Move arglist_len et al to parser_state
[deliverable/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986-2019 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Parse a C expression from text in a string,
20 and return the result as a struct expression pointer.
21 That structure contains arithmetic operations in reverse polish,
22 with constants represented by operations that are followed by special data.
23 See expression.h for the details of the format.
24 What is important here is that it can be built up sequentially
25 during the process of parsing; the lower levels of the tree always
26 come first in the result.
27
28 Note that malloc's and realloc's in this file are transformed to
29 xmalloc and xrealloc respectively by the same sed command in the
30 makefile that remaps any other malloc/realloc inserted by the parser
31 generator. Doing this with #defines and trying to control the interaction
32 with include files (<malloc.h> and <stdlib.h> for example) just became
33 too messy, particularly when such includes can be inserted at random
34 times by the parser generator. */
35
36 %{
37
38 #include "defs.h"
39 #include <ctype.h>
40 #include "expression.h"
41 #include "value.h"
42 #include "parser-defs.h"
43 #include "language.h"
44 #include "c-lang.h"
45 #include "c-support.h"
46 #include "bfd.h" /* Required by objfiles.h. */
47 #include "symfile.h" /* Required by objfiles.h. */
48 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
49 #include "charset.h"
50 #include "block.h"
51 #include "cp-support.h"
52 #include "macroscope.h"
53 #include "objc-lang.h"
54 #include "typeprint.h"
55 #include "cp-abi.h"
56
57 #define parse_type(ps) builtin_type (ps->gdbarch ())
58
59 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
60 etc). */
61 #define GDB_YY_REMAP_PREFIX c_
62 #include "yy-remap.h"
63
64 /* The state of the parser, used internally when we are parsing the
65 expression. */
66
67 static struct parser_state *pstate = NULL;
68
69 /* Data that must be held for the duration of a parse. */
70
71 struct c_parse_state
72 {
73 /* These are used to hold type lists and type stacks that are
74 allocated during the parse. */
75 std::vector<std::unique_ptr<std::vector<struct type *>>> type_lists;
76 std::vector<std::unique_ptr<struct type_stack>> type_stacks;
77
78 /* Storage for some strings allocated during the parse. */
79 std::vector<gdb::unique_xmalloc_ptr<char>> strings;
80
81 /* When we find that lexptr (the global var defined in parse.c) is
82 pointing at a macro invocation, we expand the invocation, and call
83 scan_macro_expansion to save the old lexptr here and point lexptr
84 into the expanded text. When we reach the end of that, we call
85 end_macro_expansion to pop back to the value we saved here. The
86 macro expansion code promises to return only fully-expanded text,
87 so we don't need to "push" more than one level.
88
89 This is disgusting, of course. It would be cleaner to do all macro
90 expansion beforehand, and then hand that to lexptr. But we don't
91 really know where the expression ends. Remember, in a command like
92
93 (gdb) break *ADDRESS if CONDITION
94
95 we evaluate ADDRESS in the scope of the current frame, but we
96 evaluate CONDITION in the scope of the breakpoint's location. So
97 it's simply wrong to try to macro-expand the whole thing at once. */
98 const char *macro_original_text = nullptr;
99
100 /* We save all intermediate macro expansions on this obstack for the
101 duration of a single parse. The expansion text may sometimes have
102 to live past the end of the expansion, due to yacc lookahead.
103 Rather than try to be clever about saving the data for a single
104 token, we simply keep it all and delete it after parsing has
105 completed. */
106 auto_obstack expansion_obstack;
107 };
108
109 /* This is set and cleared in c_parse. */
110
111 static struct c_parse_state *cpstate;
112
113 int yyparse (void);
114
115 static int yylex (void);
116
117 static void yyerror (const char *);
118
119 static int type_aggregate_p (struct type *);
120
121 %}
122
123 /* Although the yacc "value" of an expression is not used,
124 since the result is stored in the structure being created,
125 other node types do have values. */
126
127 %union
128 {
129 LONGEST lval;
130 struct {
131 LONGEST val;
132 struct type *type;
133 } typed_val_int;
134 struct {
135 gdb_byte val[16];
136 struct type *type;
137 } typed_val_float;
138 struct type *tval;
139 struct stoken sval;
140 struct typed_stoken tsval;
141 struct ttype tsym;
142 struct symtoken ssym;
143 int voidval;
144 const struct block *bval;
145 enum exp_opcode opcode;
146
147 struct stoken_vector svec;
148 std::vector<struct type *> *tvec;
149
150 struct type_stack *type_stack;
151
152 struct objc_class_str theclass;
153 }
154
155 %{
156 /* YYSTYPE gets defined by %union */
157 static int parse_number (struct parser_state *par_state,
158 const char *, int, int, YYSTYPE *);
159 static struct stoken operator_stoken (const char *);
160 static struct stoken typename_stoken (const char *);
161 static void check_parameter_typelist (std::vector<struct type *> *);
162 static void write_destructor_name (struct parser_state *par_state,
163 struct stoken);
164
165 #ifdef YYBISON
166 static void c_print_token (FILE *file, int type, YYSTYPE value);
167 #define YYPRINT(FILE, TYPE, VALUE) c_print_token (FILE, TYPE, VALUE)
168 #endif
169 %}
170
171 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly function_method
172 %type <lval> rcurly
173 %type <tval> type typebase
174 %type <tvec> nonempty_typelist func_mod parameter_typelist
175 /* %type <bval> block */
176
177 /* Fancy type parsing. */
178 %type <tval> ptype
179 %type <lval> array_mod
180 %type <tval> conversion_type_id
181
182 %type <type_stack> ptr_operator_ts abs_decl direct_abs_decl
183
184 %token <typed_val_int> INT
185 %token <typed_val_float> FLOAT
186
187 /* Both NAME and TYPENAME tokens represent symbols in the input,
188 and both convey their data as strings.
189 But a TYPENAME is a string that happens to be defined as a typedef
190 or builtin type name (such as int or char)
191 and a NAME is any other symbol.
192 Contexts where this distinction is not important can use the
193 nonterminal "name", which matches either NAME or TYPENAME. */
194
195 %token <tsval> STRING
196 %token <sval> NSSTRING /* ObjC Foundation "NSString" literal */
197 %token SELECTOR /* ObjC "@selector" pseudo-operator */
198 %token <tsval> CHAR
199 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
200 %token <ssym> UNKNOWN_CPP_NAME
201 %token <voidval> COMPLETE
202 %token <tsym> TYPENAME
203 %token <theclass> CLASSNAME /* ObjC Class name */
204 %type <sval> name field_name
205 %type <svec> string_exp
206 %type <ssym> name_not_typename
207 %type <tsym> type_name
208
209 /* This is like a '[' token, but is only generated when parsing
210 Objective C. This lets us reuse the same parser without
211 erroneously parsing ObjC-specific expressions in C. */
212 %token OBJC_LBRAC
213
214 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
215 but which would parse as a valid number in the current input radix.
216 E.g. "c" when input_radix==16. Depending on the parse, it will be
217 turned into a name or into a number. */
218
219 %token <ssym> NAME_OR_INT
220
221 %token OPERATOR
222 %token STRUCT CLASS UNION ENUM SIZEOF ALIGNOF UNSIGNED COLONCOLON
223 %token TEMPLATE
224 %token ERROR
225 %token NEW DELETE
226 %type <sval> oper
227 %token REINTERPRET_CAST DYNAMIC_CAST STATIC_CAST CONST_CAST
228 %token ENTRY
229 %token TYPEOF
230 %token DECLTYPE
231 %token TYPEID
232
233 /* Special type cases, put in to allow the parser to distinguish different
234 legal basetypes. */
235 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD
236
237 %token <sval> DOLLAR_VARIABLE
238
239 %token <opcode> ASSIGN_MODIFY
240
241 /* C++ */
242 %token TRUEKEYWORD
243 %token FALSEKEYWORD
244
245
246 %left ','
247 %left ABOVE_COMMA
248 %right '=' ASSIGN_MODIFY
249 %right '?'
250 %left OROR
251 %left ANDAND
252 %left '|'
253 %left '^'
254 %left '&'
255 %left EQUAL NOTEQUAL
256 %left '<' '>' LEQ GEQ
257 %left LSH RSH
258 %left '@'
259 %left '+' '-'
260 %left '*' '/' '%'
261 %right UNARY INCREMENT DECREMENT
262 %right ARROW ARROW_STAR '.' DOT_STAR '[' OBJC_LBRAC '('
263 %token <ssym> BLOCKNAME
264 %token <bval> FILENAME
265 %type <bval> block
266 %left COLONCOLON
267
268 %token DOTDOTDOT
269
270 \f
271 %%
272
273 start : exp1
274 | type_exp
275 ;
276
277 type_exp: type
278 { write_exp_elt_opcode(pstate, OP_TYPE);
279 write_exp_elt_type(pstate, $1);
280 write_exp_elt_opcode(pstate, OP_TYPE);}
281 | TYPEOF '(' exp ')'
282 {
283 write_exp_elt_opcode (pstate, OP_TYPEOF);
284 }
285 | TYPEOF '(' type ')'
286 {
287 write_exp_elt_opcode (pstate, OP_TYPE);
288 write_exp_elt_type (pstate, $3);
289 write_exp_elt_opcode (pstate, OP_TYPE);
290 }
291 | DECLTYPE '(' exp ')'
292 {
293 write_exp_elt_opcode (pstate, OP_DECLTYPE);
294 }
295 ;
296
297 /* Expressions, including the comma operator. */
298 exp1 : exp
299 | exp1 ',' exp
300 { write_exp_elt_opcode (pstate, BINOP_COMMA); }
301 ;
302
303 /* Expressions, not including the comma operator. */
304 exp : '*' exp %prec UNARY
305 { write_exp_elt_opcode (pstate, UNOP_IND); }
306 ;
307
308 exp : '&' exp %prec UNARY
309 { write_exp_elt_opcode (pstate, UNOP_ADDR); }
310 ;
311
312 exp : '-' exp %prec UNARY
313 { write_exp_elt_opcode (pstate, UNOP_NEG); }
314 ;
315
316 exp : '+' exp %prec UNARY
317 { write_exp_elt_opcode (pstate, UNOP_PLUS); }
318 ;
319
320 exp : '!' exp %prec UNARY
321 { write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT); }
322 ;
323
324 exp : '~' exp %prec UNARY
325 { write_exp_elt_opcode (pstate, UNOP_COMPLEMENT); }
326 ;
327
328 exp : INCREMENT exp %prec UNARY
329 { write_exp_elt_opcode (pstate, UNOP_PREINCREMENT); }
330 ;
331
332 exp : DECREMENT exp %prec UNARY
333 { write_exp_elt_opcode (pstate, UNOP_PREDECREMENT); }
334 ;
335
336 exp : exp INCREMENT %prec UNARY
337 { write_exp_elt_opcode (pstate, UNOP_POSTINCREMENT); }
338 ;
339
340 exp : exp DECREMENT %prec UNARY
341 { write_exp_elt_opcode (pstate, UNOP_POSTDECREMENT); }
342 ;
343
344 exp : TYPEID '(' exp ')' %prec UNARY
345 { write_exp_elt_opcode (pstate, OP_TYPEID); }
346 ;
347
348 exp : TYPEID '(' type_exp ')' %prec UNARY
349 { write_exp_elt_opcode (pstate, OP_TYPEID); }
350 ;
351
352 exp : SIZEOF exp %prec UNARY
353 { write_exp_elt_opcode (pstate, UNOP_SIZEOF); }
354 ;
355
356 exp : ALIGNOF '(' type_exp ')' %prec UNARY
357 { write_exp_elt_opcode (pstate, UNOP_ALIGNOF); }
358 ;
359
360 exp : exp ARROW field_name
361 { write_exp_elt_opcode (pstate, STRUCTOP_PTR);
362 write_exp_string (pstate, $3);
363 write_exp_elt_opcode (pstate, STRUCTOP_PTR); }
364 ;
365
366 exp : exp ARROW field_name COMPLETE
367 { mark_struct_expression (pstate);
368 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
369 write_exp_string (pstate, $3);
370 write_exp_elt_opcode (pstate, STRUCTOP_PTR); }
371 ;
372
373 exp : exp ARROW COMPLETE
374 { struct stoken s;
375 mark_struct_expression (pstate);
376 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
377 s.ptr = "";
378 s.length = 0;
379 write_exp_string (pstate, s);
380 write_exp_elt_opcode (pstate, STRUCTOP_PTR); }
381 ;
382
383 exp : exp ARROW '~' name
384 { write_exp_elt_opcode (pstate, STRUCTOP_PTR);
385 write_destructor_name (pstate, $4);
386 write_exp_elt_opcode (pstate, STRUCTOP_PTR); }
387 ;
388
389 exp : exp ARROW '~' name COMPLETE
390 { mark_struct_expression (pstate);
391 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
392 write_destructor_name (pstate, $4);
393 write_exp_elt_opcode (pstate, STRUCTOP_PTR); }
394 ;
395
396 exp : exp ARROW qualified_name
397 { /* exp->type::name becomes exp->*(&type::name) */
398 /* Note: this doesn't work if name is a
399 static member! FIXME */
400 write_exp_elt_opcode (pstate, UNOP_ADDR);
401 write_exp_elt_opcode (pstate, STRUCTOP_MPTR); }
402 ;
403
404 exp : exp ARROW_STAR exp
405 { write_exp_elt_opcode (pstate, STRUCTOP_MPTR); }
406 ;
407
408 exp : exp '.' field_name
409 { write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
410 write_exp_string (pstate, $3);
411 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
412 ;
413
414 exp : exp '.' field_name COMPLETE
415 { mark_struct_expression (pstate);
416 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
417 write_exp_string (pstate, $3);
418 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
419 ;
420
421 exp : exp '.' COMPLETE
422 { struct stoken s;
423 mark_struct_expression (pstate);
424 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
425 s.ptr = "";
426 s.length = 0;
427 write_exp_string (pstate, s);
428 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
429 ;
430
431 exp : exp '.' '~' name
432 { write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
