* expression.h (BINOP_CONCAT): Document use for self concatenation
[deliverable/binutils-gdb.git] / gdb / ch-exp.y
1 /* YACC grammar for Chill expressions, for GDB.
2 Copyright (C) 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* Parse a Chill expression from text in a string,
21 and return the result as a struct expression pointer.
22 That structure contains arithmetic operations in reverse polish,
23 with constants represented by operations that are followed by special data.
24 See expression.h for the details of the format.
25 What is important here is that it can be built up sequentially
26 during the process of parsing; the lower levels of the tree always
27 come first in the result.
28
29 Note that malloc's and realloc's in this file are transformed to
30 xmalloc and xrealloc respectively by the same sed command in the
31 makefile that remaps any other malloc/realloc inserted by the parser
32 generator. Doing this with #defines and trying to control the interaction
33 with include files (<malloc.h> and <stdlib.h> for example) just became
34 too messy, particularly when such includes can be inserted at random
35 times by the parser generator.
36
37 Also note that the language accepted by this parser is more liberal
38 than the one accepted by an actual Chill compiler. For example, the
39 language rule that a simple name string can not be one of the reserved
40 simple name strings is not enforced (e.g "case" is not treated as a
41 reserved name). Another example is that Chill is a strongly typed
42 language, and certain expressions that violate the type constraints
43 may still be evaluated if gdb can do so in a meaningful manner, while
44 such expressions would be rejected by the compiler. The reason for
45 this more liberal behavior is the philosophy that the debugger
46 is intended to be a tool that is used by the programmer when things
47 go wrong, and as such, it should provide as few artificial barriers
48 to it's use as possible. If it can do something meaningful, even
49 something that violates language contraints that are enforced by the
50 compiler, it should do so without complaint.
51
52 */
53
54 %{
55
56 #include "defs.h"
57 #include "expression.h"
58 #include "language.h"
59 #include "value.h"
60 #include "parser-defs.h"
61 #include "ch-lang.h"
62
63 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
64 as well as gratuitiously global symbol names, so we can have multiple
65 yacc generated parsers in gdb. Note that these are only the variables
66 produced by yacc. If other parser generators (bison, byacc, etc) produce
67 additional global names that conflict at link time, then those parser
68 generators need to be fixed instead of adding those names to this list. */
69
70 #define yymaxdepth chill_maxdepth
71 #define yyparse chill_parse
72 #define yylex chill_lex
73 #define yyerror chill_error
74 #define yylval chill_lval
75 #define yychar chill_char
76 #define yydebug chill_debug
77 #define yypact chill_pact
78 #define yyr1 chill_r1
79 #define yyr2 chill_r2
80 #define yydef chill_def
81 #define yychk chill_chk
82 #define yypgo chill_pgo
83 #define yyact chill_act
84 #define yyexca chill_exca
85 #define yyerrflag chill_errflag
86 #define yynerrs chill_nerrs
87 #define yyps chill_ps
88 #define yypv chill_pv
89 #define yys chill_s
90 #define yy_yys chill_yys
91 #define yystate chill_state
92 #define yytmp chill_tmp
93 #define yyv chill_v
94 #define yy_yyv chill_yyv
95 #define yyval chill_val
96 #define yylloc chill_lloc
97 #define yyreds chill_reds /* With YYDEBUG defined */
98 #define yytoks chill_toks /* With YYDEBUG defined */
99
100 #ifndef YYDEBUG
101 #define YYDEBUG 0 /* Default to no yydebug support */
102 #endif
103
104 int
105 yyparse PARAMS ((void));
106
107 static int
108 yylex PARAMS ((void));
109
110 void
111 yyerror PARAMS ((char *));
112
113 %}
114
115 /* Although the yacc "value" of an expression is not used,
116 since the result is stored in the structure being created,
117 other node types do have values. */
118
119 %union
120 {
121 LONGEST lval;
122 unsigned LONGEST ulval;
123 struct {
124 LONGEST val;
125 struct type *type;
126 } typed_val;
127 double dval;
128 struct symbol *sym;
129 struct type *tval;
130 struct stoken sval;
131 struct ttype tsym;
132 struct symtoken ssym;
133 int voidval;
134 struct block *bval;
135 enum exp_opcode opcode;
136 struct internalvar *ivar;
137
138 struct type **tvec;
139 int *ivec;
140 }
141
142 %token <voidval> FIXME_01
143 %token <voidval> FIXME_02
144 %token <voidval> FIXME_03
145 %token <voidval> FIXME_04
146 %token <voidval> FIXME_05
147 %token <voidval> FIXME_06
148 %token <voidval> FIXME_07
149 %token <voidval> FIXME_08
150 %token <voidval> FIXME_09
151 %token <voidval> FIXME_10
152 %token <voidval> FIXME_11
153 %token <voidval> FIXME_12
154 %token <voidval> FIXME_13
155 %token <voidval> FIXME_14
156 %token <voidval> FIXME_15
157 %token <voidval> FIXME_16
158 %token <voidval> FIXME_17
159 %token <voidval> FIXME_18
160 %token <voidval> FIXME_19
161 %token <voidval> FIXME_20
162 %token <voidval> FIXME_21
163 %token <voidval> FIXME_22
164 %token <voidval> FIXME_23
165 %token <voidval> FIXME_24
166 %token <voidval> FIXME_25
167 %token <voidval> FIXME_26
168 %token <voidval> FIXME_27
169 %token <voidval> FIXME_28
170 %token <voidval> FIXME_29
171 %token <voidval> FIXME_30
172
173 %token <typed_val> INTEGER_LITERAL
174 %token <ulval> BOOLEAN_LITERAL
175 %token <typed_val> CHARACTER_LITERAL
176 %token <dval> FLOAT_LITERAL
177 %token <ssym> GENERAL_PROCEDURE_NAME
178 %token <ssym> LOCATION_NAME
179 %token <voidval> SET_LITERAL
180 %token <voidval> EMPTINESS_LITERAL
181 %token <sval> CHARACTER_STRING_LITERAL
182 %token <sval> BIT_STRING_LITERAL
183
184 %token <voidval> '.'
