Minor cleanup.
[deliverable/binutils-gdb.git] / gdb / ch-exp.y
1 /* YACC grammar for Chill expressions, for GDB.
2 Copyright (C) 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* Parse a Chill expression from text in a string,
21 and return the result as a struct expression pointer.
22 That structure contains arithmetic operations in reverse polish,
23 with constants represented by operations that are followed by special data.
24 See expression.h for the details of the format.
25 What is important here is that it can be built up sequentially
26 during the process of parsing; the lower levels of the tree always
27 come first in the result.
28
29 Note that malloc's and realloc's in this file are transformed to
30 xmalloc and xrealloc respectively by the same sed command in the
31 makefile that remaps any other malloc/realloc inserted by the parser
32 generator. Doing this with #defines and trying to control the interaction
33 with include files (<malloc.h> and <stdlib.h> for example) just became
34 too messy, particularly when such includes can be inserted at random
35 times by the parser generator.
36
37 Also note that the language accepted by this parser is more liberal
38 than the one accepted by an actual Chill compiler. For example, the
39 language rule that a simple name string can not be one of the reserved
40 simple name strings is not enforced (e.g "case" is not treated as a
41 reserved name). Another example is that Chill is a strongly typed
42 language, and certain expressions that violate the type constraints
43 may still be evaluated if gdb can do so in a meaningful manner, while
44 such expressions would be rejected by the compiler. The reason for
45 this more liberal behavior is the philosophy that the debugger
46 is intended to be a tool that is used by the programmer when things
47 go wrong, and as such, it should provide as few artificial barriers
48 to it's use as possible. If it can do something meaningful, even
49 something that violates language contraints that are enforced by the
50 compiler, it should do so without complaint.
51
52 */
53
54 %{
55
56 #include "defs.h"
57 #include <ctype.h>
58 #include "expression.h"
59 #include "language.h"
60 #include "value.h"
61 #include "parser-defs.h"
62 #include "ch-lang.h"
63
64 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
65 as well as gratuitiously global symbol names, so we can have multiple
66 yacc generated parsers in gdb. Note that these are only the variables
67 produced by yacc. If other parser generators (bison, byacc, etc) produce
68 additional global names that conflict at link time, then those parser
69 generators need to be fixed instead of adding those names to this list. */
70
71 #define yymaxdepth chill_maxdepth
72 #define yyparse chill_parse
73 #define yylex chill_lex
74 #define yyerror chill_error
75 #define yylval chill_lval
76 #define yychar chill_char
77 #define yydebug chill_debug
78 #define yypact chill_pact
79 #define yyr1 chill_r1
80 #define yyr2 chill_r2
81 #define yydef chill_def
82 #define yychk chill_chk
83 #define yypgo chill_pgo
84 #define yyact chill_act
85 #define yyexca chill_exca
86 #define yyerrflag chill_errflag
87 #define yynerrs chill_nerrs
88 #define yyps chill_ps
89 #define yypv chill_pv
90 #define yys chill_s
91 #define yy_yys chill_yys
92 #define yystate chill_state
93 #define yytmp chill_tmp
94 #define yyv chill_v
95 #define yy_yyv chill_yyv
96 #define yyval chill_val
97 #define yylloc chill_lloc
98 #define yyreds chill_reds /* With YYDEBUG defined */
99 #define yytoks chill_toks /* With YYDEBUG defined */
100
101 #ifndef YYDEBUG
102 #define YYDEBUG 0 /* Default to no yydebug support */
103 #endif
104
105 int
106 yyparse PARAMS ((void));
107
108 static int
109 yylex PARAMS ((void));
110
111 void
112 yyerror PARAMS ((char *));
113
114 %}
115
116 /* Although the yacc "value" of an expression is not used,
117 since the result is stored in the structure being created,
118 other node types do have values. */
119
120 %union
121 {
122 LONGEST lval;
123 unsigned LONGEST ulval;
124 struct {
125 LONGEST val;
126 struct type *type;
127 } typed_val;
128 double dval;
129 struct symbol *sym;
130 struct type *tval;
131 struct stoken sval;
132 struct ttype tsym;
133 struct symtoken ssym;
134 int voidval;
135 struct block *bval;
136 enum exp_opcode opcode;
137 struct internalvar *ivar;
138
139 struct type **tvec;
140 int *ivec;
141 }
142
143 %token <voidval> FIXME_01
144 %token <voidval> FIXME_02
145 %token <voidval> FIXME_03
146 %token <voidval> FIXME_04
147 %token <voidval> FIXME_05
148 %token <voidval> FIXME_06
149 %token <voidval> FIXME_07
150 %token <voidval> FIXME_08
151 %token <voidval> FIXME_09
152 %token <voidval> FIXME_10
153 %token <voidval> FIXME_11
154 %token <voidval> FIXME_12
155 %token <voidval> FIXME_13
156 %token <voidval> FIXME_14
157 %token <voidval> FIXME_15
158 %token <voidval> FIXME_16
159 %token <voidval> FIXME_17
160 %token <voidval> FIXME_18
161 %token <voidval> FIXME_19
162 %token <voidval> FIXME_20
163 %token <voidval> FIXME_21
164 %token <voidval> FIXME_22
165 %token <voidval> FIXME_23
166 %token <voidval> FIXME_24
167 %token <voidval> FIXME_25
168 %token <voidval> FIXME_26
169 %token <voidval> FIXME_27
170 %token <voidval> FIXME_28
171 %token <voidval> FIXME_29
172 %token <voidval> FIXME_30
173
174 %token <typed_val> INTEGER_LITERAL
175 %token <ulval> BOOLEAN_LITERAL
176 %token <typed_val> CHARACTER_LITERAL
177 %token <dval> FLOAT_LITERAL
178 %token <ssym> GENERAL_PROCEDURE_NAME
179 %token <ssym> LOCATION_NAME
180 %token <voidval> SET_LITERAL
181 %token <voidval> EMPTINESS_LITERAL
182 %token <sval> CHARACTER_STRING_LITERAL
183 %token <sval> BIT_STRING_LITERAL
184 %token <tsym> TYPENAME
185 %token <sval> FIELD_NAME
186
187 %token <voidval> '.'
