type rcurly exp %prec UNARY
339 { write_exp_elt_opcode (UNOP_MEMVAL);
340 write_exp_elt_type ($2);
341 write_exp_elt_opcode (UNOP_MEMVAL); }
342 ;
343
344 exp : '(' type ')' exp %prec UNARY
345 { write_exp_elt_opcode (UNOP_CAST);
346 write_exp_elt_type ($2);
347 write_exp_elt_opcode (UNOP_CAST); }
348 ;
349
350 exp : '(' exp1 ')'
351 { }
352 ;
353
354 /* Binary operators in order of decreasing precedence. */
355
356 exp : exp '@' exp
357 { write_exp_elt_opcode (BINOP_REPEAT); }
358 ;
359
360 exp : exp '*' exp
361 { write_exp_elt_opcode (BINOP_MUL); }
362 ;
363
364 exp : exp '/' exp
365 { write_exp_elt_opcode (BINOP_DIV); }
366 ;
367
368 exp : exp '%' exp
369 { write_exp_elt_opcode (BINOP_REM); }
370 ;
371
372 exp : exp '+' exp
373 { write_exp_elt_opcode (BINOP_ADD); }
374 ;
375
376 exp : exp '-' exp
377 { write_exp_elt_opcode (BINOP_SUB); }
378 ;
379
380 exp : exp LSH exp
381 { write_exp_elt_opcode (BINOP_LSH); }
382 ;
383
384 exp : exp RSH exp
385 { write_exp_elt_opcode (BINOP_RSH); }
386 ;
387
388 exp : exp EQUAL exp
389 { write_exp_elt_opcode (BINOP_EQUAL); }
390 ;
391
392 exp : exp NOTEQUAL exp
393 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
394 ;
395
396 exp : exp LEQ exp
397 { write_exp_elt_opcode (BINOP_LEQ); }
398 ;
399
400 exp : exp GEQ exp
401 { write_exp_elt_opcode (BINOP_GEQ); }
402 ;
403
404 exp : exp '<' exp
405 { write_exp_elt_opcode (BINOP_LESS); }
406 ;
407
408 exp : exp '>' exp
409 { write_exp_elt_opcode (BINOP_GTR); }
410 ;
411
412 exp : exp '&' exp
413 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
414 ;
415
416 exp : exp '^' exp
417 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
418 ;
419
420 exp : exp '|' exp
421 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
422 ;
423
424 exp : exp ANDAND exp
425 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
426 ;
427
428 exp : exp OROR exp
429 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
430 ;
431
432 exp : exp '?' exp ':' exp %prec '?'
433 { write_exp_elt_opcode (TERNOP_COND); }
434 ;
435
436 exp : exp '=' exp
437 { write_exp_elt_opcode (BINOP_ASSIGN); }
438 ;
439
440 exp : exp ASSIGN_MODIFY exp
441 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
442 write_exp_elt_opcode ($2);
443 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
444 ;
445
446 exp : INT
447 { write_exp_elt_opcode (OP_LONG);
448 write_exp_elt_type ($1.type);
449 write_exp_elt_longcst ((LONGEST)($1.val));
450 write_exp_elt_opcode (OP_LONG); }
451 ;
452
453 exp : NAME_OR_INT
454 { YYSTYPE val;
455 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
456 write_exp_elt_opcode (OP_LONG);
457 write_exp_elt_type (val.typed_val.type);
458 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
459 write_exp_elt_opcode (OP_LONG);
460 }
461 ;
462
463
464 exp : FLOAT
465 { write_exp_elt_opcode (OP_DOUBLE);
466 write_exp_elt_type (builtin_type_double);
467 write_exp_elt_dblcst ($1);
468 write_exp_elt_opcode (OP_DOUBLE); }
469 ;
470
471 exp : variable
472 ;
473
474 exp : LAST
475 { write_exp_elt_opcode (OP_LAST);
476 write_exp_elt_longcst ((LONGEST) $1);
477 write_exp_elt_opcode (OP_LAST); }
478 ;
479
480 exp : REGNAME
481 { write_exp_elt_opcode (OP_REGISTER);
482 write_exp_elt_longcst ((LONGEST) $1);
483 write_exp_elt_opcode (OP_REGISTER); }
484 ;
485
486 exp : VARIABLE
487 { write_exp_elt_opcode (OP_INTERNALVAR);
488 write_exp_elt_intern ($1);
489 write_exp_elt_opcode (OP_INTERNALVAR); }
490 ;
491
492 exp : SIZEOF '(' type ')' %prec UNARY
493 { write_exp_elt_opcode (OP_LONG);
494 write_exp_elt_type (builtin_type_int);
495 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
496 write_exp_elt_opcode (OP_LONG); }
497 ;
498
499 exp : STRING
500 { /* C strings are converted into array constants with
501 an explicit null byte added at the end. Thus
502 the array upper bound is the string length.
