fc88cab4b546a82ed339af7cfc7ba9e405099718
[deliverable/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Parse a C expression from text in a string,
22 and return the result as a struct expression pointer.
23 That structure contains arithmetic operations in reverse polish,
24 with constants represented by operations that are followed by special data.
25 See expression.h for the details of the format.
26 What is important here is that it can be built up sequentially
27 during the process of parsing; the lower levels of the tree always
28 come first in the result.
29
30 Note that malloc's and realloc's in this file are transformed to
31 xmalloc and xrealloc respectively by the same sed command in the
32 makefile that remaps any other malloc/realloc inserted by the parser
33 generator. Doing this with #defines and trying to control the interaction
34 with include files (<malloc.h> and <stdlib.h> for example) just became
35 too messy, particularly when such includes can be inserted at random
36 times by the parser generator. */
37
38 %{
39
40 #include "defs.h"
41 #include <string.h>
42 #include "expression.h"
43 #include "value.h"
44 #include "parser-defs.h"
45 #include "language.h"
46 #include "c-lang.h"
47 #include "bfd.h" /* Required by objfiles.h. */
48 #include "symfile.h" /* Required by objfiles.h. */
49 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
50
51 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
52 as well as gratuitiously global symbol names, so we can have multiple
53 yacc generated parsers in gdb. Note that these are only the variables
54 produced by yacc. If other parser generators (bison, byacc, etc) produce
55 additional global names that conflict at link time, then those parser
56 generators need to be fixed instead of adding those names to this list. */
57
58 #define yymaxdepth c_maxdepth
59 #define yyparse c_parse
60 #define yylex c_lex
61 #define yyerror c_error
62 #define yylval c_lval
63 #define yychar c_char
64 #define yydebug c_debug
65 #define yypact c_pact
66 #define yyr1 c_r1
67 #define yyr2 c_r2
68 #define yydef c_def
69 #define yychk c_chk
70 #define yypgo c_pgo
71 #define yyact c_act
72 #define yyexca c_exca
73 #define yyerrflag c_errflag
74 #define yynerrs c_nerrs
75 #define yyps c_ps
76 #define yypv c_pv
77 #define yys c_s
78 #define yy_yys c_yys
79 #define yystate c_state
80 #define yytmp c_tmp
81 #define yyv c_v
82 #define yy_yyv c_yyv
83 #define yyval c_val
84 #define yylloc c_lloc
85 #define yyreds c_reds /* With YYDEBUG defined */
86 #define yytoks c_toks /* With YYDEBUG defined */
87
88 #ifndef YYDEBUG
89 #define YYDEBUG 0 /* Default to no yydebug support */
90 #endif
91
92 int
93 yyparse PARAMS ((void));
94
95 static int
96 yylex PARAMS ((void));
97
98 void
99 yyerror PARAMS ((char *));
100
101 %}
102
103 /* Although the yacc "value" of an expression is not used,
104 since the result is stored in the structure being created,
105 other node types do have values. */
106
107 %union
108 {
109 LONGEST lval;
110 struct {
111 LONGEST val;
112 struct type *type;
113 } typed_val;
114 double dval;
115 struct symbol *sym;
116 struct type *tval;
117 struct stoken sval;
118 struct ttype tsym;
119 struct symtoken ssym;
120 int voidval;
121 struct block *bval;
122 enum exp_opcode opcode;
123 struct internalvar *ivar;
124
125 struct type **tvec;
126 int *ivec;
127 }
128
129 %{
130 /* YYSTYPE gets defined by %union */
131 static int
132 parse_number PARAMS ((char *, int, int, YYSTYPE *));
133 %}
134
135 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly
136 %type <lval> rcurly
137 %type <tval> type typebase
138 %type <tvec> nonempty_typelist
139 /* %type <bval> block */
140
141 /* Fancy type parsing. */
142 %type <voidval> func_mod direct_abs_decl abs_decl
143 %type <tval> ptype
144 %type <lval> array_mod
145
146 %token <typed_val> INT
147 %token <dval> FLOAT
148
149 /* Both NAME and TYPENAME tokens represent symbols in the input,
150 and both convey their data as strings.
151 But a TYPENAME is a string that happens to be defined as a typedef
152 or builtin type name (such as int or char)
153 and a NAME is any other symbol.
154 Contexts where this distinction is not important can use the
155 nonterminal "name", which matches either NAME or TYPENAME. */
156
157 %token <sval> STRING
158 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
159 %token <tsym> TYPENAME
160 %type <sval> name
161 %type <ssym> name_not_typename
162 %type <tsym> typename
163
164 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
165 but which would parse as a valid number in the current input radix.
166 E.g. "c" when input_radix==16. Depending on the parse, it will be
167 turned into a name or into a number. */
168
169 %token <ssym> NAME_OR_INT
170
171 %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
172 %token TEMPLATE
173 %token ERROR
174
175 /* Special type cases, put in to allow the parser to distinguish different
176 legal basetypes. */
177 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD
178 %token <lval> LAST REGNAME
179
180 %token <ivar> VARIABLE
181
182 %token <opcode> ASSIGN_MODIFY
183
184 /* C++ */
185 %token THIS
186
187 %left ','
188 %left ABOVE_COMMA
189 %right '=' ASSIGN_MODIFY
190 %right '?'