188 %token <voidval> ';'
189 %token <voidval> ':'
190 %token <voidval> CASE
191 %token <voidval> OF
192 %token <voidval> ESAC
193 %token <voidval> LOGIOR
194 %token <voidval> ORIF
195 %token <voidval> LOGXOR
196 %token <voidval> LOGAND
197 %token <voidval> ANDIF
198 %token <voidval> '='
199 %token <voidval> NOTEQUAL
200 %token <voidval> '>'
201 %token <voidval> GTR
202 %token <voidval> '<'
203 %token <voidval> LEQ
204 %token <voidval> IN
205 %token <voidval> '+'
206 %token <voidval> '-'
207 %token <voidval> '*'
208 %token <voidval> '/'
209 %token <voidval> SLASH_SLASH
210 %token <voidval> MOD
211 %token <voidval> REM
212 %token <voidval> NOT
213 %token <voidval> POINTER
214 %token <voidval> RECEIVE
215 %token <voidval> '['
216 %token <voidval> ']'
217 %token <voidval> '('
218 %token <voidval> ')'
219 %token <voidval> UP
220 %token <voidval> IF
221 %token <voidval> THEN
222 %token <voidval> ELSE
223 %token <voidval> FI
224 %token <voidval> ELSIF
225 %token <voidval> ILLEGAL_TOKEN
226 %token <voidval> NUM
227 %token <voidval> PRED
228 %token <voidval> SUCC
229 %token <voidval> ABS
230 %token <voidval> CARD
231 %token <voidval> MAX
232 %token <voidval> MIN
233 %token <voidval> SIZE
234 %token <voidval> UPPER
235 %token <voidval> LOWER
236 %token <voidval> LENGTH
237
238 /* Tokens which are not Chill tokens used in expressions, but rather GDB
239 specific things that we recognize in the same context as Chill tokens
240 (register names for example). */
241
242 %token <lval> GDB_REGNAME /* Machine register name */
243 %token <lval> GDB_LAST /* Value history */
244 %token <ivar> GDB_VARIABLE /* Convenience variable */
245 %token <voidval> GDB_ASSIGNMENT /* Assign value to somewhere */
246
247 %type <voidval> location
248 %type <voidval> access_name
249 %type <voidval> primitive_value
250 %type <voidval> location_contents
251 %type <voidval> value_name
252 %type <voidval> literal
253 %type <voidval> tuple
254 %type <voidval> value_string_element
255 %type <voidval> value_string_slice
256 %type <voidval> value_array_element
257 %type <voidval> value_array_slice
258 %type <voidval> value_structure_field
259 %type <voidval> expression_conversion
260 %type <voidval> value_procedure_call
261 %type <voidval> value_built_in_routine_call
262 %type <voidval> chill_value_built_in_routine_call
263 %type <voidval> start_expression
264 %type <voidval> zero_adic_operator
265 %type <voidval> parenthesised_expression
266 %type <voidval> value
267 %type <voidval> undefined_value
268 %type <voidval> expression
269 %type <voidval> conditional_expression
270 %type <voidval> then_alternative
271 %type <voidval> else_alternative
272 %type <voidval> sub_expression
273 %type <voidval> value_case_alternative
274 %type <voidval> operand_0
275 %type <voidval> operand_1
276 %type <voidval> operand_2
277 %type <voidval> operand_3
278 %type <voidval> operand_4
279 %type <voidval> operand_5
280 %type <voidval> operand_6
281 %type <voidval> synonym_name
282 %type <voidval> value_enumeration_name
283 %type <voidval> value_do_with_name
284 %type <voidval> value_receive_name
285 %type <voidval> string_primitive_value
286 %type <voidval> start_element
287 %type <voidval> left_element
288 %type <voidval> right_element
289 %type <voidval> slice_size
290 %type <voidval> array_primitive_value
291 %type <voidval> expression_list
292 %type <voidval> lower_element
293 %type <voidval> upper_element
294 %type <voidval> first_element
295 %type <voidval> structure_primitive_value
296 %type <voidval> mode_argument
297 %type <voidval> upper_lower_argument
298 %type <voidval> length_argument
299 %type <voidval> array_mode_name
300 %type <voidval> string_mode_name
301 %type <voidval> variant_structure_mode_name
302 %type <voidval> boolean_expression
303 %type <voidval> case_selector_list
304 %type <voidval> subexpression
305 %type <voidval> case_label_specification
306 %type <voidval> buffer_location
307 %type <voidval> single_assignment_action
308 %type <tsym> mode_name
309
310 %%
311
312 /* Z.200, 5.3.1 */
313
314 start : value
315 | mode_name
316 { write_exp_elt_opcode(OP_TYPE);
317 write_exp_elt_type($1.type);
318 write_exp_elt_opcode(OP_TYPE);}
319 ;
320
321 value : expression
322 {
323 $$ = 0; /* FIXME */
324 }
325 | undefined_value
326 {
327 $$ = 0; /* FIXME */
328 }
329 ;
330
331 undefined_value : FIXME_01
332 {
333 $$ = 0; /* FIXME */
334 }
335 ;
336
337 /* Z.200, 4.2.1 */
338
339 location : access_name
340 | primitive_value POINTER
341 {
342 write_exp_elt_opcode (UNOP_IND);
343 }
344 ;
345
346 /* Z.200, 4.2.2 */
347
348 access_name : LOCATION_NAME
349 {
350 write_exp_elt_opcode (OP_VAR_VALUE);
351 write_exp_elt_sym ($1.sym);
352 write_exp_elt_opcode (OP_VAR_VALUE);
353 }
354 | GDB_LAST /* gdb specific */
355 {
356 write_exp_elt_opcode (OP_LAST);
357 write_exp_elt_longcst ($1);
358 write_exp_elt_opcode (OP_LAST);
359 }
360 | GDB_REGNAME /* gdb specific */
361 {
362 write_exp_elt_opcode (OP_REGISTER);
363 write_exp_elt_longcst ($1);
364 write_exp_elt_opcode (OP_REGISTER);
365 }
366 | GDB_VARIABLE /* gdb specific */
367 {
368 write_exp_elt_opcode (OP_INTERNALVAR);
369 write_exp_elt_intern ($1);
370 write_exp_elt_opcode (OP_INTERNALVAR);
371 }
372 | FIXME_03
373 {
374 $$ = 0; /* FIXME */
375 }
376 ;
377
378 /* Z.200, 4.2.8 */
379
380 expression_list : expression
381 {
382 arglist_len = 1;
383 }
384 | expression_list ',' expression
385 {
386 arglist_len++;
387 }
388
389 /* Z.200, 5.2.1 */
390
391 primitive_value : location_contents
392 {
393 $$ = 0; /* FIXME */
394 }
395 | value_name
396 {
397 $$ = 0; /* FIXME */
398 }
399 | literal
400 {
401 $$ = 0; /* FIXME */
402 }
403 | tuple
404 {
405 $$ = 0; /* FIXME */
406 }
407 | value_string_element
408 {
409 $$ = 0; /* FIXME */
410 }
411 | value_string_slice
412 {
413 $$ = 0; /* FIXME */
414 }
415 | value_array_element
416 {
417 $$ = 0; /* FIXME */
418 }