433 write_destructor_name (pstate, $4);
434 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
435 ;
436
437 exp : exp '.' '~' name COMPLETE
438 { mark_struct_expression (pstate);
439 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
440 write_destructor_name (pstate, $4);
441 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
442 ;
443
444 exp : exp '.' qualified_name
445 { /* exp.type::name becomes exp.*(&type::name) */
446 /* Note: this doesn't work if name is a
447 static member! FIXME */
448 write_exp_elt_opcode (pstate, UNOP_ADDR);
449 write_exp_elt_opcode (pstate, STRUCTOP_MEMBER); }
450 ;
451
452 exp : exp DOT_STAR exp
453 { write_exp_elt_opcode (pstate, STRUCTOP_MEMBER); }
454 ;
455
456 exp : exp '[' exp1 ']'
457 { write_exp_elt_opcode (pstate, BINOP_SUBSCRIPT); }
458 ;
459
460 exp : exp OBJC_LBRAC exp1 ']'
461 { write_exp_elt_opcode (pstate, BINOP_SUBSCRIPT); }
462 ;
463
464 /*
465 * The rules below parse ObjC message calls of the form:
466 * '[' target selector {':' argument}* ']'
467 */
468
469 exp : OBJC_LBRAC TYPENAME
470 {
471 CORE_ADDR theclass;
472
473 theclass = lookup_objc_class (pstate->gdbarch (),
474 copy_name ($2.stoken));
475 if (theclass == 0)
476 error (_("%s is not an ObjC Class"),
477 copy_name ($2.stoken));
478 write_exp_elt_opcode (pstate, OP_LONG);
479 write_exp_elt_type (pstate,
480 parse_type (pstate)->builtin_int);
481 write_exp_elt_longcst (pstate, (LONGEST) theclass);
482 write_exp_elt_opcode (pstate, OP_LONG);
483 start_msglist();
484 }
485 msglist ']'
486 { write_exp_elt_opcode (pstate, OP_OBJC_MSGCALL);
487 end_msglist (pstate);
488 write_exp_elt_opcode (pstate, OP_OBJC_MSGCALL);
489 }
490 ;
491
492 exp : OBJC_LBRAC CLASSNAME
493 {
494 write_exp_elt_opcode (pstate, OP_LONG);
495 write_exp_elt_type (pstate,
496 parse_type (pstate)->builtin_int);
497 write_exp_elt_longcst (pstate, (LONGEST) $2.theclass);
498 write_exp_elt_opcode (pstate, OP_LONG);
499 start_msglist();
500 }
501 msglist ']'
502 { write_exp_elt_opcode (pstate, OP_OBJC_MSGCALL);
503 end_msglist (pstate);
504 write_exp_elt_opcode (pstate, OP_OBJC_MSGCALL);
505 }
506 ;
507
508 exp : OBJC_LBRAC exp
509 { start_msglist(); }
510 msglist ']'
511 { write_exp_elt_opcode (pstate, OP_OBJC_MSGCALL);
512 end_msglist (pstate);
513 write_exp_elt_opcode (pstate, OP_OBJC_MSGCALL);
514 }
515 ;
516
517 msglist : name
518 { add_msglist(&$1, 0); }
519 | msgarglist
520 ;
521
522 msgarglist : msgarg
523 | msgarglist msgarg
524 ;
525
526 msgarg : name ':' exp
527 { add_msglist(&$1, 1); }
528 | ':' exp /* Unnamed arg. */
529 { add_msglist(0, 1); }
530 | ',' exp /* Variable number of args. */
531 { add_msglist(0, 0); }
532 ;
533
534 exp : exp '('
535 /* This is to save the value of arglist_len
536 being accumulated by an outer function call. */
537 { pstate->start_arglist (); }
538 arglist ')' %prec ARROW
539 { write_exp_elt_opcode (pstate, OP_FUNCALL);
540 write_exp_elt_longcst (pstate,
541 pstate->end_arglist ());
542 write_exp_elt_opcode (pstate, OP_FUNCALL); }
543 ;
544
545 /* This is here to disambiguate with the production for
546 "func()::static_var" further below, which uses
547 function_method_void. */
548 exp : exp '(' ')' %prec ARROW
549 { pstate->start_arglist ();
550 write_exp_elt_opcode (pstate, OP_FUNCALL);
551 write_exp_elt_longcst (pstate,
552 pstate->end_arglist ());
553 write_exp_elt_opcode (pstate, OP_FUNCALL); }
554 ;
555
556
557 exp : UNKNOWN_CPP_NAME '('
558 {
559 /* This could potentially be a an argument defined
560 lookup function (Koenig). */
561 write_exp_elt_opcode (pstate, OP_ADL_FUNC);
562 write_exp_elt_block
563 (pstate, pstate->expression_context_block);
564 write_exp_elt_sym (pstate,
565 NULL); /* Placeholder. */
566 write_exp_string (pstate, $1.stoken);
567 write_exp_elt_opcode (pstate, OP_ADL_FUNC);
568
569 /* This is to save the value of arglist_len
570 being accumulated by an outer function call. */
571
572 pstate->start_arglist ();
573 }
574 arglist ')' %prec ARROW
575 {
576 write_exp_elt_opcode (pstate, OP_FUNCALL);
577 write_exp_elt_longcst (pstate,
578 pstate->end_arglist ());
579 write_exp_elt_opcode (pstate, OP_FUNCALL);
580 }
581 ;
582
583 lcurly : '{'
584 { pstate->start_arglist (); }
585 ;
586
587 arglist :
588 ;
589
590 arglist : exp
591 { pstate->arglist_len = 1; }
592 ;
593
594 arglist : arglist ',' exp %prec ABOVE_COMMA
595 { pstate->arglist_len++; }
596 ;
597
598 function_method: exp '(' parameter_typelist ')' const_or_volatile
599 {
600 std::vector<struct type *> *type_list = $3;
601 LONGEST len = type_list->size ();
602
603 write_exp_elt_opcode (pstate, TYPE_INSTANCE);
604 /* Save the const/volatile qualifiers as
605 recorded by the const_or_volatile
606 production's actions. */
607 write_exp_elt_longcst (pstate,
608 follow_type_instance_flags ());
609 write_exp_elt_longcst (pstate, len);
610 for (type *type_elt : *type_list)
611 write_exp_elt_type (pstate, type_elt);
612 write_exp_elt_longcst(pstate, len);
613 write_exp_elt_opcode (pstate, TYPE_INSTANCE);
614 }
615 ;
616
617 function_method_void: exp '(' ')' const_or_volatile
618 { write_exp_elt_opcode (pstate, TYPE_INSTANCE);
619 /* See above. */
620 write_exp_elt_longcst (pstate,
621 follow_type_instance_flags ());
622 write_exp_elt_longcst (pstate, 0);
623 write_exp_elt_longcst (pstate, 0);
624 write_exp_elt_opcode (pstate, TYPE_INSTANCE);
625 }
626 ;
627
628 exp : function_method
629 ;
630
631 /* Normally we must interpret "func()" as a function call, instead of
632 a type. The user needs to write func(void) to disambiguate.
633 However, in the "func()::static_var" case, there's no
634 ambiguity. */
635 function_method_void_or_typelist: function_method
636 | function_method_void
637 ;
638
639 exp : function_method_void_or_typelist COLONCOLON name
640 {
641 write_exp_elt_opcode (pstate, OP_FUNC_STATIC_VAR);
642 write_exp_string (pstate, $3);
643 write_exp_elt_opcode (pstate, OP_FUNC_STATIC_VAR);
644 }
645 ;
646
647 rcurly : '}'
648 { $$ = pstate->end_arglist () - 1; }
649 ;
650 exp : lcurly arglist rcurly %prec ARROW
651 { write_exp_elt_opcode (pstate, OP_ARRAY);
652 write_exp_elt_longcst (pstate, (LONGEST) 0);
653 write_exp_elt_longcst (pstate, (LONGEST) $3);
654 write_exp_elt_opcode (pstate, OP_ARRAY); }
655 ;
656
657 exp : lcurly type_exp rcurly exp %prec UNARY
658 { write_exp_elt_opcode (pstate, UNOP_MEMVAL_TYPE); }
659 ;
660
661 exp : '(' type_exp ')' exp %prec UNARY
662 { write_exp_elt_opcode (pstate, UNOP_CAST_TYPE); }
663 ;
664
665 exp : '(' exp1 ')'
666 { }
667 ;
668
669 /* Binary operators in order of decreasing precedence. */
670
671 exp : exp '@' exp
672 { write_exp_elt_opcode (pstate, BINOP_REPEAT); }
673 ;
674
675 exp : exp '*' exp
676 { write_exp_elt_opcode (pstate, BINOP_MUL); }
677 ;
678
679 exp : exp '/' exp
680 { write_exp_elt_opcode (pstate, BINOP_DIV); }
681 ;
682
683 exp : exp '%' exp
684 { write_exp_elt_opcode (pstate, BINOP_REM); }
685 ;
686
687 exp : exp '+' exp
688 { write_exp_elt_opcode (pstate, BINOP_ADD); }
689 ;
690
691 exp : exp '-' exp
692 { write_exp_elt_opcode (pstate, BINOP_SUB); }
693 ;
694
695 exp : exp LSH exp
696 { write_exp_elt_opcode (pstate, BINOP_LSH); }
697 ;
698
699 exp : exp RSH exp
700 { write_exp_elt_opcode (pstate, BINOP_RSH); }
701 ;
702
703 exp : exp EQUAL exp
704 { write_exp_elt_opcode (pstate, BINOP_EQUAL); }
705 ;
706
707 exp : exp NOTEQUAL exp
708 { write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
709 ;
710
711 exp : exp LEQ exp
712 { write_exp_elt_opcode (pstate, BINOP_LEQ); }
713 ;
714
715 exp : exp GEQ exp
716 { write_exp_elt_opcode (pstate, BINOP_GEQ); }
717 ;
718
719 exp : exp '<' exp
720 { write_exp_elt_opcode (pstate, BINOP_LESS); }
721 ;
722
723 exp : exp '>' exp
724 { write_exp_elt_opcode (pstate, BINOP_GTR); }
725 ;
726
727 exp : exp '&' exp
728 { write_exp_elt_opcode (pstate, BINOP_BITWISE_AND); }
729 ;
730
731 exp : exp '^' exp
732 { write_exp_elt_opcode (pstate, BINOP_BITWISE_XOR); }
733 ;
734
735 exp : exp '|' exp
736 { write_exp_elt_opcode (pstate, BINOP_BITWISE_IOR); }
737 ;
738
739 exp : exp ANDAND exp
740 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_AND); }
741 ;
742
743 exp : exp OROR exp
744 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_OR); }
745 ;
746
747 exp : exp '?' exp ':' exp %prec '?'
748 { write_exp_elt_opcode (pstate, TERNOP_COND); }
749 ;
750
751 exp : exp '=' exp
752 { write_exp_elt_opcode (pstate, BINOP_ASSIGN); }
753 ;
754
755 exp : exp ASSIGN_MODIFY exp
756 { write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY);
757 write_exp_elt_opcode (pstate, $2);
758 write_exp_elt_opcode (pstate,
759 BINOP_ASSIGN_MODIFY); }
760 ;
761
762 exp : INT
763 { write_exp_elt_opcode (pstate, OP_LONG);
764 write_exp_elt_type (pstate, $1.type);
765 write_exp_elt_longcst (pstate, (LONGEST) ($1.val));
766 write_exp_elt_opcode (pstate, OP_LONG); }
767 ;
768
769 exp : CHAR
770 {
771 struct stoken_vector vec;
772 vec.len = 1;
773 vec.tokens = &$1;
774 write_exp_string_vector (pstate, $1.type, &vec);
775 }
776 ;
777
778 exp : NAME_OR_INT
779 { YYSTYPE val;
780 parse_number (pstate, $1.stoken.ptr,
781 $1.stoken.length, 0, &val);
782 write_exp_elt_opcode (pstate, OP_LONG);
783 write_exp_elt_type (pstate, val.typed_val_int.type);
784 write_exp_elt_longcst (pstate,
785 (LONGEST) val.typed_val_int.val);
786 write_exp_elt_opcode (pstate, OP_LONG);
787 }
788 ;
789
790
791 exp : FLOAT
792 { write_exp_elt_opcode (pstate, OP_FLOAT);
793 write_exp_elt_type (pstate, $1.type);
794 write_exp_elt_floatcst (pstate, $1.val);
795 write_exp_elt_opcode (pstate, OP_FLOAT); }
796 ;
797
798 exp : variable
799 ;
800
801 exp : DOLLAR_VARIABLE
802 {
803 write_dollar_variable (pstate, $1);
804 }
805 ;
806
807 exp : SELECTOR '(' name ')'
808 {
809 write_exp_elt_opcode (pstate, OP_OBJC_SELECTOR);
810 write_exp_string (pstate, $3);
811 write_exp_elt_opcode (pstate, OP_OBJC_SELECTOR); }
812 ;
813
814 exp : SIZEOF '(' type ')' %prec UNARY
815 { struct type *type = $3;
816 write_exp_elt_opcode (pstate, OP_LONG);
817 write_exp_elt_type (pstate, lookup_signed_typename
818 (pstate->language (),
819 pstate->gdbarch (),
820 "int"));
821 type = check_typedef (type);
822
823 /* $5.3.3/2 of the C++ Standard (n3290 draft)
824 says of sizeof: "When applied to a reference
825 or a reference type, the result is the size of
826 the referenced type." */
827 if (TYPE_IS_REFERENCE (type))
828 type = check_typedef (TYPE_TARGET_TYPE (type));
829 write_exp_elt_longcst (pstate,
830 (LONGEST) TYPE_LENGTH (type));
831 write_exp_elt_opcode (pstate, OP_LONG); }
832 ;
833
834 exp : REINTERPRET_CAST '<' type_exp '>' '(' exp ')' %prec UNARY
835 { write_exp_elt_opcode (pstate,
836 UNOP_REINTERPRET_CAST); }
837 ;
838
839 exp : STATIC_CAST '<' type_exp '>' '(' exp ')' %prec UNARY
840 { write_exp_elt_opcode (pstate, UNOP_CAST_TYPE); }
841 ;
842
843 exp : DYNAMIC_CAST '<' type_exp '>' '(' exp ')' %prec UNARY
844 { write_exp_elt_opcode (pstate, UNOP_DYNAMIC_CAST); }
845 ;
846
847 exp : CONST_CAST '<' type_exp '>' '(' exp ')' %prec UNARY
848 { /* We could do more error checking here, but
849 it doesn't seem worthwhile. */
850 write_exp_elt_opcode (pstate, UNOP_CAST_TYPE); }
851 ;
852
853 string_exp:
854 STRING
855 {
856 /* We copy the string here, and not in the
857 lexer, to guarantee that we do not leak a
858 string. Note that we follow the
859 NUL-termination convention of the
860 lexer. */
861 struct typed_stoken *vec = XNEW (struct typed_stoken);
862 $$.len = 1;
863 $$.tokens = vec;
864
865 vec->type = $1.type;
866 vec->length = $1.length;
867 vec->ptr = (char *) malloc ($1.length + 1);
868 memcpy (vec->ptr, $1.ptr, $1.length + 1);
869 }
870
871 | string_exp STRING
872 {
873 /* Note that we NUL-terminate here, but just
874 for convenience. */
875 char *p;
876 ++$$.len;
877 $$.tokens = XRESIZEVEC (struct typed_stoken,
878 $$.tokens, $$.len);
879
880 p = (char *) malloc ($2.length + 1);
881 memcpy (p, $2.ptr, $2.length + 1);
882
883 $$.tokens[$$.len - 1].type = $2.type;
884 $$.tokens[$$.len - 1].length = $2.length;
885 $$.tokens[$$.len - 1].ptr = p;
886 }
887 ;
888
889 exp : string_exp
890 {
891 int i;
892 c_string_type type = C_STRING;
893
894 for (i = 0; i < $1.len; ++i)
895 {
896 switch ($1.tokens[i].type)
897 {
898 case C_STRING:
899 break;
900 case C_WIDE_STRING:
901 case C_STRING_16:
902 case C_STRING_32:
903 if (type != C_STRING
904 && type != $1.tokens[i].type)
905 error (_("Undefined string concatenation."));
906 type = (enum c_string_type_values) $1.tokens[i].type;
907 break;
908 default:
909 /* internal error */
910 internal_error (__FILE__, __LINE__,
911 "unrecognized type in string concatenation");
912 }
913 }
914
915 write_exp_string_vector (pstate, type, &$1);
916 for (i = 0; i < $1.len; ++i)
917 free ($1.tokens[i].ptr);
918 free ($1.tokens);
919 }
920 ;
921
922 exp : NSSTRING /* ObjC NextStep NSString constant
923 * of the form '@' '"' string '"'.