503 There is no such thing in C as a completely empty
504 string. */
505 char *sp = $1.ptr; int count = $1.length;
506 while (count-- > 0)
507 {
508 write_exp_elt_opcode (OP_LONG);
509 write_exp_elt_type (builtin_type_char);
510 write_exp_elt_longcst ((LONGEST)(*sp++));
511 write_exp_elt_opcode (OP_LONG);
512 }
513 write_exp_elt_opcode (OP_LONG);
514 write_exp_elt_type (builtin_type_char);
515 write_exp_elt_longcst ((LONGEST)'\0');
516 write_exp_elt_opcode (OP_LONG);
517 write_exp_elt_opcode (OP_ARRAY);
518 write_exp_elt_longcst ((LONGEST) 0);
519 write_exp_elt_longcst ((LONGEST) ($1.length));
520 write_exp_elt_opcode (OP_ARRAY); }
521 ;
522
523 /* C++. */
524 exp : THIS
525 { write_exp_elt_opcode (OP_THIS);
526 write_exp_elt_opcode (OP_THIS); }
527 ;
528
529 /* end of C++. */
530
531 block : BLOCKNAME
532 {
533 if ($1.sym != 0)
534 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
535 else
536 {
537 struct symtab *tem =
538 lookup_symtab (copy_name ($1.stoken));
539 if (tem)
540 $$ = BLOCKVECTOR_BLOCK
541 (BLOCKVECTOR (tem), STATIC_BLOCK);
542 else
543 error ("No file or function \"%s\".",
544 copy_name ($1.stoken));
545 }
546 }
547 ;
548
549 block : block COLONCOLON name
550 { struct symbol *tem
551 = lookup_symbol (copy_name ($3), $1,
552 VAR_NAMESPACE, (int *) NULL,
553 (struct symtab **) NULL);
554 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
555 error ("No function \"%s\" in specified context.",
556 copy_name ($3));
557 $$ = SYMBOL_BLOCK_VALUE (tem); }
558 ;
559
560 variable: block COLONCOLON name
561 { struct symbol *sym;
562 sym = lookup_symbol (copy_name ($3), $1,
563 VAR_NAMESPACE, (int *) NULL,
564 (struct symtab **) NULL);
565 if (sym == 0)
566 error ("No symbol \"%s\" in specified context.",
567 copy_name ($3));
568
569 write_exp_elt_opcode (OP_VAR_VALUE);
570 /* block_found is set by lookup_symbol. */
571 write_exp_elt_block (block_found);
572 write_exp_elt_sym (sym);
573 write_exp_elt_opcode (OP_VAR_VALUE); }
574 ;
575
576 qualified_name: typebase COLONCOLON name
577 {
578 struct type *type = $1;
579 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
580 && TYPE_CODE (type) != TYPE_CODE_UNION)
581 error ("`%s' is not defined as an aggregate type.",
582 TYPE_NAME (type));
583
584 write_exp_elt_opcode (OP_SCOPE);
585 write_exp_elt_type (type);
586 write_exp_string ($3);
587 write_exp_elt_opcode (OP_SCOPE);
588 }
589 | typebase COLONCOLON '~' name
590 {
591 struct type *type = $1;
592 struct stoken tmp_token;
593 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
594 && TYPE_CODE (type) != TYPE_CODE_UNION)
595 error ("`%s' is not defined as an aggregate type.",
596 TYPE_NAME (type));
597
598 if (!STREQ (type_name_no_tag (type), $4.ptr))
599 error ("invalid destructor `%s::~%s'",
600 type_name_no_tag (type), $4.ptr);
601
602 tmp_token.ptr = (char*) alloca ($4.length + 2);
603 tmp_token.length = $4.length + 1;
604 tmp_token.ptr[0] = '~';
605 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
606 tmp_token.ptr[tmp_token.length] = 0;
607 write_exp_elt_opcode (OP_SCOPE);
608 write_exp_elt_type (type);
609 write_exp_string (tmp_token);
610 write_exp_elt_opcode (OP_SCOPE);
611 }
612 ;
613
614 variable: qualified_name
615 | COLONCOLON name
616 {
617 char *name = copy_name ($2);
618 struct symbol *sym;
619 struct minimal_symbol *msymbol;
620
621 sym =
622 lookup_symbol (name, (const struct block *) NULL,
623 VAR_NAMESPACE, (int *) NULL,
624 (struct symtab **) NULL);
625 if (sym)
626 {
627 write_exp_elt_opcode (OP_VAR_VALUE);
628 write_exp_elt_block (NULL);
629 write_exp_elt_sym (sym);
630 write_exp_elt_opcode (OP_VAR_VALUE);
631 break;
632 }
633
634 msymbol = lookup_minimal_symbol (name,
635 (struct objfile *) NULL);
636 if (msymbol != NULL)
637 {
638 write_exp_msymbol (msymbol,
639 lookup_function_type (builtin_type_int),
640 builtin_type_int);
641 }
642 else
643 if (!have_full_symbols () && !have_partial_symbols ())
644 error ("No symbol table is loaded. Use the \"file\" command.");
645 else
646 error ("No symbol \"%s\" in current context.", name);
647 }
648 ;
649
650 variable: name_not_typename
651 { struct symbol *sym = $1.sym;
652
653 if (sym)
654 {
655 if (symbol_read_needs_frame (sym))
656 {
657 if (innermost_block == 0 ||
658 contained_in (block_found,
659 innermost_block))
660 innermost_block = block_found;
661 }
662