185 %token <voidval> ';'
186 %token <voidval> ':'
187 %token <voidval> CASE
188 %token <voidval> OF
189 %token <voidval> ESAC
190 %token <voidval> LOGIOR
191 %token <voidval> ORIF
192 %token <voidval> LOGXOR
193 %token <voidval> LOGAND
194 %token <voidval> ANDIF
195 %token <voidval> '='
196 %token <voidval> NOTEQUAL
197 %token <voidval> '>'
198 %token <voidval> GTR
199 %token <voidval> '<'
200 %token <voidval> LEQ
201 %token <voidval> IN
202 %token <voidval> '+'
203 %token <voidval> '-'
204 %token <voidval> '*'
205 %token <voidval> '/'
206 %token <voidval> SLASH_SLASH
207 %token <voidval> MOD
208 %token <voidval> REM
209 %token <voidval> NOT
210 %token <voidval> POINTER
211 %token <voidval> RECEIVE
212 %token <voidval> '['
213 %token <voidval> ']'
214 %token <voidval> '('
215 %token <voidval> ')'
216 %token <voidval> UP
217 %token <voidval> IF
218 %token <voidval> THEN
219 %token <voidval> ELSE
220 %token <voidval> FI
221 %token <voidval> ELSIF
222 %token <voidval> ILLEGAL_TOKEN
223 %token <voidval> NUM
224 %token <voidval> PRED
225 %token <voidval> SUCC
226 %token <voidval> ABS
227 %token <voidval> CARD
228 %token <voidval> MAX
229 %token <voidval> MIN
230 %token <voidval> SIZE
231 %token <voidval> UPPER
232 %token <voidval> LOWER
233 %token <voidval> LENGTH
234
235 /* Tokens which are not Chill tokens used in expressions, but rather GDB
236 specific things that we recognize in the same context as Chill tokens
237 (register names for example). */
238
239 %token <lval> GDB_REGNAME /* Machine register name */
240 %token <lval> GDB_LAST /* Value history */
241 %token <ivar> GDB_VARIABLE /* Convenience variable */
242 %token <voidval> GDB_ASSIGNMENT /* Assign value to somewhere */
243
244 %type <voidval> location
245 %type <voidval> access_name
246 %type <voidval> primitive_value
247 %type <voidval> location_contents
248 %type <voidval> value_name
249 %type <voidval> literal
250 %type <voidval> tuple
251 %type <voidval> value_string_element
252 %type <voidval> value_string_slice
253 %type <voidval> value_array_element
254 %type <voidval> value_array_slice
255 %type <voidval> value_structure_field
256 %type <voidval> expression_conversion
257 %type <voidval> value_procedure_call
258 %type <voidval> value_built_in_routine_call
259 %type <voidval> chill_value_built_in_routine_call
260 %type <voidval> start_expression
261 %type <voidval> zero_adic_operator
262 %type <voidval> parenthesised_expression
263 %type <voidval> value
264 %type <voidval> undefined_value
265 %type <voidval> expression
266 %type <voidval> conditional_expression
267 %type <voidval> then_alternative
268 %type <voidval> else_alternative
269 %type <voidval> sub_expression
270 %type <voidval> value_case_alternative
271 %type <voidval> operand_0
272 %type <voidval> operand_1
273 %type <voidval> operand_2
274 %type <voidval> operand_3
275 %type <voidval> operand_4
276 %type <voidval> operand_5
277 %type <voidval> operand_6
278 %type <voidval> synonym_name
279 %type <voidval> value_enumeration_name
280 %type <voidval> value_do_with_name
281 %type <voidval> value_receive_name
282 %type <voidval> string_primitive_value
283 %type <voidval> start_element
284 %type <voidval> left_element
285 %type <voidval> right_element
286 %type <voidval> slice_size
287 %type <voidval> array_primitive_value
288 %type <voidval> expression_list
289 %type <voidval> lower_element
290 %type <voidval> upper_element
291 %type <voidval> first_element
292 %type <voidval> structure_primitive_value
293 %type <voidval> field_name
294 %type <voidval> mode_argument
295 %type <voidval> upper_lower_argument
296 %type <voidval> length_argument
297 %type <voidval> mode_name
298 %type <voidval> array_mode_name
299 %type <voidval> string_mode_name
300 %type <voidval> variant_structure_mode_name
301 %type <voidval> boolean_expression
302 %type <voidval> case_selector_list
303 %type <voidval> subexpression
304 %type <voidval> case_label_specification
305 %type <voidval> buffer_location
306
307 %type <voidval> single_assignment_action
308
309 %%
310
311 /* Z.200, 5.3.1 */
312
313 value : expression
314 {
315 $$ = 0; /* FIXME */
316 }
317 | undefined_value
318 {
319 $$ = 0; /* FIXME */
320 }
321 ;
322
323 undefined_value : FIXME_01
324 {
325 $$ = 0; /* FIXME */
326 }
327 ;
328
329 /* Z.200, 4.2.1 */
330
331 location : access_name
332 {
333 $$ = 0; /* FIXME */
334 }
335 | FIXME_02
336 {
337 $$ = 0; /* FIXME */
338 }
339 ;
340
341 /* Z.200, 4.2.2 */
342
343 access_name : LOCATION_NAME
344 {
345 write_exp_elt_opcode (OP_VAR_VALUE);
346 write_exp_elt_sym ($1.sym);
347 write_exp_elt_opcode (OP_VAR_VALUE);
348 }
349 | GDB_LAST /* gdb specific */
350 {
351 write_exp_elt_opcode (OP_LAST);
352 write_exp_elt_longcst ($1);
353 write_exp_elt_opcode (OP_LAST);
354 }
355 | GDB_REGNAME /* gdb specific */
356 {
357 write_exp_elt_opcode (OP_REGISTER);
358 write_exp_elt_longcst ($1);
359 write_exp_elt_opcode (OP_REGISTER);
360 }
361 | GDB_VARIABLE /* gdb specific */
362 {
363 write_exp_elt_opcode (OP_INTERNALVAR);
364 write_exp_elt_intern ($1);
365 write_exp_elt_opcode (OP_INTERNALVAR);
366 }
367 | FIXME_03
368 {
369 $$ = 0; /* FIXME */
370 }
371 ;
372
373 /* Z.200, 4.2.8 */
374
375 expression_list : expression
376 {
377 arglist_len = 1;
378 }
379 | expression_list ',' expression
380 {
381 arglist_len++;
382 }
383
384 /* Z.200, 5.2.1 */
385
386 primitive_value : location_contents
387 {
388 $$ = 0; /* FIXME */
389 }
390 | value_name
391 {
392 $$ = 0; /* FIXME */
393 }
394 | literal
395 {
396 $$ = 0; /* FIXME */
397 }
398 | tuple
399 {
400 $$ = 0; /* FIXME */
401 }
402 | value_string_element
403 {
404 $$ = 0; /* FIXME */
405 }
406 | value_string_slice
407 {
408 $$ = 0; /* FIXME */
409 }
410 | value_array_element
411 {
412 $$ = 0; /* FIXME */
413 }
414 | value_array_slice
415 {
416 $$ = 0; /* FIXME */
417 }
418 | value_structure_field
419 {
420 $$ = 0; /* FIXME */
421 }
422 | expression_conversion
423 {
424 $$ = 0; /* FIXME */
425 }
426 | value_procedure_call
427 {
428 $$ = 0; /* FIXME */
429 }
430 | value_built_in_routine_call
431 {
432 $$ = 0; /* FIXME */
433 }
434 | start_expression
435 {
436 $$ = 0; /* FIXME */
437 }
438 | zero_adic_operator
439 {
440 $$ = 0; /* FIXME */
441 }
442 | parenthesised_expression
443 {
444 $$ = 0; /* FIXME */
445 }
446 ;
447
448 /* Z.200, 5.2.2 */
449
450 location_contents: location
451 {
452 $$ = 0; /* FIXME */
453 }
454 ;
455
456 /* Z.200, 5.2.3 */
457
458 value_name : synonym_name