419 | value_array_slice
420 {
421 $$ = 0; /* FIXME */
422 }
423 | value_structure_field
424 {
425 $$ = 0; /* FIXME */
426 }
427 | expression_conversion
428 {
429 $$ = 0; /* FIXME */
430 }
431 | value_procedure_call
432 {
433 $$ = 0; /* FIXME */
434 }
435 | value_built_in_routine_call
436 {
437 $$ = 0; /* FIXME */
438 }
439 | start_expression
440 {
441 $$ = 0; /* FIXME */
442 }
443 | zero_adic_operator
444 {
445 $$ = 0; /* FIXME */
446 }
447 | parenthesised_expression
448 {
449 $$ = 0; /* FIXME */
450 }
451 ;
452
453 /* Z.200, 5.2.2 */
454
455 location_contents: location
456 {
457 $$ = 0; /* FIXME */
458 }
459 ;
460
461 /* Z.200, 5.2.3 */
462
463 value_name : synonym_name
464 {
465 $$ = 0; /* FIXME */
466 }
467 | value_enumeration_name
468 {
469 $$ = 0; /* FIXME */
470 }
471 | value_do_with_name
472 {
473 $$ = 0; /* FIXME */
474 }
475 | value_receive_name
476 {
477 $$ = 0; /* FIXME */
478 }
479 | GENERAL_PROCEDURE_NAME
480 {
481 write_exp_elt_opcode (OP_VAR_VALUE);
482 write_exp_elt_sym ($1.sym);
483 write_exp_elt_opcode (OP_VAR_VALUE);
484 }
485 ;
486
487 /* Z.200, 5.2.4.1 */
488
489 literal : INTEGER_LITERAL
490 {
491 write_exp_elt_opcode (OP_LONG);
492 write_exp_elt_type ($1.type);
493 write_exp_elt_longcst ((LONGEST) ($1.val));
494 write_exp_elt_opcode (OP_LONG);
495 }
496 | BOOLEAN_LITERAL
497 {
498 write_exp_elt_opcode (OP_BOOL);
499 write_exp_elt_longcst ((LONGEST) $1);
500 write_exp_elt_opcode (OP_BOOL);
501 }
502 | CHARACTER_LITERAL
503 {
504 write_exp_elt_opcode (OP_LONG);
505 write_exp_elt_type ($1.type);
506 write_exp_elt_longcst ((LONGEST) ($1.val));
507 write_exp_elt_opcode (OP_LONG);
508 }
509 | FLOAT_LITERAL
510 {
511 write_exp_elt_opcode (OP_DOUBLE);
512 write_exp_elt_type (builtin_type_double);
513 write_exp_elt_dblcst ($1);
514 write_exp_elt_opcode (OP_DOUBLE);
515 }
516 | SET_LITERAL
517 {
518 $$ = 0; /* FIXME */
519 }
520 | EMPTINESS_LITERAL
521 {
522 $$ = 0; /* FIXME */
523 }
524 | CHARACTER_STRING_LITERAL
525 {
526 write_exp_elt_opcode (OP_STRING);
527 write_exp_string ($1);
528 write_exp_elt_opcode (OP_STRING);
529 }
530 | BIT_STRING_LITERAL
531 {
532 write_exp_elt_opcode (OP_BITSTRING);
533 write_exp_bitstring ($1);
534 write_exp_elt_opcode (OP_BITSTRING);
535 }
536 ;
537
538 /* Z.200, 5.2.5 */
539
540 tuple : FIXME_04
541 {
542 $$ = 0; /* FIXME */
543 }
544 ;
545
546
547 /* Z.200, 5.2.6 */
548
549 value_string_element: string_primitive_value '(' start_element ')'
550 {
551 $$ = 0; /* FIXME */
552 }
553 ;
554
555 /* Z.200, 5.2.7 */
556
557 value_string_slice: string_primitive_value '(' left_element ':' right_element ')'
558 {
559 $$ = 0; /* FIXME */
560 }
561 | string_primitive_value '(' start_element UP slice_size ')'
562 {
563 $$ = 0; /* FIXME */
564 }
565 ;
566
567 /* Z.200, 5.2.8 */
568
569 value_array_element: array_primitive_value '('
570 /* This is to save the value of arglist_len
571 being accumulated for each dimension. */
572 { start_arglist (); }
573 expression_list ')'
574 {
575 write_exp_elt_opcode (MULTI_SUBSCRIPT);
576 write_exp_elt_longcst ((LONGEST) end_arglist ());
577 write_exp_elt_opcode (MULTI_SUBSCRIPT);
578 }
579 ;
580
581 /* Z.200, 5.2.9 */
582
583 value_array_slice: array_primitive_value '(' lower_element ':' upper_element ')'
584 {
585 $$ = 0; /* FIXME */
586 }
587 | array_primitive_value '(' first_element UP slice_size ')'
588 {
589 $$ = 0; /* FIXME */
590 }
591 ;
592
593 /* Z.200, 5.2.10 */
594
595 value_structure_field: primitive_value FIELD_NAME
596 { write_exp_elt_opcode (STRUCTOP_STRUCT);
597 write_exp_string ($2);
598 write_exp_elt_opcode (STRUCTOP_STRUCT);
599 }
600 ;
601
602 /* Z.200, 5.2.11 */
603
604 expression_conversion: mode_name parenthesised_expression
605 {
606 write_exp_elt_opcode (UNOP_CAST);
607 write_exp_elt_type ($1.type);
608 write_exp_elt_opcode (UNOP_CAST);
609 }
610 ;
611
612 /* Z.200, 5.2.12 */
613
614 value_procedure_call: FIXME_05
615 {
616 $$ = 0; /* FIXME */
617 }
618 ;
619
620 /* Z.200, 5.2.13 */
621
622 value_built_in_routine_call: chill_value_built_in_routine_call
623 {
624 $$ = 0; /* FIXME */
625 }
626 ;
627
628 /* Z.200, 5.2.14 */
629
630 start_expression: FIXME_06
631 {
632 $$ = 0; /* FIXME */
633 } /* Not in GNU-Chill */
634 ;
635
636 /* Z.200, 5.2.15 */
637
638 zero_adic_operator: FIXME_07
639 {
640 $$ = 0; /* FIXME */
641 }
642 ;
643
644 /* Z.200, 5.2.16 */
645
646 parenthesised_expression: '(' expression ')'
647 {
648 $$ = 0; /* FIXME */
649 }
650 ;
651
652 /* Z.200, 5.3.2 */
653
654 expression : operand_0
655 {
656 $$ = 0; /* FIXME */
657 }
658 | single_assignment_action
659 {
660 $$ = 0; /* FIXME */
661 }
662 | conditional_expression
663 {
664 $$ = 0; /* FIXME */
665 }
666 ;
667
668 conditional_expression : IF boolean_expression then_alternative else_alternative FI
669 {
670 $$ = 0; /* FIXME */
671 }
672 | CASE case_selector_list OF value_case_alternative '[' ELSE sub_expression ']' ESAC
673 {
674 $$ = 0; /* FIXME */
675 }
676 ;
677
678 then_alternative: THEN subexpression
679 {
680 $$ = 0; /* FIXME */
681 }
682 ;
683
684 else_alternative: ELSE subexpression
685 {
686 $$ = 0; /* FIXME */
687 }
688 | ELSIF boolean_expression then_alternative else_alternative
689 {
690 $$ = 0; /* FIXME */
691 }
692 ;
693
694 sub_expression : expression
695 {
696 $$ = 0; /* FIXME */
697 }
698 ;
699
700 value_case_alternative: case_label_specification ':' sub_expression ';'
701 {
702 $$ = 0; /* FIXME */
703 }
704 ;
705
706 /* Z.200, 5.3.3 */
707
708 operand_0 : operand_1
709 {
710 $$ = 0; /* FIXME */
711 }
712 | operand_0 LOGIOR operand_1
713 {
714 write_exp_elt_opcode (BINOP_BITWISE_IOR);
715 }
716 | operand_0 ORIF operand_1
717 {
718 $$ = 0; /* FIXME */
719 }
720 | operand_0 LOGXOR operand_1
721 {
722 write_exp_elt_opcode (BINOP_BITWISE_XOR);
723 }
724 ;
725
726 /* Z.200, 5.3.4 */
727
728 operand_1 : operand_2
729 {
730 $$ = 0; /* FIXME */
731 }
732 | operand_1 LOGAND operand_2
733 {