663 write_exp_elt_opcode (OP_VAR_VALUE);
664 /* We want to use the selected frame, not
665 another more inner frame which happens to
666 be in the same block. */
667 write_exp_elt_block (NULL);
668 write_exp_elt_sym (sym);
669 write_exp_elt_opcode (OP_VAR_VALUE);
670 }
671 else if ($1.is_a_field_of_this)
672 {
673 /* C++: it hangs off of `this'. Must
674 not inadvertently convert from a method call
675 to data ref. */
676 if (innermost_block == 0 ||
677 contained_in (block_found, innermost_block))
678 innermost_block = block_found;
679 write_exp_elt_opcode (OP_THIS);
680 write_exp_elt_opcode (OP_THIS);
681 write_exp_elt_opcode (STRUCTOP_PTR);
682 write_exp_string ($1.stoken);
683 write_exp_elt_opcode (STRUCTOP_PTR);
684 }
685 else
686 {
687 struct minimal_symbol *msymbol;
688 register char *arg = copy_name ($1.stoken);
689
690 msymbol = lookup_minimal_symbol (arg,
691 (struct objfile *) NULL);
692 if (msymbol != NULL)
693 {
694 write_exp_msymbol (msymbol,
695 lookup_function_type (builtin_type_int),
696 builtin_type_int);
697 }
698 else if (!have_full_symbols () && !have_partial_symbols ())
699 error ("No symbol table is loaded. Use the \"file\" command.");
700 else
701 error ("No symbol \"%s\" in current context.",
702 copy_name ($1.stoken));
703 }
704 }
705 ;
706
707
708 ptype : typebase
709 /* "const" and "volatile" are curently ignored. A type qualifier
710 before the type is currently handled in the typebase rule.
711 The reason for recognizing these here (shift/reduce conflicts)
712 might be obsolete now that some pointer to member rules have
713 been deleted. */
714 | typebase CONST_KEYWORD
715 | typebase VOLATILE_KEYWORD
716 | typebase abs_decl
717 { $$ = follow_types ($1); }
718 | typebase CONST_KEYWORD abs_decl
719 { $$ = follow_types ($1); }
720 | typebase VOLATILE_KEYWORD abs_decl
721 { $$ = follow_types ($1); }
722 ;
723
724 abs_decl: '*'
725 { push_type (tp_pointer); $$ = 0; }
726 | '*' abs_decl
727 { push_type (tp_pointer); $$ = $2; }
728 | '&'
729 { push_type (tp_reference); $$ = 0; }
730 | '&' abs_decl
731 { push_type (tp_reference); $$ = $2; }
732 | direct_abs_decl
733 ;
734
735 direct_abs_decl: '(' abs_decl ')'
736 { $$ = $2; }
737 | direct_abs_decl array_mod
738 {
739 push_type_int ($2);
740 push_type (tp_array);
741 }
742 | array_mod
743 {
744 push_type_int ($1);
745 push_type (tp_array);
746 $$ = 0;
747 }
748
749 | direct_abs_decl func_mod
750 { push_type (tp_function); }
751 | func_mod
752 { push_type (tp_function); }
753 ;
754
755 array_mod: '[' ']'
756 { $$ = -1; }
757 | '[' INT ']'
758 { $$ = $2.val; }
759 ;
760
761 func_mod: '(' ')'
762 { $$ = 0; }
763 | '(' nonempty_typelist ')'
764 { free ((PTR)$2); $$ = 0; }
765 ;
766
767 /* We used to try to recognize more pointer to member types here, but
768 that didn't work (shift/reduce conflicts meant that these rules never
769 got executed). The problem is that
770 int (foo::bar::baz::bizzle)
771 is a function type but
772 int (foo::bar::baz::bizzle::*)
773 is a pointer to member type. Stroustrup loses again! */
774
775 type : ptype
776 | typebase COLONCOLON '*'
777 { $$ = lookup_member_type (builtin_type_int, $1); }
778 ;
779
780 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
781 : TYPENAME
782 { $$ = $1.type; }
783 | INT_KEYWORD
784 { $$ = builtin_type_int; }
785 | LONG
786 { $$ = builtin_type_long; }
787 | SHORT
788 { $$ = builtin_type_short; }
789 | LONG INT_KEYWORD
790 { $$ = builtin_type_long; }
791 | UNSIGNED LONG INT_KEYWORD
792 { $$ = builtin_type_unsigned_long; }
793 | LONG LONG
794 { $$ = builtin_type_long_long; }
795 | LONG LONG INT_KEYWORD
796 { $$ = builtin_type_long_long; }
797 | UNSIGNED LONG LONG
798 { $$ = builtin_type_unsigned_long_long; }
799 | UNSIGNED LONG LONG INT_KEYWORD
800 { $$ = builtin_type_unsigned_long_long; }
801 | SHORT INT_KEYWORD
802 { $$ = builtin_type_short; }
803 | UNSIGNED SHORT INT_KEYWORD
804 { $$ = builtin_type_unsigned_short; }
805 | STRUCT name
806 { $$ = lookup_struct (copy_name ($2),
807 expression_context_block); }
808 | CLASS name
809 { $$ = lookup_struct (copy_name ($2),
810 expression_context_block); }
811 | UNION name
812 { $$ = lookup_union (copy_name ($2),
813 expression_context_block); }
814 | ENUM name
815 { $$ = lookup_enum (copy_name ($2),
816 expression_context_block); }
817 | UNSIGNED typename
818 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