459 {
460 $$ = 0; /* FIXME */
461 }
462 | value_enumeration_name
463 {
464 $$ = 0; /* FIXME */
465 }
466 | value_do_with_name
467 {
468 $$ = 0; /* FIXME */
469 }
470 | value_receive_name
471 {
472 $$ = 0; /* FIXME */
473 }
474 | GENERAL_PROCEDURE_NAME
475 {
476 write_exp_elt_opcode (OP_VAR_VALUE);
477 write_exp_elt_sym ($1.sym);
478 write_exp_elt_opcode (OP_VAR_VALUE);
479 }
480 ;
481
482 /* Z.200, 5.2.4.1 */
483
484 literal : INTEGER_LITERAL
485 {
486 write_exp_elt_opcode (OP_LONG);
487 write_exp_elt_type ($1.type);
488 write_exp_elt_longcst ((LONGEST) ($1.val));
489 write_exp_elt_opcode (OP_LONG);
490 }
491 | BOOLEAN_LITERAL
492 {
493 write_exp_elt_opcode (OP_BOOL);
494 write_exp_elt_longcst ((LONGEST) $1);
495 write_exp_elt_opcode (OP_BOOL);
496 }
497 | CHARACTER_LITERAL
498 {
499 write_exp_elt_opcode (OP_LONG);
500 write_exp_elt_type ($1.type);
501 write_exp_elt_longcst ((LONGEST) ($1.val));
502 write_exp_elt_opcode (OP_LONG);
503 }
504 | FLOAT_LITERAL
505 {
506 write_exp_elt_opcode (OP_DOUBLE);
507 write_exp_elt_type (builtin_type_double);
508 write_exp_elt_dblcst ($1);
509 write_exp_elt_opcode (OP_DOUBLE);
510 }
511 | SET_LITERAL
512 {
513 $$ = 0; /* FIXME */
514 }
515 | EMPTINESS_LITERAL
516 {
517 $$ = 0; /* FIXME */
518 }
519 | CHARACTER_STRING_LITERAL
520 {
521 write_exp_elt_opcode (OP_STRING);
522 write_exp_string ($1);
523 write_exp_elt_opcode (OP_STRING);
524 }
525 | BIT_STRING_LITERAL
526 {
527 write_exp_elt_opcode (OP_BITSTRING);
528 write_exp_bitstring ($1);
529 write_exp_elt_opcode (OP_BITSTRING);
530 }
531 ;
532
533 /* Z.200, 5.2.5 */
534
535 tuple : FIXME_04
536 {
537 $$ = 0; /* FIXME */
538 }
539 ;
540
541
542 /* Z.200, 5.2.6 */
543
544 value_string_element: string_primitive_value '(' start_element ')'
545 {
546 $$ = 0; /* FIXME */
547 }
548 ;
549
550 /* Z.200, 5.2.7 */
551
552 value_string_slice: string_primitive_value '(' left_element ':' right_element ')'
553 {
554 $$ = 0; /* FIXME */
555 }
556 | string_primitive_value '(' start_element UP slice_size ')'
557 {
558 $$ = 0; /* FIXME */
559 }
560 ;
561
562 /* Z.200, 5.2.8 */
563
564 value_array_element: array_primitive_value '('
565 /* This is to save the value of arglist_len
566 being accumulated for each dimension. */
567 { start_arglist (); }
568 expression_list ')'
569 {
570 write_exp_elt_opcode (MULTI_SUBSCRIPT);
571 write_exp_elt_longcst ((LONGEST) end_arglist ());
572 write_exp_elt_opcode (MULTI_SUBSCRIPT);
573 }
574 ;
575
576 /* Z.200, 5.2.9 */
577
578 value_array_slice: array_primitive_value '(' lower_element ':' upper_element ')'
579 {
580 $$ = 0; /* FIXME */
581 }
582 | array_primitive_value '(' first_element UP slice_size ')'
583 {
584 $$ = 0; /* FIXME */
585 }
586 ;
587
588 /* Z.200, 5.2.10 */
589
590 value_structure_field: structure_primitive_value '.' field_name
591 {
592 $$ = 0; /* FIXME */
593 }
594 ;
595
596 /* Z.200, 5.2.11 */
597
598 expression_conversion: mode_name parenthesised_expression
599 {
600 $$ = 0; /* FIXME */
601 }
602 ;
603
604 /* Z.200, 5.2.12 */
605
606 value_procedure_call: FIXME_05
607 {
608 $$ = 0; /* FIXME */
609 }
610 ;
611
612 /* Z.200, 5.2.13 */
613
614 value_built_in_routine_call: chill_value_built_in_routine_call
615 {
616 $$ = 0; /* FIXME */
617 }
618 ;
619
620 /* Z.200, 5.2.14 */
621
622 start_expression: FIXME_06
623 {
624 $$ = 0; /* FIXME */
625 } /* Not in GNU-Chill */
626 ;
627
628 /* Z.200, 5.2.15 */
629
630 zero_adic_operator: FIXME_07
631 {
632 $$ = 0; /* FIXME */
633 }
634 ;
635
636 /* Z.200, 5.2.16 */
637
638 parenthesised_expression: '(' expression ')'
639 {
640 $$ = 0; /* FIXME */
641 }
642 ;
643
644 /* Z.200, 5.3.2 */
645
646 expression : operand_0
647 {
648 $$ = 0; /* FIXME */
649 }
650 | conditional_expression
651 {
652 $$ = 0; /* FIXME */
653 }
654 ;
655
656 conditional_expression : IF boolean_expression then_alternative else_alternative FI
657 {
658 $$ = 0; /* FIXME */
659 }
660 | CASE case_selector_list OF value_case_alternative '[' ELSE sub_expression ']' ESAC
661 {
662 $$ = 0; /* FIXME */
663 }
664 ;
665
666 then_alternative: THEN subexpression
667 {
668 $$ = 0; /* FIXME */
669 }
670 ;
671
672 else_alternative: ELSE subexpression
673 {
674 $$ = 0; /* FIXME */
675 }
676 | ELSIF boolean_expression then_alternative else_alternative
677 {
678 $$ = 0; /* FIXME */
679 }
680 ;
681
682 sub_expression : expression
683 {
684 $$ = 0; /* FIXME */
685 }
686 ;
687
688 value_case_alternative: case_label_specification ':' sub_expression ';'
689 {
690 $$ = 0; /* FIXME */
691 }
692 ;
693
694 /* Z.200, 5.3.3 */
695
696 operand_0 : operand_1
697 {
698 $$ = 0; /* FIXME */
699 }
700 | operand_0 LOGIOR operand_1
701 {
702 write_exp_elt_opcode (BINOP_BITWISE_IOR);
703 }
704 | operand_0 ORIF operand_1
705 {
706 $$ = 0; /* FIXME */
707 }
708 | operand_0 LOGXOR operand_1
709 {
710 write_exp_elt_opcode (BINOP_BITWISE_XOR);
711 }
712 | single_assignment_action
713 {
714 $$ = 0; /* FIXME */
715 }
716 ;
717
718 /* Z.200, 5.3.4 */
719
720 operand_1 : operand_2
721 {
722 $$ = 0; /* FIXME */
723 }
724 | operand_1 LOGAND operand_2
725 {
726 write_exp_elt_opcode (BINOP_BITWISE_AND);
727 }
728 | operand_1 ANDIF operand_2
729 {
730 $$ = 0; /* FIXME */
731 }
732 ;
733
734 /* Z.200, 5.3.5 */
735
736 operand_2 : operand_3
737 {
738 $$ = 0; /* FIXME */
739 }
740 | operand_2 '=' operand_3
741 {
742 write_exp_elt_opcode (BINOP_EQUAL);
743 }
744 | operand_2 NOTEQUAL operand_3
745 {
746 write_exp_elt_opcode (BINOP_NOTEQUAL);
747 }
748 | operand_2 '>' operand_3
749 {
750 write_exp_elt_opcode (BINOP_GTR);
751 }
752 | operand_2 GTR operand_3
753 {
754 write_exp_elt_opcode (BINOP_GEQ);
755 }
756 | operand_2 '<' operand_3
757 {
758 write_exp_elt_opcode (BINOP_LESS);
759 }
760 | operand_2 LEQ operand_3
761 {
762 write_exp_elt_opcode (BINOP_LEQ);
763 }
764 | operand_2 IN operand_3
765 {
766 $$ = 0; /* FIXME */
767 }
768 ;
769
770
771 /* Z.200, 5.3.6 */
772
773 operand_3 : operand_4
774 {
775 $$ = 0; /* FIXME */
776 }
777 | operand_3 '+' operand_4
778 {
779 write_exp_elt_opcode (BINOP_ADD);
780 }
781 | operand_3 '-' operand_4
782 {
783 write_exp_elt_opcode (BINOP_SUB);
784 }
785 | operand_3 SLASH_SLASH operand_4
786 {
787 write_exp_elt_opcode (BINOP_CONCAT);
788 }
789 ;
790
791 /* Z.200, 5.3.7 */
792
793 operand_4 : operand_5
794 {
795 $$ = 0; /* FIXME */
796 }
797 | operand_4 '*' operand_5
798 {
799 write_exp_elt_opcode (BINOP_MUL);
800 }
801 | operand_4 '/' operand_5
802 {
803 write_exp_elt_opcode (BINOP_DIV);
