undo previous change
[deliverable/binutils-gdb.git] / gdb / ch-exp.y
1 /* YACC grammar for Chill expressions, for GDB.
2 Copyright 1992, 1993 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* Parse a Chill expression from text in a string,
21 and return the result as a struct expression pointer.
22 That structure contains arithmetic operations in reverse polish,
23 with constants represented by operations that are followed by special data.
24 See expression.h for the details of the format.
25 What is important here is that it can be built up sequentially
26 during the process of parsing; the lower levels of the tree always
27 come first in the result.
28
29 Note that malloc's and realloc's in this file are transformed to
30 xmalloc and xrealloc respectively by the same sed command in the
31 makefile that remaps any other malloc/realloc inserted by the parser
32 generator. Doing this with #defines and trying to control the interaction
33 with include files (<malloc.h> and <stdlib.h> for example) just became
34 too messy, particularly when such includes can be inserted at random
35 times by the parser generator.
36
37 Also note that the language accepted by this parser is more liberal
38 than the one accepted by an actual Chill compiler. For example, the
39 language rule that a simple name string can not be one of the reserved
40 simple name strings is not enforced (e.g "case" is not treated as a
41 reserved name). Another example is that Chill is a strongly typed
42 language, and certain expressions that violate the type constraints
43 may still be evaluated if gdb can do so in a meaningful manner, while
44 such expressions would be rejected by the compiler. The reason for
45 this more liberal behavior is the philosophy that the debugger
46 is intended to be a tool that is used by the programmer when things
47 go wrong, and as such, it should provide as few artificial barriers
48 to it's use as possible. If it can do something meaningful, even
49 something that violates language contraints that are enforced by the
50 compiler, it should do so without complaint.
51
52 */
53
54 %{
55
56 #include "defs.h"
57 #include <ctype.h>
58 #include "expression.h"
59 #include "language.h"
60 #include "value.h"
61 #include "parser-defs.h"
62 #include "ch-lang.h"
63
64 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
65 as well as gratuitiously global symbol names, so we can have multiple
66 yacc generated parsers in gdb. Note that these are only the variables
67 produced by yacc. If other parser generators (bison, byacc, etc) produce
68 additional global names that conflict at link time, then those parser
69 generators need to be fixed instead of adding those names to this list. */
70
71 #define yymaxdepth chill_maxdepth
72 #define yyparse chill_parse
73 #define yylex chill_lex
74 #define yyerror chill_error
75 #define yylval chill_lval
76 #define yychar chill_char
77 #define yydebug chill_debug
78 #define yypact chill_pact
79 #define yyr1 chill_r1
80 #define yyr2 chill_r2
81 #define yydef chill_def
82 #define yychk chill_chk
83 #define yypgo chill_pgo
84 #define yyact chill_act
85 #define yyexca chill_exca
86 #define yyerrflag chill_errflag