819 | UNSIGNED
820 { $$ = builtin_type_unsigned_int; }
821 | SIGNED_KEYWORD typename
822 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
823 | SIGNED_KEYWORD
824 { $$ = builtin_type_int; }
825 | TEMPLATE name '<' type '>'
826 { $$ = lookup_template_type(copy_name($2), $4,
827 expression_context_block);
828 }
829 /* "const" and "volatile" are curently ignored. A type qualifier
830 after the type is handled in the ptype rule. I think these could
831 be too. */
832 | CONST_KEYWORD typebase { $$ = $2; }
833 | VOLATILE_KEYWORD typebase { $$ = $2; }
834 ;
835
836 typename: TYPENAME
837 | INT_KEYWORD
838 {
839 $$.stoken.ptr = "int";
840 $$.stoken.length = 3;
841 $$.type = builtin_type_int;
842 }
843 | LONG
844 {
845 $$.stoken.ptr = "long";
846 $$.stoken.length = 4;
847 $$.type = builtin_type_long;
848 }
849 | SHORT
850 {
851 $$.stoken.ptr = "short";
852 $$.stoken.length = 5;
853 $$.type = builtin_type_short;
854 }
855 ;
856
857 nonempty_typelist
858 : type
859 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
860 $<ivec>$[0] = 1; /* Number of types in vector */
861 $$[1] = $1;
862 }
863 | nonempty_typelist ',' type
864 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
865 $$ = (struct type **) realloc ((char *) $1, len);
866 $$[$<ivec>$[0]] = $3;
867 }
868 ;
869
870 name : NAME { $$ = $1.stoken; }
871 | BLOCKNAME { $$ = $1.stoken; }
872 | TYPENAME { $$ = $1.stoken; }
873 | NAME_OR_INT { $$ = $1.stoken; }
874 ;
875
876 name_not_typename : NAME
877 | BLOCKNAME
878 /* These would be useful if name_not_typename was useful, but it is just
879 a fake for "variable", so these cause reduce/reduce conflicts because
880 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
881 =exp) or just an exp. If name_not_typename was ever used in an lvalue
882 context where only a name could occur, this might be useful.
883 | NAME_OR_INT
884 */
885 ;
886
887 %%
888
889 /* Take care of parsing a number (anything that starts with a digit).
890 Set yylval and return the token type; update lexptr.
891 LEN is the number of characters in it. */
892
893 /*** Needs some error checking for the float case ***/
894
895 static int
896 parse_number (p, len, parsed_float, putithere)
897 register char *p;
898 register int len;
899 int parsed_float;
900 YYSTYPE *putithere;
901 {
902 register LONGEST n = 0;
903 register LONGEST prevn = 0;
904 register int i = 0;
905 register int c;
906 register int base = input_radix;
907 int unsigned_p = 0;
908 int long_p = 0;
909 unsigned LONGEST high_bit;
910 struct type *signed_type;
911 struct type *unsigned_type;
912
913 if (parsed_float)
914 {
915 /* It's a float since it contains a point or an exponent. */
916 putithere->dval = atof (p);
917 return FLOAT;
918 }
919
920 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
921 if (p[0] == '0')
922 switch (p[1])
923 {
924 case 'x':
925 case 'X':
926 if (len >= 3)
927 {
928 p += 2;
929 base = 16;
930 len -= 2;
931 }
932 break;
933
934 case 't':
935 case 'T':
936 case 'd':
937 case 'D':
938 if (len >= 3)
939 {
940 p += 2;
941 base = 10;
942 len -= 2;
943 }
944 break;
945
946 default:
947 base = 8;
948 break;
949 }
950
951 while (len-- > 0)
952 {
953 c = *p++;
954 if (c >= 'A' && c <= 'Z')
955 c += 'a' - 'A';
956 if (c != 'l' && c != 'u')
957 n *= base;
958 if (c >= '0' && c <= '9')
959 n += i = c - '0';
960 else
961 {
962 if (base > 10 && c >= 'a' && c <= 'f')
963 n += i = c - 'a' + 10;
964 else if (len == 0 && c == 'l')
965 long_p = 1;
966 else if (len == 0 && c == 'u')
967 unsigned_p = 1;
968 else
969 return ERROR; /* Char not a digit */
970 }
971 if (i >= base)
972 return ERROR; /* Invalid digit in this base */
973
974 /* Portably test for overflow (only works for nonzero values, so make
975 a second check for zero). */
976 if((prevn >= n) && n != 0)
977 unsigned_p=1; /* Try something unsigned */
978 /* If range checking enabled, portably test for unsigned overflow. */
979 if(RANGE_CHECK && n!=0)
980 {
981 if((unsigned_p && (unsigned)prevn >= (unsigned)n))
982 range_error("Overflow on numeric constant.");
983 }
984 prevn=n;
985 }
986
987 /* If the number is too big to be an int, or it's got an l suffix
988 then it's a long. Work out if this has to be a long by
989 shifting right and and seeing if anything remains, and the
990 target int size is different to the target long size.