924 */
925 { write_exp_elt_opcode (pstate, OP_OBJC_NSSTRING);
926 write_exp_string (pstate, $1);
927 write_exp_elt_opcode (pstate, OP_OBJC_NSSTRING); }
928 ;
929
930 /* C++. */
931 exp : TRUEKEYWORD
932 { write_exp_elt_opcode (pstate, OP_LONG);
933 write_exp_elt_type (pstate,
934 parse_type (pstate)->builtin_bool);
935 write_exp_elt_longcst (pstate, (LONGEST) 1);
936 write_exp_elt_opcode (pstate, OP_LONG); }
937 ;
938
939 exp : FALSEKEYWORD
940 { write_exp_elt_opcode (pstate, OP_LONG);
941 write_exp_elt_type (pstate,
942 parse_type (pstate)->builtin_bool);
943 write_exp_elt_longcst (pstate, (LONGEST) 0);
944 write_exp_elt_opcode (pstate, OP_LONG); }
945 ;
946
947 /* end of C++. */
948
949 block : BLOCKNAME
950 {
951 if ($1.sym.symbol)
952 $$ = SYMBOL_BLOCK_VALUE ($1.sym.symbol);
953 else
954 error (_("No file or function \"%s\"."),
955 copy_name ($1.stoken));
956 }
957 | FILENAME
958 {
959 $$ = $1;
960 }
961 ;
962
963 block : block COLONCOLON name
964 { struct symbol *tem
965 = lookup_symbol (copy_name ($3), $1,
966 VAR_DOMAIN, NULL).symbol;
967
968 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
969 error (_("No function \"%s\" in specified context."),
970 copy_name ($3));
971 $$ = SYMBOL_BLOCK_VALUE (tem); }
972 ;
973
974 variable: name_not_typename ENTRY
975 { struct symbol *sym = $1.sym.symbol;
976
977 if (sym == NULL || !SYMBOL_IS_ARGUMENT (sym)
978 || !symbol_read_needs_frame (sym))
979 error (_("@entry can be used only for function "
980 "parameters, not for \"%s\""),
981 copy_name ($1.stoken));
982
983 write_exp_elt_opcode (pstate, OP_VAR_ENTRY_VALUE);
984 write_exp_elt_sym (pstate, sym);
985 write_exp_elt_opcode (pstate, OP_VAR_ENTRY_VALUE);
986 }
987 ;
988
989 variable: block COLONCOLON name
990 { struct block_symbol sym
991 = lookup_symbol (copy_name ($3), $1,
992 VAR_DOMAIN, NULL);
993
994 if (sym.symbol == 0)
995 error (_("No symbol \"%s\" in specified context."),
996 copy_name ($3));
997 if (symbol_read_needs_frame (sym.symbol))
998
999 innermost_block.update (sym);
1000
1001 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
1002 write_exp_elt_block (pstate, sym.block);
1003 write_exp_elt_sym (pstate, sym.symbol);
1004 write_exp_elt_opcode (pstate, OP_VAR_VALUE); }
1005 ;
1006
1007 qualified_name: TYPENAME COLONCOLON name
1008 {
1009 struct type *type = $1.type;
1010 type = check_typedef (type);
1011 if (!type_aggregate_p (type))
1012 error (_("`%s' is not defined as an aggregate type."),
1013 TYPE_SAFE_NAME (type));
1014
1015 write_exp_elt_opcode (pstate, OP_SCOPE);
1016 write_exp_elt_type (pstate, type);
1017 write_exp_string (pstate, $3);
1018 write_exp_elt_opcode (pstate, OP_SCOPE);
1019 }
1020 | TYPENAME COLONCOLON '~' name
1021 {
1022 struct type *type = $1.type;
1023 struct stoken tmp_token;
1024 char *buf;
1025
1026 type = check_typedef (type);
1027 if (!type_aggregate_p (type))
1028 error (_("`%s' is not defined as an aggregate type."),
1029 TYPE_SAFE_NAME (type));
1030 buf = (char *) alloca ($4.length + 2);
1031 tmp_token.ptr = buf;
1032 tmp_token.length = $4.length + 1;
1033 buf[0] = '~';
1034 memcpy (buf+1, $4.ptr, $4.length);
1035 buf[tmp_token.length] = 0;
1036
1037 /* Check for valid destructor name. */
1038 destructor_name_p (tmp_token.ptr, $1.type);
1039 write_exp_elt_opcode (pstate, OP_SCOPE);
1040 write_exp_elt_type (pstate, type);
1041 write_exp_string (pstate, tmp_token);
1042 write_exp_elt_opcode (pstate, OP_SCOPE);
1043 }
1044 | TYPENAME COLONCOLON name COLONCOLON name
1045 {
1046 char *copy = copy_name ($3);
1047 error (_("No type \"%s\" within class "
1048 "or namespace \"%s\"."),
1049 copy, TYPE_SAFE_NAME ($1.type));
1050 }
1051 ;
1052
1053 variable: qualified_name
1054 | COLONCOLON name_not_typename
1055 {
1056 char *name = copy_name ($2.stoken);
1057 struct symbol *sym;
1058 struct bound_minimal_symbol msymbol;
1059
1060 sym
1061 = lookup_symbol (name, (const struct block *) NULL,
1062 VAR_DOMAIN, NULL).symbol;
1063 if (sym)
1064 {
1065 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
1066 write_exp_elt_block (pstate, NULL);
1067 write_exp_elt_sym (pstate, sym);
1068 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
1069 break;
1070 }
1071
1072 msymbol = lookup_bound_minimal_symbol (name);
1073 if (msymbol.minsym != NULL)
1074 write_exp_msymbol (pstate, msymbol);
1075 else if (!have_full_symbols () && !have_partial_symbols ())
1076 error (_("No symbol table is loaded. Use the \"file\" command."));
1077 else
1078 error (_("No symbol \"%s\" in current context."), name);
1079 }
1080 ;
1081
1082 variable: name_not_typename
1083 { struct block_symbol sym = $1.sym;
1084
1085 if (sym.symbol)
1086 {
1087 if (symbol_read_needs_frame (sym.symbol))
1088 innermost_block.update (sym);
1089
1090 /* If we found a function, see if it's
1091 an ifunc resolver that has the same
1092 address as the ifunc symbol itself.
1093 If so, prefer the ifunc symbol. */
1094
1095 bound_minimal_symbol resolver
1096 = find_gnu_ifunc (sym.symbol);
1097 if (resolver.minsym != NULL)
1098 write_exp_msymbol (pstate, resolver);
1099 else
1100 {
1101 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
1102 write_exp_elt_block (pstate, sym.block);
1103 write_exp_elt_sym (pstate, sym.symbol);
1104 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
1105 }
1106 }
1107 else if ($1.is_a_field_of_this)
1108 {
1109 /* C++: it hangs off of `this'. Must
1110 not inadvertently convert from a method call
1111 to data ref. */
1112 innermost_block.update (sym);
1113 write_exp_elt_opcode (pstate, OP_THIS);
1114 write_exp_elt_opcode (pstate, OP_THIS);
1115 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
1116 write_exp_string (pstate, $1.stoken);
1117 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
1118 }
1119 else
1120 {
1121 char *arg = copy_name ($1.stoken);
1122
1123 bound_minimal_symbol msymbol
1124 = lookup_bound_minimal_symbol (arg);
1125 if (msymbol.minsym == NULL)
1126 {
1127 if (!have_full_symbols () && !have_partial_symbols ())
1128 error (_("No symbol table is loaded. Use the \"file\" command."));
1129 else
1130 error (_("No symbol \"%s\" in current context."),
1131 copy_name ($1.stoken));
1132 }
1133
1134 /* This minsym might be an alias for
1135 another function. See if we can find
1136 the debug symbol for the target, and
1137 if so, use it instead, since it has
1138 return type / prototype info. This
1139 is important for example for "p
1140 *__errno_location()". */
1141 symbol *alias_target
1142 = ((msymbol.minsym->type != mst_text_gnu_ifunc
1143 && msymbol.minsym->type != mst_data_gnu_ifunc)
1144 ? find_function_alias_target (msymbol)
1145 : NULL);
1146 if (alias_target != NULL)
1147 {
1148 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
1149 write_exp_elt_block
1150 (pstate, SYMBOL_BLOCK_VALUE (alias_target));
1151 write_exp_elt_sym (pstate, alias_target);
1152 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
1153 }
1154 else
1155 write_exp_msymbol (pstate, msymbol);
1156 }
1157 }
1158 ;
1159
1160 space_identifier : '@' NAME
1161 { insert_type_address_space (pstate, copy_name ($2.stoken)); }
1162 ;
1163
1164 const_or_volatile: const_or_volatile_noopt
1165 |
1166 ;
1167
1168 cv_with_space_id : const_or_volatile space_identifier const_or_volatile
1169 ;
1170
1171 const_or_volatile_or_space_identifier_noopt: cv_with_space_id
1172 | const_or_volatile_noopt
1173 ;
1174
1175 const_or_volatile_or_space_identifier:
1176 const_or_volatile_or_space_identifier_noopt
1177 |
1178 ;
1179
1180 ptr_operator:
1181 ptr_operator '*'
1182 { insert_type (tp_pointer); }
1183 const_or_volatile_or_space_identifier
1184 | '*'
1185 { insert_type (tp_pointer); }
1186 const_or_volatile_or_space_identifier
1187 | '&'
1188 { insert_type (tp_reference); }
1189 | '&' ptr_operator
1190 { insert_type (tp_reference); }
1191 | ANDAND
1192 { insert_type (tp_rvalue_reference); }
1193 | ANDAND ptr_operator
1194 { insert_type (tp_rvalue_reference); }
1195 ;
1196
1197 ptr_operator_ts: ptr_operator
1198 {
1199 $$ = get_type_stack ();
1200 cpstate->type_stacks.emplace_back ($$);
1201 }
1202 ;
1203
1204 abs_decl: ptr_operator_ts direct_abs_decl
1205 { $$ = append_type_stack ($2, $1); }
1206 | ptr_operator_ts
1207 | direct_abs_decl
1208 ;
1209
1210 direct_abs_decl: '(' abs_decl ')'
1211 { $$ = $2; }
1212 | direct_abs_decl array_mod
1213 {
1214 push_type_stack ($1);
1215 push_type_int ($2);
1216 push_type (tp_array);
1217 $$ = get_type_stack ();
1218 cpstate->type_stacks.emplace_back ($$);
1219 }
1220 | array_mod
1221 {
1222 push_type_int ($1);
1223 push_type (tp_array);
1224 $$ = get_type_stack ();
1225 cpstate->type_stacks.emplace_back ($$);
1226 }
1227
1228 | direct_abs_decl func_mod
1229 {
1230 push_type_stack ($1);
1231 push_typelist ($2);
1232 $$ = get_type_stack ();
1233 cpstate->type_stacks.emplace_back ($$);
1234 }
1235 | func_mod
1236 {
1237 push_typelist ($1);
1238 $$ = get_type_stack ();
1239 cpstate->type_stacks.emplace_back ($$);
1240 }
1241 ;
1242
1243 array_mod: '[' ']'
1244 { $$ = -1; }
1245 | OBJC_LBRAC ']'
1246 { $$ = -1; }
1247 | '[' INT ']'
1248 { $$ = $2.val; }
1249 | OBJC_LBRAC INT ']'
1250 { $$ = $2.val; }
1251 ;
1252
1253 func_mod: '(' ')'
1254 {
1255 $$ = new std::vector<struct type *>;
1256 cpstate->type_lists.emplace_back ($$);
1257 }
1258 | '(' parameter_typelist ')'
1259 { $$ = $2; }
1260 ;
1261
1262 /* We used to try to recognize pointer to member types here, but
1263 that didn't work (shift/reduce conflicts meant that these rules never
1264 got executed). The problem is that
1265 int (foo::bar::baz::bizzle)
1266 is a function type but
1267 int (foo::bar::baz::bizzle::*)
1268 is a pointer to member type. Stroustrup loses again! */
1269
1270 type : ptype
1271 ;
1272
1273 /* Implements (approximately): (type-qualifier)* type-specifier.