734 write_exp_elt_opcode (BINOP_BITWISE_AND);
735 }
736 | operand_1 ANDIF operand_2
737 {
738 $$ = 0; /* FIXME */
739 }
740 ;
741
742 /* Z.200, 5.3.5 */
743
744 operand_2 : operand_3
745 {
746 $$ = 0; /* FIXME */
747 }
748 | operand_2 '=' operand_3
749 {
750 write_exp_elt_opcode (BINOP_EQUAL);
751 }
752 | operand_2 NOTEQUAL operand_3
753 {
754 write_exp_elt_opcode (BINOP_NOTEQUAL);
755 }
756 | operand_2 '>' operand_3
757 {
758 write_exp_elt_opcode (BINOP_GTR);
759 }
760 | operand_2 GTR operand_3
761 {
762 write_exp_elt_opcode (BINOP_GEQ);
763 }
764 | operand_2 '<' operand_3
765 {
766 write_exp_elt_opcode (BINOP_LESS);
767 }
768 | operand_2 LEQ operand_3
769 {
770 write_exp_elt_opcode (BINOP_LEQ);
771 }
772 | operand_2 IN operand_3
773 {
774 $$ = 0; /* FIXME */
775 }
776 ;
777
778
779 /* Z.200, 5.3.6 */
780
781 operand_3 : operand_4
782 {
783 $$ = 0; /* FIXME */
784 }
785 | operand_3 '+' operand_4
786 {
787 write_exp_elt_opcode (BINOP_ADD);
788 }
789 | operand_3 '-' operand_4
790 {
791 write_exp_elt_opcode (BINOP_SUB);
792 }
793 | operand_3 SLASH_SLASH operand_4
794 {
795 write_exp_elt_opcode (BINOP_CONCAT);
796 }
797 ;
798
799 /* Z.200, 5.3.7 */
800
801 operand_4 : operand_5
802 {
803 $$ = 0; /* FIXME */
804 }
805 | operand_4 '*' operand_5
806 {
807 write_exp_elt_opcode (BINOP_MUL);
808 }
809 | operand_4 '/' operand_5
810 {
811 write_exp_elt_opcode (BINOP_DIV);
812 }
813 | operand_4 MOD operand_5
814 {
815 write_exp_elt_opcode (BINOP_MOD);
816 }
817 | operand_4 REM operand_5
818 {
819 write_exp_elt_opcode (BINOP_REM);
820 }
821 ;
822
823 /* Z.200, 5.3.8 */
824
825 operand_5 : operand_6
826 {
827 $$ = 0; /* FIXME */
828 }
829 | '-' operand_6
830 {
831 write_exp_elt_opcode (UNOP_NEG);
832 }
833 | NOT operand_6
834 {
835 write_exp_elt_opcode (UNOP_LOGICAL_NOT);
836 }
837 | parenthesised_expression literal
838 /* We require the string operand to be a literal, to avoid some
839 nasty parsing ambiguities. */
840 {
841 write_exp_elt_opcode (BINOP_CONCAT);
842 }
843 ;
844
845 /* Z.200, 5.3.9 */
846
847 operand_6 : POINTER location
848 {
849 write_exp_elt_opcode (UNOP_ADDR);
850 }
851 | RECEIVE buffer_location
852 {
853 $$ = 0; /* FIXME */
854 }
855 | primitive_value
856 {
857 $$ = 0; /* FIXME */
858 }
859 ;
860
861
862 /* Z.200, 6.2 */
863
864 single_assignment_action :
865 location GDB_ASSIGNMENT value
866 {
867 write_exp_elt_opcode (BINOP_ASSIGN);
868 }
869 ;
870
871 /* Z.200, 6.20.3 */
872
873 chill_value_built_in_routine_call :
874 NUM '(' expression ')'
875 {
876 $$ = 0; /* FIXME */
877 }
878 | PRED '(' expression ')'
879 {
880 $$ = 0; /* FIXME */
881 }
882 | SUCC '(' expression ')'
883 {
884 $$ = 0; /* FIXME */
885 }
886 | ABS '(' expression ')'
887 {
888 $$ = 0; /* FIXME */
889 }
890 | CARD '(' expression ')'
891 {
892 $$ = 0; /* FIXME */
893 }
894 | MAX '(' expression ')'
895 {
896 $$ = 0; /* FIXME */
897 }
898 | MIN '(' expression ')'
899 {
900 $$ = 0; /* FIXME */
901 }
902 | SIZE '(' location ')'
903 {
904 $$ = 0; /* FIXME */
905 }
906 | SIZE '(' mode_argument ')'
907 {
908 $$ = 0; /* FIXME */
909 }
910 | UPPER '(' upper_lower_argument ')'
911 {
912 $$ = 0; /* FIXME */
913 }
914 | LOWER '(' upper_lower_argument ')'
915 {
916 $$ = 0; /* FIXME */
917 }
918 | LENGTH '(' length_argument ')'
919 {
920 $$ = 0; /* FIXME */
921 }
922 ;
923
924 mode_argument : mode_name
925 {
926 $$ = 0; /* FIXME */
927 }
928 | array_mode_name '(' expression ')'
929 {
930 $$ = 0; /* FIXME */
931 }
932 | string_mode_name '(' expression ')'
933 {
934 $$ = 0; /* FIXME */
935 }
936 | variant_structure_mode_name '(' expression_list ')'
937 {
938 $$ = 0; /* FIXME */
939 }
940 ;
941
942 mode_name : TYPENAME
943 ;
944
945 upper_lower_argument : expression
946 {
947 $$ = 0; /* FIXME */
948 }
949 | mode_name
950 {
951 $$ = 0; /* FIXME */
952 }
953 ;
954
955 length_argument : expression
956 {
957 $$ = 0; /* FIXME */
958 }
959 ;
960
961 /* Z.200, 12.4.3 */
962
963 array_primitive_value : primitive_value
964 {
965 $$ = 0;
966 }
967 ;
968
969
970 /* Things which still need productions... */
971
972 array_mode_name : FIXME_08 { $$ = 0; }
973 string_mode_name : FIXME_09 { $$ = 0; }
974 variant_structure_mode_name: FIXME_10 { $$ = 0; }
975 synonym_name : FIXME_11 { $$ = 0; }
976 value_enumeration_name : FIXME_12 { $$ = 0; }
977 value_do_with_name : FIXME_13 { $$ = 0; }
978 value_receive_name : FIXME_14 { $$ = 0; }
979 string_primitive_value : FIXME_15 { $$ = 0; }
980 start_element : FIXME_16 { $$ = 0; }
981 left_element : FIXME_17 { $$ = 0; }
982 right_element : FIXME_18 { $$ = 0; }
983 slice_size : FIXME_19 { $$ = 0; }
984 lower_element : FIXME_20 { $$ = 0; }
985 upper_element : FIXME_21 { $$ = 0; }
986 first_element : FIXME_22 { $$ = 0; }
987 structure_primitive_value: FIXME_23 { $$ = 0; }
988 boolean_expression : FIXME_26 { $$ = 0; }
989 case_selector_list : FIXME_27 { $$ = 0; }
990 subexpression : FIXME_28 { $$ = 0; }
991 case_label_specification: FIXME_29 { $$ = 0; }
992 buffer_location : FIXME_30 { $$ = 0; }
993
994 %%
995
996 /* Implementation of a dynamically expandable buffer for processing input
997 characters acquired through lexptr and building a value to return in
998 yylval. */
999
1000 static char *tempbuf; /* Current buffer contents */
1001 static int tempbufsize; /* Size of allocated buffer */
1002 static int tempbufindex; /* Current index into buffer */
1003
1004 #define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
1005
1006 #define CHECKBUF(size) \
1007 do { \
1008 if (tempbufindex + (size) >= tempbufsize) \
1009 { \
1010 growbuf_by_size (size); \
1011 } \
1012 } while (0);
1013
1014 /* Grow the static temp buffer if necessary, including allocating the first one
1015 on demand. */
1016
1017 static void
1018 growbuf_by_size (count)
1019 int count;
1020 {
1021 int growby;
1022
1023 growby = max (count, GROWBY_MIN_SIZE);
1024 tempbufsize += growby;
1025 if (tempbuf == NULL)
1026 {