991
992 In the expression below, we could have tested
993 (n >> TARGET_INT_BIT)
994 to see if it was zero,
995 but too many compilers warn about that, when ints and longs
996 are the same size. So we shift it twice, with fewer bits
997 each time, for the same result. */
998
999 if ( (TARGET_INT_BIT != TARGET_LONG_BIT
1000 && ((n >> 2) >> (TARGET_INT_BIT-2))) /* Avoid shift warning */
1001 || long_p)
1002 {
1003 high_bit = ((unsigned LONGEST)1) << (TARGET_LONG_BIT-1);
1004 unsigned_type = builtin_type_unsigned_long;
1005 signed_type = builtin_type_long;
1006 }
1007 else
1008 {
1009 high_bit = ((unsigned LONGEST)1) << (TARGET_INT_BIT-1);
1010 unsigned_type = builtin_type_unsigned_int;
1011 signed_type = builtin_type_int;
1012 }
1013
1014 putithere->typed_val.val = n;
1015
1016 /* If the high bit of the worked out type is set then this number
1017 has to be unsigned. */
1018
1019 if (unsigned_p || (n & high_bit))
1020 {
1021 putithere->typed_val.type = unsigned_type;
1022 }
1023 else
1024 {
1025 putithere->typed_val.type = signed_type;
1026 }
1027
1028 return INT;
1029 }
1030
1031 struct token
1032 {
1033 char *operator;
1034 int token;
1035 enum exp_opcode opcode;
1036 };
1037
1038 static const struct token tokentab3[] =
1039 {
1040 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1041 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1042 };
1043
1044 static const struct token tokentab2[] =
1045 {
1046 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1047 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1048 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1049 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1050 {"%=", ASSIGN_MODIFY, BINOP_REM},
1051 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1052 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1053 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1054 {"++", INCREMENT, BINOP_END},
1055 {"--", DECREMENT, BINOP_END},
1056 {"->", ARROW, BINOP_END},
1057 {"&&", ANDAND, BINOP_END},
1058 {"||", OROR, BINOP_END},
1059 {"::", COLONCOLON, BINOP_END},
1060 {"<<", LSH, BINOP_END},
1061 {">>", RSH, BINOP_END},
1062 {"==", EQUAL, BINOP_END},
1063 {"!=", NOTEQUAL, BINOP_END},
1064 {"<=", LEQ, BINOP_END},
1065 {">=", GEQ, BINOP_END}
1066 };
1067
1068 /* Read one token, getting characters through lexptr. */
1069
1070 static int
1071 yylex ()
1072 {
1073 int c;
1074 int namelen;
1075 unsigned int i;
1076 char *tokstart;
1077 char *tokptr;
1078 int tempbufindex;
1079 static char *tempbuf;
1080 static int tempbufsize;
1081
1082 retry:
1083
1084 tokstart = lexptr;
1085 /* See if it is a special token of length 3. */
1086 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1087 if (STREQN (tokstart, tokentab3[i].operator, 3))
1088 {
1089 lexptr += 3;
1090 yylval.opcode = tokentab3[i].opcode;
1091 return tokentab3[i].token;
1092 }
1093
1094 /* See if it is a special token of length 2. */
1095 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1096 if (STREQN (tokstart, tokentab2[i].operator, 2))
1097 {
1098 lexptr += 2;
1099 yylval.opcode = tokentab2[i].opcode;
1100 return tokentab2[i].token;
1101 }
1102
1103 switch (c = *tokstart)
1104 {
1105 case 0:
1106 return 0;
1107
1108 case ' ':
1109 case '\t':
1110 case '\n':
1111 lexptr++;
1112 goto retry;
1113
1114 case '\'':
1115 /* We either have a character constant ('0' or '\177' for example)
1116 or we have a quoted symbol reference ('foo(int,int)' in C++
1117 for example). */
1118 lexptr++;
1119 c = *lexptr++;
1120 if (c == '\\')
1121 c = parse_escape (&lexptr);
1122
1123 yylval.typed_val.val = c;
1124 yylval.typed_val.type = builtin_type_char;
1125
1126 c = *lexptr++;
1127 if (c != '\'')
1128 {
1129 namelen = skip_quoted (tokstart) - tokstart;
1130 if (namelen > 2)
1131 {
1132 lexptr = tokstart + namelen;
1133 if (lexptr[-1] != '\'')
1134 error ("Unmatched single quote.");
1135 namelen -= 2;
1136 tokstart++;
1137 goto tryname;
1138 }
1139 error ("Invalid character constant.");
1140 }
1141 return INT;
1142
1143 case '(':
1144 paren_depth++;
1145 lexptr++;
1146 return c;
1147
1148 case ')':
1149 if (paren_depth == 0)
1150 return 0;
1151 paren_depth--;
1152 lexptr++;
1153 return c;
1154
1155 case ',':
1156 if (comma_terminates && paren_depth == 0)
1157 return 0;
1158 lexptr++;
1159 return c;
1160
1161 case '.':
1162 /* Might be a floating point number. */
1163 if (lexptr[1] < '0' || lexptr[1] > '9')
1164 goto symbol; /* Nope, must be a symbol. */