804 }
805 | operand_4 MOD operand_5
806 {
807 write_exp_elt_opcode (BINOP_MOD);
808 }
809 | operand_4 REM operand_5
810 {
811 write_exp_elt_opcode (BINOP_REM);
812 }
813 ;
814
815 /* Z.200, 5.3.8 */
816 /* Note that we accept any expression for BINOP_CONCAT, not just
817 integer literal expressions. (FIXME?) */
818
819 operand_5 : operand_6
820 {
821 $$ = 0; /* FIXME */
822 }
823 | '-' operand_6
824 {
825 write_exp_elt_opcode (UNOP_NEG);
826 }
827 | NOT operand_6
828 {
829 write_exp_elt_opcode (UNOP_LOGICAL_NOT);
830 }
831 | parenthesised_expression operand_6
832 {
833 write_exp_elt_opcode (BINOP_CONCAT);
834 }
835 ;
836
837 /* Z.200, 5.3.9 */
838
839 operand_6 : POINTER location
840 {
841 $$ = 0; /* FIXME */
842 }
843 | RECEIVE buffer_location
844 {
845 $$ = 0; /* FIXME */
846 }
847 | primitive_value
848 {
849 $$ = 0; /* FIXME */
850 }
851 ;
852
853
854 /* Z.200, 6.2 */
855
856 single_assignment_action :
857 location GDB_ASSIGNMENT value
858 {
859 write_exp_elt_opcode (BINOP_ASSIGN);
860 }
861 ;
862
863 /* Z.200, 6.20.3 */
864
865 chill_value_built_in_routine_call :
866 NUM '(' expression ')'
867 {
868 $$ = 0; /* FIXME */
869 }
870 | PRED '(' expression ')'
871 {
872 $$ = 0; /* FIXME */
873 }
874 | SUCC '(' expression ')'
875 {
876 $$ = 0; /* FIXME */
877 }
878 | ABS '(' expression ')'
879 {
880 $$ = 0; /* FIXME */
881 }
882 | CARD '(' expression ')'
883 {
884 $$ = 0; /* FIXME */
885 }
886 | MAX '(' expression ')'
887 {
888 $$ = 0; /* FIXME */
889 }
890 | MIN '(' expression ')'
891 {
892 $$ = 0; /* FIXME */
893 }
894 | SIZE '(' location ')'
895 {
896 $$ = 0; /* FIXME */
897 }
898 | SIZE '(' mode_argument ')'
899 {
900 $$ = 0; /* FIXME */
901 }
902 | UPPER '(' upper_lower_argument ')'
903 {
904 $$ = 0; /* FIXME */
905 }
906 | LOWER '(' upper_lower_argument ')'
907 {
908 $$ = 0; /* FIXME */
909 }
910 | LENGTH '(' length_argument ')'
911 {
912 $$ = 0; /* FIXME */
913 }
914 ;
915
916 mode_argument : mode_name
917 {
918 $$ = 0; /* FIXME */
919 }
920 | array_mode_name '(' expression ')'
921 {
922 $$ = 0; /* FIXME */
923 }
924 | string_mode_name '(' expression ')'
925 {
926 $$ = 0; /* FIXME */
927 }
928 | variant_structure_mode_name '(' expression_list ')'
929 {
930 $$ = 0; /* FIXME */
931 }
932 ;
933
934 upper_lower_argument : location
935 {
936 $$ = 0; /* FIXME */
937 }
938 | expression
939 {
940 $$ = 0; /* FIXME */
941 }
942 | mode_name
943 {
944 $$ = 0; /* FIXME */
945 }
946 ;
947
948 length_argument : location
949 {
950 $$ = 0; /* FIXME */
951 }
952 | expression
953 {
954 $$ = 0; /* FIXME */
955 }
956 ;
957
958 /* Z.200, 12.4.3 */
959
960 array_primitive_value : primitive_value
961 {
962 $$ = 0;
963 }
964 ;
965
966
967 /* Things which still need productions... */
968
969 array_mode_name : FIXME_08 { $$ = 0; }
970 string_mode_name : FIXME_09 { $$ = 0; }
971 variant_structure_mode_name: FIXME_10 { $$ = 0; }
972 synonym_name : FIXME_11 { $$ = 0; }
973 value_enumeration_name : FIXME_12 { $$ = 0; }
974 value_do_with_name : FIXME_13 { $$ = 0; }
975 value_receive_name : FIXME_14 { $$ = 0; }
976 string_primitive_value : FIXME_15 { $$ = 0; }
977 start_element : FIXME_16 { $$ = 0; }
978 left_element : FIXME_17 { $$ = 0; }
979 right_element : FIXME_18 { $$ = 0; }
980 slice_size : FIXME_19 { $$ = 0; }
981 lower_element : FIXME_20 { $$ = 0; }
982 upper_element : FIXME_21 { $$ = 0; }
983 first_element : FIXME_22 { $$ = 0; }
984 structure_primitive_value: FIXME_23 { $$ = 0; }
985 field_name : FIXME_24 { $$ = 0; }
986 mode_name : FIXME_25 { $$ = 0; }
987 boolean_expression : FIXME_26 { $$ = 0; }
988 case_selector_list : FIXME_27 { $$ = 0; }
989 subexpression : FIXME_28 { $$ = 0; }
990 case_label_specification: FIXME_29 { $$ = 0; }
991 buffer_location : FIXME_30 { $$ = 0; }
992
993 %%
994
995 /* Implementation of a dynamically expandable buffer for processing input
996 characters acquired through lexptr and building a value to return in
997 yylval. */
998
999 static char *tempbuf; /* Current buffer contents */
1000 static int tempbufsize; /* Size of allocated buffer */
1001 static int tempbufindex; /* Current index into buffer */
1002
1003 #define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
1004
1005 #define CHECKBUF(size) \
1006 do { \
1007 if (tempbufindex + (size) >= tempbufsize) \
1008 { \
1009 growbuf_by_size (size); \
1010 } \
1011 } while (0);
1012
1013 /* Grow the static temp buffer if necessary, including allocating the first one
1014 on demand. */
1015
1016 static void
1017 growbuf_by_size (count)
1018 int count;
1019 {
1020 int growby;
1021
1022 growby = max (count, GROWBY_MIN_SIZE);
1023 tempbufsize += growby;
1024 if (tempbuf == NULL)
1025 {
1026 tempbuf = (char *) malloc (tempbufsize);
1027 }
1028 else
1029 {
1030 tempbuf = (char *) realloc (tempbuf, tempbufsize);
1031 }
1032 }
1033
1034 /* Try to consume a simple name string token. If successful, returns
1035 a pointer to a nullbyte terminated copy of the name that can be used
1036 in symbol table lookups. If not successful, returns NULL. */
1037
1038 static char *
1039 match_simple_name_string ()
1040 {
1041 char *tokptr = lexptr;
1042
1043 if (isalpha (*tokptr))
1044 {
1045 do {
1046 tokptr++;
1047 } while (isalpha (*tokptr) || isdigit (*tokptr) || (*tokptr == '_'));
1048 yylval.sval.ptr = lexptr;
1049 yylval.sval.length = tokptr - lexptr;
1050 lexptr = tokptr;
1051 return (copy_name (yylval.sval));
1052 }
1053 return (NULL);
1054 }
1055
1056 /* Start looking for a value composed of valid digits as set by the base
1057 in use. Note that '_' characters are valid anywhere, in any quantity,
1058 and are simply ignored. Since we must find at least one valid digit,
1059 or reject this token as an integer literal, we keep track of how many
1060 digits we have encountered. */
1061
1062 static int
1063 decode_integer_value (base, tokptrptr, ivalptr)
1064 int base;
1065 char **tokptrptr;
1066 int *ivalptr;
1067 {
1068 char *tokptr = *tokptrptr;
1069 int temp;
1070 int digits = 0;
1071
1072 while (*tokptr != '\0')
1073 {
1074 temp = tolower (*tokptr);
1075 tokptr++;
1076 switch (temp)
1077 {
1078 case '_':
1079 continue;
1080 case '0': case '1': case '2': case '3': case '4':
1081 case '5': case '6': case '7': case '8': case '9':
1082 temp -= '0';
1083 break;
1084 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1085 temp -= 'a';
1086 temp += 10;
1087 break;
1088 default:
1089 temp = base;
1090 break;
1091 }
1092 if (temp < base)
1093 {
1094 digits++;