1274
1275 When type-specifier is only ever a single word, like 'float' then these
1276 arrive as pre-built TYPENAME tokens thanks to the classify_name
1277 function. However, when a type-specifier can contain multiple words,
1278 for example 'double' can appear as just 'double' or 'long double', and
1279 similarly 'long' can appear as just 'long' or in 'long double', then
1280 these type-specifiers are parsed into their own tokens in the function
1281 lex_one_token and the ident_tokens array. These separate tokens are all
1282 recognised here. */
1283 typebase
1284 : TYPENAME
1285 { $$ = $1.type; }
1286 | INT_KEYWORD
1287 { $$ = lookup_signed_typename (pstate->language (),
1288 pstate->gdbarch (),
1289 "int"); }
1290 | LONG
1291 { $$ = lookup_signed_typename (pstate->language (),
1292 pstate->gdbarch (),
1293 "long"); }
1294 | SHORT
1295 { $$ = lookup_signed_typename (pstate->language (),
1296 pstate->gdbarch (),
1297 "short"); }
1298 | LONG INT_KEYWORD
1299 { $$ = lookup_signed_typename (pstate->language (),
1300 pstate->gdbarch (),
1301 "long"); }
1302 | LONG SIGNED_KEYWORD INT_KEYWORD
1303 { $$ = lookup_signed_typename (pstate->language (),
1304 pstate->gdbarch (),
1305 "long"); }
1306 | LONG SIGNED_KEYWORD
1307 { $$ = lookup_signed_typename (pstate->language (),
1308 pstate->gdbarch (),
1309 "long"); }
1310 | SIGNED_KEYWORD LONG INT_KEYWORD
1311 { $$ = lookup_signed_typename (pstate->language (),
1312 pstate->gdbarch (),
1313 "long"); }
1314 | UNSIGNED LONG INT_KEYWORD
1315 { $$ = lookup_unsigned_typename (pstate->language (),
1316 pstate->gdbarch (),
1317 "long"); }
1318 | LONG UNSIGNED INT_KEYWORD
1319 { $$ = lookup_unsigned_typename (pstate->language (),
1320 pstate->gdbarch (),
1321 "long"); }
1322 | LONG UNSIGNED
1323 { $$ = lookup_unsigned_typename (pstate->language (),
1324 pstate->gdbarch (),
1325 "long"); }
1326 | LONG LONG
1327 { $$ = lookup_signed_typename (pstate->language (),
1328 pstate->gdbarch (),
1329 "long long"); }
1330 | LONG LONG INT_KEYWORD
1331 { $$ = lookup_signed_typename (pstate->language (),
1332 pstate->gdbarch (),
1333 "long long"); }
1334 | LONG LONG SIGNED_KEYWORD INT_KEYWORD
1335 { $$ = lookup_signed_typename (pstate->language (),
1336 pstate->gdbarch (),
1337 "long long"); }
1338 | LONG LONG SIGNED_KEYWORD
1339 { $$ = lookup_signed_typename (pstate->language (),
1340 pstate->gdbarch (),
1341 "long long"); }
1342 | SIGNED_KEYWORD LONG LONG
1343 { $$ = lookup_signed_typename (pstate->language (),
1344 pstate->gdbarch (),
1345 "long long"); }
1346 | SIGNED_KEYWORD LONG LONG INT_KEYWORD
1347 { $$ = lookup_signed_typename (pstate->language (),
1348 pstate->gdbarch (),
1349 "long long"); }
1350 | UNSIGNED LONG LONG
1351 { $$ = lookup_unsigned_typename (pstate->language (),
1352 pstate->gdbarch (),
1353 "long long"); }
1354 | UNSIGNED LONG LONG INT_KEYWORD
1355 { $$ = lookup_unsigned_typename (pstate->language (),
1356 pstate->gdbarch (),
1357 "long long"); }
1358 | LONG LONG UNSIGNED
1359 { $$ = lookup_unsigned_typename (pstate->language (),
1360 pstate->gdbarch (),
1361 "long long"); }
1362 | LONG LONG UNSIGNED INT_KEYWORD
1363 { $$ = lookup_unsigned_typename (pstate->language (),
1364 pstate->gdbarch (),
1365 "long long"); }
1366 | SHORT INT_KEYWORD
1367 { $$ = lookup_signed_typename (pstate->language (),
1368 pstate->gdbarch (),
1369 "short"); }
1370 | SHORT SIGNED_KEYWORD INT_KEYWORD
1371 { $$ = lookup_signed_typename (pstate->language (),
1372 pstate->gdbarch (),
1373 "short"); }
1374 | SHORT SIGNED_KEYWORD
1375 { $$ = lookup_signed_typename (pstate->language (),
1376 pstate->gdbarch (),
1377 "short"); }
1378 | UNSIGNED SHORT INT_KEYWORD
1379 { $$ = lookup_unsigned_typename (pstate->language (),
1380 pstate->gdbarch (),
1381 "short"); }
1382 | SHORT UNSIGNED
1383 { $$ = lookup_unsigned_typename (pstate->language (),
1384 pstate->gdbarch (),
1385 "short"); }
1386 | SHORT UNSIGNED INT_KEYWORD
1387 { $$ = lookup_unsigned_typename (pstate->language (),
1388 pstate->gdbarch (),
1389 "short"); }
1390 | DOUBLE_KEYWORD
1391 { $$ = lookup_typename (pstate->language (),
1392 pstate->gdbarch (),
1393 "double",
1394 NULL,
1395 0); }
1396 | LONG DOUBLE_KEYWORD
1397 { $$ = lookup_typename (pstate->language (),
1398 pstate->gdbarch (),
1399 "long double",
1400 NULL,
1401 0); }
1402 | STRUCT name
1403 { $$
1404 = lookup_struct (copy_name ($2),
1405 pstate->expression_context_block);
1406 }
1407 | STRUCT COMPLETE
1408 {
1409 mark_completion_tag (TYPE_CODE_STRUCT, "", 0);
1410 $$ = NULL;
1411 }
1412 | STRUCT name COMPLETE
1413 {
1414 mark_completion_tag (TYPE_CODE_STRUCT, $2.ptr,
1415 $2.length);
1416 $$ = NULL;
1417 }
1418 | CLASS name
1419 { $$ = lookup_struct
1420 (copy_name ($2), pstate->expression_context_block);
1421 }
1422 | CLASS COMPLETE
1423 {
1424 mark_completion_tag (TYPE_CODE_STRUCT, "", 0);
1425 $$ = NULL;
1426 }
1427 | CLASS name COMPLETE
1428 {
1429 mark_completion_tag (TYPE_CODE_STRUCT, $2.ptr,
1430 $2.length);
1431 $$ = NULL;
1432 }
1433 | UNION name
1434 { $$
1435 = lookup_union (copy_name ($2),
1436 pstate->expression_context_block);
1437 }
1438 | UNION COMPLETE
1439 {
1440 mark_completion_tag (TYPE_CODE_UNION, "", 0);
1441 $$ = NULL;
1442 }
1443 | UNION name COMPLETE
1444 {
1445 mark_completion_tag (TYPE_CODE_UNION, $2.ptr,
1446 $2.length);
1447 $$ = NULL;
1448 }
1449 | ENUM name
1450 { $$ = lookup_enum (copy_name ($2),
1451 pstate->expression_context_block);
1452 }
1453 | ENUM COMPLETE
1454 {
1455 mark_completion_tag (TYPE_CODE_ENUM, "", 0);
1456 $$ = NULL;
1457 }
1458 | ENUM name COMPLETE
1459 {
1460 mark_completion_tag (TYPE_CODE_ENUM, $2.ptr,
1461 $2.length);
1462 $$ = NULL;
1463 }
1464 | UNSIGNED type_name
1465 { $$ = lookup_unsigned_typename (pstate->language (),
1466 pstate->gdbarch (),
1467 TYPE_NAME($2.type)); }
1468 | UNSIGNED
1469 { $$ = lookup_unsigned_typename (pstate->language (),
1470 pstate->gdbarch (),
1471 "int"); }
1472 | SIGNED_KEYWORD type_name
1473 { $$ = lookup_signed_typename (pstate->language (),
1474 pstate->gdbarch (),
1475 TYPE_NAME($2.type)); }
1476 | SIGNED_KEYWORD
1477 { $$ = lookup_signed_typename (pstate->language (),
1478 pstate->gdbarch (),
1479 "int"); }
1480 /* It appears that this rule for templates is never
1481 reduced; template recognition happens by lookahead
1482 in the token processing code in yylex. */
1483 | TEMPLATE name '<' type '>'
1484 { $$ = lookup_template_type
1485 (copy_name($2), $4,
1486 pstate->expression_context_block);
1487 }
1488 | const_or_volatile_or_space_identifier_noopt typebase
1489 { $$ = follow_types ($2); }
1490 | typebase const_or_volatile_or_space_identifier_noopt
1491 { $$ = follow_types ($1); }
1492 ;
1493
1494 type_name: TYPENAME
1495 | INT_KEYWORD
1496 {
1497 $$.stoken.ptr = "int";
1498 $$.stoken.length = 3;
1499 $$.type = lookup_signed_typename (pstate->language (),
1500 pstate->gdbarch (),
1501 "int");
1502 }
1503 | LONG
1504 {
1505 $$.stoken.ptr = "long";
1506 $$.stoken.length = 4;
1507 $$.type = lookup_signed_typename (pstate->language (),
1508 pstate->gdbarch (),
1509 "long");
1510 }
1511 | SHORT
1512 {
1513 $$.stoken.ptr = "short";
1514 $$.stoken.length = 5;
1515 $$.type = lookup_signed_typename (pstate->language (),
1516 pstate->gdbarch (),
1517 "short");
1518 }
1519 ;
1520
1521 parameter_typelist:
1522 nonempty_typelist
1523 { check_parameter_typelist ($1); }
1524 | nonempty_typelist ',' DOTDOTDOT
1525 {
1526 $1->push_back (NULL);
1527 check_parameter_typelist ($1);
1528 $$ = $1;
1529 }
1530 ;
1531
1532 nonempty_typelist
1533 : type
1534 {
1535 std::vector<struct type *> *typelist
1536 = new std::vector<struct type *>;
1537 cpstate->type_lists.emplace_back (typelist);
1538
1539 typelist->push_back ($1);
1540 $$ = typelist;
1541 }
1542 | nonempty_typelist ',' type
1543 {
1544 $1->push_back ($3);
1545 $$ = $1;
1546 }
1547 ;
1548
1549 ptype : typebase
1550 | ptype abs_decl
1551 {
1552 push_type_stack ($2);
1553 $$ = follow_types ($1);
1554 }
1555 ;
1556
1557 conversion_type_id: typebase conversion_declarator
1558 { $$ = follow_types ($1); }
1559 ;
1560
1561 conversion_declarator: /* Nothing. */
1562 | ptr_operator conversion_declarator
1563 ;
1564
1565 const_and_volatile: CONST_KEYWORD VOLATILE_KEYWORD
1566 | VOLATILE_KEYWORD CONST_KEYWORD
1567 ;
1568
1569 const_or_volatile_noopt: const_and_volatile
1570 { insert_type (tp_const);
1571 insert_type (tp_volatile);
1572 }
1573 | CONST_KEYWORD
1574 { insert_type (tp_const); }
1575 | VOLATILE_KEYWORD
1576 { insert_type (tp_volatile); }
1577 ;
1578
1579 oper: OPERATOR NEW
1580 { $$ = operator_stoken (" new"); }
1581 | OPERATOR DELETE
1582 { $$ = operator_stoken (" delete"); }
1583 | OPERATOR NEW '[' ']'
1584 { $$ = operator_stoken (" new[]"); }
1585 | OPERATOR DELETE '[' ']'
1586 { $$ = operator_stoken (" delete[]"); }
1587 | OPERATOR NEW OBJC_LBRAC ']'
1588 { $$ = operator_stoken (" new[]"); }
1589 | OPERATOR DELETE OBJC_LBRAC ']'
1590 { $$ = operator_stoken (" delete[]"); }
1591 | OPERATOR '+'
1592 { $$ = operator_stoken ("+"); }
1593 | OPERATOR '-'
1594 { $$ = operator_stoken ("-"); }
1595 | OPERATOR '*'
1596 { $$ = operator_stoken ("*"); }
1597 | OPERATOR '/'
1598 { $$ = operator_stoken ("/"); }
1599 | OPERATOR '%'
1600 { $$ = operator_stoken ("%"); }
1601 | OPERATOR '^'
1602 { $$ = operator_stoken ("^"); }
1603 | OPERATOR '&'
1604 { $$ = operator_stoken ("&"); }
1605 | OPERATOR '|'
1606 { $$ = operator_stoken ("|"); }
1607 | OPERATOR '~'
1608 { $$ = operator_stoken ("~"); }
1609 | OPERATOR '!'
1610 { $$ = operator_stoken ("!"); }
1611 | OPERATOR '='
1612 { $$ = operator_stoken ("="); }
1613 | OPERATOR '<'
1614 { $$ = operator_stoken ("<"); }
1615 | OPERATOR '>'
1616 { $$ = operator_stoken (">"); }
1617 | OPERATOR ASSIGN_MODIFY
1618 { const char *op = " unknown";
1619 switch ($2)
1620 {
1621 case BINOP_RSH:
1622 op = ">>=";
1623 break;
1624 case BINOP_LSH:
1625 op = "<<=";
1626 break;
1627 case BINOP_ADD:
1628 op = "+=";
1629 break;
1630 case BINOP_SUB:
1631 op = "-=";
1632 break;
1633 case BINOP_MUL:
1634 op = "*=";
1635 break;
1636 case BINOP_DIV:
1637 op = "/=";
1638 break;
1639 case BINOP_REM:
1640 op = "%=";
1641 break;
1642 case BINOP_BITWISE_IOR:
1643 op = "|=";
1644 break;
1645 case BINOP_BITWISE_AND:
1646 op = "&=";
1647 break;
1648 case BINOP_BITWISE_XOR:
1649 op = "^=";
1650 break;
1651 default:
1652 break;
1653 }
1654
1655 $$ = operator_stoken (op);
1656 }
1657 | OPERATOR LSH
1658 { $$ = operator_stoken ("<<"); }
1659 | OPERATOR RSH
1660 { $$ = operator_stoken (">>"); }
1661 | OPERATOR EQUAL
1662 { $$ = operator_stoken ("=="); }
1663 | OPERATOR NOTEQUAL
1664 { $$ = operator_stoken ("!="); }
1665 | OPERATOR LEQ
1666 { $$ = operator_stoken ("<="); }
1667 | OPERATOR GEQ
1668 { $$ = operator_stoken (">="); }
1669 | OPERATOR ANDAND
1670 { $$ = operator_stoken ("&&"); }
1671 | OPERATOR OROR
1672 { $$ = operator_stoken ("||"); }
1673 | OPERATOR INCREMENT
1674 { $$ = operator_stoken ("++"); }
1675 | OPERATOR DECREMENT
1676 { $$ = operator_stoken ("--"); }
1677 | OPERATOR ','
1678 { $$ = operator_stoken (","); }
1679 | OPERATOR ARROW_STAR
1680 { $$ = operator_stoken ("->*"); }
1681 | OPERATOR ARROW
1682 { $$ = operator_stoken ("->"); }
1683 | OPERATOR '(' ')'
1684 { $$ = operator_stoken ("()"); }
1685 | OPERATOR '[' ']'
1686 { $$ = operator_stoken ("[]"); }
1687 | OPERATOR OBJC_LBRAC ']'
1688 { $$ = operator_stoken ("[]"); }
1689 | OPERATOR conversion_type_id
1690 { string_file buf;
1691
1692 c_print_type ($2, NULL, &buf, -1, 0,
1693 &type_print_raw_options);
1694
1695 /* This also needs canonicalization. */
1696 std::string canon
1697 = cp_canonicalize_string (buf.c_str ());
1698 if (canon.empty ())
1699 canon = std::move (buf.string ());
1700 $$ = operator_stoken ((" " + canon).c_str ());
1701 }
1702 ;
1703
1704 /* This rule exists in order to allow some tokens that would not normally
1705 match the 'name' rule to appear as fields within a struct. The example
1706 that initially motivated this was the RISC-V target which models the
1707 floating point registers as a union with fields called 'float' and
1708 'double'. The 'float' string becomes a TYPENAME token and can appear
1709 anywhere a 'name' can, however 'double' is its own token,
1710 DOUBLE_KEYWORD, and doesn't match the 'name' rule.*/
1711 field_name
1712 : name
1713 | DOUBLE_KEYWORD { $$ = typename_stoken ("double"); }
1714 | INT_KEYWORD { $$ = typename_stoken ("int"); }
1715 | LONG { $$ = typename_stoken ("long"); }
1716 | SHORT { $$ = typename_stoken ("short"); }
1717 | SIGNED_KEYWORD { $$ = typename_stoken ("signed"); }
1718 | UNSIGNED { $$ = typename_stoken ("unsigned"); }
1719 ;
1720
1721 name : NAME { $$ = $1.stoken; }
1722 | BLOCKNAME { $$ = $1.stoken; }
1723 | TYPENAME { $$ = $1.stoken; }
1724 | NAME_OR_INT { $$ = $1.stoken; }
1725 | UNKNOWN_CPP_NAME { $$ = $1.stoken; }
1726 | oper { $$ = $1; }
1727 ;
1728
1729 name_not_typename : NAME
1730 | BLOCKNAME
1731 /* These would be useful if name_not_typename was useful, but it is just
1732 a fake for "variable", so these cause reduce/reduce conflicts because
1733 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
1734 =exp) or just an exp. If name_not_typename was ever used in an lvalue
1735 context where only a name could occur, this might be useful.