1165 /* FALL THRU into number case. */
1166
1167 case '0':
1168 case '1':
1169 case '2':
1170 case '3':
1171 case '4':
1172 case '5':
1173 case '6':
1174 case '7':
1175 case '8':
1176 case '9':
1177 {
1178 /* It's a number. */
1179 int got_dot = 0, got_e = 0, toktype;
1180 register char *p = tokstart;
1181 int hex = input_radix > 10;
1182
1183 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1184 {
1185 p += 2;
1186 hex = 1;
1187 }
1188 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1189 {
1190 p += 2;
1191 hex = 0;
1192 }
1193
1194 for (;; ++p)
1195 {
1196 /* This test includes !hex because 'e' is a valid hex digit
1197 and thus does not indicate a floating point number when
1198 the radix is hex. */
1199 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1200 got_dot = got_e = 1;
1201 /* This test does not include !hex, because a '.' always indicates
1202 a decimal floating point number regardless of the radix. */
1203 else if (!got_dot && *p == '.')
1204 got_dot = 1;
1205 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1206 && (*p == '-' || *p == '+'))
1207 /* This is the sign of the exponent, not the end of the
1208 number. */
1209 continue;
1210 /* We will take any letters or digits. parse_number will
1211 complain if past the radix, or if L or U are not final. */
1212 else if ((*p < '0' || *p > '9')
1213 && ((*p < 'a' || *p > 'z')
1214 && (*p < 'A' || *p > 'Z')))
1215 break;
1216 }
1217 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1218 if (toktype == ERROR)
1219 {
1220 char *err_copy = (char *) alloca (p - tokstart + 1);
1221
1222 memcpy (err_copy, tokstart, p - tokstart);
1223 err_copy[p - tokstart] = 0;
1224 error ("Invalid number \"%s\".", err_copy);
1225 }
1226 lexptr = p;
1227 return toktype;
1228 }
1229
1230 case '+':
1231 case '-':
1232 case '*':
1233 case '/':
1234 case '%':
1235 case '|':
1236 case '&':
1237 case '^':
1238 case '~':
1239 case '!':
1240 case '@':
1241 case '<':
1242 case '>':
1243 case '[':
1244 case ']':
1245 case '?':
1246 case ':':
1247 case '=':
1248 case '{':
1249 case '}':
1250 symbol:
1251 lexptr++;
1252 return c;
1253
1254 case '"':
1255
1256 /* Build the gdb internal form of the input string in tempbuf,
1257 translating any standard C escape forms seen. Note that the
1258 buffer is null byte terminated *only* for the convenience of
1259 debugging gdb itself and printing the buffer contents when
1260 the buffer contains no embedded nulls. Gdb does not depend
1261 upon the buffer being null byte terminated, it uses the length
1262 string instead. This allows gdb to handle C strings (as well
1263 as strings in other languages) with embedded null bytes */
1264
1265 tokptr = ++tokstart;
1266 tempbufindex = 0;
1267
1268 do {
1269 /* Grow the static temp buffer if necessary, including allocating
1270 the first one on demand. */
1271 if (tempbufindex + 1 >= tempbufsize)
1272 {
1273 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1274 }
1275 switch (*tokptr)
1276 {
1277 case '\0':
1278 case '"':
1279 /* Do nothing, loop will terminate. */
1280 break;
1281 case '\\':
1282 tokptr++;
1283 c = parse_escape (&tokptr);
1284 if (c == -1)
1285 {
1286 continue;
1287 }
1288 tempbuf[tempbufindex++] = c;
1289 break;
1290 default:
1291 tempbuf[tempbufindex++] = *tokptr++;
1292 break;
1293 }
1294 } while ((*tokptr != '"') && (*tokptr != '\0'));
1295 if (*tokptr++ != '"')
1296 {
1297 error ("Unterminated string in expression.");
1298 }
1299 tempbuf[tempbufindex] = '\0'; /* See note above */
1300 yylval.sval.ptr = tempbuf;
1301 yylval.sval.length = tempbufindex;
1302 lexptr = tokptr;
1303 return (STRING);
1304 }
1305
1306 if (!(c == '_' || c == '$'
1307 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1308 /* We must have come across a bad character (e.g. ';'). */
1309 error ("Invalid character '%c' in expression.", c);
1310
1311 /* It's a name. See how long it is. */
1312 namelen = 0;
1313 for (c = tokstart[namelen];
1314 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1315 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1316 c = tokstart[++namelen])
1317 ;
1318
1319 /* The token "if" terminates the expression and is NOT
1320 removed from the input stream. */
1321 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1322 {
1323 return 0;
1324 }
1325
1326 lexptr += namelen;
1327
1328 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
1329 and $$digits (equivalent to $<-digits> if you could type that).