191 %left OROR
192 %left ANDAND
193 %left '|'
194 %left '^'
195 %left '&'
196 %left EQUAL NOTEQUAL
197 %left '<' '>' LEQ GEQ
198 %left LSH RSH
199 %left '@'
200 %left '+' '-'
201 %left '*' '/' '%'
202 %right UNARY INCREMENT DECREMENT
203 %right ARROW '.' '[' '('
204 %token <ssym> BLOCKNAME
205 %type <bval> block
206 %left COLONCOLON
207
208 \f
209 %%
210
211 start : exp1
212 | type_exp
213 ;
214
215 type_exp: type
216 { write_exp_elt_opcode(OP_TYPE);
217 write_exp_elt_type($1);
218 write_exp_elt_opcode(OP_TYPE);}
219 ;
220
221 /* Expressions, including the comma operator. */
222 exp1 : exp
223 | exp1 ',' exp
224 { write_exp_elt_opcode (BINOP_COMMA); }
225 ;
226
227 /* Expressions, not including the comma operator. */
228 exp : '*' exp %prec UNARY
229 { write_exp_elt_opcode (UNOP_IND); }
230
231 exp : '&' exp %prec UNARY
232 { write_exp_elt_opcode (UNOP_ADDR); }
233
234 exp : '-' exp %prec UNARY
235 { write_exp_elt_opcode (UNOP_NEG); }
236 ;
237
238 exp : '!' exp %prec UNARY
239 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
240 ;
241
242 exp : '~' exp %prec UNARY
243 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
244 ;
245
246 exp : INCREMENT exp %prec UNARY
247 { write_exp_elt_opcode (UNOP_PREINCREMENT); }
248 ;
249
250 exp : DECREMENT exp %prec UNARY
251 { write_exp_elt_opcode (UNOP_PREDECREMENT); }
252 ;
253
254 exp : exp INCREMENT %prec UNARY
255 { write_exp_elt_opcode (UNOP_POSTINCREMENT); }
256 ;
257
258 exp : exp DECREMENT %prec UNARY
259 { write_exp_elt_opcode (UNOP_POSTDECREMENT); }
260 ;
261
262 exp : SIZEOF exp %prec UNARY
263 { write_exp_elt_opcode (UNOP_SIZEOF); }
264 ;
265
266 exp : exp ARROW name
267 { write_exp_elt_opcode (STRUCTOP_PTR);
268 write_exp_string ($3);
269 write_exp_elt_opcode (STRUCTOP_PTR); }
270 ;
271
272 exp : exp ARROW qualified_name
273 { /* exp->type::name becomes exp->*(&type::name) */
274 /* Note: this doesn't work if name is a
275 static member! FIXME */
276 write_exp_elt_opcode (UNOP_ADDR);
277 write_exp_elt_opcode (STRUCTOP_MPTR); }
278 ;
279 exp : exp ARROW '*' exp
280 { write_exp_elt_opcode (STRUCTOP_MPTR); }
281 ;
282
283 exp : exp '.' name
284 { write_exp_elt_opcode (STRUCTOP_STRUCT);
285 write_exp_string ($3);
286 write_exp_elt_opcode (STRUCTOP_STRUCT); }
287 ;
288
289 exp : exp '.' qualified_name
290 { /* exp.type::name becomes exp.*(&type::name) */
291 /* Note: this doesn't work if name is a
292 static member! FIXME */
293 write_exp_elt_opcode (UNOP_ADDR);
294 write_exp_elt_opcode (STRUCTOP_MEMBER); }
295 ;
296
297 exp : exp '.' '*' exp
298 { write_exp_elt_opcode (STRUCTOP_MEMBER); }
299 ;
300
301 exp : exp '[' exp1 ']'
302 { write_exp_elt_opcode (BINOP_SUBSCRIPT); }
303 ;
304
305 exp : exp '('
306 /* This is to save the value of arglist_len
307 being accumulated by an outer function call. */
308 { start_arglist (); }
309 arglist ')' %prec ARROW
310 { write_exp_elt_opcode (OP_FUNCALL);
311 write_exp_elt_longcst ((LONGEST) end_arglist ());
312 write_exp_elt_opcode (OP_FUNCALL); }
313 ;
314
315 lcurly : '{'
316 { start_arglist (); }
317 ;
318
319 arglist :
320 ;
321
322 arglist : exp
323 { arglist_len = 1; }
324 ;
325
326 arglist : arglist ',' exp %prec ABOVE_COMMA
327 { arglist_len++; }
328 ;
329
330 rcurly : '}'
331 { $$ = end_arglist () - 1; }
332 ;
333 exp : lcurly arglist rcurly %prec ARROW
334 { write_exp_elt_opcode (OP_ARRAY);
335 write_exp_elt_longcst ((LONGEST) 0);
336 write_exp_elt_longcst ((LONGEST) $3);
337 write_exp_elt_opcode (OP_ARRAY); }
338 ;
339
340 exp : lcurly type rcurly exp %prec UNARY
341 { write_exp_elt_opcode (UNOP_MEMVAL);
342 write_exp_elt_type ($2);
343 write_exp_elt_opcode (UNOP_MEMVAL); }
344 ;
345
346 exp : '(' type ')' exp %prec UNARY
347 { write_exp_elt_opcode (UNOP_CAST);
348 write_exp_elt_type ($2);
349 write_exp_elt_opcode (UNOP_CAST); }
350 ;
351
352 exp : '(' exp1 ')'
353 { }
354 ;
355
356 /* Binary operators in order of decreasing precedence. */
357
358 exp : exp '@' exp
359 { write_exp_elt_opcode (BINOP_REPEAT); }
360 ;
361
362 exp : exp '*' exp
363 { write_exp_elt_opcode (BINOP_MUL); }
364 ;
365
366 exp : exp '/' exp
367 { write_exp_elt_opcode (BINOP_DIV); }
368 ;
369
370 exp : exp '%' exp
371 { write_exp_elt_opcode (BINOP_REM); }
372 ;
373
374 exp : exp '+' exp
375 { write_exp_elt_opcode (BINOP_ADD); }
376 ;
377
378 exp : exp '-' exp
379 { write_exp_elt_opcode (BINOP_SUB); }
380 ;
381
382 exp : exp LSH exp
383 { write_exp_elt_opcode (BINOP_LSH); }
384 ;
385
386 exp : exp RSH exp
387 { write_exp_elt_opcode (BINOP_RSH); }
388 ;
389
390 exp : exp EQUAL exp
391 { write_exp_elt_opcode (BINOP_EQUAL); }
392 ;
393
394 exp : exp NOTEQUAL exp
395 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
396 ;
397
398 exp : exp LEQ exp
399 { write_exp_elt_opcode (BINOP_LEQ); }
400 ;
401
402 exp : exp GEQ exp
403 { write_exp_elt_opcode (BINOP_GEQ); }
404 ;
405
406 exp : exp '<' exp
407 { write_exp_elt_opcode (BINOP_LESS); }
408 ;
409
410 exp : exp '>' exp
411 { write_exp_elt_opcode (BINOP_GTR); }
412 ;
413
414 exp : exp '&' exp
415 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
416 ;
417
418 exp : exp '^' exp
419 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
420 ;
421
422 exp : exp '|' exp
423 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
424 ;
425
426 exp : exp ANDAND exp
427 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
428 ;
429
430 exp : exp OROR exp
431 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
432 ;
433
434 exp : exp '?' exp ':' exp %prec '?'