1736 | NAME_OR_INT
1737 */
1738 | oper
1739 {
1740 struct field_of_this_result is_a_field_of_this;
1741
1742 $$.stoken = $1;
1743 $$.sym
1744 = lookup_symbol ($1.ptr,
1745 pstate->expression_context_block,
1746 VAR_DOMAIN,
1747 &is_a_field_of_this);
1748 $$.is_a_field_of_this
1749 = is_a_field_of_this.type != NULL;
1750 }
1751 | UNKNOWN_CPP_NAME
1752 ;
1753
1754 %%
1755
1756 /* Like write_exp_string, but prepends a '~'. */
1757
1758 static void
1759 write_destructor_name (struct parser_state *par_state, struct stoken token)
1760 {
1761 char *copy = (char *) alloca (token.length + 1);
1762
1763 copy[0] = '~';
1764 memcpy (&copy[1], token.ptr, token.length);
1765
1766 token.ptr = copy;
1767 ++token.length;
1768
1769 write_exp_string (par_state, token);
1770 }
1771
1772 /* Returns a stoken of the operator name given by OP (which does not
1773 include the string "operator"). */
1774
1775 static struct stoken
1776 operator_stoken (const char *op)
1777 {
1778 struct stoken st = { NULL, 0 };
1779 char *buf;
1780
1781 st.length = CP_OPERATOR_LEN + strlen (op);
1782 buf = (char *) malloc (st.length + 1);
1783 strcpy (buf, CP_OPERATOR_STR);
1784 strcat (buf, op);
1785 st.ptr = buf;
1786
1787 /* The toplevel (c_parse) will free the memory allocated here. */
1788 cpstate->strings.emplace_back (buf);
1789 return st;
1790 };
1791
1792 /* Returns a stoken of the type named TYPE. */
1793
1794 static struct stoken
1795 typename_stoken (const char *type)
1796 {
1797 struct stoken st = { type, 0 };
1798 st.length = strlen (type);
1799 return st;
1800 };
1801
1802 /* Return true if the type is aggregate-like. */
1803
1804 static int
1805 type_aggregate_p (struct type *type)
1806 {
1807 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
1808 || TYPE_CODE (type) == TYPE_CODE_UNION
1809 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE
1810 || (TYPE_CODE (type) == TYPE_CODE_ENUM
1811 && TYPE_DECLARED_CLASS (type)));
1812 }
1813
1814 /* Validate a parameter typelist. */
1815
1816 static void
1817 check_parameter_typelist (std::vector<struct type *> *params)
1818 {
1819 struct type *type;
1820 int ix;
1821
1822 for (ix = 0; ix < params->size (); ++ix)
1823 {
1824 type = (*params)[ix];
1825 if (type != NULL && TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
1826 {
1827 if (ix == 0)
1828 {
1829 if (params->size () == 1)
1830 {
1831 /* Ok. */
1832 break;
1833 }
1834 error (_("parameter types following 'void'"));
1835 }
1836 else
1837 error (_("'void' invalid as parameter type"));
1838 }
1839 }
1840 }
1841
1842 /* Take care of parsing a number (anything that starts with a digit).
1843 Set yylval and return the token type; update lexptr.
1844 LEN is the number of characters in it. */
1845
1846 /*** Needs some error checking for the float case ***/
1847
1848 static int
1849 parse_number (struct parser_state *par_state,
1850 const char *buf, int len, int parsed_float, YYSTYPE *putithere)
1851 {
1852 ULONGEST n = 0;
1853 ULONGEST prevn = 0;
1854 ULONGEST un;
1855
1856 int i = 0;
1857 int c;
1858 int base = input_radix;
1859 int unsigned_p = 0;
1860
1861 /* Number of "L" suffixes encountered. */
1862 int long_p = 0;
1863
1864 /* We have found a "L" or "U" suffix. */
1865 int found_suffix = 0;
1866
1867 ULONGEST high_bit;
1868 struct type *signed_type;
1869 struct type *unsigned_type;
1870 char *p;
1871
1872 p = (char *) alloca (len);
1873 memcpy (p, buf, len);
1874
1875 if (parsed_float)
1876 {
1877 /* Handle suffixes for decimal floating-point: "df", "dd" or "dl". */
1878 if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'f')
1879 {
1880 putithere->typed_val_float.type
1881 = parse_type (par_state)->builtin_decfloat;
1882 len -= 2;
1883 }
1884 else if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'd')
1885 {
1886 putithere->typed_val_float.type
1887 = parse_type (par_state)->builtin_decdouble;
1888 len -= 2;
1889 }
1890 else if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'l')
1891 {
1892 putithere->typed_val_float.type
1893 = parse_type (par_state)->builtin_declong;
1894 len -= 2;
1895 }
1896 /* Handle suffixes: 'f' for float, 'l' for long double. */
1897 else if (len >= 1 && TOLOWER (p[len - 1]) == 'f')
1898 {
1899 putithere->typed_val_float.type
1900 = parse_type (par_state)->builtin_float;
1901 len -= 1;
1902 }
1903 else if (len >= 1 && TOLOWER (p[len - 1]) == 'l')
1904 {
1905 putithere->typed_val_float.type
1906 = parse_type (par_state)->builtin_long_double;
1907 len -= 1;
1908 }
1909 /* Default type for floating-point literals is double. */
1910 else
1911 {
1912 putithere->typed_val_float.type
1913 = parse_type (par_state)->builtin_double;
1914 }
1915
1916 if (!parse_float (p, len,
1917 putithere->typed_val_float.type,
1918 putithere->typed_val_float.val))
1919 return ERROR;
1920 return FLOAT;
1921 }
1922
1923 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
1924 if (p[0] == '0' && len > 1)
1925 switch (p[1])
1926 {
1927 case 'x':
1928 case 'X':
1929 if (len >= 3)
1930 {
1931 p += 2;
1932 base = 16;
1933 len -= 2;
1934 }
1935 break;
1936
1937 case 'b':
1938 case 'B':
1939 if (len >= 3)
1940 {
1941 p += 2;
1942 base = 2;
1943 len -= 2;
1944 }
1945 break;
1946
1947 case 't':
1948 case 'T':
1949 case 'd':
1950 case 'D':
1951 if (len >= 3)
1952 {
1953 p += 2;
1954 base = 10;
1955 len -= 2;
1956 }
1957 break;
1958
1959 default:
1960 base = 8;
1961 break;
1962 }
1963
1964 while (len-- > 0)
1965 {
1966 c = *p++;
1967 if (c >= 'A' && c <= 'Z')
1968 c += 'a' - 'A';
1969 if (c != 'l' && c != 'u')
1970 n *= base;
1971 if (c >= '0' && c <= '9')
1972 {
1973 if (found_suffix)
1974 return ERROR;
1975 n += i = c - '0';
1976 }
1977 else
1978 {
1979 if (base > 10 && c >= 'a' && c <= 'f')
1980 {
1981 if (found_suffix)
1982 return ERROR;
1983 n += i = c - 'a' + 10;
1984 }
1985 else if (c == 'l')
1986 {
1987 ++long_p;
1988 found_suffix = 1;
1989 }
1990 else if (c == 'u')
1991 {
1992 unsigned_p = 1;
1993 found_suffix = 1;
1994 }
1995 else
1996 return ERROR; /* Char not a digit */
1997 }
1998 if (i >= base)
1999 return ERROR; /* Invalid digit in this base */
2000
2001 /* Portably test for overflow (only works for nonzero values, so make
2002 a second check for zero). FIXME: Can't we just make n and prevn
2003 unsigned and avoid this? */
2004 if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
2005 unsigned_p = 1; /* Try something unsigned */
2006
2007 /* Portably test for unsigned overflow.
2008 FIXME: This check is wrong; for example it doesn't find overflow
2009 on 0x123456789 when LONGEST is 32 bits. */
2010 if (c != 'l' && c != 'u' && n != 0)
2011 {
2012 if (unsigned_p && prevn >= n)
2013 error (_("Numeric constant too large."));
2014 }
2015 prevn = n;
2016 }
2017
2018 /* An integer constant is an int, a long, or a long long. An L
2019 suffix forces it to be long; an LL suffix forces it to be long
2020 long. If not forced to a larger size, it gets the first type of
2021 the above that it fits in. To figure out whether it fits, we
2022 shift it right and see whether anything remains. Note that we
2023 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
2024 operation, because many compilers will warn about such a shift
2025 (which always produces a zero result). Sometimes gdbarch_int_bit
2026 or gdbarch_long_bit will be that big, sometimes not. To deal with
2027 the case where it is we just always shift the value more than
2028 once, with fewer bits each time. */
2029
2030 un = n >> 2;
2031 if (long_p == 0
2032 && (un >> (gdbarch_int_bit (par_state->gdbarch ()) - 2)) == 0)
2033 {
2034 high_bit
2035 = ((ULONGEST)1) << (gdbarch_int_bit (par_state->gdbarch ()) - 1);
2036
2037 /* A large decimal (not hex or octal) constant (between INT_MAX
2038 and UINT_MAX) is a long or unsigned long, according to ANSI,
2039 never an unsigned int, but this code treats it as unsigned
2040 int. This probably should be fixed. GCC gives a warning on
2041 such constants. */
2042
2043 unsigned_type = parse_type (par_state)->builtin_unsigned_int;
2044 signed_type = parse_type (par_state)->builtin_int;
2045 }
2046 else if (long_p <= 1
2047 && (un >> (gdbarch_long_bit (par_state->gdbarch ()) - 2)) == 0)
2048 {
2049 high_bit
2050 = ((ULONGEST)1) << (gdbarch_long_bit (par_state->gdbarch ()) - 1);
2051 unsigned_type = parse_type (par_state)->builtin_unsigned_long;
2052 signed_type = parse_type (par_state)->builtin_long;
2053 }
2054 else
2055 {
2056 int shift;
2057 if (sizeof (ULONGEST) * HOST_CHAR_BIT
2058 < gdbarch_long_long_bit (par_state->gdbarch ()))
2059 /* A long long does not fit in a LONGEST. */
2060 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
2061 else
2062 shift = (gdbarch_long_long_bit (par_state->gdbarch ()) - 1);
2063 high_bit = (ULONGEST) 1 << shift;
2064 unsigned_type = parse_type (par_state)->builtin_unsigned_long_long;
2065 signed_type = parse_type (par_state)->builtin_long_long;
2066 }
2067
2068 putithere->typed_val_int.val = n;
2069
2070 /* If the high bit of the worked out type is set then this number
2071 has to be unsigned. */
2072
2073 if (unsigned_p || (n & high_bit))
2074 {
2075 putithere->typed_val_int.type = unsigned_type;
2076 }
2077 else
2078 {
2079 putithere->typed_val_int.type = signed_type;
2080 }
2081
2082 return INT;
2083 }
2084
2085 /* Temporary obstack used for holding strings. */
2086 static struct obstack tempbuf;
2087 static int tempbuf_init;
2088
2089 /* Parse a C escape sequence. The initial backslash of the sequence
2090 is at (*PTR)[-1]. *PTR will be updated to point to just after the
2091 last character of the sequence. If OUTPUT is not NULL, the
2092 translated form of the escape sequence will be written there. If
2093 OUTPUT is NULL, no output is written and the call will only affect
2094 *PTR. If an escape sequence is expressed in target bytes, then the
2095 entire sequence will simply be copied to OUTPUT. Return 1 if any
2096 character was emitted, 0 otherwise. */
2097
2098 int
2099 c_parse_escape (const char **ptr, struct obstack *output)
2100 {
2101 const char *tokptr = *ptr;
2102 int result = 1;
2103
2104 /* Some escape sequences undergo character set conversion. Those we
2105 translate here. */
2106 switch (*tokptr)
2107 {
2108 /* Hex escapes do not undergo character set conversion, so keep
2109 the escape sequence for later. */
2110 case 'x':
2111 if (output)
2112 obstack_grow_str (output, "\\x");
2113 ++tokptr;
2114 if (!ISXDIGIT (*tokptr))
2115 error (_("\\x escape without a following hex digit"));
2116 while (ISXDIGIT (*tokptr))
2117 {
2118 if (output)
2119 obstack_1grow (output, *tokptr);
2120 ++tokptr;
2121 }
2122 break;
2123
2124 /* Octal escapes do not undergo character set conversion, so
2125 keep the escape sequence for later. */
2126 case '0':
2127 case '1':
2128 case '2':
2129 case '3':
2130 case '4':
2131 case '5':
2132 case '6':
2133 case '7':
2134 {
2135 int i;
2136 if (output)
2137 obstack_grow_str (output, "\\");
2138 for (i = 0;
2139 i < 3 && ISDIGIT (*tokptr) && *tokptr != '8' && *tokptr != '9';
2140 ++i)
2141 {
2142 if (output)
2143 obstack_1grow (output, *tokptr);
2144 ++tokptr;
2145 }
2146 }
2147 break;
2148
2149 /* We handle UCNs later. We could handle them here, but that
2150 would mean a spurious error in the case where the UCN could
2151 be converted to the target charset but not the host
2152 charset. */
2153 case 'u':
2154 case 'U':
2155 {
2156 char c = *tokptr;
2157 int i, len = c == 'U' ? 8 : 4;
2158 if (output)
2159 {
2160 obstack_1grow (output, '\\');
2161 obstack_1grow (output, *tokptr);
2162 }
2163 ++tokptr;
2164 if (!ISXDIGIT (*tokptr))
2165 error (_("\\%c escape without a following hex digit"), c);
2166 for (i = 0; i < len && ISXDIGIT (*tokptr); ++i)
2167 {
2168 if (output)
2169 obstack_1grow (output, *tokptr);
2170 ++tokptr;
2171 }
2172 }
2173 break;
2174
2175 /* We must pass backslash through so that it does not
2176 cause quoting during the second expansion. */
2177 case '\\':
2178 if (output)
2179 obstack_grow_str (output, "\\\\");
2180 ++tokptr;
2181 break;
2182
2183 /* Escapes which undergo conversion. */
2184 case 'a':
2185 if (output)