87 #define yynerrs chill_nerrs
88 #define yyps chill_ps
89 #define yypv chill_pv
90 #define yys chill_s
91 #define yy_yys chill_yys
92 #define yystate chill_state
93 #define yytmp chill_tmp
94 #define yyv chill_v
95 #define yy_yyv chill_yyv
96 #define yyval chill_val
97 #define yylloc chill_lloc
98 #define yyreds chill_reds /* With YYDEBUG defined */
99 #define yytoks chill_toks /* With YYDEBUG defined */
100
101 #ifndef YYDEBUG
102 #define YYDEBUG 0 /* Default to no yydebug support */
103 #endif
104
105 int
106 yyparse PARAMS ((void));
107
108 static int
109 yylex PARAMS ((void));
110
111 void
112 yyerror PARAMS ((char *));
113
114 %}
115
116 /* Although the yacc "value" of an expression is not used,
117 since the result is stored in the structure being created,
118 other node types do have values. */
119
120 %union
121 {
122 LONGEST lval;
123 unsigned LONGEST ulval;
124 struct {
125 LONGEST val;
126 struct type *type;
127 } typed_val;
128 double dval;
129 struct symbol *sym;
130 struct type *tval;
131 struct stoken sval;
132 struct ttype tsym;
133 struct symtoken ssym;
134 int voidval;
135 struct block *bval;
136 enum exp_opcode opcode;
137 struct internalvar *ivar;
138
139 struct type **tvec;
140 int *ivec;
141 }
142
143 %token <voidval> FIXME_01
144 %token <voidval> FIXME_02
145 %token <voidval> FIXME_03
146 %token <voidval> FIXME_04
147 %token <voidval> FIXME_05
148 %token <voidval> FIXME_06
149 %token <voidval> FIXME_07
150 %token <voidval> FIXME_08
151 %token <voidval> FIXME_09
152 %token <voidval> FIXME_10
153 %token <voidval> FIXME_11
154 %token <voidval> FIXME_12
155 %token <voidval> FIXME_13
156 %token <voidval> FIXME_14
157 %token <voidval> FIXME_15
158 %token <voidval> FIXME_16
159 %token <voidval> FIXME_17
160 %token <voidval> FIXME_18
161 %token <voidval> FIXME_19
162 %token <voidval> FIXME_20
163 %token <voidval> FIXME_21
164 %token <voidval> FIXME_22
165 %token <voidval> FIXME_24
166 %token <voidval> FIXME_25
167 %token <voidval> FIXME_26
168 %token <voidval> FIXME_27
169 %token <voidval> FIXME_28
170 %token <voidval> FIXME_29
171 %token <voidval> FIXME_30
172
173 %token <typed_val> INTEGER_LITERAL
174 %token <ulval> BOOLEAN_LITERAL
175 %token <typed_val> CHARACTER_LITERAL
176 %token <dval> FLOAT_LITERAL
177 %token <ssym> GENERAL_PROCEDURE_NAME
178 %token <ssym> LOCATION_NAME
179 %token <voidval> SET_LITERAL
180 %token <voidval> EMPTINESS_LITERAL
181 %token <sval> CHARACTER_STRING_LITERAL
182 %token <sval> BIT_STRING_LITERAL
183 %token <tsym> TYPENAME
184 %token <sval> FIELD_NAME
185
186 %token <voidval> '.'
187 %token <voidval> ';'
188 %token <voidval> ':'
189 %token <voidval> CASE
190 %token <voidval> OF
191 %token <voidval> ESAC
192 %token <voidval> LOGIOR
193 %token <voidval> ORIF
194 %token <voidval> LOGXOR
195 %token <voidval> LOGAND
196 %token <voidval> ANDIF
197 %token <voidval> '='
198 %token <voidval> NOTEQUAL
199 %token <voidval> '>'
200 %token <voidval> GTR
201 %token <voidval> '<'
202 %token <voidval> LEQ
203 %token <voidval> IN
204 %token <voidval> '+'
205 %token <voidval> '-'
206 %token <voidval> '*'
207 %token <voidval> '/'
208 %token <voidval> SLASH_SLASH
209 %token <voidval> MOD