435 { write_exp_elt_opcode (TERNOP_COND); }
436 ;
437
438 exp : exp '=' exp
439 { write_exp_elt_opcode (BINOP_ASSIGN); }
440 ;
441
442 exp : exp ASSIGN_MODIFY exp
443 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
444 write_exp_elt_opcode ($2);
445 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
446 ;
447
448 exp : INT
449 { write_exp_elt_opcode (OP_LONG);
450 write_exp_elt_type ($1.type);
451 write_exp_elt_longcst ((LONGEST)($1.val));
452 write_exp_elt_opcode (OP_LONG); }
453 ;
454
455 exp : NAME_OR_INT
456 { YYSTYPE val;
457 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
458 write_exp_elt_opcode (OP_LONG);
459 write_exp_elt_type (val.typed_val.type);
460 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
461 write_exp_elt_opcode (OP_LONG);
462 }
463 ;
464
465
466 exp : FLOAT
467 { write_exp_elt_opcode (OP_DOUBLE);
468 write_exp_elt_type (builtin_type_double);
469 write_exp_elt_dblcst ($1);
470 write_exp_elt_opcode (OP_DOUBLE); }
471 ;
472
473 exp : variable
474 ;
475
476 exp : LAST
477 { write_exp_elt_opcode (OP_LAST);
478 write_exp_elt_longcst ((LONGEST) $1);
479 write_exp_elt_opcode (OP_LAST); }
480 ;
481
482 exp : REGNAME
483 { write_exp_elt_opcode (OP_REGISTER);
484 write_exp_elt_longcst ((LONGEST) $1);
485 write_exp_elt_opcode (OP_REGISTER); }
486 ;
487
488 exp : VARIABLE
489 { write_exp_elt_opcode (OP_INTERNALVAR);
490 write_exp_elt_intern ($1);
491 write_exp_elt_opcode (OP_INTERNALVAR); }
492 ;
493
494 exp : SIZEOF '(' type ')' %prec UNARY
495 { write_exp_elt_opcode (OP_LONG);
496 write_exp_elt_type (builtin_type_int);
497 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
498 write_exp_elt_opcode (OP_LONG); }
499 ;
500
501 exp : STRING
502 { /* C strings are converted into array constants with
503 an explicit null byte added at the end. Thus
504 the array upper bound is the string length.
505 There is no such thing in C as a completely empty
506 string. */
507 char *sp = $1.ptr; int count = $1.length;
508 while (count-- > 0)
509 {
510 write_exp_elt_opcode (OP_LONG);
511 write_exp_elt_type (builtin_type_char);
512 write_exp_elt_longcst ((LONGEST)(*sp++));
513 write_exp_elt_opcode (OP_LONG);
514 }
515 write_exp_elt_opcode (OP_LONG);
516 write_exp_elt_type (builtin_type_char);
517 write_exp_elt_longcst ((LONGEST)'\0');
518 write_exp_elt_opcode (OP_LONG);
519 write_exp_elt_opcode (OP_ARRAY);
520 write_exp_elt_longcst ((LONGEST) 0);
521 write_exp_elt_longcst ((LONGEST) ($1.length));
522 write_exp_elt_opcode (OP_ARRAY); }
523 ;
524
525 /* C++. */
526 exp : THIS
527 { write_exp_elt_opcode (OP_THIS);
528 write_exp_elt_opcode (OP_THIS); }
529 ;
530
531 /* end of C++. */
532
533 block : BLOCKNAME
534 {
535 if ($1.sym != 0)
536 $$ = SYMBOL_BLOCK_VALUE ($1.sym);
537 else
538 {
539 struct symtab *tem =
540 lookup_symtab (copy_name ($1.stoken));
541 if (tem)
542 $$ = BLOCKVECTOR_BLOCK
543 (BLOCKVECTOR (tem), STATIC_BLOCK);
544 else
545 error ("No file or function \"%s\".",
546 copy_name ($1.stoken));
547 }
548 }
549 ;
550
551 block : block COLONCOLON name
552 { struct symbol *tem
553 = lookup_symbol (copy_name ($3), $1,
554 VAR_NAMESPACE, (int *) NULL,
555 (struct symtab **) NULL);
556 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
557 error ("No function \"%s\" in specified context.",
558 copy_name ($3));
559 $$ = SYMBOL_BLOCK_VALUE (tem); }
560 ;
561
562 variable: block COLONCOLON name
563 { struct symbol *sym;
564 sym = lookup_symbol (copy_name ($3), $1,
565 VAR_NAMESPACE, (int *) NULL,
566 (struct symtab **) NULL);
567 if (sym == 0)
568 error ("No symbol \"%s\" in specified context.",
569 copy_name ($3));
570
571 write_exp_elt_opcode (OP_VAR_VALUE);
572 /* block_found is set by lookup_symbol. */
573 write_exp_elt_block (block_found);
574 write_exp_elt_sym (sym);
575 write_exp_elt_opcode (OP_VAR_VALUE); }
576 ;
577
578 qualified_name: typebase COLONCOLON name
579 {
580 struct type *type = $1;
581 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
582 && TYPE_CODE (type) != TYPE_CODE_UNION)
583 error ("`%s' is not defined as an aggregate type.",
584 TYPE_NAME (type));
585
586 write_exp_elt_opcode (OP_SCOPE);
587 write_exp_elt_type (type);
588 write_exp_string ($3);
589 write_exp_elt_opcode (OP_SCOPE);
590 }
591 | typebase COLONCOLON '~' name
592 {
593 struct type *type = $1;
594 struct stoken tmp_token;
595 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
596 && TYPE_CODE (type) != TYPE_CODE_UNION)
597 error ("`%s' is not defined as an aggregate type.",
598 TYPE_NAME (type));
599
600 if (!STREQ (type_name_no_tag (type), $4.ptr))
601 error ("invalid destructor `%s::~%s'",
602 type_name_no_tag (type), $4.ptr);
603
604 tmp_token.ptr = (char*) alloca ($4.length + 2);
605 tmp_token.length = $4.length + 1;
606 tmp_token.ptr[0] = '~';
607 memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
608 tmp_token.ptr[tmp_token.length] = 0;
609 write_exp_elt_opcode (OP_SCOPE);
610 write_exp_elt_type (type);
611 write_exp_string (tmp_token);
612 write_exp_elt_opcode (OP_SCOPE);
613 }
614 ;
615
616 variable: qualified_name
617 | COLONCOLON name
618 {
619 char *name = copy_name ($2);
620 struct symbol *sym;
621 struct minimal_symbol *msymbol;
622
623 sym =
624 lookup_symbol (name, (const struct block *) NULL,
625 VAR_NAMESPACE, (int *) NULL,
626 (struct symtab **) NULL);
627 if (sym)
628 {
629 write_exp_elt_opcode (OP_VAR_VALUE);
630 write_exp_elt_block (NULL);
631 write_exp_elt_sym (sym);
632 write_exp_elt_opcode (OP_VAR_VALUE);
633 break;
634 }
635
636 msymbol = lookup_minimal_symbol (name, NULL, NULL);
637 if (msymbol != NULL)
638 {
639 write_exp_msymbol (msymbol,
640 lookup_function_type (builtin_type_int),
641 builtin_type_int);
642 }
643 else
644 if (!have_full_symbols () && !have_partial_symbols ())
645 error ("No symbol table is loaded. Use the \"file\" command.");
646 else
647 error ("No symbol \"%s\" in current context.", name);
648 }
649 ;
650
651 variable: name_not_typename
652 { struct symbol *sym = $1.sym;
653
654 if (sym)
655 {
656 if (symbol_read_needs_frame (sym))
657 {
658 if (innermost_block == 0 ||
659 contained_in (block_found,
660 innermost_block))
661 innermost_block = block_found;
662 }
663
664 write_exp_elt_opcode (OP_VAR_VALUE);