2186 obstack_1grow (output, '\a');
2187 ++tokptr;
2188 break;
2189 case 'b':
2190 if (output)
2191 obstack_1grow (output, '\b');
2192 ++tokptr;
2193 break;
2194 case 'f':
2195 if (output)
2196 obstack_1grow (output, '\f');
2197 ++tokptr;
2198 break;
2199 case 'n':
2200 if (output)
2201 obstack_1grow (output, '\n');
2202 ++tokptr;
2203 break;
2204 case 'r':
2205 if (output)
2206 obstack_1grow (output, '\r');
2207 ++tokptr;
2208 break;
2209 case 't':
2210 if (output)
2211 obstack_1grow (output, '\t');
2212 ++tokptr;
2213 break;
2214 case 'v':
2215 if (output)
2216 obstack_1grow (output, '\v');
2217 ++tokptr;
2218 break;
2219
2220 /* GCC extension. */
2221 case 'e':
2222 if (output)
2223 obstack_1grow (output, HOST_ESCAPE_CHAR);
2224 ++tokptr;
2225 break;
2226
2227 /* Backslash-newline expands to nothing at all. */
2228 case '\n':
2229 ++tokptr;
2230 result = 0;
2231 break;
2232
2233 /* A few escapes just expand to the character itself. */
2234 case '\'':
2235 case '\"':
2236 case '?':
2237 /* GCC extensions. */
2238 case '(':
2239 case '{':
2240 case '[':
2241 case '%':
2242 /* Unrecognized escapes turn into the character itself. */
2243 default:
2244 if (output)
2245 obstack_1grow (output, *tokptr);
2246 ++tokptr;
2247 break;
2248 }
2249 *ptr = tokptr;
2250 return result;
2251 }
2252
2253 /* Parse a string or character literal from TOKPTR. The string or
2254 character may be wide or unicode. *OUTPTR is set to just after the
2255 end of the literal in the input string. The resulting token is
2256 stored in VALUE. This returns a token value, either STRING or
2257 CHAR, depending on what was parsed. *HOST_CHARS is set to the
2258 number of host characters in the literal. */
2259
2260 static int
2261 parse_string_or_char (const char *tokptr, const char **outptr,
2262 struct typed_stoken *value, int *host_chars)
2263 {
2264 int quote;
2265 c_string_type type;
2266 int is_objc = 0;
2267
2268 /* Build the gdb internal form of the input string in tempbuf. Note
2269 that the buffer is null byte terminated *only* for the
2270 convenience of debugging gdb itself and printing the buffer
2271 contents when the buffer contains no embedded nulls. Gdb does
2272 not depend upon the buffer being null byte terminated, it uses
2273 the length string instead. This allows gdb to handle C strings
2274 (as well as strings in other languages) with embedded null
2275 bytes */
2276
2277 if (!tempbuf_init)
2278 tempbuf_init = 1;
2279 else
2280 obstack_free (&tempbuf, NULL);
2281 obstack_init (&tempbuf);
2282
2283 /* Record the string type. */
2284 if (*tokptr == 'L')
2285 {
2286 type = C_WIDE_STRING;
2287 ++tokptr;
2288 }
2289 else if (*tokptr == 'u')
2290 {
2291 type = C_STRING_16;
2292 ++tokptr;
2293 }
2294 else if (*tokptr == 'U')
2295 {
2296 type = C_STRING_32;
2297 ++tokptr;
2298 }
2299 else if (*tokptr == '@')
2300 {
2301 /* An Objective C string. */
2302 is_objc = 1;
2303 type = C_STRING;
2304 ++tokptr;
2305 }
2306 else
2307 type = C_STRING;
2308
2309 /* Skip the quote. */
2310 quote = *tokptr;
2311 if (quote == '\'')
2312 type |= C_CHAR;
2313 ++tokptr;
2314
2315 *host_chars = 0;
2316
2317 while (*tokptr)
2318 {
2319 char c = *tokptr;
2320 if (c == '\\')
2321 {
2322 ++tokptr;
2323 *host_chars += c_parse_escape (&tokptr, &tempbuf);
2324 }
2325 else if (c == quote)
2326 break;
2327 else
2328 {
2329 obstack_1grow (&tempbuf, c);
2330 ++tokptr;
2331 /* FIXME: this does the wrong thing with multi-byte host
2332 characters. We could use mbrlen here, but that would
2333 make "set host-charset" a bit less useful. */
2334 ++*host_chars;
2335 }
2336 }
2337
2338 if (*tokptr != quote)
2339 {
2340 if (quote == '"')
2341 error (_("Unterminated string in expression."));
2342 else
2343 error (_("Unmatched single quote."));
2344 }
2345 ++tokptr;
2346
2347 value->type = type;
2348 value->ptr = (char *) obstack_base (&tempbuf);
2349 value->length = obstack_object_size (&tempbuf);
2350
2351 *outptr = tokptr;
2352
2353 return quote == '"' ? (is_objc ? NSSTRING : STRING) : CHAR;
2354 }
2355
2356 /* This is used to associate some attributes with a token. */
2357
2358 enum token_flag
2359 {
2360 /* If this bit is set, the token is C++-only. */
2361
2362 FLAG_CXX = 1,
2363
2364 /* If this bit is set, the token is conditional: if there is a
2365 symbol of the same name, then the token is a symbol; otherwise,
2366 the token is a keyword. */
2367
2368 FLAG_SHADOW = 2
2369 };
2370 DEF_ENUM_FLAGS_TYPE (enum token_flag, token_flags);
2371
2372 struct token
2373 {
2374 const char *oper;
2375 int token;
2376 enum exp_opcode opcode;
2377 token_flags flags;
2378 };
2379
2380 static const struct token tokentab3[] =
2381 {
2382 {">>=", ASSIGN_MODIFY, BINOP_RSH, 0},
2383 {"<<=", ASSIGN_MODIFY, BINOP_LSH, 0},
2384 {"->*", ARROW_STAR, BINOP_END, FLAG_CXX},
2385 {"...", DOTDOTDOT, BINOP_END, 0}
2386 };
2387
2388 static const struct token tokentab2[] =
2389 {
2390 {"+=", ASSIGN_MODIFY, BINOP_ADD, 0},
2391 {"-=", ASSIGN_MODIFY, BINOP_SUB, 0},
2392 {"*=", ASSIGN_MODIFY, BINOP_MUL, 0},
2393 {"/=", ASSIGN_MODIFY, BINOP_DIV, 0},
2394 {"%=", ASSIGN_MODIFY, BINOP_REM, 0},
2395 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR, 0},
2396 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND, 0},
2397 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR, 0},
2398 {"++", INCREMENT, BINOP_END, 0},
2399 {"--", DECREMENT, BINOP_END, 0},
2400 {"->", ARROW, BINOP_END, 0},
2401 {"&&", ANDAND, BINOP_END, 0},
2402 {"||", OROR, BINOP_END, 0},
2403 /* "::" is *not* only C++: gdb overrides its meaning in several
2404 different ways, e.g., 'filename'::func, function::variable. */
2405 {"::", COLONCOLON, BINOP_END, 0},
2406 {"<<", LSH, BINOP_END, 0},
2407 {">>", RSH, BINOP_END, 0},
2408 {"==", EQUAL, BINOP_END, 0},
2409 {"!=", NOTEQUAL, BINOP_END, 0},
2410 {"<=", LEQ, BINOP_END, 0},
2411 {">=", GEQ, BINOP_END, 0},
2412 {".*", DOT_STAR, BINOP_END, FLAG_CXX}
2413 };
2414
2415 /* Identifier-like tokens. Only type-specifiers than can appear in
2416 multi-word type names (for example 'double' can appear in 'long
2417 double') need to be listed here. type-specifiers that are only ever
2418 single word (like 'float') are handled by the classify_name function. */
2419 static const struct token ident_tokens[] =
2420 {
2421 {"unsigned", UNSIGNED, OP_NULL, 0},
2422 {"template", TEMPLATE, OP_NULL, FLAG_CXX},
2423 {"volatile", VOLATILE_KEYWORD, OP_NULL, 0},
2424 {"struct", STRUCT, OP_NULL, 0},
2425 {"signed", SIGNED_KEYWORD, OP_NULL, 0},
2426 {"sizeof", SIZEOF, OP_NULL, 0},
2427 {"_Alignof", ALIGNOF, OP_NULL, 0},
2428 {"alignof", ALIGNOF, OP_NULL, FLAG_CXX},
2429 {"double", DOUBLE_KEYWORD, OP_NULL, 0},
2430 {"false", FALSEKEYWORD, OP_NULL, FLAG_CXX},
2431 {"class", CLASS, OP_NULL, FLAG_CXX},
2432 {"union", UNION, OP_NULL, 0},
2433 {"short", SHORT, OP_NULL, 0},
2434 {"const", CONST_KEYWORD, OP_NULL, 0},
2435 {"enum", ENUM, OP_NULL, 0},
2436 {"long", LONG, OP_NULL, 0},
2437 {"true", TRUEKEYWORD, OP_NULL, FLAG_CXX},
2438 {"int", INT_KEYWORD, OP_NULL, 0},
2439 {"new", NEW, OP_NULL, FLAG_CXX},
2440 {"delete", DELETE, OP_NULL, FLAG_CXX},
2441 {"operator", OPERATOR, OP_NULL, FLAG_CXX},
2442
2443 {"and", ANDAND, BINOP_END, FLAG_CXX},
2444 {"and_eq", ASSIGN_MODIFY, BINOP_BITWISE_AND, FLAG_CXX},
2445 {"bitand", '&', OP_NULL, FLAG_CXX},
2446 {"bitor", '|', OP_NULL, FLAG_CXX},
2447 {"compl", '~', OP_NULL, FLAG_CXX},
2448 {"not", '!', OP_NULL, FLAG_CXX},
2449 {"not_eq", NOTEQUAL, BINOP_END, FLAG_CXX},
2450 {"or", OROR, BINOP_END, FLAG_CXX},
2451 {"or_eq", ASSIGN_MODIFY, BINOP_BITWISE_IOR, FLAG_CXX},
2452 {"xor", '^', OP_NULL, FLAG_CXX},
2453 {"xor_eq", ASSIGN_MODIFY, BINOP_BITWISE_XOR, FLAG_CXX},
2454
2455 {"const_cast", CONST_CAST, OP_NULL, FLAG_CXX },
2456 {"dynamic_cast", DYNAMIC_CAST, OP_NULL, FLAG_CXX },
2457 {"static_cast", STATIC_CAST, OP_NULL, FLAG_CXX },
2458 {"reinterpret_cast", REINTERPRET_CAST, OP_NULL, FLAG_CXX },
2459
2460 {"__typeof__", TYPEOF, OP_TYPEOF, 0 },
2461 {"__typeof", TYPEOF, OP_TYPEOF, 0 },
2462 {"typeof", TYPEOF, OP_TYPEOF, FLAG_SHADOW },
2463 {"__decltype", DECLTYPE, OP_DECLTYPE, FLAG_CXX },
2464 {"decltype", DECLTYPE, OP_DECLTYPE, FLAG_CXX | FLAG_SHADOW },
2465
2466 {"typeid", TYPEID, OP_TYPEID, FLAG_CXX}
2467 };
2468
2469
2470 static void
2471 scan_macro_expansion (char *expansion)
2472 {
2473 char *copy;
2474
2475 /* We'd better not be trying to push the stack twice. */
2476 gdb_assert (! cpstate->macro_original_text);
2477
2478 /* Copy to the obstack, and then free the intermediate
2479 expansion. */
2480 copy = (char *) obstack_copy0 (&cpstate->expansion_obstack, expansion,
2481 strlen (expansion));
2482 xfree (expansion);
2483
2484 /* Save the old lexptr value, so we can return to it when we're done
2485 parsing the expanded text. */
2486 cpstate->macro_original_text = pstate->lexptr;
2487 pstate->lexptr = copy;
2488 }
2489
2490 static int
2491 scanning_macro_expansion (void)
2492 {
2493 return cpstate->macro_original_text != 0;
2494 }
2495
2496 static void
2497 finished_macro_expansion (void)
2498 {
2499 /* There'd better be something to pop back to. */
2500 gdb_assert (cpstate->macro_original_text);
2501
2502 /* Pop back to the original text. */
2503 pstate->lexptr = cpstate->macro_original_text;
2504 cpstate->macro_original_text = 0;
2505 }
2506
2507 /* Return true iff the token represents a C++ cast operator. */
2508
2509 static int
2510 is_cast_operator (const char *token, int len)
2511 {
2512 return (! strncmp (token, "dynamic_cast", len)
2513 || ! strncmp (token, "static_cast", len)
2514 || ! strncmp (token, "reinterpret_cast", len)
2515 || ! strncmp (token, "const_cast", len));
2516 }
2517
2518 /* The scope used for macro expansion. */
2519 static struct macro_scope *expression_macro_scope;
2520
2521 /* This is set if a NAME token appeared at the very end of the input
2522 string, with no whitespace separating the name from the EOF. This
2523 is used only when parsing to do field name completion. */
2524 static int saw_name_at_eof;
2525
2526 /* This is set if the previously-returned token was a structure
2527 operator -- either '.' or ARROW. */
2528 static bool last_was_structop;
2529
2530 /* Depth of parentheses. */
2531 static int paren_depth;
2532
2533 /* Read one token, getting characters through lexptr. */
2534
2535 static int
2536 lex_one_token (struct parser_state *par_state, bool *is_quoted_name)
2537 {
2538 int c;
2539 int namelen;
2540 unsigned int i;
2541 const char *tokstart;
2542 bool saw_structop = last_was_structop;
2543 char *copy;
2544
2545 last_was_structop = false;
2546 *is_quoted_name = false;
2547
2548 retry:
2549
2550 /* Check if this is a macro invocation that we need to expand. */
2551 if (! scanning_macro_expansion ())
2552 {
2553 char *expanded = macro_expand_next (&pstate->lexptr,
2554 standard_macro_lookup,
2555 expression_macro_scope);
2556
2557 if (expanded)
2558 scan_macro_expansion (expanded);
2559 }
2560
2561 pstate->prev_lexptr = pstate->lexptr;
2562
2563 tokstart = pstate->lexptr;
2564 /* See if it is a special token of length 3. */
2565 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
2566 if (strncmp (tokstart, tokentab3[i].oper, 3) == 0)
2567 {
2568 if ((tokentab3[i].flags & FLAG_CXX) != 0
2569 && par_state->language ()->la_language != language_cplus)
2570 break;
2571
2572 pstate->lexptr += 3;
2573 yylval.opcode = tokentab3[i].opcode;
2574 return tokentab3[i].token;
2575 }
2576
2577 /* See if it is a special token of length 2. */
2578 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
2579 if (strncmp (tokstart, tokentab2[i].oper, 2) == 0)
2580 {
2581 if ((tokentab2[i].flags & FLAG_CXX) != 0
2582 && par_state->language ()->la_language != language_cplus)
2583 break;
2584
2585 pstate->lexptr += 2;
2586 yylval.opcode = tokentab2[i].opcode;
2587 if (tokentab2[i].token == ARROW)
2588 last_was_structop = 1;
2589 return tokentab2[i].token;
2590 }
2591
2592 switch (c = *tokstart)
2593 {
2594 case 0:
2595 /* If we were just scanning the result of a macro expansion,
2596 then we need to resume scanning the original text.