210 %token <voidval> REM
211 %token <voidval> NOT
212 %token <voidval> POINTER
213 %token <voidval> RECEIVE
214 %token <voidval> '['
215 %token <voidval> ']'
216 %token <voidval> '('
217 %token <voidval> ')'
218 %token <voidval> UP
219 %token <voidval> IF
220 %token <voidval> THEN
221 %token <voidval> ELSE
222 %token <voidval> FI
223 %token <voidval> ELSIF
224 %token <voidval> ILLEGAL_TOKEN
225 %token <voidval> NUM
226 %token <voidval> PRED
227 %token <voidval> SUCC
228 %token <voidval> ABS
229 %token <voidval> CARD
230 %token <voidval> MAX_TOKEN
231 %token <voidval> MIN_TOKEN
232 %token <voidval> SIZE
233 %token <voidval> UPPER
234 %token <voidval> LOWER
235 %token <voidval> LENGTH
236
237 /* Tokens which are not Chill tokens used in expressions, but rather GDB
238 specific things that we recognize in the same context as Chill tokens
239 (register names for example). */
240
241 %token <lval> GDB_REGNAME /* Machine register name */
242 %token <lval> GDB_LAST /* Value history */
243 %token <ivar> GDB_VARIABLE /* Convenience variable */
244 %token <voidval> GDB_ASSIGNMENT /* Assign value to somewhere */
245
246 %type <voidval> location
247 %type <voidval> access_name
248 %type <voidval> primitive_value
249 %type <voidval> location_contents
250 %type <voidval> value_name
251 %type <voidval> literal
252 %type <voidval> tuple
253 %type <voidval> value_string_element
254 %type <voidval> value_string_slice
255 %type <voidval> value_array_element
256 %type <voidval> value_array_slice
257 %type <voidval> value_structure_field
258 %type <voidval> expression_conversion
259 %type <voidval> value_procedure_call
260 %type <voidval> value_built_in_routine_call
261 %type <voidval> chill_value_built_in_routine_call
262 %type <voidval> start_expression
263 %type <voidval> zero_adic_operator
264 %type <voidval> parenthesised_expression
265 %type <voidval> value
266 %type <voidval> undefined_value
267 %type <voidval> expression
268 %type <voidval> conditional_expression
269 %type <voidval> then_alternative
270 %type <voidval> else_alternative
271 %type <voidval> sub_expression
272 %type <voidval> value_case_alternative
273 %type <voidval> operand_0
274 %type <voidval> operand_1
275 %type <voidval> operand_2
276 %type <voidval> operand_3
277 %type <voidval> operand_4
278 %type <voidval> operand_5
279 %type <voidval> operand_6
280 %type <voidval> synonym_name
281 %type <voidval> value_enumeration_name
282 %type <voidval> value_do_with_name
283 %type <voidval> value_receive_name
284 %type <voidval> string_primitive_value
285 %type <voidval> start_element
286 %type <voidval> left_element
287 %type <voidval> right_element
288 %type <voidval> slice_size
289 %type <voidval> array_primitive_value
290 %type <voidval> expression_list
291 %type <voidval> lower_element
292 %type <voidval> upper_element
293 %type <voidval> first_element
294 %type <voidval> mode_argument
295 %type <voidval> upper_lower_argument
296 %type <voidval> length_argument
297 %type <voidval> array_mode_name
298 %type <voidval> string_mode_name
299 %type <voidval> variant_structure_mode_name
300 %type <voidval> boolean_expression
301 %type <voidval> case_selector_list