665 /* We want to use the selected frame, not
666 another more inner frame which happens to
667 be in the same block. */
668 write_exp_elt_block (NULL);
669 write_exp_elt_sym (sym);
670 write_exp_elt_opcode (OP_VAR_VALUE);
671 }
672 else if ($1.is_a_field_of_this)
673 {
674 /* C++: it hangs off of `this'. Must
675 not inadvertently convert from a method call
676 to data ref. */
677 if (innermost_block == 0 ||
678 contained_in (block_found, innermost_block))
679 innermost_block = block_found;
680 write_exp_elt_opcode (OP_THIS);
681 write_exp_elt_opcode (OP_THIS);
682 write_exp_elt_opcode (STRUCTOP_PTR);
683 write_exp_string ($1.stoken);
684 write_exp_elt_opcode (STRUCTOP_PTR);
685 }
686 else
687 {
688 struct minimal_symbol *msymbol;
689 register char *arg = copy_name ($1.stoken);
690
691 msymbol =
692 lookup_minimal_symbol (arg, NULL, NULL);
693 if (msymbol != NULL)
694 {
695 write_exp_msymbol (msymbol,
696 lookup_function_type (builtin_type_int),
697 builtin_type_int);
698 }
699 else if (!have_full_symbols () && !have_partial_symbols ())
700 error ("No symbol table is loaded. Use the \"file\" command.");
701 else
702 error ("No symbol \"%s\" in current context.",
703 copy_name ($1.stoken));
704 }
705 }
706 ;
707
708
709 ptype : typebase
710 /* "const" and "volatile" are curently ignored. A type qualifier
711 before the type is currently handled in the typebase rule.
712 The reason for recognizing these here (shift/reduce conflicts)
713 might be obsolete now that some pointer to member rules have
714 been deleted. */
715 | typebase CONST_KEYWORD
716 | typebase VOLATILE_KEYWORD
717 | typebase abs_decl
718 { $$ = follow_types ($1); }
719 | typebase CONST_KEYWORD abs_decl
720 { $$ = follow_types ($1); }
721 | typebase VOLATILE_KEYWORD abs_decl
722 { $$ = follow_types ($1); }
723 ;
724
725 abs_decl: '*'
726 { push_type (tp_pointer); $$ = 0; }
727 | '*' abs_decl
728 { push_type (tp_pointer); $$ = $2; }
729 | '&'
730 { push_type (tp_reference); $$ = 0; }
731 | '&' abs_decl
732 { push_type (tp_reference); $$ = $2; }
733 | direct_abs_decl
734 ;
735
736 direct_abs_decl: '(' abs_decl ')'
737 { $$ = $2; }
738 | direct_abs_decl array_mod
739 {
740 push_type_int ($2);
741 push_type (tp_array);
742 }
743 | array_mod
744 {
745 push_type_int ($1);
746 push_type (tp_array);
747 $$ = 0;
748 }
749
750 | direct_abs_decl func_mod
751 { push_type (tp_function); }
752 | func_mod
753 { push_type (tp_function); }
754 ;
755
756 array_mod: '[' ']'
757 { $$ = -1; }
758 | '[' INT ']'
759 { $$ = $2.val; }
760 ;
761
762 func_mod: '(' ')'
763 { $$ = 0; }
764 | '(' nonempty_typelist ')'
765 { free ((PTR)$2); $$ = 0; }
766 ;
767
768 /* We used to try to recognize more pointer to member types here, but
769 that didn't work (shift/reduce conflicts meant that these rules never
770 got executed). The problem is that
771 int (foo::bar::baz::bizzle)
772 is a function type but
773 int (foo::bar::baz::bizzle::*)
774 is a pointer to member type. Stroustrup loses again! */
775
776 type : ptype
777 | typebase COLONCOLON '*'
778 { $$ = lookup_member_type (builtin_type_int, $1); }
779 ;
780
781 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
782 : TYPENAME
783 { $$ = $1.type; }
784 | INT_KEYWORD
785 { $$ = builtin_type_int; }
786 | LONG
787 { $$ = builtin_type_long; }
788 | SHORT
789 { $$ = builtin_type_short; }
790 | LONG INT_KEYWORD
791 { $$ = builtin_type_long; }
792 | UNSIGNED LONG INT_KEYWORD
793 { $$ = builtin_type_unsigned_long; }
794 | LONG LONG
795 { $$ = builtin_type_long_long; }
796 | LONG LONG INT_KEYWORD
797 { $$ = builtin_type_long_long; }
798 | UNSIGNED LONG LONG
799 { $$ = builtin_type_unsigned_long_long; }
800 | UNSIGNED LONG LONG INT_KEYWORD
801 { $$ = builtin_type_unsigned_long_long; }
802 | SHORT INT_KEYWORD
803 { $$ = builtin_type_short; }
804 | UNSIGNED SHORT INT_KEYWORD
805 { $$ = builtin_type_unsigned_short; }
806 | STRUCT name
807 { $$ = lookup_struct (copy_name ($2),
808 expression_context_block); }
809 | CLASS name
810 { $$ = lookup_struct (copy_name ($2),
811 expression_context_block); }
812 | UNION name
813 { $$ = lookup_union (copy_name ($2),
814 expression_context_block); }
815 | ENUM name
816 { $$ = lookup_enum (copy_name ($2),
817 expression_context_block); }
818 | UNSIGNED typename
819 { $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
820 | UNSIGNED
821 { $$ = builtin_type_unsigned_int; }
822 | SIGNED_KEYWORD typename
823 { $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
824 | SIGNED_KEYWORD
825 { $$ = builtin_type_int; }
826 | TEMPLATE name '<' type '>'
827 { $$ = lookup_template_type(copy_name($2), $4,
828 expression_context_block);
829 }
830 /* "const" and "volatile" are curently ignored. A type qualifier
831 after the type is handled in the ptype rule. I think these could
832 be too. */
833 | CONST_KEYWORD typebase { $$ = $2; }
834 | VOLATILE_KEYWORD typebase { $$ = $2; }
835 ;
836
837 typename: TYPENAME
838 | INT_KEYWORD
839 {
840 $$.stoken.ptr = "int";
841 $$.stoken.length = 3;
842 $$.type = builtin_type_int;
843 }
844 | LONG
845 {
846 $$.stoken.ptr = "long";
847 $$.stoken.length = 4;
848 $$.type = builtin_type_long;
849 }
850 | SHORT
851 {
852 $$.stoken.ptr = "short";
853 $$.stoken.length = 5;
854 $$.type = builtin_type_short;
855 }
856 ;
857
858 nonempty_typelist
859 : type
860 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
861 $<ivec>$[0] = 1; /* Number of types in vector */
862 $$[1] = $1;
863 }
864 | nonempty_typelist ',' type
865 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
866 $$ = (struct type **) realloc ((char *) $1, len);
867 $$[$<ivec>$[0]] = $3;
868 }
869 ;
870
871 name : NAME { $$ = $1.stoken; }
872 | BLOCKNAME { $$ = $1.stoken; }
873 | TYPENAME { $$ = $1.stoken; }
874 | NAME_OR_INT { $$ = $1.stoken; }
875 ;
876
877 name_not_typename : NAME
878 | BLOCKNAME
879 /* These would be useful if name_not_typename was useful, but it is just
880 a fake for "variable", so these cause reduce/reduce conflicts because
881 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
882 =exp) or just an exp. If name_not_typename was ever used in an lvalue
883 context where only a name could occur, this might be useful.