2597 If we're parsing for field name completion, and the previous
2598 token allows such completion, return a COMPLETE token.
2599 Otherwise, we were already scanning the original text, and
2600 we're really done. */
2601 if (scanning_macro_expansion ())
2602 {
2603 finished_macro_expansion ();
2604 goto retry;
2605 }
2606 else if (saw_name_at_eof)
2607 {
2608 saw_name_at_eof = 0;
2609 return COMPLETE;
2610 }
2611 else if (parse_completion && saw_structop)
2612 return COMPLETE;
2613 else
2614 return 0;
2615
2616 case ' ':
2617 case '\t':
2618 case '\n':
2619 pstate->lexptr++;
2620 goto retry;
2621
2622 case '[':
2623 case '(':
2624 paren_depth++;
2625 pstate->lexptr++;
2626 if (par_state->language ()->la_language == language_objc
2627 && c == '[')
2628 return OBJC_LBRAC;
2629 return c;
2630
2631 case ']':
2632 case ')':
2633 if (paren_depth == 0)
2634 return 0;
2635 paren_depth--;
2636 pstate->lexptr++;
2637 return c;
2638
2639 case ',':
2640 if (pstate->comma_terminates
2641 && paren_depth == 0
2642 && ! scanning_macro_expansion ())
2643 return 0;
2644 pstate->lexptr++;
2645 return c;
2646
2647 case '.':
2648 /* Might be a floating point number. */
2649 if (pstate->lexptr[1] < '0' || pstate->lexptr[1] > '9')
2650 {
2651 last_was_structop = true;
2652 goto symbol; /* Nope, must be a symbol. */
2653 }
2654 /* FALL THRU. */
2655
2656 case '0':
2657 case '1':
2658 case '2':
2659 case '3':
2660 case '4':
2661 case '5':
2662 case '6':
2663 case '7':
2664 case '8':
2665 case '9':
2666 {
2667 /* It's a number. */
2668 int got_dot = 0, got_e = 0, toktype;
2669 const char *p = tokstart;
2670 int hex = input_radix > 10;
2671
2672 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
2673 {
2674 p += 2;
2675 hex = 1;
2676 }
2677 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
2678 {
2679 p += 2;
2680 hex = 0;
2681 }
2682
2683 for (;; ++p)
2684 {
2685 /* This test includes !hex because 'e' is a valid hex digit
2686 and thus does not indicate a floating point number when
2687 the radix is hex. */
2688 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
2689 got_dot = got_e = 1;
2690 /* This test does not include !hex, because a '.' always indicates
2691 a decimal floating point number regardless of the radix. */
2692 else if (!got_dot && *p == '.')
2693 got_dot = 1;
2694 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
2695 && (*p == '-' || *p == '+'))
2696 /* This is the sign of the exponent, not the end of the
2697 number. */
2698 continue;
2699 /* We will take any letters or digits. parse_number will
2700 complain if past the radix, or if L or U are not final. */
2701 else if ((*p < '0' || *p > '9')
2702 && ((*p < 'a' || *p > 'z')
2703 && (*p < 'A' || *p > 'Z')))
2704 break;
2705 }
2706 toktype = parse_number (par_state, tokstart, p - tokstart,
2707 got_dot|got_e, &yylval);
2708 if (toktype == ERROR)
2709 {
2710 char *err_copy = (char *) alloca (p - tokstart + 1);
2711
2712 memcpy (err_copy, tokstart, p - tokstart);
2713 err_copy[p - tokstart] = 0;
2714 error (_("Invalid number \"%s\"."), err_copy);
2715 }
2716 pstate->lexptr = p;
2717 return toktype;
2718 }
2719
2720 case '@':
2721 {
2722 const char *p = &tokstart[1];
2723
2724 if (par_state->language ()->la_language == language_objc)
2725 {
2726 size_t len = strlen ("selector");
2727
2728 if (strncmp (p, "selector", len) == 0
2729 && (p[len] == '\0' || ISSPACE (p[len])))
2730 {
2731 pstate->lexptr = p + len;
2732 return SELECTOR;
2733 }
2734 else if (*p == '"')
2735 goto parse_string;
2736 }
2737
2738 while (ISSPACE (*p))
2739 p++;
2740 size_t len = strlen ("entry");
2741 if (strncmp (p, "entry", len) == 0 && !c_ident_is_alnum (p[len])
2742 && p[len] != '_')
2743 {
2744 pstate->lexptr = &p[len];
2745 return ENTRY;
2746 }
2747 }
2748 /* FALLTHRU */
2749 case '+':
2750 case '-':
2751 case '*':
2752 case '/':
2753 case '%':
2754 case '|':
2755 case '&':
2756 case '^':
2757 case '~':
2758 case '!':
2759 case '<':
2760 case '>':
2761 case '?':
2762 case ':':
2763 case '=':
2764 case '{':
2765 case '}':
2766 symbol:
2767 pstate->lexptr++;
2768 return c;
2769
2770 case 'L':
2771 case 'u':
2772 case 'U':
2773 if (tokstart[1] != '"' && tokstart[1] != '\'')
2774 break;
2775 /* Fall through. */
2776 case '\'':
2777 case '"':
2778
2779 parse_string:
2780 {
2781 int host_len;
2782 int result = parse_string_or_char (tokstart, &pstate->lexptr,
2783 &yylval.tsval, &host_len);
2784 if (result == CHAR)
2785 {
2786 if (host_len == 0)
2787 error (_("Empty character constant."));
2788 else if (host_len > 2 && c == '\'')
2789 {
2790 ++tokstart;
2791 namelen = pstate->lexptr - tokstart - 1;
2792 *is_quoted_name = true;
2793
2794 goto tryname;
2795 }
2796 else if (host_len > 1)
2797 error (_("Invalid character constant."));
2798 }
2799 return result;
2800 }
2801 }
2802
2803 if (!(c == '_' || c == '$' || c_ident_is_alpha (c)))
2804 /* We must have come across a bad character (e.g. ';'). */
2805 error (_("Invalid character '%c' in expression."), c);
2806
2807 /* It's a name. See how long it is. */
2808 namelen = 0;
2809 for (c = tokstart[namelen];
2810 (c == '_' || c == '$' || c_ident_is_alnum (c) || c == '<');)
2811 {
2812 /* Template parameter lists are part of the name.
2813 FIXME: This mishandles `print $a<4&&$a>3'. */
2814
2815 if (c == '<')
2816 {
2817 if (! is_cast_operator (tokstart, namelen))
2818 {
2819 /* Scan ahead to get rest of the template specification. Note
2820 that we look ahead only when the '<' adjoins non-whitespace
2821 characters; for comparison expressions, e.g. "a < b > c",
2822 there must be spaces before the '<', etc. */
2823 const char *p = find_template_name_end (tokstart + namelen);
2824
2825 if (p)
2826 namelen = p - tokstart;
2827 }
2828 break;
2829 }
2830 c = tokstart[++namelen];
2831 }
2832
2833 /* The token "if" terminates the expression and is NOT removed from
2834 the input stream. It doesn't count if it appears in the
2835 expansion of a macro. */
2836 if (namelen == 2
2837 && tokstart[0] == 'i'
2838 && tokstart[1] == 'f'
2839 && ! scanning_macro_expansion ())
2840 {
2841 return 0;
2842 }
2843
2844 /* For the same reason (breakpoint conditions), "thread N"
2845 terminates the expression. "thread" could be an identifier, but
2846 an identifier is never followed by a number without intervening
2847 punctuation. "task" is similar. Handle abbreviations of these,
2848 similarly to breakpoint.c:find_condition_and_thread. */
2849 if (namelen >= 1
2850 && (strncmp (tokstart, "thread", namelen) == 0
2851 || strncmp (tokstart, "task", namelen) == 0)
2852 && (tokstart[namelen] == ' ' || tokstart[namelen] == '\t')
2853 && ! scanning_macro_expansion ())
2854 {
2855 const char *p = tokstart + namelen + 1;
2856
2857 while (*p == ' ' || *p == '\t')
2858 p++;
2859 if (*p >= '0' && *p <= '9')
2860 return 0;
2861 }
2862
2863 pstate->lexptr += namelen;
2864
2865 tryname:
2866
2867 yylval.sval.ptr = tokstart;
2868 yylval.sval.length = namelen;
2869
2870 /* Catch specific keywords. */
2871 copy = copy_name (yylval.sval);
2872 for (i = 0; i < sizeof ident_tokens / sizeof ident_tokens[0]; i++)
2873 if (strcmp (copy, ident_tokens[i].oper) == 0)
2874 {
2875 if ((ident_tokens[i].flags & FLAG_CXX) != 0
2876 && par_state->language ()->la_language != language_cplus)
2877 break;
2878
2879 if ((ident_tokens[i].flags & FLAG_SHADOW) != 0)
2880 {
2881 struct field_of_this_result is_a_field_of_this;
2882
2883 if (lookup_symbol (copy,
2884 pstate->expression_context_block,
2885 VAR_DOMAIN,
2886 (par_state->language ()->la_language
2887 == language_cplus ? &is_a_field_of_this
2888 : NULL)).symbol
2889 != NULL)
2890 {
2891 /* The keyword is shadowed. */
2892 break;
2893 }
2894 }
2895
2896 /* It is ok to always set this, even though we don't always
2897 strictly need to. */
2898 yylval.opcode = ident_tokens[i].opcode;
2899 return ident_tokens[i].token;
2900 }
2901
2902 if (*tokstart == '$')
2903 return DOLLAR_VARIABLE;
2904
2905 if (parse_completion && *pstate->lexptr == '\0')
2906 saw_name_at_eof = 1;
2907
2908 yylval.ssym.stoken = yylval.sval;
2909 yylval.ssym.sym.symbol = NULL;
2910 yylval.ssym.sym.block = NULL;
2911 yylval.ssym.is_a_field_of_this = 0;
2912 return NAME;
2913 }
2914
2915 /* An object of this type is pushed on a FIFO by the "outer" lexer. */
2916 struct token_and_value
2917 {
2918 int token;
2919 YYSTYPE value;
2920 };
2921
2922 /* A FIFO of tokens that have been read but not yet returned to the
2923 parser. */
2924 static std::vector<token_and_value> token_fifo;
2925
2926 /* Non-zero if the lexer should return tokens from the FIFO. */
2927 static int popping;
2928
2929 /* Temporary storage for c_lex; this holds symbol names as they are
2930 built up. */
2931 auto_obstack name_obstack;
2932
2933 /* Classify a NAME token. The contents of the token are in `yylval'.
2934 Updates yylval and returns the new token type. BLOCK is the block
2935 in which lookups start; this can be NULL to mean the global scope.