1095 *ivalptr *= base;
1096 *ivalptr += temp;
1097 }
1098 else
1099 {
1100 /* Found something not in domain for current base. */
1101 tokptr--; /* Unconsume what gave us indigestion. */
1102 break;
1103 }
1104 }
1105
1106 /* If we didn't find any digits, then we don't have a valid integer
1107 value, so reject the entire token. Otherwise, update the lexical
1108 scan pointer, and return non-zero for success. */
1109
1110 if (digits == 0)
1111 {
1112 return (0);
1113 }
1114 else
1115 {
1116 *tokptrptr = tokptr;
1117 return (1);
1118 }
1119 }
1120
1121 static int
1122 decode_integer_literal (valptr, tokptrptr)
1123 int *valptr;
1124 char **tokptrptr;
1125 {
1126 char *tokptr = *tokptrptr;
1127 int base = 0;
1128 int ival = 0;
1129 int explicit_base = 0;
1130
1131 /* Look for an explicit base specifier, which is optional. */
1132
1133 switch (*tokptr)
1134 {
1135 case 'd':
1136 case 'D':
1137 explicit_base++;
1138 base = 10;
1139 tokptr++;
1140 break;
1141 case 'b':
1142 case 'B':
1143 explicit_base++;
1144 base = 2;
1145 tokptr++;
1146 break;
1147 case 'h':
1148 case 'H':
1149 explicit_base++;
1150 base = 16;
1151 tokptr++;
1152 break;
1153 case 'o':
1154 case 'O':
1155 explicit_base++;
1156 base = 8;
1157 tokptr++;
1158 break;
1159 default:
1160 base = 10;
1161 break;
1162 }
1163
1164 /* If we found an explicit base ensure that the character after the
1165 explicit base is a single quote. */
1166
1167 if (explicit_base && (*tokptr++ != '\''))
1168 {
1169 return (0);
1170 }
1171
1172 /* Attempt to decode whatever follows as an integer value in the
1173 indicated base, updating the token pointer in the process and
1174 computing the value into ival. Also, if we have an explicit
1175 base, then the next character must not be a single quote, or we
1176 have a bitstring literal, so reject the entire token in this case.
1177 Otherwise, update the lexical scan pointer, and return non-zero
1178 for success. */
1179
1180 if (!decode_integer_value (base, &tokptr, &ival))
1181 {
1182 return (0);
1183 }
1184 else if (explicit_base && (*tokptr == '\''))
1185 {
1186 return (0);
1187 }
1188 else
1189 {
1190 *valptr = ival;
1191 *tokptrptr = tokptr;
1192 return (1);
1193 }
1194 }
1195
1196 /* If it wasn't for the fact that floating point values can contain '_'
1197 characters, we could just let strtod do all the hard work by letting it
1198 try to consume as much of the current token buffer as possible and
1199 find a legal conversion. Unfortunately we need to filter out the '_'
1200 characters before calling strtod, which we do by copying the other
1201 legal chars to a local buffer to be converted. However since we also
1202 need to keep track of where the last unconsumed character in the input
1203 buffer is, we have transfer only as many characters as may compose a
1204 legal floating point value. */
1205
1206 static int
1207 match_float_literal ()
1208 {
1209 char *tokptr = lexptr;
1210 char *buf;
1211 char *copy;
1212 char ch;
1213 double dval;
1214 extern double strtod ();
1215
1216 /* Make local buffer in which to build the string to convert. This is
1217 required because underscores are valid in chill floating point numbers
1218 but not in the string passed to strtod to convert. The string will be
1219 no longer than our input string. */
1220
1221 copy = buf = (char *) alloca (strlen (tokptr) + 1);
1222
1223 /* Transfer all leading digits to the conversion buffer, discarding any
1224 underscores. */
1225
1226 while (isdigit (*tokptr) || *tokptr == '_')
1227 {
1228 if (*tokptr != '_')
1229 {
1230 *copy++ = *tokptr;
1231 }
1232 tokptr++;
1233 }
1234
1235 /* Now accept either a '.', or one of [eEdD]. Dot is legal regardless
1236 of whether we found any leading digits, and we simply accept it and
1237 continue on to look for the fractional part and/or exponent. One of
1238 [eEdD] is legal only if we have seen digits, and means that there
1239 is no fractional part. If we find neither of these, then this is
1240 not a floating point number, so return failure. */
1241
1242 switch (*tokptr++)
1243 {
1244 case '.':
1245 /* Accept and then look for fractional part and/or exponent. */
1246 *copy++ = '.';
1247 break;
1248
1249 case 'e':
1250 case 'E':
1251 case 'd':
1252 case 'D':
1253 if (copy == buf)
1254 {
1255 return (0);
1256 }
1257 *copy++ = 'e';
1258 goto collect_exponent;
1259 break;
1260
1261 default:
1262 return (0);
1263 break;
1264 }
1265
1266 /* We found a '.', copy any fractional digits to the conversion buffer, up
1267 to the first nondigit, non-underscore character. */
1268
1269 while (isdigit (*tokptr) || *tokptr == '_')
1270 {
1271 if (*tokptr != '_')
1272 {
1273 *copy++ = *tokptr;
1274 }
1275 tokptr++;
1276 }
1277
1278 /* Look for an exponent, which must start with one of [eEdD]. If none
1279 is found, jump directly to trying to convert what we have collected
1280 so far. */
1281
1282 switch (*tokptr)
1283 {
1284 case 'e':
1285 case 'E':
1286 case 'd':
1287 case 'D':
1288 *copy++ = 'e';
1289 tokptr++;
1290 break;
1291 default:
1292 goto convert_float;
1293 break;
1294 }
1295
1296 /* Accept an optional '-' or '+' following one of [eEdD]. */
1297
1298 collect_exponent:
1299 if (*tokptr == '+' || *tokptr == '-')
1300 {
1301 *copy++ = *tokptr++;
1302 }
1303
1304 /* Now copy an exponent into the conversion buffer. Note that at the
1305 moment underscores are *not* allowed in exponents. */
1306
1307 while (isdigit (*tokptr))
1308 {
1309 *copy++ = *tokptr++;
1310 }
1311
1312 /* If we transfered any chars to the conversion buffer, try to interpret its
1313 contents as a floating point value. If any characters remain, then we
1314 must not have a valid floating point string. */
1315
1316 convert_float:
1317 *copy = '\0';
1318 if (copy != buf)
1319 {
1320 dval = strtod (buf, &copy);
1321 if (*copy == '\0')
1322 {
1323 yylval.dval = dval;
1324 lexptr = tokptr;
1325 return (FLOAT_LITERAL);
1326 }
1327 }
1328 return (0);
1329 }
1330
1331 /* Recognize a string literal. A string literal is a nonzero sequence
1332 of characters enclosed in matching single or double quotes, except that
1333 a single character inside single quotes is a character literal, which
1334 we reject as a string literal. To embed the terminator character inside
1335 a string, it is simply doubled (I.E. "this""is""one""string") */
1336
1337 static int
1338 match_string_literal ()
1339 {
1340 char *tokptr = lexptr;
1341