884 | NAME_OR_INT
885 */
886 ;
887
888 %%
889
890 /* Take care of parsing a number (anything that starts with a digit).
891 Set yylval and return the token type; update lexptr.
892 LEN is the number of characters in it. */
893
894 /*** Needs some error checking for the float case ***/
895
896 static int
897 parse_number (p, len, parsed_float, putithere)
898 register char *p;
899 register int len;
900 int parsed_float;
901 YYSTYPE *putithere;
902 {
903 /* FIXME: Shouldn't these be unsigned? We don't deal with negative values
904 here, and we do kind of silly things like cast to unsigned. */
905 register LONGEST n = 0;
906 register LONGEST prevn = 0;
907 unsigned LONGEST un;
908
909 register int i = 0;
910 register int c;
911 register int base = input_radix;
912 int unsigned_p = 0;
913
914 /* Number of "L" suffixes encountered. */
915 int long_p = 0;
916
917 /* We have found a "L" or "U" suffix. */
918 int found_suffix = 0;
919
920 unsigned LONGEST high_bit;
921 struct type *signed_type;
922 struct type *unsigned_type;
923
924 if (parsed_float)
925 {
926 /* It's a float since it contains a point or an exponent. */
927 putithere->dval = atof (p);
928 return FLOAT;
929 }
930
931 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
932 if (p[0] == '0')
933 switch (p[1])
934 {
935 case 'x':
936 case 'X':
937 if (len >= 3)
938 {
939 p += 2;
940 base = 16;
941 len -= 2;
942 }
943 break;
944
945 case 't':
946 case 'T':
947 case 'd':
948 case 'D':
949 if (len >= 3)
950 {
951 p += 2;
952 base = 10;
953 len -= 2;
954 }
955 break;
956
957 default:
958 base = 8;
959 break;
960 }
961
962 while (len-- > 0)
963 {
964 c = *p++;
965 if (c >= 'A' && c <= 'Z')
966 c += 'a' - 'A';
967 if (c != 'l' && c != 'u')
968 n *= base;
969 if (c >= '0' && c <= '9')
970 {
971 if (found_suffix)
972 return ERROR;
973 n += i = c - '0';
974 }
975 else
976 {
977 if (base > 10 && c >= 'a' && c <= 'f')
978 {
979 if (found_suffix)
980 return ERROR;
981 n += i = c - 'a' + 10;
982 }
983 else if (c == 'l')
984 {
985 ++long_p;
986 found_suffix = 1;
987 }
988 else if (c == 'u')
989 {
990 unsigned_p = 1;
991 found_suffix = 1;
992 }
993 else
994 return ERROR; /* Char not a digit */
995 }
996 if (i >= base)
997 return ERROR; /* Invalid digit in this base */
998
999 /* Portably test for overflow (only works for nonzero values, so make
1000 a second check for zero). FIXME: Can't we just make n and prevn
1001 unsigned and avoid this? */
1002 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
1003 unsigned_p = 1; /* Try something unsigned */
1004
1005 /* Portably test for unsigned overflow.