2936 IS_QUOTED_NAME is non-zero if the name token was originally quoted
2937 in single quotes. IS_AFTER_STRUCTOP is true if this name follows
2938 a structure operator -- either '.' or ARROW */
2939
2940 static int
2941 classify_name (struct parser_state *par_state, const struct block *block,
2942 bool is_quoted_name, bool is_after_structop)
2943 {
2944 struct block_symbol bsym;
2945 char *copy;
2946 struct field_of_this_result is_a_field_of_this;
2947
2948 copy = copy_name (yylval.sval);
2949
2950 /* Initialize this in case we *don't* use it in this call; that way
2951 we can refer to it unconditionally below. */
2952 memset (&is_a_field_of_this, 0, sizeof (is_a_field_of_this));
2953
2954 bsym = lookup_symbol (copy, block, VAR_DOMAIN,
2955 par_state->language ()->la_name_of_this
2956 ? &is_a_field_of_this : NULL);
2957
2958 if (bsym.symbol && SYMBOL_CLASS (bsym.symbol) == LOC_BLOCK)
2959 {
2960 yylval.ssym.sym = bsym;
2961 yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
2962 return BLOCKNAME;
2963 }
2964 else if (!bsym.symbol)
2965 {
2966 /* If we found a field of 'this', we might have erroneously
2967 found a constructor where we wanted a type name. Handle this
2968 case by noticing that we found a constructor and then look up
2969 the type tag instead. */
2970 if (is_a_field_of_this.type != NULL
2971 && is_a_field_of_this.fn_field != NULL
2972 && TYPE_FN_FIELD_CONSTRUCTOR (is_a_field_of_this.fn_field->fn_fields,
2973 0))
2974 {
2975 struct field_of_this_result inner_is_a_field_of_this;
2976
2977 bsym = lookup_symbol (copy, block, STRUCT_DOMAIN,
2978 &inner_is_a_field_of_this);
2979 if (bsym.symbol != NULL)
2980 {
2981 yylval.tsym.type = SYMBOL_TYPE (bsym.symbol);
2982 return TYPENAME;
2983 }
2984 }
2985
2986 /* If we found a field on the "this" object, or we are looking
2987 up a field on a struct, then we want to prefer it over a
2988 filename. However, if the name was quoted, then it is better
2989 to check for a filename or a block, since this is the only
2990 way the user has of requiring the extension to be used. */
2991 if ((is_a_field_of_this.type == NULL && !is_after_structop)
2992 || is_quoted_name)
2993 {
2994 /* See if it's a file name. */
2995 struct symtab *symtab;
2996
2997 symtab = lookup_symtab (copy);
2998 if (symtab)
2999 {
3000 yylval.bval = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symtab),
3001 STATIC_BLOCK);
3002 return FILENAME;
3003 }
3004 }
3005 }
3006
3007 if (bsym.symbol && SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF)
3008 {
3009 yylval.tsym.type = SYMBOL_TYPE (bsym.symbol);
3010 return TYPENAME;
3011 }
3012
3013 /* See if it's an ObjC classname. */
3014 if (par_state->language ()->la_language == language_objc && !bsym.symbol)
3015 {
3016 CORE_ADDR Class = lookup_objc_class (par_state->gdbarch (), copy);
3017 if (Class)
3018 {
3019 struct symbol *sym;
3020
3021 yylval.theclass.theclass = Class;
3022 sym = lookup_struct_typedef (copy,
3023 par_state->expression_context_block, 1);
3024 if (sym)
3025 yylval.theclass.type = SYMBOL_TYPE (sym);
3026 return CLASSNAME;
3027 }
3028 }
3029
3030 /* Input names that aren't symbols but ARE valid hex numbers, when
3031 the input radix permits them, can be names or numbers depending
3032 on the parse. Note we support radixes > 16 here. */
3033 if (!bsym.symbol
3034 && ((copy[0] >= 'a' && copy[0] < 'a' + input_radix - 10)
3035 || (copy[0] >= 'A' && copy[0] < 'A' + input_radix - 10)))
3036 {
3037 YYSTYPE newlval; /* Its value is ignored. */
3038 int hextype = parse_number (par_state, copy, yylval.sval.length,
3039 0, &newlval);
3040
3041 if (hextype == INT)
3042 {
3043 yylval.ssym.sym = bsym;
3044 yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
3045 return NAME_OR_INT;
3046 }
3047 }
3048
3049 /* Any other kind of symbol */
3050 yylval.ssym.sym = bsym;
3051 yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
3052
3053 if (bsym.symbol == NULL
3054 && par_state->language ()->la_language == language_cplus
3055 && is_a_field_of_this.type == NULL
3056 && lookup_minimal_symbol (copy, NULL, NULL).minsym == NULL)
3057 return UNKNOWN_CPP_NAME;
3058
3059 return NAME;
3060 }
3061
3062 /* Like classify_name, but used by the inner loop of the lexer, when a
3063 name might have already been seen. CONTEXT is the context type, or
3064 NULL if this is the first component of a name. */
3065
3066 static int
3067 classify_inner_name (struct parser_state *par_state,
3068 const struct block *block, struct type *context)
3069 {
3070 struct type *type;
3071 char *copy;
3072
3073 if (context == NULL)
3074 return classify_name (par_state, block, false, false);
3075
3076 type = check_typedef (context);
3077 if (!type_aggregate_p (type))
3078 return ERROR;
3079
3080 copy = copy_name (yylval.ssym.stoken);
3081 /* N.B. We assume the symbol can only be in VAR_DOMAIN. */
3082 yylval.ssym.sym = cp_lookup_nested_symbol (type, copy, block, VAR_DOMAIN);
3083
3084 /* If no symbol was found, search for a matching base class named
3085 COPY. This will allow users to enter qualified names of class members
3086 relative to the `this' pointer. */
3087 if (yylval.ssym.sym.symbol == NULL)
3088 {
3089 struct type *base_type = cp_find_type_baseclass_by_name (type, copy);
3090
3091 if (base_type != NULL)
3092 {
3093 yylval.tsym.type = base_type;
3094 return TYPENAME;
3095 }
3096
3097 return ERROR;
3098 }
3099
3100 switch (SYMBOL_CLASS (yylval.ssym.sym.symbol))
3101 {
3102 case LOC_BLOCK:
3103 case LOC_LABEL:
3104 /* cp_lookup_nested_symbol might have accidentally found a constructor
3105 named COPY when we really wanted a base class of the same name.
3106 Double-check this case by looking for a base class. */
3107 {
3108 struct type *base_type = cp_find_type_baseclass_by_name (type, copy);
3109
3110 if (base_type != NULL)
3111 {
3112 yylval.tsym.type = base_type;
3113 return TYPENAME;
3114 }
3115 }
3116 return ERROR;
3117
3118 case LOC_TYPEDEF:
3119 yylval.tsym.type = SYMBOL_TYPE (yylval.ssym.sym.symbol);
3120 return TYPENAME;
3121
3122 default:
3123 return NAME;
3124 }
3125 internal_error (__FILE__, __LINE__, _("not reached"));
3126 }
3127
3128 /* The outer level of a two-level lexer. This calls the inner lexer
3129 to return tokens. It then either returns these tokens, or
3130 aggregates them into a larger token. This lets us work around a
3131 problem in our parsing approach, where the parser could not
3132 distinguish between qualified names and qualified types at the
3133 right point.
3134
3135 This approach is still not ideal, because it mishandles template
3136 types. See the comment in lex_one_token for an example. However,
3137 this is still an improvement over the earlier approach, and will
3138 suffice until we move to better parsing technology. */
3139
3140 static int
3141 yylex (void)
3142 {
3143 token_and_value current;
3144 int first_was_coloncolon, last_was_coloncolon;
3145 struct type *context_type = NULL;
3146 int last_to_examine, next_to_examine, checkpoint;
3147 const struct block *search_block;
3148 bool is_quoted_name, last_lex_was_structop;
3149
3150 if (popping && !token_fifo.empty ())
3151 goto do_pop;
3152 popping = 0;
3153
3154 last_lex_was_structop = last_was_structop;
3155
3156 /* Read the first token and decide what to do. Most of the
3157 subsequent code is C++-only; but also depends on seeing a "::" or
3158 name-like token. */
3159 current.token = lex_one_token (pstate, &is_quoted_name);
3160 if (current.token == NAME)
3161 current.token = classify_name (pstate, pstate->expression_context_block,
3162 is_quoted_name, last_lex_was_structop);
3163 if (pstate->language ()->la_language != language_cplus
3164 || (current.token != TYPENAME && current.token != COLONCOLON
3165 && current.token != FILENAME))
3166 return current.token;
3167
3168 /* Read any sequence of alternating "::" and name-like tokens into
3169 the token FIFO. */
3170 current.value = yylval;
3171 token_fifo.push_back (current);
3172 last_was_coloncolon = current.token == COLONCOLON;
3173 while (1)
3174 {
3175 bool ignore;
3176
3177 /* We ignore quoted names other than the very first one.
3178 Subsequent ones do not have any special meaning. */
3179 current.token = lex_one_token (pstate, &ignore);
3180 current.value = yylval;
3181 token_fifo.push_back (current);
3182
3183 if ((last_was_coloncolon && current.token != NAME)
3184 || (!last_was_coloncolon && current.token != COLONCOLON))
3185 break;
3186 last_was_coloncolon = !last_was_coloncolon;
3187 }
3188 popping = 1;
3189
3190 /* We always read one extra token, so compute the number of tokens
3191 to examine accordingly. */
3192 last_to_examine = token_fifo.size () - 2;
3193 next_to_examine = 0;
3194
3195 current = token_fifo[next_to_examine];
3196 ++next_to_examine;
3197
3198 name_obstack.clear ();
3199 checkpoint = 0;
3200 if (current.token == FILENAME)
3201 search_block = current.value.bval;
3202 else if (current.token == COLONCOLON)
3203 search_block = NULL;
3204 else
3205 {
3206 gdb_assert (current.token == TYPENAME);
3207 search_block = pstate->expression_context_block;
3208 obstack_grow (&name_obstack, current.value.sval.ptr,
3209 current.value.sval.length);
3210 context_type = current.value.tsym.type;
3211 checkpoint = 1;
3212 }
3213
3214 first_was_coloncolon = current.token == COLONCOLON;
3215 last_was_coloncolon = first_was_coloncolon;
3216
3217 while (next_to_examine <= last_to_examine)
3218 {
3219 token_and_value next;
3220
3221 next = token_fifo[next_to_examine];
3222 ++next_to_examine;
3223
3224 if (next.token == NAME && last_was_coloncolon)
3225 {
3226 int classification;
3227
3228 yylval = next.value;
3229 classification = classify_inner_name (pstate, search_block,
3230 context_type);
3231 /* We keep going until we either run out of names, or until
3232 we have a qualified name which is not a type. */
3233 if (classification != TYPENAME && classification != NAME)
3234 break;
3235
3236 /* Accept up to this token. */
3237 checkpoint = next_to_examine;
3238
3239 /* Update the partial name we are constructing. */
3240 if (context_type != NULL)
3241 {
3242 /* We don't want to put a leading "::" into the name. */
3243 obstack_grow_str (&name_obstack, "::");
3244 }
3245 obstack_grow (&name_obstack, next.value.sval.ptr,
3246 next.value.sval.length);
3247
3248 yylval.sval.ptr = (const char *) obstack_base (&name_obstack);
3249 yylval.sval.length = obstack_object_size (&name_obstack);
3250 current.value = yylval;
3251 current.token = classification;
3252
3253 last_was_coloncolon = 0;
3254
3255 if (classification == NAME)
3256 break;
3257
3258 context_type = yylval.tsym.type;
3259 }
3260 else if (next.token == COLONCOLON && !last_was_coloncolon)
3261 last_was_coloncolon = 1;
3262 else
3263 {
3264 /* We've reached the end of the name. */
3265 break;
3266 }
3267 }
3268
3269 /* If we have a replacement token, install it as the first token in
3270 the FIFO, and delete the other constituent tokens. */
3271 if (checkpoint > 0)
3272 {
3273 current.value.sval.ptr
3274 = (const char *) obstack_copy0 (&cpstate->expansion_obstack,
3275 current.value.sval.ptr,
3276 current.value.sval.length);
3277
3278 token_fifo[0] = current;
3279 if (checkpoint > 1)
3280 token_fifo.erase (token_fifo.begin () + 1,
3281 token_fifo.begin () + checkpoint);
3282 }
3283
3284 do_pop:
3285 current = token_fifo[0];
3286 token_fifo.erase (token_fifo.begin ());
3287 yylval = current.value;
3288 return current.token;
3289 }
3290
3291 int
3292 c_parse (struct parser_state *par_state)
3293 {
3294 /* Setting up the parser state. */
3295 scoped_restore pstate_restore = make_scoped_restore (&pstate);
3296 gdb_assert (par_state != NULL);
3297 pstate = par_state;
3298
3299 c_parse_state cstate;
3300 scoped_restore cstate_restore = make_scoped_restore (&cpstate, &cstate);
3301
3302 gdb::unique_xmalloc_ptr<struct macro_scope> macro_scope;
3303
3304 if (par_state->expression_context_block)
3305 macro_scope
3306 = sal_macro_scope (find_pc_line (par_state->expression_context_pc, 0));
3307 else
3308 macro_scope = default_macro_scope ();
3309 if (! macro_scope)
3310 macro_scope = user_macro_scope ();
3311
3312 scoped_restore restore_macro_scope
3313 = make_scoped_restore (&expression_macro_scope, macro_scope.get ());
3314
3315 scoped_restore restore_yydebug = make_scoped_restore (&yydebug,
3316 parser_debug);
3317
3318 /* Initialize some state used by the lexer. */
3319 last_was_structop = false;
3320 saw_name_at_eof = 0;
3321 paren_depth = 0;
3322
3323 token_fifo.clear ();
3324 popping = 0;
3325 name_obstack.clear ();
3326
3327 return yyparse ();
3328 }
3329
3330 #ifdef YYBISON
3331
3332 /* This is called via the YYPRINT macro when parser debugging is
3333 enabled. It prints a token's value. */
3334
3335 static void
3336 c_print_token (FILE *file, int type, YYSTYPE value)
3337 {
3338 switch (type)
3339 {
3340 case INT:
3341 parser_fprintf (file, "typed_val_int<%s, %s>",
3342 TYPE_SAFE_NAME (value.typed_val_int.type),
3343 pulongest (value.typed_val_int.val));
3344 break;
3345
3346 case CHAR:
3347 case STRING:
3348 {
3349 char *copy = (char *) alloca (value.tsval.length + 1);
3350
3351 memcpy (copy, value.tsval.ptr, value.tsval.length);
3352 copy[value.tsval.length] = '\0';
3353
3354 parser_fprintf (file, "tsval<type=%d, %s>", value.tsval.type, copy);
3355 }
3356 break;
3357
3358 case NSSTRING:
3359 case DOLLAR_VARIABLE:
3360 parser_fprintf (file, "sval<%s>", copy_name (value.sval));
3361 break;
3362
3363 case TYPENAME:
3364 parser_fprintf (file, "tsym<type=%s, name=%s>",
3365 TYPE_SAFE_NAME (value.tsym.type),
3366 copy_name (value.tsym.stoken));
3367 break;
3368
3369 case NAME:
3370 case UNKNOWN_CPP_NAME:
3371 case NAME_OR_INT:
3372 case BLOCKNAME:
3373 parser_fprintf (file, "ssym<name=%s, sym=%s, field_of_this=%d>",
3374 copy_name (value.ssym.stoken),
3375 (value.ssym.sym.symbol == NULL
3376 ? "(null)" : SYMBOL_PRINT_NAME (value.ssym.sym.symbol)),
3377 value.ssym.is_a_field_of_this);
3378 break;
3379
3380 case FILENAME:
3381 parser_fprintf (file, "bval<%s>", host_address_to_string (value.bval));
3382 break;
3383 }
3384 }
3385
3386 #endif
3387
3388 static void
3389 yyerror (const char *msg)
3390 {
3391 if (pstate->prev_lexptr)
3392 pstate->lexptr = pstate->prev_lexptr;
3393
3394 error (_("A %s in expression, near `%s'."), msg, pstate->lexptr);
3395 }
This page took 0.107203 seconds and 5 git commands to generate.