302 %type <voidval> subexpression
303 %type <voidval> case_label_specification
304 %type <voidval> buffer_location
305 %type <voidval> single_assignment_action
306 %type <tsym> mode_name
307
308 %%
309
310 /* Z.200, 5.3.1 */
311
312 start : value { }
313 | mode_name
314 { write_exp_elt_opcode(OP_TYPE);
315 write_exp_elt_type($1.type);
316 write_exp_elt_opcode(OP_TYPE);}
317 ;
318
319 value : expression
320 {
321 $$ = 0; /* FIXME */
322 }
323 | undefined_value
324 {
325 $$ = 0; /* FIXME */
326 }
327 ;
328
329 undefined_value : FIXME_01
330 {
331 $$ = 0; /* FIXME */
332 }
333 ;
334
335 /* Z.200, 4.2.1 */
336
337 location : access_name
338 | primitive_value POINTER
339 {
340 write_exp_elt_opcode (UNOP_IND);
341 }
342 ;
343
344 /* Z.200, 4.2.2 */
345
346 access_name : LOCATION_NAME
347 {
348 write_exp_elt_opcode (OP_VAR_VALUE);
349 write_exp_elt_sym ($1.sym);
350 write_exp_elt_opcode (OP_VAR_VALUE);
351 }
352 | GDB_LAST /* gdb specific */
353 {
354 write_exp_elt_opcode (OP_LAST);
355 write_exp_elt_longcst ($1);
356 write_exp_elt_opcode (OP_LAST);
357 }
358 | GDB_REGNAME /* gdb specific */
359 {
360 write_exp_elt_opcode (OP_REGISTER);
361 write_exp_elt_longcst ($1);
362 write_exp_elt_opcode (OP_REGISTER);
363 }
364 | GDB_VARIABLE /* gdb specific */
365 {
366 write_exp_elt_opcode (OP_INTERNALVAR);
367 write_exp_elt_intern ($1);
368 write_exp_elt_opcode (OP_INTERNALVAR);
369 }
370 | FIXME_03
371 {
372 $$ = 0; /* FIXME */
373 }
374 ;
375
376 /* Z.200, 4.2.8 */
377
378 expression_list : expression
379 {
380 arglist_len = 1;
381 }
382 | expression_list ',' expression
383 {
384 arglist_len++;
385 }
386
387 /* Z.200, 5.2.1 */
388
389 primitive_value : location_contents
390 {
391 $$ = 0; /* FIXME */
392 }
393 | value_name
394 {
395 $$ = 0; /* FIXME */
396 }
397 | literal
398 {
399 $$ = 0; /* FIXME */
400 }
401 | tuple
402 {
403 $$ = 0; /* FIXME */
404 }
405 | value_string_element
406 {
407 $$ = 0; /* FIXME */
408 }
409 | value_string_slice
410 {
411 $$ = 0; /* FIXME */
412 }
413 | value_array_element
414 {
415 $$ = 0; /* FIXME */
416 }
417 | value_array_slice
418 {
419 $$ = 0; /* FIXME */
420 }
421 | value_structure_field
422 {
423 $$ = 0; /* FIXME */
424 }
425 | expression_conversion
426 {
427 $$ = 0; /* FIXME */
428 }
429 | value_procedure_call
430 {
431 $$ = 0; /* FIXME */
432 }
433 | value_built_in_routine_call
434 {
435 $$ = 0; /* FIXME */
436 }
437 | start_expression
438 {
439 $$ = 0; /* FIXME */
440 }
441 | zero_adic_operator
442 {
443 $$ = 0; /* FIXME */
444 }
445 | parenthesised_expression
446 {
447 $$ = 0; /* FIXME */
448 }
449 ;
450
451 /* Z.200, 5.2.2 */
452
453 location_contents: location
454 {
455 $$ = 0; /* FIXME */
456 }
457 ;
458
459 /* Z.200, 5.2.3 */
460
461 value_name : synonym_name
462 {
463 $$ = 0; /* FIXME */
464 }
465 | value_enumeration_name
466 {
467 $$ = 0; /* FIXME */
468 }
469 | value_do_with_name
470 {
471 $$ = 0; /* FIXME */
472 }
473 | value_receive_name
474 {
475 $$ = 0; /* FIXME */
476 }
477 | GENERAL_PROCEDURE_NAME
478 {
479 write_exp_elt_opcode (OP_VAR_VALUE);
480 write_exp_elt_sym ($1.sym);
481 write_exp_elt_opcode (OP_VAR_VALUE);
482 }
483 ;
484
485 /* Z.200, 5.2.4.1 */
486
487 literal : INTEGER_LITERAL