1006 FIXME: This check is wrong; for example it doesn't find overflow
1007 on 0x123456789 when LONGEST is 32 bits. */
1008 if (c != 'l' && c != 'u' && n != 0)
1009 {
1010 if ((unsigned_p && (unsigned LONGEST) prevn >= (unsigned LONGEST) n))
1011 error ("Numeric constant too large.");
1012 }
1013 prevn = n;
1014 }
1015
1016 /* An integer constant is an int, a long, or a long long. An L
1017 suffix forces it to be long; an LL suffix forces it to be long
1018 long. If not forced to a larger size, it gets the first type of
1019 the above that it fits in. To figure out whether it fits, we
1020 shift it right and see whether anything remains. Note that we
1021 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
1022 operation, because many compilers will warn about such a shift
1023 (which always produces a zero result). Sometimes TARGET_INT_BIT
1024 or TARGET_LONG_BIT will be that big, sometimes not. To deal with
1025 the case where it is we just always shift the value more than
1026 once, with fewer bits each time. */
1027
1028 un = (unsigned LONGEST)n >> 2;
1029 if (long_p == 0
1030 && (un >> (TARGET_INT_BIT - 2)) == 0)
1031 {
1032 high_bit = ((unsigned LONGEST)1) << (TARGET_INT_BIT-1);
1033
1034 /* A large decimal (not hex or octal) constant (between INT_MAX
1035 and UINT_MAX) is a long or unsigned long, according to ANSI,
1036 never an unsigned int, but this code treats it as unsigned
1037 int. This probably should be fixed. GCC gives a warning on
1038 such constants. */
1039
1040 unsigned_type = builtin_type_unsigned_int;
1041 signed_type = builtin_type_int;
1042 }
1043 else if (long_p <= 1
1044 && (un >> (TARGET_LONG_BIT - 2)) == 0)
1045 {
1046 high_bit = ((unsigned LONGEST)1) << (TARGET_LONG_BIT-1);
1047 unsigned_type = builtin_type_unsigned_long;
1048 signed_type = builtin_type_long;
1049 }
1050 else
1051 {
1052 high_bit = (((unsigned LONGEST)1)
1053 << (TARGET_LONG_LONG_BIT - 32 - 1)
1054 << 16
1055 << 16);
1056 if (high_bit == 0)
1057 /* A long long does not fit in a LONGEST. */
1058 high_bit =
1059 (unsigned LONGEST)1 << (sizeof (LONGEST) * HOST_CHAR_BIT - 1);
1060 unsigned_type = builtin_type_unsigned_long_long;
1061 signed_type = builtin_type_long_long;
1062 }
1063
1064 putithere->typed_val.val = n;
1065
1066 /* If the high bit of the worked out type is set then this number
1067 has to be unsigned. */
1068
1069 if (unsigned_p || (n & high_bit))
1070 {
1071 putithere->typed_val.type = unsigned_type;
1072 }
1073 else
1074 {
1075 putithere->typed_val.type = signed_type;
1076 }
1077
1078 return INT;
1079 }
1080
1081 struct token
1082 {
1083 char *operator;
1084 int token;
1085 enum exp_opcode opcode;
1086 };
1087
1088 static const struct token tokentab3[] =
1089 {
1090 {">>=", ASSIGN_MODIFY, BINOP_RSH},
1091 {"<<=", ASSIGN_MODIFY, BINOP_LSH}
1092 };
1093
1094 static const struct token tokentab2[] =
1095 {
1096 {"+=", ASSIGN_MODIFY, BINOP_ADD},
1097 {"-=", ASSIGN_MODIFY, BINOP_SUB},
1098 {"*=", ASSIGN_MODIFY, BINOP_MUL},
1099 {"/=", ASSIGN_MODIFY, BINOP_DIV},
1100 {"%=", ASSIGN_MODIFY, BINOP_REM},
1101 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
1102 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
1103 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
1104 {"++", INCREMENT, BINOP_END},
1105 {"--", DECREMENT, BINOP_END},
1106 {"->", ARROW, BINOP_END},
1107 {"&&", ANDAND, BINOP_END},
1108 {"||", OROR, BINOP_END},
1109 {"::", COLONCOLON, BINOP_END},
1110 {"<<", LSH, BINOP_END},
1111 {">>", RSH, BINOP_END},
1112 {"==", EQUAL, BINOP_END},
1113 {"!=", NOTEQUAL, BINOP_END},
1114 {"<=", LEQ, BINOP_END},
1115 {">=", GEQ, BINOP_END}
1116 };
1117
1118 /* Read one token, getting characters through lexptr. */
1119
1120 static int
1121 yylex ()
1122 {
1123 int c;
1124 int namelen;
1125 unsigned int i;
1126 char *tokstart;
1127 char *tokptr;
1128 int tempbufindex;
1129 static char *tempbuf;
1130 static int tempbufsize;
1131
1132 retry:
1133
1134 tokstart = lexptr;
1135 /* See if it is a special token of length 3. */
1136 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
1137 if (STREQN (tokstart, tokentab3[i].operator, 3))
1138 {
1139 lexptr += 3;
1140 yylval.opcode = tokentab3[i].opcode;
1141 return tokentab3[i].token;
1142 }
1143
1144 /* See if it is a special token of length 2. */
1145 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
1146 if (STREQN (tokstart, tokentab2[i].operator, 2))
1147 {
1148 lexptr += 2;
1149 yylval.opcode = tokentab2[i].opcode;
1150 return tokentab2[i].token;
1151 }
1152
1153 switch (c = *tokstart)
1154 {
1155 case 0:
1156 return 0;
1157
1158 case ' ':
1159 case '\t':
1160 case '\n':
1161 lexptr++;
1162 goto retry;
1163
1164 case '\'':
1165 /* We either have a character constant ('0' or '\177' for example)
1166 or we have a quoted symbol reference ('foo(int,int)' in C++
1167 for example). */
1168 lexptr++;
1169 c = *lexptr++;
1170 if (c == '\\')
1171 c = parse_escape (&lexptr);
1172
1173 yylval.typed_val.val = c;
1174 yylval.typed_val.type = builtin_type_char;
1175
1176 c = *lexptr++;
1177 if (c != '\'')
1178 {
1179 namelen = skip_quoted (tokstart) - tokstart;
1180 if (namelen > 2)
1181 {
1182 lexptr = tokstart + namelen;
1183 if (lexptr[-1] != '\'')
1184 error ("Unmatched single quote.");
1185 namelen -= 2;
1186 tokstart++;
1187 goto tryname;
1188 }
1189 error ("Invalid character constant.");
1190 }
1191 return INT;
1192
1193 case '(':
1194 paren_depth++;
1195 lexptr++;
1196 return c;
1197
1198 case ')':
1199 if (paren_depth == 0)
1200 return 0;
1201 paren_depth--;
1202 lexptr++;
1203 return c;
1204
1205 case ',':
1206 if (comma_terminates && paren_depth == 0)
1207 return 0;
1208 lexptr++;
1209 return c;
1210
1211 case '.':
1212 /* Might be a floating point number. */
1213 if (lexptr[1] < '0' || lexptr[1] > '9')
1214 goto symbol; /* Nope, must be a symbol. */
1215 /* FALL THRU into number case. */
1216
1217 case '0':
1218 case '1':
1219 case '2':
1220 case '3':
1221 case '4':
1222 case '5':
1223 case '6':
1224 case '7':
1225 case '8':
1226 case '9':
1227 {
1228 /* It's a number. */
1229 int got_dot = 0, got_e = 0, toktype;
1230 register char *p = tokstart;
1231 int hex = input_radix > 10;
1232
1233 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1234 {
1235 p += 2;
1236 hex = 1;
1237 }
1238 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1239 {
1240 p += 2;
1241 hex = 0;
1242 }
1243
1244 for (;; ++p)
1245 {
1246 /* This test includes !hex because 'e' is a valid hex digit
1247 and thus does not indicate a floating point number when
1248 the radix is hex. */
1249 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1250 got_dot = got_e = 1;
1251 /* This test does not include !hex, because a '.' always indicates
1252 a decimal floating point number regardless of the radix. */
1253 else if (!got_dot && *p == '.')