1027 tempbuf = (char *) malloc (tempbufsize);
1028 }
1029 else
1030 {
1031 tempbuf = (char *) realloc (tempbuf, tempbufsize);
1032 }
1033 }
1034
1035 /* Try to consume a simple name string token. If successful, returns
1036 a pointer to a nullbyte terminated copy of the name that can be used
1037 in symbol table lookups. If not successful, returns NULL. */
1038
1039 static char *
1040 match_simple_name_string ()
1041 {
1042 char *tokptr = lexptr;
1043
1044 if (isalpha (*tokptr))
1045 {
1046 char *result;
1047 do {
1048 tokptr++;
1049 } while (isalnum (*tokptr) || (*tokptr == '_'));
1050 yylval.sval.ptr = lexptr;
1051 yylval.sval.length = tokptr - lexptr;
1052 lexptr = tokptr;
1053 result = copy_name (yylval.sval);
1054 for (tokptr = result; *tokptr; tokptr++)
1055 if (isupper (*tokptr))
1056 *tokptr = tolower(*tokptr);
1057 return result;
1058 }
1059 return (NULL);
1060 }
1061
1062 /* Start looking for a value composed of valid digits as set by the base
1063 in use. Note that '_' characters are valid anywhere, in any quantity,
1064 and are simply ignored. Since we must find at least one valid digit,
1065 or reject this token as an integer literal, we keep track of how many
1066 digits we have encountered. */
1067
1068 static int
1069 decode_integer_value (base, tokptrptr, ivalptr)
1070 int base;
1071 char **tokptrptr;
1072 int *ivalptr;
1073 {
1074 char *tokptr = *tokptrptr;
1075 int temp;
1076 int digits = 0;
1077
1078 while (*tokptr != '\0')
1079 {
1080 temp = tolower (*tokptr);
1081 tokptr++;
1082 switch (temp)
1083 {
1084 case '_':
1085 continue;
1086 case '0': case '1': case '2': case '3': case '4':
1087 case '5': case '6': case '7': case '8': case '9':
1088 temp -= '0';
1089 break;
1090 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1091 temp -= 'a';
1092 temp += 10;
1093 break;
1094 default:
1095 temp = base;
1096 break;
1097 }
1098 if (temp < base)
1099 {
1100 digits++;
1101 *ivalptr *= base;
1102 *ivalptr += temp;
1103 }
1104 else
1105 {
1106 /* Found something not in domain for current base. */
1107 tokptr--; /* Unconsume what gave us indigestion. */
1108 break;
1109 }
1110 }
1111
1112 /* If we didn't find any digits, then we don't have a valid integer
1113 value, so reject the entire token. Otherwise, update the lexical
1114 scan pointer, and return non-zero for success. */
1115
1116 if (digits == 0)
1117 {
1118 return (0);
1119 }
1120 else
1121 {
1122 *tokptrptr = tokptr;
1123 return (1);
1124 }
1125 }
1126
1127 static int
1128 decode_integer_literal (valptr, tokptrptr)
1129 int *valptr;
1130 char **tokptrptr;
1131 {
1132 char *tokptr = *tokptrptr;
1133 int base = 0;
1134 int ival = 0;
1135 int explicit_base = 0;
1136
1137 /* Look for an explicit base specifier, which is optional. */
1138
1139 switch (*tokptr)
1140 {
1141 case 'd':
1142 case 'D':
1143 explicit_base++;
1144 base = 10;
1145 tokptr++;
1146 break;
1147 case 'b':
1148 case 'B':
1149 explicit_base++;
1150 base = 2;
1151 tokptr++;
1152 break;
1153 case 'h':
1154 case 'H':
1155 explicit_base++;
1156 base = 16;
1157 tokptr++;
1158 break;
1159 case 'o':
1160 case 'O':
1161 explicit_base++;
1162 base = 8;
1163 tokptr++;
1164 break;
1165 default:
1166 base = 10;
1167 break;
1168 }
1169
1170 /* If we found an explicit base ensure that the character after the
1171 explicit base is a single quote. */
1172
1173 if (explicit_base && (*tokptr++ != '\''))
1174 {
1175 return (0);
1176 }
1177
1178 /* Attempt to decode whatever follows as an integer value in the
1179 indicated base, updating the token pointer in the process and
1180 computing the value into ival. Also, if we have an explicit
1181 base, then the next character must not be a single quote, or we
1182 have a bitstring literal, so reject the entire token in this case.
1183 Otherwise, update the lexical scan pointer, and return non-zero
1184 for success. */
1185
1186 if (!decode_integer_value (base, &tokptr, &ival))
1187 {
1188 return (0);
1189 }
1190 else if (explicit_base && (*tokptr == '\''))
1191 {
1192 return (0);
1193 }
1194 else
1195 {
1196 *valptr = ival;
1197 *tokptrptr = tokptr;
1198 return (1);
1199 }
1200 }
1201
1202 /* If it wasn't for the fact that floating point values can contain '_'
1203 characters, we could just let strtod do all the hard work by letting it
1204 try to consume as much of the current token buffer as possible and
1205 find a legal conversion. Unfortunately we need to filter out the '_'
1206 characters before calling strtod, which we do by copying the other
1207 legal chars to a local buffer to be converted. However since we also
1208 need to keep track of where the last unconsumed character in the input
1209 buffer is, we have transfer only as many characters as may compose a
1210 legal floating point value. */
1211
1212 static int
1213 match_float_literal ()
1214 {
1215 char *tokptr = lexptr;
1216 char *buf;
1217 char *copy;
1218 char ch;
1219 double dval;
1220 extern double strtod ();
1221
1222 /* Make local buffer in which to build the string to convert. This is
1223 required because underscores are valid in chill floating point numbers
1224 but not in the string passed to strtod to convert. The string will be
1225 no longer than our input string. */
1226
1227 copy = buf = (char *) alloca (strlen (tokptr) + 1);
1228
1229 /* Transfer all leading digits to the conversion buffer, discarding any
1230 underscores. */
1231
1232 while (isdigit (*tokptr) || *tokptr == '_')
1233 {
1234 if (*tokptr != '_')
1235 {
1236 *copy++ = *tokptr;
1237 }
1238 tokptr++;
1239 }
1240
1241 /* Now accept either a '.', or one of [eEdD]. Dot is legal regardless
1242 of whether we found any leading digits, and we simply accept it and
1243 continue on to look for the fractional part and/or exponent. One of
1244 [eEdD] is legal only if we have seen digits, and means that there
1245 is no fractional part. If we find neither of these, then this is