488 {
489 write_exp_elt_opcode (OP_LONG);
490 write_exp_elt_type ($1.type);
491 write_exp_elt_longcst ((LONGEST) ($1.val));
492 write_exp_elt_opcode (OP_LONG);
493 }
494 | BOOLEAN_LITERAL
495 {
496 write_exp_elt_opcode (OP_BOOL);
497 write_exp_elt_longcst ((LONGEST) $1);
498 write_exp_elt_opcode (OP_BOOL);
499 }
500 | CHARACTER_LITERAL
501 {
502 write_exp_elt_opcode (OP_LONG);
503 write_exp_elt_type ($1.type);
504 write_exp_elt_longcst ((LONGEST) ($1.val));
505 write_exp_elt_opcode (OP_LONG);
506 }
507 | FLOAT_LITERAL
508 {
509 write_exp_elt_opcode (OP_DOUBLE);
510 write_exp_elt_type (builtin_type_double);
511 write_exp_elt_dblcst ($1);
512 write_exp_elt_opcode (OP_DOUBLE);
513 }
514 | SET_LITERAL
515 {
516 $$ = 0; /* FIXME */
517 }
518 | EMPTINESS_LITERAL
519 {
520 $$ = 0; /* FIXME */
521 }
522 | CHARACTER_STRING_LITERAL
523 {
524 write_exp_elt_opcode (OP_STRING);
525 write_exp_string ($1);
526 write_exp_elt_opcode (OP_STRING);
527 }
528 | BIT_STRING_LITERAL
529 {
530 write_exp_elt_opcode (OP_BITSTRING);
531 write_exp_bitstring ($1);
532 write_exp_elt_opcode (OP_BITSTRING);
533 }
534 ;
535
536 /* Z.200, 5.2.5 */
537
538 tuple : FIXME_04
539 {
540 $$ = 0; /* FIXME */
541 }
542 ;
543
544
545 /* Z.200, 5.2.6 */
546
547 value_string_element: string_primitive_value '(' start_element ')'
548 {
549 $$ = 0; /* FIXME */
550 }
551 ;
552
553 /* Z.200, 5.2.7 */
554
555 value_string_slice: string_primitive_value '(' left_element ':' right_element ')'
556 {
557 $$ = 0; /* FIXME */
558 }
559 | string_primitive_value '(' start_element UP slice_size ')'
560 {
561 $$ = 0; /* FIXME */
562 }
563 ;
564
565 /* Z.200, 5.2.8 */
566
567 value_array_element: array_primitive_value '('
568 /* This is to save the value of arglist_len
569 being accumulated for each dimension. */
570 { start_arglist (); }
571 expression_list ')'
572 {
573 write_exp_elt_opcode (MULTI_SUBSCRIPT);
574 write_exp_elt_longcst ((LONGEST) end_arglist ());
575 write_exp_elt_opcode (MULTI_SUBSCRIPT);
576 }
577 ;
578
579 /* Z.200, 5.2.9 */
580
581 value_array_slice: array_primitive_value '(' lower_element ':' upper_element ')'
582 {
583 $$ = 0; /* FIXME */
584 }
585 | array_primitive_value '(' first_element UP slice_size ')'
586 {
587 $$ = 0; /* FIXME */
588 }
589 ;
590
591 /* Z.200, 5.2.10 */
592
593 value_structure_field: primitive_value FIELD_NAME
594 { write_exp_elt_opcode (STRUCTOP_STRUCT);
595 write_exp_string ($2);
596 write_exp_elt_opcode (STRUCTOP_STRUCT);
597 }
598 ;
599
600 /* Z.200, 5.2.11 */
601
602 expression_conversion: mode_name parenthesised_expression
603 {
604 write_exp_elt_opcode (UNOP_CAST);
605 write_exp_elt_type ($1.type);
606 write_exp_elt_opcode (UNOP_CAST);
607 }
608 ;
609
610 /* Z.200, 5.2.12 */
611
612 value_procedure_call: FIXME_05
613 {
614 $$ = 0; /* FIXME */
615 }
616 ;
617
618 /* Z.200, 5.2.13 */
619
620 value_built_in_routine_call: chill_value_built_in_routine_call
621 {
622 $$ = 0; /* FIXME */
623 }
624 ;
625
626 /* Z.200, 5.2.14 */
627
628 start_expression: FIXME_06
629 {
630 $$ = 0; /* FIXME */
631 } /* Not in GNU-Chill */
632 ;
633
634 /* Z.200, 5.2.15 */
635
636 zero_adic_operator: FIXME_07
637 {
638 $$ = 0; /* FIXME */
639 }
640 ;
641