1254 got_dot = 1;
1255 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
1256 && (*p == '-' || *p == '+'))
1257 /* This is the sign of the exponent, not the end of the
1258 number. */
1259 continue;
1260 /* We will take any letters or digits. parse_number will
1261 complain if past the radix, or if L or U are not final. */
1262 else if ((*p < '0' || *p > '9')
1263 && ((*p < 'a' || *p > 'z')
1264 && (*p < 'A' || *p > 'Z')))
1265 break;
1266 }
1267 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
1268 if (toktype == ERROR)
1269 {
1270 char *err_copy = (char *) alloca (p - tokstart + 1);
1271
1272 memcpy (err_copy, tokstart, p - tokstart);
1273 err_copy[p - tokstart] = 0;
1274 error ("Invalid number \"%s\".", err_copy);
1275 }
1276 lexptr = p;
1277 return toktype;
1278 }
1279
1280 case '+':
1281 case '-':
1282 case '*':
1283 case '/':
1284 case '%':
1285 case '|':
1286 case '&':
1287 case '^':
1288 case '~':
1289 case '!':
1290 case '@':
1291 case '<':
1292 case '>':
1293 case '[':
1294 case ']':
1295 case '?':
1296 case ':':
1297 case '=':
1298 case '{':
1299 case '}':
1300 symbol:
1301 lexptr++;
1302 return c;
1303
1304 case '"':
1305
1306 /* Build the gdb internal form of the input string in tempbuf,
1307 translating any standard C escape forms seen. Note that the
1308 buffer is null byte terminated *only* for the convenience of
1309 debugging gdb itself and printing the buffer contents when
1310 the buffer contains no embedded nulls. Gdb does not depend
1311 upon the buffer being null byte terminated, it uses the length
1312 string instead. This allows gdb to handle C strings (as well
1313 as strings in other languages) with embedded null bytes */
1314
1315 tokptr = ++tokstart;
1316 tempbufindex = 0;
1317
1318 do {
1319 /* Grow the static temp buffer if necessary, including allocating
1320 the first one on demand. */
1321 if (tempbufindex + 1 >= tempbufsize)
1322 {
1323 tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
1324 }
1325 switch (*tokptr)
1326 {
1327 case '\0':
1328 case '"':
1329 /* Do nothing, loop will terminate. */
1330 break;
1331 case '\\':
1332 tokptr++;
1333 c = parse_escape (&tokptr);
1334 if (c == -1)
1335 {
1336 continue;
1337 }
1338 tempbuf[tempbufindex++] = c;
1339 break;
1340 default:
1341 tempbuf[tempbufindex++] = *tokptr++;
1342 break;
1343 }
1344 } while ((*tokptr != '"') && (*tokptr != '\0'));
1345 if (*tokptr++ != '"')
1346 {
1347 error ("Unterminated string in expression.");
1348 }
1349 tempbuf[tempbufindex] = '\0'; /* See note above */
1350 yylval.sval.ptr = tempbuf;
1351 yylval.sval.length = tempbufindex;
1352 lexptr = tokptr;
1353 return (STRING);
1354 }
1355
1356 if (!(c == '_' || c == '$'
1357 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1358 /* We must have come across a bad character (e.g. ';'). */
1359 error ("Invalid character '%c' in expression.", c);
1360
1361 /* It's a name. See how long it is. */
1362 namelen = 0;
1363 for (c = tokstart[namelen];
1364 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1365 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
1366 {
1367 if (c == '<')
1368 {
1369 int i = namelen;
1370 while (tokstart[++i] && tokstart[i] != '>');
1371 if (tokstart[i] == '>')
1372 namelen = i;
1373 }
1374 c = tokstart[++namelen];
1375 }
1376
1377 /* The token "if" terminates the expression and is NOT
1378 removed from the input stream. */
1379 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1380 {
1381 return 0;
1382 }
1383
1384 lexptr += namelen;
1385
1386 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
1387 and $$digits (equivalent to $<-digits> if you could type that).
1388 Make token type LAST, and put the number (the digits) in yylval. */
1389
1390 tryname:
1391 if (*tokstart == '$')
1392 {
1393 register int negate = 0;
1394 c = 1;
1395 /* Double dollar means negate the number and add -1 as well.
1396 Thus $$ alone means -1. */
1397 if (namelen >= 2 && tokstart[1] == '$')
1398 {
1399 negate = 1;
1400 c = 2;
1401 }
1402 if (c == namelen)
1403 {
1404 /* Just dollars (one or two) */
1405 yylval.lval = - negate;
1406 return LAST;
1407 }
1408 /* Is the rest of the token digits? */
1409 for (; c < namelen; c++)
1410 if (!(tokstart[c] >= '0' && tokstart[c] <= '9'))
1411 break;
1412 if (c == namelen)
1413 {
1414 yylval.lval = atoi (tokstart + 1 + negate);
1415 if (negate)
1416 yylval.lval = - yylval.lval;
1417 return LAST;
1418 }
1419 }
1420
1421 /* Handle tokens that refer to machine registers:
1422 $ followed by a register name. */
1423
1424 if (*tokstart == '$') {
1425 for (c = 0; c < NUM_REGS; c++)
1426 if (namelen - 1 == strlen (reg_names[c])
1427 && STREQN (tokstart + 1, reg_names[c], namelen - 1))
1428 {
1429 yylval.lval = c;
1430 return REGNAME;
1431 }
1432 for (c = 0; c < num_std_regs; c++)
1433 if (namelen - 1 == strlen (std_regs[c].name)
1434 && STREQN (tokstart + 1, std_regs[c].name, namelen - 1))
1435 {
1436 yylval.lval = std_regs[c].regnum;
1437 return REGNAME;
1438 }
1439 }
1440 /* Catch specific keywords. Should be done with a data structure. */
1441 switch (namelen)
1442 {
1443 case 8:
1444 if (STREQN (tokstart, "unsigned", 8))
1445 return UNSIGNED;
1446 if (current_language->la_language == language_cplus
1447 && STREQN (tokstart, "template", 8))
1448 return TEMPLATE;
1449 if (STREQN (tokstart, "volatile", 8))
1450 return VOLATILE_KEYWORD;
1451 break;
1452 case 6:
1453 if (STREQN (tokstart, "struct", 6))
1454 return STRUCT;
1455 if (STREQN (tokstart, "signed", 6))
1456 return SIGNED_KEYWORD;
1457 if (STREQN (tokstart, "sizeof", 6))
1458 return SIZEOF;
1459 break;
1460 case 5:
1461 if (current_language->la_language == language_cplus
1462 && STREQN (tokstart, "class", 5))
1463 return CLASS;
1464 if (STREQN (tokstart, "union", 5))
1465 return UNION;
1466 if (STREQN (tokstart, "short", 5))
1467 return SHORT;
1468 if (STREQN (tokstart, "const", 5))
1469 return CONST_KEYWORD;
1470 break;
1471 case 4:
1472 if (STREQN (tokstart, "enum", 4))
1473 return ENUM;
1474 if (STREQN (tokstart, "long", 4))
1475 return LONG;
1476 if (current_language->la_language == language_cplus
1477 && STREQN (tokstart, "this", 4))
1478 {
1479 static const char this_name[] =
1480 { CPLUS_MARKER, 't', 'h', 'i', 's', '\0' };
1481
1482 if (lookup_symbol (this_name, expression_context_block,
1483 VAR_NAMESPACE, (int *) NULL,
1484 (struct symtab **) NULL))
1485 return THIS;
1486 }
1487 break;
1488 case 3:
1489 if (STREQN (tokstart, "int", 3))
1490 return INT_KEYWORD;
1491 break;
1492 default:
1493 break;
1494 }
1495
1496 yylval.sval.ptr = tokstart;
1497 yylval.sval.length = namelen;
1498
1499 /* Any other names starting in $ are debugger internal variables. */
1500
1501 if (*tokstart == '$')
1502 {
1503 yylval.ivar = lookup_internalvar (copy_name (yylval.sval) + 1);
1504 return VARIABLE;
1505 }
1506
1507 /* Use token-type BLOCKNAME for symbols that happen to be defined as
1508 functions or symtabs. If this is not so, then ...