1342 for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
1343 {
1344 CHECKBUF (1);
1345 if (*tokptr == *lexptr)
1346 {
1347 if (*(tokptr + 1) == *lexptr)
1348 {
1349 tokptr++;
1350 }
1351 else
1352 {
1353 break;
1354 }
1355 }
1356 tempbuf[tempbufindex++] = *tokptr;
1357 }
1358 if (*tokptr == '\0' /* no terminator */
1359 || tempbufindex == 0 /* no string */
1360 || (tempbufindex == 1 && *tokptr == '\'')) /* char literal */
1361 {
1362 return (0);
1363 }
1364 else
1365 {
1366 tempbuf[tempbufindex] = '\0';
1367 yylval.sval.ptr = tempbuf;
1368 yylval.sval.length = tempbufindex;
1369 lexptr = ++tokptr;
1370 return (CHARACTER_STRING_LITERAL);
1371 }
1372 }
1373
1374 /* Recognize a character literal. A character literal is single character
1375 or a control sequence, enclosed in single quotes. A control sequence
1376 is a comma separated list of one or more integer literals, enclosed
1377 in parenthesis and introduced with a circumflex character.
1378
1379 EX: 'a' '^(7)' '^(7,8)'
1380
1381 As a GNU chill extension, the syntax C'xx' is also recognized as a
1382 character literal, where xx is a hex value for the character.
1383
1384 Note that more than a single character, enclosed in single quotes, is
1385 a string literal.
1386
1387 Also note that the control sequence form is not in GNU Chill since it
1388 is ambiguous with the string literal form using single quotes. I.E.
1389 is '^(7)' a character literal or a string literal. In theory it it
1390 possible to tell by context, but GNU Chill doesn't accept the control
1391 sequence form, so neither do we (for now the code is disabled).
1392
1393 Returns CHARACTER_LITERAL if a match is found.
1394 */
1395
1396 static int
1397 match_character_literal ()
1398 {
1399 char *tokptr = lexptr;
1400 int ival = 0;
1401
1402 if ((tolower (*tokptr) == 'c') && (*(tokptr + 1) == '\''))
1403 {
1404 /* We have a GNU chill extension form, so skip the leading "C'",
1405 decode the hex value, and then ensure that we have a trailing
1406 single quote character. */
1407 tokptr += 2;
1408 if (!decode_integer_value (16, &tokptr, &ival) || (*tokptr != '\''))
1409 {
1410 return (0);
1411 }
1412 tokptr++;
1413 }
1414 else if (*tokptr == '\'')
1415 {
1416 tokptr++;
1417
1418 /* Determine which form we have, either a control sequence or the
1419 single character form. */
1420
1421 if ((*tokptr == '^') && (*(tokptr + 1) == '('))
1422 {
1423 return (0); /* Disable, see note above. */
1424 /* Match and decode a control sequence. Return zero if we don't
1425 find a valid integer literal, or if the next unconsumed character
1426 after the integer literal is not the trailing ')'.
1427 FIXME: We currently don't handle the multiple integer literal
1428 form. */
1429 tokptr += 2;
1430 if (!decode_integer_literal (&ival, &tokptr) || (*tokptr++ != ')'))
1431 {
1432 return (0);
1433 }
1434 }
1435 else
1436 {
1437 ival = *tokptr++;
1438 }
1439
1440 /* The trailing quote has not yet been consumed. If we don't find
1441 it, then we have no match. */
1442
1443 if (*tokptr++ != '\'')
1444 {
1445 return (0);
1446 }
1447 }
1448 else
1449 {
1450 /* Not a character literal. */
1451 return (0);
1452 }
1453 yylval.typed_val.val = ival;
1454 yylval.typed_val.type = builtin_type_chill_char;
1455 lexptr = tokptr;
1456 return (CHARACTER_LITERAL);
1457 }
1458
1459 /* Recognize an integer literal, as specified in Z.200 sec 5.2.4.2.
1460 Note that according to 5.2.4.2, a single "_" is also a valid integer
1461 literal, however GNU-chill requires there to be at least one "digit"
1462 in any integer literal. */
1463
1464 static int
1465 match_integer_literal ()
1466 {
1467 char *tokptr = lexptr;
1468 int ival;
1469
1470 if (!decode_integer_literal (&ival, &tokptr))
1471 {
1472 return (0);
1473 }
1474 else
1475 {
1476 yylval.typed_val.val = ival;
1477 yylval.typed_val.type = builtin_type_int;
1478 lexptr = tokptr;
1479 return (INTEGER_LITERAL);
1480 }
1481 }
1482
1483 /* Recognize a bit-string literal, as specified in Z.200 sec 5.2.4.8
1484 Note that according to 5.2.4.8, a single "_" is also a valid bit-string
1485 literal, however GNU-chill requires there to be at least one "digit"
1486 in any bit-string literal. */
1487
1488 static int
1489 match_bitstring_literal ()
1490 {
1491 char *tokptr = lexptr;
1492 int mask;
1493 int bitoffset = 0;
1494 int bitcount = 0;
1495 int base;
1496 int digit;
1497
1498 tempbufindex = 0;
1499
1500 /* Look for the required explicit base specifier. */
1501
1502 switch (*tokptr++)
1503 {
1504 case 'b':
1505 case 'B':
1506 base = 2;
1507 break;
1508 case 'o':
1509 case 'O':
1510 base = 8;
1511 break;
1512 case 'h':
1513 case 'H':
1514 base = 16;
1515 break;
1516 default:
1517 return (0);
1518 break;
1519 }
1520
1521 /* Ensure that the character after the explicit base is a single quote. */
1522
1523 if (*tokptr++ != '\'')
1524 {
1525 return (0);
1526 }
1527
1528 while (*tokptr != '\0' && *tokptr != '\'')
1529 {
1530 digit = tolower (*tokptr);
1531 tokptr++;
1532 switch (digit)
1533 {
1534 case '_':
1535 continue;
1536 case '0': case '1': case '2': case '3': case '4':
1537 case '5': case '6': case '7': case '8': case '9':
1538 digit -= '0';
1539 break;
1540 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1541 digit -= 'a';
1542 digit += 10;
1543 break;
1544 default:
1545 return (0);
1546 break;
1547 }
1548 if (digit >= base)
1549 {
1550 /* Found something not in domain for current base. */
1551 return (0);
1552 }
1553 else
1554 {
1555 /* Extract bits from digit, starting with the msbit appropriate for
1556 the current base, and packing them into the bitstring byte,
1557 starting at the lsbit. */
1558 for (mask = (base >> 1); mask > 0; mask >>= 1)
1559 {
1560 bitcount++;
1561 CHECKBUF (1);
1562 if (digit & mask)
1563 {
1564 tempbuf[tempbufindex] |= (1 << bitoffset);
1565 }
1566 bitoffset++;
1567 if (bitoffset == HOST_CHAR_BIT)
1568 {
1569 bitoffset = 0;
1570 tempbufindex++;
1571 }
1572 }
1573 }
1574 }
1575
1576 /* Verify that we consumed everything up to the trailing single quote,
1577 and that we found some bits (IE not just underbars). */
1578
1579 if (*tokptr++ != '\'')
1580 {
1581 return (0);
1582 }
1583 else
1584 {
1585 yylval.sval.ptr = tempbuf;
1586 yylval.sval.length = bitcount;
1587 lexptr = tokptr;
1588 return (BIT_STRING_LITERAL);
1589 }
1590 }
1591
1592 /* Recognize tokens that start with '$'. These include:
1593
1594 $regname A native register name or a "standard
1595 register name".