1330 Make token type LAST, and put the number (the digits) in yylval. */
1331
1332 tryname:
1333 if (*tokstart == '$')
1334 {
1335 register int negate = 0;
1336 c = 1;
1337 /* Double dollar means negate the number and add -1 as well.
1338 Thus $$ alone means -1. */
1339 if (namelen >= 2 && tokstart[1] == '$')
1340 {
1341 negate = 1;
1342 c = 2;
1343 }
1344 if (c == namelen)
1345 {
1346 /* Just dollars (one or two) */
1347 yylval.lval = - negate;
1348 return LAST;
1349 }
1350 /* Is the rest of the token digits? */
1351 for (; c < namelen; c++)
1352 if (!(tokstart[c] >= '0' && tokstart[c] <= '9'))
1353 break;
1354 if (c == namelen)
1355 {
1356 yylval.lval = atoi (tokstart + 1 + negate);
1357 if (negate)
1358 yylval.lval = - yylval.lval;
1359 return LAST;
1360 }
1361 }
1362
1363 /* Handle tokens that refer to machine registers:
1364 $ followed by a register name. */
1365
1366 if (*tokstart == '$') {
1367 for (c = 0; c < NUM_REGS; c++)
1368 if (namelen - 1 == strlen (reg_names[c])
1369 && STREQN (tokstart + 1, reg_names[c], namelen - 1))
1370 {
1371 yylval.lval = c;
1372 return REGNAME;
1373 }
1374 for (c = 0; c < num_std_regs; c++)
1375 if (namelen - 1 == strlen (std_regs[c].name)
1376 && STREQN (tokstart + 1, std_regs[c].name, namelen - 1))
1377 {
1378 yylval.lval = std_regs[c].regnum;
1379 return REGNAME;
1380 }
1381 }
1382 /* Catch specific keywords. Should be done with a data structure. */
1383 switch (namelen)
1384 {
1385 case 8:
1386 if (STREQN (tokstart, "unsigned", 8))
1387 return UNSIGNED;
1388 if (current_language->la_language == language_cplus
1389 && STREQN (tokstart, "template", 8))
1390 return TEMPLATE;
1391 if (STREQN (tokstart, "volatile", 8))
1392 return VOLATILE_KEYWORD;
1393 break;
1394 case 6:
1395 if (STREQN (tokstart, "struct", 6))
1396 return STRUCT;
1397 if (STREQN (tokstart, "signed", 6))
1398 return SIGNED_KEYWORD;
1399 if (STREQN (tokstart, "sizeof", 6))
1400 return SIZEOF;
1401 break;
1402 case 5:
1403 if (current_language->la_language == language_cplus
1404 && STREQN (tokstart, "class", 5))
1405 return CLASS;
1406 if (STREQN (tokstart, "union", 5))
1407 return UNION;
1408 if (STREQN (tokstart, "short", 5))
1409 return SHORT;
1410 if (STREQN (tokstart, "const", 5))
1411 return CONST_KEYWORD;
1412 break;
1413 case 4:
1414 if (STREQN (tokstart, "enum", 4))
1415 return ENUM;
1416 if (STREQN (tokstart, "long", 4))
1417 return LONG;
1418 if (current_language->la_language == language_cplus
1419 && STREQN (tokstart, "this", 4))
1420 {
1421 static const char this_name[] =
1422 { CPLUS_MARKER, 't', 'h', 'i', 's', '\0' };
1423
1424 if (lookup_symbol (this_name, expression_context_block,
1425 VAR_NAMESPACE, (int *) NULL,
1426 (struct symtab **) NULL))
1427 return THIS;
1428 }
1429 break;
1430 case 3:
1431 if (STREQN (tokstart, "int", 3))
1432 return INT_KEYWORD;
1433 break;
1434 default:
1435 break;
1436 }
1437
1438 yylval.sval.ptr = tokstart;
1439 yylval.sval.length = namelen;
1440
1441 /* Any other names starting in $ are debugger internal variables. */
1442
1443 if (*tokstart == '$')
1444 {
1445 yylval.ivar = lookup_internalvar (copy_name (yylval.sval) + 1);
1446 return VARIABLE;
1447 }
1448
1449 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1450 functions or symtabs. If this is not so, then ...