1246 not a floating point number, so return failure. */
1247
1248 switch (*tokptr++)
1249 {
1250 case '.':
1251 /* Accept and then look for fractional part and/or exponent. */
1252 *copy++ = '.';
1253 break;
1254
1255 case 'e':
1256 case 'E':
1257 case 'd':
1258 case 'D':
1259 if (copy == buf)
1260 {
1261 return (0);
1262 }
1263 *copy++ = 'e';
1264 goto collect_exponent;
1265 break;
1266
1267 default:
1268 return (0);
1269 break;
1270 }
1271
1272 /* We found a '.', copy any fractional digits to the conversion buffer, up
1273 to the first nondigit, non-underscore character. */
1274
1275 while (isdigit (*tokptr) || *tokptr == '_')
1276 {
1277 if (*tokptr != '_')
1278 {
1279 *copy++ = *tokptr;
1280 }
1281 tokptr++;
1282 }
1283
1284 /* Look for an exponent, which must start with one of [eEdD]. If none
1285 is found, jump directly to trying to convert what we have collected
1286 so far. */
1287
1288 switch (*tokptr)
1289 {
1290 case 'e':
1291 case 'E':
1292 case 'd':
1293 case 'D':
1294 *copy++ = 'e';
1295 tokptr++;
1296 break;
1297 default:
1298 goto convert_float;
1299 break;
1300 }
1301
1302 /* Accept an optional '-' or '+' following one of [eEdD]. */
1303
1304 collect_exponent:
1305 if (*tokptr == '+' || *tokptr == '-')
1306 {
1307 *copy++ = *tokptr++;
1308 }
1309
1310 /* Now copy an exponent into the conversion buffer. Note that at the
1311 moment underscores are *not* allowed in exponents. */
1312
1313 while (isdigit (*tokptr))
1314 {
1315 *copy++ = *tokptr++;
1316 }
1317
1318 /* If we transfered any chars to the conversion buffer, try to interpret its
1319 contents as a floating point value. If any characters remain, then we
1320 must not have a valid floating point string. */
1321
1322 convert_float:
1323 *copy = '\0';
1324 if (copy != buf)
1325 {
1326 dval = strtod (buf, &copy);
1327 if (*copy == '\0')
1328 {
1329 yylval.dval = dval;
1330 lexptr = tokptr;
1331 return (FLOAT_LITERAL);
1332 }
1333 }
1334 return (0);
1335 }
1336
1337 /* Recognize a string literal. A string literal is a nonzero sequence
1338 of characters enclosed in matching single or double quotes, except that
1339 a single character inside single quotes is a character literal, which
1340 we reject as a string literal. To embed the terminator character inside
1341 a string, it is simply doubled (I.E. "this""is""one""string") */
1342
1343 static int
1344 match_string_literal ()
1345 {
1346 char *tokptr = lexptr;
1347
1348 for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
1349 {
1350 CHECKBUF (1);
1351 if (*tokptr == *lexptr)
1352 {
1353 if (*(tokptr + 1) == *lexptr)
1354 {
1355 tokptr++;
1356 }
1357 else
1358 {
1359 break;
1360 }
1361 }
1362 tempbuf[tempbufindex++] = *tokptr;
1363 }
1364 if (*tokptr == '\0' /* no terminator */
1365 || tempbufindex == 0 /* no string */
1366 || (tempbufindex == 1 && *tokptr == '\'')) /* char literal */
1367 {
1368 return (0);
1369 }
1370 else
1371 {
1372 tempbuf[tempbufindex] = '\0';
1373 yylval.sval.ptr = tempbuf;
1374 yylval.sval.length = tempbufindex;
1375 lexptr = ++tokptr;
1376 return (CHARACTER_STRING_LITERAL);
1377 }
1378 }
1379
1380 /* Recognize a character literal. A character literal is single character
1381 or a control sequence, enclosed in single quotes. A control sequence
1382 is a comma separated list of one or more integer literals, enclosed
1383 in parenthesis and introduced with a circumflex character.
1384
1385 EX: 'a' '^(7)' '^(7,8)'
1386
1387 As a GNU chill extension, the syntax C'xx' is also recognized as a
1388 character literal, where xx is a hex value for the character.
1389
1390 Note that more than a single character, enclosed in single quotes, is
1391 a string literal.
1392
1393 Also note that the control sequence form is not in GNU Chill since it
1394 is ambiguous with the string literal form using single quotes. I.E.
1395 is '^(7)' a character literal or a string literal. In theory it it
1396 possible to tell by context, but GNU Chill doesn't accept the control
1397 sequence form, so neither do we (for now the code is disabled).
1398
1399 Returns CHARACTER_LITERAL if a match is found.
1400 */
1401
1402 static int
1403 match_character_literal ()
1404 {
1405 char *tokptr = lexptr;
1406 int ival = 0;
1407
1408 if ((tolower (*tokptr) == 'c') && (*(tokptr + 1) == '\''))
1409 {
1410 /* We have a GNU chill extension form, so skip the leading "C'",
1411 decode the hex value, and then ensure that we have a trailing
1412 single quote character. */
1413 tokptr += 2;
1414 if (!decode_integer_value (16, &tokptr, &ival) || (*tokptr != '\''))
1415 {
1416 return (0);
1417 }
1418 tokptr++;
1419 }
1420 else if (*tokptr == '\'')
1421 {
1422 tokptr++;
1423
1424 /* Determine which form we have, either a control sequence or the
1425 single character form. */
1426
1427 if ((*tokptr == '^') && (*(tokptr + 1) == '('))
1428 {
1429 #if 0 /* Disable, see note above. -fnf */
1430 /* Match and decode a control sequence. Return zero if we don't
1431 find a valid integer literal, or if the next unconsumed character
1432 after the integer literal is not the trailing ')'.
1433 FIXME: We currently don't handle the multiple integer literal
1434 form. */
1435 tokptr += 2;
1436 if (!decode_integer_literal (&ival, &tokptr) || (*tokptr++ != ')'))
1437 {
1438 return (0);
1439 }
1440 #else
1441 return (0);
1442 #endif
1443 }
1444 else
1445 {
1446 ival = *tokptr++;
1447 }
1448
1449 /* The trailing quote has not yet been consumed. If we don't find
1450 it, then we have no match. */
1451
1452 if (*tokptr++ != '\'')
1453 {
1454 return (0);
1455 }
1456 }
1457 else
1458 {
1459 /* Not a character literal. */
1460 return (0);
1461 }
1462 yylval.typed_val.val = ival;
1463 yylval.typed_val.type = builtin_type_chill_char;
1464 lexptr = tokptr;
1465 return (CHARACTER_LITERAL);
1466 }
1467
1468 /* Recognize an integer literal, as specified in Z.200 sec 5.2.4.2.