1596 Return token GDB_REGNAME.
1597
1598 $variable A convenience variable with a name chosen
1599 by the user.
1600 Return token GDB_VARIABLE.
1601
1602 $digits Value history with index <digits>, starting
1603 from the first value which has index 1.
1604 Return GDB_LAST.
1605
1606 $$digits Value history with index <digits> relative
1607 to the last value. I.E. $$0 is the last
1608 value, $$1 is the one previous to that, $$2
1609 is the one previous to $$1, etc.
1610 Return token GDB_LAST.
1611
1612 $ | $0 | $$0 The last value in the value history.
1613 Return token GDB_LAST.
1614
1615 $$ An abbreviation for the second to the last
1616 value in the value history, I.E. $$1
1617 Return token GDB_LAST.
1618
1619 Note that we currently assume that register names and convenience
1620 variables follow the convention of starting with a letter or '_'.
1621
1622 */
1623
1624 static int
1625 match_dollar_tokens ()
1626 {
1627 char *tokptr;
1628 int regno;
1629 int namelength;
1630 int negate;
1631 int ival;
1632
1633 /* We will always have a successful match, even if it is just for
1634 a single '$', the abbreviation for $$0. So advance lexptr. */
1635
1636 tokptr = ++lexptr;
1637
1638 if (*tokptr == '_' || isalpha (*tokptr))
1639 {
1640 /* Look for a match with a native register name, usually something
1641 like "r0" for example. */
1642
1643 for (regno = 0; regno < NUM_REGS; regno++)
1644 {
1645 namelength = strlen (reg_names[regno]);
1646 if (STREQN (tokptr, reg_names[regno], namelength)
1647 && !isalnum (tokptr[namelength]))
1648 {
1649 yylval.lval = regno;
1650 lexptr += namelength + 1;
1651 return (GDB_REGNAME);
1652 }
1653 }
1654
1655 /* Look for a match with a standard register name, usually something
1656 like "pc", which gdb always recognizes as the program counter
1657 regardless of what the native register name is. */
1658
1659 for (regno = 0; regno < num_std_regs; regno++)
1660 {
1661 namelength = strlen (std_regs[regno].name);
1662 if (STREQN (tokptr, std_regs[regno].name, namelength)
1663 && !isalnum (tokptr[namelength]))
1664 {
1665 yylval.lval = std_regs[regno].regnum;
1666 lexptr += namelength;
1667 return (GDB_REGNAME);
1668 }
1669 }
1670
1671 /* Attempt to match against a convenience variable. Note that
1672 this will always succeed, because if no variable of that name
1673 already exists, the lookup_internalvar will create one for us.
1674 Also note that both lexptr and tokptr currently point to the
1675 start of the input string we are trying to match, and that we
1676 have already tested the first character for non-numeric, so we
1677 don't have to treat it specially. */
1678
1679 while (*tokptr == '_' || isalnum (*tokptr))
1680 {
1681 tokptr++;
1682 }
1683 yylval.sval.ptr = lexptr;
1684 yylval.sval.length = tokptr - lexptr;
1685 yylval.ivar = lookup_internalvar (copy_name (yylval.sval));
1686 lexptr = tokptr;
1687 return (GDB_VARIABLE);
1688 }
1689
1690 /* Since we didn't match against a register name or convenience
1691 variable, our only choice left is a history value. */
1692
1693 if (*tokptr == '$')
1694 {
1695 negate = 1;
1696 ival = 1;
1697 tokptr++;
1698 }
1699 else
1700 {
1701 negate = 0;
1702 ival = 0;
1703 }
1704
1705 /* Attempt to decode more characters as an integer value giving
1706 the index in the history list. If successful, the value will
1707 overwrite ival (currently 0 or 1), and if not, ival will be
1708 left alone, which is good since it is currently correct for
1709 the '$' or '$$' case. */
1710
1711 decode_integer_literal (&ival, &tokptr);
1712 yylval.lval = negate ? -ival : ival;
1713 lexptr = tokptr;
1714 return (GDB_LAST);
1715 }
1716
1717 struct token
1718 {
1719 char *operator;
1720 int token;
1721 };
1722
1723 static const struct token tokentab6[] =
1724 {
1725 { "LENGTH", LENGTH }
1726 };
1727
1728 static const struct token tokentab5[] =
1729 {
1730 { "LOWER", LOWER },
1731 { "UPPER", UPPER },
1732 { "ANDIF", ANDIF }
1733 };
1734
1735 static const struct token tokentab4[] =
1736 {
1737 { "PRED", PRED },
1738 { "SUCC", SUCC },
1739 { "CARD", CARD },
1740 { "SIZE", SIZE },
1741 { "ORIF", ORIF }
1742 };
1743
1744 static const struct token tokentab3[] =
1745 {
1746 { "NUM", NUM },
1747 { "ABS", ABS },
1748 { "MAX", MAX },
1749 { "MIN", MIN },
1750 { "MOD", MOD },
1751 { "REM", REM },
1752 { "NOT", NOT },
1753 { "XOR", LOGXOR },
1754 { "AND", LOGAND }
1755 };
1756
1757 static const struct token tokentab2[] =
1758 {
1759 { ":=", GDB_ASSIGNMENT },
1760 { "//", SLASH_SLASH },
1761 { "/=", NOTEQUAL },
1762 { "<=", LEQ },
1763 { ">=", GTR },
1764 { "IN", IN },
1765 { "OR", LOGIOR }
1766 };
1767
1768 /* Read one token, getting characters through lexptr. */
1769 /* This is where we will check to make sure that the language and the
1770 operators used are compatible. */
1771
1772 static int
1773 yylex ()
1774 {
1775 unsigned int i;
1776 int token;
1777 char *simplename;
1778 struct symbol *sym;
1779
1780 /* Skip over any leading whitespace. */
1781 while (isspace (*lexptr))
1782 {
1783 lexptr++;
1784 }
1785 /* Look for special single character cases which can't be the first
1786 character of some other multicharacter token. */
1787 switch (*lexptr)
1788 {
1789 case '\0':
1790 return (0);
1791 case ',':
1792 case '=':
1793 case ';':
1794 case '!':
1795 case '+':
1796 case '-':
1797 case '*':
1798 case '(':
1799 case ')':
1800 case '[':
1801 case ']':
1802 return (*lexptr++);
1803 }
1804 /* Look for characters which start a particular kind of multicharacter
1805 token, such as a character literal, register name, convenience
1806 variable name, string literal, etc. */