1509 Use token-type TYPENAME for symbols that happen to be defined
1510 currently as names of types; NAME for other symbols.
1511 The caller is not constrained to care about the distinction. */
1512 {
1513 char *tmp = copy_name (yylval.sval);
1514 struct symbol *sym;
1515 int is_a_field_of_this = 0;
1516 int hextype;
1517
1518 sym = lookup_symbol (tmp, expression_context_block,
1519 VAR_NAMESPACE,
1520 current_language->la_language == language_cplus
1521 ? &is_a_field_of_this : (int *) NULL,
1522 (struct symtab **) NULL);
1523 /* Call lookup_symtab, not lookup_partial_symtab, in case there are
1524 no psymtabs (coff, xcoff, or some future change to blow away the
1525 psymtabs once once symbols are read). */
1526 if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
1527 lookup_symtab (tmp))
1528 {
1529 yylval.ssym.sym = sym;
1530 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1531 return BLOCKNAME;
1532 }
1533 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1534 {
1535 #if 1
1536 /* Despite the following flaw, we need to keep this code enabled.
1537 Because we can get called from check_stub_method, if we don't
1538 handle nested types then it screws many operations in any
1539 program which uses nested types. */
1540 /* In "A::x", if x is a member function of A and there happens
1541 to be a type (nested or not, since the stabs don't make that
1542 distinction) named x, then this code incorrectly thinks we
1543 are dealing with nested types rather than a member function. */
1544
1545 char *p;
1546 char *namestart;
1547 struct symbol *best_sym;
1548
1549 /* Look ahead to detect nested types. This probably should be
1550 done in the grammar, but trying seemed to introduce a lot
1551 of shift/reduce and reduce/reduce conflicts. It's possible
1552 that it could be done, though. Or perhaps a non-grammar, but
1553 less ad hoc, approach would work well. */
1554
1555 /* Since we do not currently have any way of distinguishing
1556 a nested type from a non-nested one (the stabs don't tell
1557 us whether a type is nested), we just ignore the
1558 containing type. */
1559
1560 p = lexptr;
1561 best_sym = sym;
1562 while (1)
1563 {
1564 /* Skip whitespace. */
1565 while (*p == ' ' || *p == '\t' || *p == '\n')
1566 ++p;
1567 if (*p == ':' && p[1] == ':')
1568 {
1569 /* Skip the `::'. */
1570 p += 2;
1571 /* Skip whitespace. */
1572 while (*p == ' ' || *p == '\t' || *p == '\n')
1573 ++p;
1574 namestart = p;
1575 while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
1576 || (*p >= 'a' && *p <= 'z')
1577 || (*p >= 'A' && *p <= 'Z'))
1578 ++p;
1579 if (p != namestart)
1580 {
1581 struct symbol *cur_sym;
1582 /* As big as the whole rest of the expression, which is
1583 at least big enough. */
1584 char *ncopy = alloca (strlen (tmp)+strlen (namestart)+3);
1585 char *tmp1;
1586
1587 tmp1 = ncopy;
1588 memcpy (tmp1, tmp, strlen (tmp));
1589 tmp1 += strlen (tmp);
1590 memcpy (tmp1, "::", 2);
1591 tmp1 += 2;
1592 memcpy (tmp1, namestart, p - namestart);
1593 tmp1[p - namestart] = '\0';
1594 cur_sym = lookup_symbol (ncopy, expression_context_block,
1595 VAR_NAMESPACE, (int *) NULL,
1596 (struct symtab **) NULL);
1597 if (cur_sym)
1598 {
1599 if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
1600 {
1601 best_sym = cur_sym;
1602 lexptr = p;
1603 }
1604 else
1605 break;
1606 }
1607 else
1608 break;
1609 }
1610 else
1611 break;
1612 }
1613 else
1614 break;
1615 }
1616
1617 yylval.tsym.type = SYMBOL_TYPE (best_sym);
1618 #else /* not 0 */
1619 yylval.tsym.type = SYMBOL_TYPE (sym);
1620 #endif /* not 0 */
1621 return TYPENAME;
1622 }
1623 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1624 return TYPENAME;
1625
1626 /* Input names that aren't symbols but ARE valid hex numbers,
1627 when the input radix permits them, can be names or numbers
1628 depending on the parse. Note we support radixes > 16 here. */
1629 if (!sym &&
1630 ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
1631 (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1632 {
1633 YYSTYPE newlval; /* Its value is ignored. */
1634 hextype = parse_number (tokstart, namelen, 0, &newlval);
1635 if (hextype == INT)
1636 {
1637 yylval.ssym.sym = sym;
1638 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1639 return NAME_OR_INT;
1640 }
1641 }
1642
1643 /* Any other kind of symbol */
1644 yylval.ssym.sym = sym;
1645 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1646 return NAME;
1647 }
1648 }
1649
1650 void
1651 yyerror (msg)
1652 char *msg;
1653 {
1654 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
1655 }
This page took 0.082423 seconds and 4 git commands to generate.