1469 Note that according to 5.2.4.2, a single "_" is also a valid integer
1470 literal, however GNU-chill requires there to be at least one "digit"
1471 in any integer literal. */
1472
1473 static int
1474 match_integer_literal ()
1475 {
1476 char *tokptr = lexptr;
1477 int ival;
1478
1479 if (!decode_integer_literal (&ival, &tokptr))
1480 {
1481 return (0);
1482 }
1483 else
1484 {
1485 yylval.typed_val.val = ival;
1486 yylval.typed_val.type = builtin_type_int;
1487 lexptr = tokptr;
1488 return (INTEGER_LITERAL);
1489 }
1490 }
1491
1492 /* Recognize a bit-string literal, as specified in Z.200 sec 5.2.4.8
1493 Note that according to 5.2.4.8, a single "_" is also a valid bit-string
1494 literal, however GNU-chill requires there to be at least one "digit"
1495 in any bit-string literal. */
1496
1497 static int
1498 match_bitstring_literal ()
1499 {
1500 char *tokptr = lexptr;
1501 int mask;
1502 int bitoffset = 0;
1503 int bitcount = 0;
1504 int base;
1505 int digit;
1506
1507 tempbufindex = 0;
1508
1509 /* Look for the required explicit base specifier. */
1510
1511 switch (*tokptr++)
1512 {
1513 case 'b':
1514 case 'B':
1515 base = 2;
1516 break;
1517 case 'o':
1518 case 'O':
1519 base = 8;
1520 break;
1521 case 'h':
1522 case 'H':
1523 base = 16;
1524 break;
1525 default:
1526 return (0);
1527 break;
1528 }
1529
1530 /* Ensure that the character after the explicit base is a single quote. */
1531
1532 if (*tokptr++ != '\'')
1533 {
1534 return (0);
1535 }
1536
1537 while (*tokptr != '\0' && *tokptr != '\'')
1538 {
1539 digit = tolower (*tokptr);
1540 tokptr++;
1541 switch (digit)
1542 {
1543 case '_':
1544 continue;
1545 case '0': case '1': case '2': case '3': case '4':
1546 case '5': case '6': case '7': case '8': case '9':
1547 digit -= '0';
1548 break;
1549 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1550 digit -= 'a';
1551 digit += 10;
1552 break;
1553 default:
1554 return (0);
1555 break;
1556 }
1557 if (digit >= base)
1558 {
1559 /* Found something not in domain for current base. */
1560 return (0);
1561 }
1562 else
1563 {
1564 /* Extract bits from digit, starting with the msbit appropriate for
1565 the current base, and packing them into the bitstring byte,
1566 starting at the lsbit. */
1567 for (mask = (base >> 1); mask > 0; mask >>= 1)
1568 {
1569 bitcount++;
1570 CHECKBUF (1);
1571 if (digit & mask)
1572 {
1573 tempbuf[tempbufindex] |= (1 << bitoffset);
1574 }
1575 bitoffset++;
1576 if (bitoffset == HOST_CHAR_BIT)
1577 {
1578 bitoffset = 0;
1579 tempbufindex++;
1580 }
1581 }
1582 }
1583 }
1584
1585 /* Verify that we consumed everything up to the trailing single quote,
1586 and that we found some bits (IE not just underbars). */
1587
1588 if (*tokptr++ != '\'')
1589 {
1590 return (0);
1591 }
1592 else
1593 {
1594 yylval.sval.ptr = tempbuf;
1595 yylval.sval.length = bitcount;
1596 lexptr = tokptr;
1597 return (BIT_STRING_LITERAL);
1598 }
1599 }
1600
1601 /* Recognize tokens that start with '$'. These include:
1602
1603 $regname A native register name or a "standard
1604 register name".
1605 Return token GDB_REGNAME.
1606
1607 $variable A convenience variable with a name chosen
1608 by the user.
1609 Return token GDB_VARIABLE.
1610
1611 $digits Value history with index <digits>, starting
1612 from the first value which has index 1.
1613 Return GDB_LAST.
1614
1615 $$digits Value history with index <digits> relative
1616 to the last value. I.E. $$0 is the last
1617 value, $$1 is the one previous to that, $$2
1618 is the one previous to $$1, etc.
1619 Return token GDB_LAST.
1620
1621 $ | $0 | $$0 The last value in the value history.
1622 Return token GDB_LAST.
1623
1624 $$ An abbreviation for the second to the last
1625 value in the value history, I.E. $$1
1626 Return token GDB_LAST.
1627
1628 Note that we currently assume that register names and convenience
1629 variables follow the convention of starting with a letter or '_'.
1630
1631 */
1632
1633 static int
1634 match_dollar_tokens ()
1635 {
1636 char *tokptr;
1637 int regno;
1638 int namelength;
1639 int negate;
1640 int ival;
1641
1642 /* We will always have a successful match, even if it is just for
1643 a single '$', the abbreviation for $$0. So advance lexptr. */
1644
1645 tokptr = ++lexptr;
1646
1647 if (*tokptr == '_' || isalpha (*tokptr))
1648 {
1649 /* Look for a match with a native register name, usually something
1650 like "r0" for example. */
1651
1652 for (regno = 0; regno < NUM_REGS; regno++)
1653 {
1654 namelength = strlen (reg_names[regno]);
1655 if (STREQN (tokptr, reg_names[regno], namelength)
1656 && !isalnum (tokptr[namelength]))
1657 {
1658 yylval.lval = regno;
1659 lexptr += namelength + 1;
1660 return (GDB_REGNAME);
1661 }
1662 }
1663
1664 /* Look for a match with a standard register name, usually something
1665 like "pc", which gdb always recognizes as the program counter
1666 regardless of what the native register name is. */
1667
1668 for (regno = 0; regno < num_std_regs; regno++)
1669 {
1670 namelength = strlen (std_regs[regno].name);
1671 if (STREQN (tokptr, std_regs[regno].name, namelength)
1672 && !isalnum (tokptr[namelength]))
1673 {
1674 yylval.lval = std_regs[regno].regnum;
1675 lexptr += namelength;
1676 return (GDB_REGNAME);
1677 }
1678 }
1679
1680 /* Attempt to match against a convenience variable. Note that
1681 this will always succeed, because if no variable of that name
1682 already exists, the lookup_internalvar will create one for us.