1807 switch (*lexptr)
1808 {
1809 case '\'':
1810 case '\"':
1811 /* First try to match a string literal, which is any nonzero
1812 sequence of characters enclosed in matching single or double
1813 quotes, except that a single character inside single quotes
1814 is a character literal, so we have to catch that case also. */
1815 token = match_string_literal ();
1816 if (token != 0)
1817 {
1818 return (token);
1819 }
1820 if (*lexptr == '\'')
1821 {
1822 token = match_character_literal ();
1823 if (token != 0)
1824 {
1825 return (token);
1826 }
1827 }
1828 break;
1829 case 'C':
1830 case 'c':
1831 token = match_character_literal ();
1832 if (token != 0)
1833 {
1834 return (token);
1835 }
1836 break;
1837 case '$':
1838 token = match_dollar_tokens ();
1839 if (token != 0)
1840 {
1841 return (token);
1842 }
1843 break;
1844 }
1845 /* See if it is a special token of length 6. */
1846 for (i = 0; i < sizeof (tokentab6) / sizeof (tokentab6[0]); i++)
1847 {
1848 if (STREQN (lexptr, tokentab6[i].operator, 6))
1849 {
1850 lexptr += 6;
1851 return (tokentab6[i].token);
1852 }
1853 }
1854 /* See if it is a special token of length 5. */
1855 for (i = 0; i < sizeof (tokentab5) / sizeof (tokentab5[0]); i++)
1856 {
1857 if (STREQN (lexptr, tokentab5[i].operator, 5))
1858 {
1859 lexptr += 5;
1860 return (tokentab5[i].token);
1861 }
1862 }
1863 /* See if it is a special token of length 4. */
1864 for (i = 0; i < sizeof (tokentab4) / sizeof (tokentab4[0]); i++)
1865 {
1866 if (STREQN (lexptr, tokentab4[i].operator, 4))
1867 {
1868 lexptr += 4;
1869 return (tokentab4[i].token);
1870 }
1871 }
1872 /* See if it is a special token of length 3. */
1873 for (i = 0; i < sizeof (tokentab3) / sizeof (tokentab3[0]); i++)
1874 {
1875 if (STREQN (lexptr, tokentab3[i].operator, 3))
1876 {
1877 lexptr += 3;
1878 return (tokentab3[i].token);
1879 }
1880 }
1881 /* See if it is a special token of length 2. */
1882 for (i = 0; i < sizeof (tokentab2) / sizeof (tokentab2[0]); i++)
1883 {
1884 if (STREQN (lexptr, tokentab2[i].operator, 2))
1885 {
1886 lexptr += 2;
1887 return (tokentab2[i].token);
1888 }
1889 }
1890 /* Look for single character cases which which could be the first
1891 character of some other multicharacter token, but aren't, or we
1892 would already have found it. */
1893 switch (*lexptr)
1894 {
1895 case ':':
1896 case '/':
1897 case '<':
1898 case '>':
1899 return (*lexptr++);
1900 }
1901 /* Look for other special tokens. */
1902 if (STREQN (lexptr, "TRUE", 4)) /* FIXME: What about lowercase? */
1903 {
1904 yylval.ulval = 1;
1905 lexptr += 4;
1906 return (BOOLEAN_LITERAL);
1907 }
1908 if (STREQN (lexptr, "FALSE", 5)) /* FIXME: What about lowercase? */
1909 {
1910 yylval.ulval = 0;
1911 lexptr += 5;
1912 return (BOOLEAN_LITERAL);
1913 }
1914 /* Look for a float literal before looking for an integer literal, so
1915 we match as much of the input stream as possible. */
1916 token = match_float_literal ();
1917 if (token != 0)
1918 {
1919 return (token);
1920 }
1921 token = match_bitstring_literal ();
1922 if (token != 0)
1923 {
1924 return (token);
1925 }
1926 token = match_integer_literal ();
1927 if (token != 0)
1928 {
1929 return (token);
1930 }
1931
1932 /* Try to match a simple name string, and if a match is found, then
1933 further classify what sort of name it is and return an appropriate
1934 token. Note that attempting to match a simple name string consumes
1935 the token from lexptr, so we can't back out if we later find that
1936 we can't classify what sort of name it is. */
1937
1938 simplename = match_simple_name_string ();
1939 if (simplename != NULL)
1940 {
1941 sym = lookup_symbol (simplename, expression_context_block,
1942 VAR_NAMESPACE, (int *) NULL,
1943 (struct symtab **) NULL);
1944 if (sym != NULL)
1945 {
1946 yylval.ssym.stoken.ptr = NULL;
1947 yylval.ssym.stoken.length = 0;
1948 yylval.ssym.sym = sym;
1949 yylval.ssym.is_a_field_of_this = 0; /* FIXME, C++'ism */
1950 switch (SYMBOL_CLASS (sym))
1951 {
1952 case LOC_BLOCK:
1953 /* Found a procedure name. */
1954 return (GENERAL_PROCEDURE_NAME);
1955 case LOC_STATIC:
1956 /* Found a global or local static variable. */
1957 return (LOCATION_NAME);
1958 case LOC_REGISTER:
1959 case LOC_ARG:
1960 case LOC_REF_ARG:
1961 case LOC_REGPARM:
1962 case LOC_LOCAL:
1963 case LOC_LOCAL_ARG:
1964 if (innermost_block == NULL
1965 || contained_in (block_found, innermost_block))
1966 {
1967 innermost_block = block_found;
1968 }
1969 return (LOCATION_NAME);
1970 break;
1971 case LOC_CONST:
1972 case LOC_LABEL:
1973 return (LOCATION_NAME);
1974 break;
1975 case LOC_UNDEF:
1976 case LOC_TYPEDEF:
1977 case LOC_CONST_BYTES:
1978 error ("Symbol \"%s\" names no location.", simplename);
1979 break;
1980 }
1981 }
1982 else if (!have_full_symbols () && !have_partial_symbols ())
1983 {
1984 error ("No symbol table is loaded. Use the \"file\" command.");
1985 }
1986 else
1987 {
1988 error ("No symbol \"%s\" in current context.", simplename);
1989 }
1990 }
1991
1992 /* Catch single character tokens which are not part of some
1993 longer token. */
1994
1995 switch (*lexptr)
1996 {
1997 case '.': /* Not float for example. */
1998 return (*lexptr++);
1999 }
2000
2001 return (ILLEGAL_TOKEN);
2002 }
2003
2004 void
2005 yyerror (msg)
2006 char *msg; /* unused */
2007 {
2008 printf ("Parsing: %s\n", lexptr);
2009 if (yychar < 256)
2010 {
2011 error ("Invalid syntax in expression near character '%c'.", yychar);
2012 }
2013 else
2014 {
2015 error ("Invalid syntax in expression");
2016 }
2017 }
This page took 0.069283 seconds and 5 git commands to generate.