1451 Use token-type TYPENAME for symbols that happen to be defined
1452 currently as names of types; NAME for other symbols.
1453 The caller is not constrained to care about the distinction. */
1454 {
1455 char *tmp = copy_name (yylval.sval);
1456 struct symbol *sym;
1457 int is_a_field_of_this = 0;
1458 int hextype;
1459
1460 sym = lookup_symbol (tmp, expression_context_block,
1461 VAR_NAMESPACE,
1462 current_language->la_language == language_cplus
1463 ? &is_a_field_of_this : (int *) NULL,
1464 (struct symtab **) NULL);
1465 /* Call lookup_symtab, not lookup_partial_symtab, in case there are
1466 no psymtabs (coff, xcoff, or some future change to blow away the
1467 psymtabs once once symbols are read). */
1468 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
1469 lookup_symtab (tmp))
1470 {
1471 yylval.ssym.sym = sym;
1472 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1473 return BLOCKNAME;
1474 }
1475 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1476 {
1477 #if 0
1478 /* In "A::x", if x is a member function of A and there happens
1479 to be a type (nested or not, since the stabs don't make that
1480 distinction) named x, then this code incorrectly thinks we
1481 are dealing with nested types rather than a member function. */
1482
1483 char *p;
1484 char *namestart;
1485 struct symbol *best_sym;
1486
1487 /* Look ahead to detect nested types. This probably should be
1488 done in the grammar, but trying seemed to introduce a lot
1489 of shift/reduce and reduce/reduce conflicts. It's possible
1490 that it could be done, though. Or perhaps a non-grammar, but
1491 less ad hoc, approach would work well. */
1492
1493 /* Since we do not currently have any way of distinguishing
1494 a nested type from a non-nested one (the stabs don't tell
1495 us whether a type is nested), we just ignore the
1496 containing type. */
1497
1498 p = lexptr;
1499 best_sym = sym;
1500 while (1)
1501 {
1502 /* Skip whitespace. */
1503 while (*p == ' ' || *p == '\t' || *p == '\n')
1504 ++p;
1505 if (*p == ':' && p[1] == ':')
1506 {
1507 /* Skip the `::'. */
1508 p += 2;
1509 /* Skip whitespace. */
1510 while (*p == ' ' || *p == '\t' || *p == '\n')
1511 ++p;
1512 namestart = p;
1513 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1514 || (*p >= 'a' && *p <= 'z')
1515 || (*p >= 'A' && *p <= 'Z'))
1516 ++p;
1517 if (p != namestart)
1518 {
1519 struct symbol *cur_sym;
1520 /* As big as the whole rest of the expression, which is
1521 at least big enough. */
1522 char *tmp = alloca (strlen (namestart));
1523
1524 memcpy (tmp, namestart, p - namestart);
1525 tmp[p - namestart] = '\0';
1526 cur_sym = lookup_symbol (tmp, expression_context_block,
1527 VAR_NAMESPACE, (int *) NULL,
1528 (struct symtab **) NULL);
1529 if (cur_sym)
1530 {
1531 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1532 {
1533 best_sym = cur_sym;
1534 lexptr = p;
1535 }
1536 else
1537 break;
1538 }
1539 else
1540 break;
1541 }
1542 else
1543 break;
1544 }
1545 else
1546 break;
1547 }
1548
1549 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1550 #else /* not 0 */
1551 yylval.tsym.type = SYMBOL_TYPE (sym);
1552 #endif /* not 0 */
1553 return TYPENAME;
1554 }
1555 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1556 return TYPENAME;
1557
1558 /* Input names that aren't symbols but ARE valid hex numbers,
1559 when the input radix permits them, can be names or numbers
1560 depending on the parse. Note we support radixes > 16 here. */
1561 if (!sym &&
1562 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1563 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1564 {
1565 YYSTYPE newlval; /* Its value is ignored. */
1566 hextype = parse_number (tokstart, namelen, 0, &newlval);
1567 if (hextype == INT)
1568 {
1569 yylval.ssym.sym = sym;
1570 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1571 return NAME_OR_INT;
1572 }
1573 }
1574
1575 /* Any other kind of symbol */
1576 yylval.ssym.sym = sym;
1577 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1578 return NAME;
1579 }
1580 }
1581
1582 void
1583 yyerror (msg)
1584 char *msg;
1585 {
1586 error (msg ? msg : "Invalid syntax in expression.");
1587 }
This page took 0.063895 seconds and 4 git commands to generate.