1683 Also note that both lexptr and tokptr currently point to the
1684 start of the input string we are trying to match, and that we
1685 have already tested the first character for non-numeric, so we
1686 don't have to treat it specially. */
1687
1688 while (*tokptr == '_' || isalnum (*tokptr))
1689 {
1690 tokptr++;
1691 }
1692 yylval.sval.ptr = lexptr;
1693 yylval.sval.length = tokptr - lexptr;
1694 yylval.ivar = lookup_internalvar (copy_name (yylval.sval));
1695 lexptr = tokptr;
1696 return (GDB_VARIABLE);
1697 }
1698
1699 /* Since we didn't match against a register name or convenience
1700 variable, our only choice left is a history value. */
1701
1702 if (*tokptr == '$')
1703 {
1704 negate = 1;
1705 ival = 1;
1706 tokptr++;
1707 }
1708 else
1709 {
1710 negate = 0;
1711 ival = 0;
1712 }
1713
1714 /* Attempt to decode more characters as an integer value giving
1715 the index in the history list. If successful, the value will
1716 overwrite ival (currently 0 or 1), and if not, ival will be
1717 left alone, which is good since it is currently correct for
1718 the '$' or '$$' case. */
1719
1720 decode_integer_literal (&ival, &tokptr);
1721 yylval.lval = negate ? -ival : ival;
1722 lexptr = tokptr;
1723 return (GDB_LAST);
1724 }
1725
1726 struct token
1727 {
1728 char *operator;
1729 int token;
1730 };
1731
1732 static const struct token idtokentab[] =
1733 {
1734 { "length", LENGTH },
1735 { "lower", LOWER },
1736 { "upper", UPPER },
1737 { "andif", ANDIF },
1738 { "pred", PRED },
1739 { "succ", SUCC },
1740 { "card", CARD },
1741 { "size", SIZE },
1742 { "orif", ORIF },
1743 { "num", NUM },
1744 { "abs", ABS },
1745 { "max", MAX },
1746 { "min", MIN },
1747 { "mod", MOD },
1748 { "rem", REM },
1749 { "not", NOT },
1750 { "xor", LOGXOR },
1751 { "and", LOGAND },
1752 { "in", IN },
1753 { "or", LOGIOR }
1754 };
1755
1756 static const struct token tokentab2[] =
1757 {
1758 { ":=", GDB_ASSIGNMENT },
1759 { "//", SLASH_SLASH },
1760 { "->", POINTER },
1761 { "/=", NOTEQUAL },
1762 { "<=", LEQ },
1763 { ">=", GTR }
1764 };
1765
1766 /* Read one token, getting characters through lexptr. */
1767 /* This is where we will check to make sure that the language and the
1768 operators used are compatible. */
1769
1770 static int
1771 yylex ()
1772 {
1773 unsigned int i;
1774 int token;
1775 char *simplename;
1776 struct symbol *sym;
1777
1778 /* Skip over any leading whitespace. */
1779 while (isspace (*lexptr))
1780 {
1781 lexptr++;
1782 }
1783 /* Look for special single character cases which can't be the first
1784 character of some other multicharacter token. */
1785 switch (*lexptr)
1786 {
1787 case '\0':
1788 return (0);
1789 case ',':
1790 case '=':
1791 case ';':
1792 case '!':
1793 case '+':
1794 case '*':
1795 case '(':
1796 case ')':
1797 case '[':
1798 case ']':
1799 return (*lexptr++);
1800 }
1801 /* Look for characters which start a particular kind of multicharacter
1802 token, such as a character literal, register name, convenience
1803 variable name, string literal, etc. */
1804 switch (*lexptr)
1805 {
1806 case '\'':
1807 case '\"':
1808 /* First try to match a string literal, which is any nonzero
1809 sequence of characters enclosed in matching single or double
1810 quotes, except that a single character inside single quotes
1811 is a character literal, so we have to catch that case also. */
1812 token = match_string_literal ();
1813 if (token != 0)
1814 {
1815 return (token);
1816 }
1817 if (*lexptr == '\'')
1818 {
1819 token = match_character_literal ();
1820 if (token != 0)
1821 {
1822 return (token);
1823 }
1824 }
1825 break;
1826 case 'C':
1827 case 'c':
1828 token = match_character_literal ();
1829 if (token != 0)
1830 {
1831 return (token);
1832 }
1833 break;
1834 case '$':
1835 token = match_dollar_tokens ();
1836 if (token != 0)
1837 {
1838 return (token);
1839 }
1840 break;
1841 }
1842 /* See if it is a special token of length 2. */
1843 for (i = 0; i < sizeof (tokentab2) / sizeof (tokentab2[0]); i++)
1844 {
1845 if (STREQN (lexptr, tokentab2[i].operator, 2))
1846 {
1847 lexptr += 2;
1848 return (tokentab2[i].token);
1849 }
1850 }
1851 /* Look for single character cases which which could be the first
1852 character of some other multicharacter token, but aren't, or we
1853 would already have found it. */
1854 switch (*lexptr)
1855 {
1856 case '-':
1857 case ':':
1858 case '/':
1859 case '<':
1860 case '>':
1861 return (*lexptr++);
1862 }
1863 /* Look for a float literal before looking for an integer literal, so
1864 we match as much of the input stream as possible. */
1865 token = match_float_literal ();
1866 if (token != 0)
1867 {
1868 return (token);
1869 }
1870 token = match_bitstring_literal ();
1871 if (token != 0)
1872 {
1873 return (token);
1874 }
1875 token = match_integer_literal ();
1876 if (token != 0)
1877 {
1878 return (token);
1879 }
1880
1881 /* Try to match a simple name string, and if a match is found, then
1882 further classify what sort of name it is and return an appropriate
1883 token. Note that attempting to match a simple name string consumes
1884 the token from lexptr, so we can't back out if we later find that
1885 we can't classify what sort of name it is. */
1886
1887 simplename = match_simple_name_string ();
1888
1889 /* See if it is a reserved identifier. */
1890 for (i = 0; i < sizeof (idtokentab) / sizeof (idtokentab[0]); i++)
1891 {
1892 if (STREQ (simplename, idtokentab[i].operator))
1893 {
1894 return (idtokentab[i].token);
1895 }
1896 }
1897
1898 /* Look for other special tokens. */
1899 if (STREQ (simplename, "true"))
1900 {
1901 yylval.ulval = 1;
1902 return (BOOLEAN_LITERAL);
1903 }
1904 if (STREQ (simplename, "false"))
1905 {
1906 yylval.ulval = 0;
1907 return (BOOLEAN_LITERAL);
1908 }
1909
1910 if (simplename != NULL)
1911 {
1912 sym = lookup_symbol (simplename, expression_context_block,
1913 VAR_NAMESPACE, (int *) NULL,
1914 (struct symtab **) NULL);
1915 if (sym != NULL)
1916 {
1917 yylval.ssym.stoken.ptr = NULL;
1918 yylval.ssym.stoken.length = 0;
1919 yylval.ssym.sym = sym;
1920 yylval.ssym.is_a_field_of_this = 0; /* FIXME, C++'ism */
1921 switch (SYMBOL_CLASS (sym))
1922 {
1923 case LOC_BLOCK:
1924 /* Found a procedure name. */
1925 return (GENERAL_PROCEDURE_NAME);
1926 case LOC_STATIC:
1927 /* Found a global or local static variable. */
1928 return (LOCATION_NAME);
1929 case LOC_REGISTER:
1930 case LOC_ARG:
1931 case LOC_REF_ARG:
1932 case LOC_REGPARM:
1933 case LOC_LOCAL:
1934 case LOC_LOCAL_ARG:
1935 if (innermost_block == NULL
1936 || contained_in (block_found, innermost_block))
1937 {
1938 innermost_block = block_found;
1939 }
1940 return (LOCATION_NAME);
1941 break;
1942 case LOC_CONST:
1943 case LOC_LABEL:
1944 return (LOCATION_NAME);
1945 break;
1946 case LOC_TYPEDEF:
1947 yylval.tsym.type = SYMBOL_TYPE (sym);
1948 return TYPENAME;
1949 case LOC_UNDEF:
1950 case LOC_CONST_BYTES:
1951 case LOC_OPTIMIZED_OUT:
1952 error ("Symbol \"%s\" names no location.", simplename);
1953 break;
1954 }
1955 }
1956 else if (!have_full_symbols () && !have_partial_symbols ())
1957 {
1958 error ("No symbol table is loaded. Use the \"file\" command.");
1959 }
1960 else
1961 {
1962 error ("No symbol \"%s\" in current context.", simplename);
1963 }
1964 }
1965
1966 /* Catch single character tokens which are not part of some
1967 longer token. */
1968
1969 switch (*lexptr)
1970 {
1971 case '.': /* Not float for example. */
1972 lexptr++;
1973 while (isspace (*lexptr)) lexptr++;
1974 simplename = match_simple_name_string ();
1975 if (!simplename)
1976 return '.';
1977 return FIELD_NAME;
1978 }
1979
1980 return (ILLEGAL_TOKEN);
1981 }
1982
1983 void
1984 yyerror (msg)
1985 char *msg; /* unused */
1986 {
1987 printf ("Parsing: %s\n", lexptr);
1988 if (yychar < 256)
1989 {
1990 error ("Invalid syntax in expression near character '%c'.", yychar);
1991 }
1992 else
1993 {
1994 error ("Invalid syntax in expression");
1995 }
1996 }
This page took 0.072357 seconds and 4 git commands to generate.