642 /* Z.200, 5.2.16 */
643
644 parenthesised_expression: '(' expression ')'
645 {
646 $$ = 0; /* FIXME */
647 }
648 ;
649
650 /* Z.200, 5.3.2 */
651
652 expression : operand_0
653 {
654 $$ = 0; /* FIXME */
655 }
656 | single_assignment_action
657 {
658 $$ = 0; /* FIXME */
659 }
660 | conditional_expression
661 {
662 $$ = 0; /* FIXME */
663 }
664 ;
665
666 conditional_expression : IF boolean_expression then_alternative else_alternative FI
667 {
668 $$ = 0; /* FIXME */
669 }
670 | CASE case_selector_list OF value_case_alternative '[' ELSE sub_expression ']' ESAC
671 {
672 $$ = 0; /* FIXME */
673 }
674 ;
675
676 then_alternative: THEN subexpression
677 {
678 $$ = 0; /* FIXME */
679 }
680 ;
681
682 else_alternative: ELSE subexpression
683 {
684 $$ = 0; /* FIXME */
685 }
686 | ELSIF boolean_expression then_alternative else_alternative
687 {
688 $$ = 0; /* FIXME */
689 }
690 ;
691
692 sub_expression : expression
693 {
694 $$ = 0; /* FIXME */
695 }
696 ;
697
698 value_case_alternative: case_label_specification ':' sub_expression ';'
699 {
700 $$ = 0; /* FIXME */
701 }
702 ;
703
704 /* Z.200, 5.3.3 */
705
706 operand_0 : operand_1
707 {
708 $$ = 0; /* FIXME */
709 }
710 | operand_0 LOGIOR operand_1
711 {
712 write_exp_elt_opcode (BINOP_BITWISE_IOR);
713 }
714 | operand_0 ORIF operand_1
715 {
716 $$ = 0; /* FIXME */
717 }
718 | operand_0 LOGXOR operand_1
719 {
720 write_exp_elt_opcode (BINOP_BITWISE_XOR);
721 }
722 ;
723
724 /* Z.200, 5.3.4 */
725
726 operand_1 : operand_2
727 {
728 $$ = 0; /* FIXME */
729 }
730 | operand_1 LOGAND operand_2
731 {
732 write_exp_elt_opcode (BINOP_BITWISE_AND);
733 }
734 | operand_1 ANDIF operand_2
735 {
736 $$ = 0; /* FIXME */
737 }
738 ;
739
740 /* Z.200, 5.3.5 */
741
742 operand_2 : operand_3
743 {
744 $$ = 0; /* FIXME */
745 }
746 | operand_2 '=' operand_3
747 {
748 write_exp_elt_opcode (BINOP_EQUAL);
749 }
750 | operand_2 NOTEQUAL operand_3
751 {
752 write_exp_elt_opcode (BINOP_NOTEQUAL);
753 }
754 | operand_2 '>' operand_3
755 {
756 write_exp_elt_opcode (BINOP_GTR);
757 }
758 | operand_2 GTR operand_3
759 {
760 write_exp_elt_opcode (BINOP_GEQ);
761 }
762 | operand_2 '<' operand_3
763 {
764 write_exp_elt_opcode (BINOP_LESS);
765 }
766 | operand_2 LEQ operand_3
767 {
768 write_exp_elt_opcode (BINOP_LEQ);
769 }
770 | operand_2 IN operand_3
771 {
772 $$ = 0; /* FIXME */
773 }
774 ;
775
776
777 /* Z.200, 5.3.6 */
778
779 operand_3 : operand_4
780 {
781 $$ = 0; /* FIXME */
782 }
783 | operand_3 '+' operand_4
784 {
785 write_exp_elt_opcode (BINOP_ADD);
786 }
787 | operand_3 '-' operand_4
788 {
789 write_exp_elt_opcode (BINOP_SUB);
790 }
791 | operand_3 SLASH_SLASH operand_4
792 {
793 write_exp_elt_opcode (BINOP_CONCAT);
794 }
795 ;
796
797 /* Z.200, 5.3.7 */
798
799 operand_4 : operand_5
800 {
801 $$ = 0; /* FIXME */
802 }
803 | operand_4 '*' operand_5
804 {
805 write_exp_elt_opcode (BINOP_MUL);
806 }
807 | operand_4 '/' operand_5
808 {
809 write_exp_elt_opcode (BINOP_DIV);
810 }
811 | operand_4 MOD operand_5
812 {
813 write_exp_elt_opcode (BINOP_MOD);
814 }
815 | operand_4 REM operand_5
816 {
817 write_exp_elt_opcode (BINOP_REM);
818 }
819 ;
820
821 /* Z.200, 5.3.8 */
822
823 operand_5 : operand_6
824 {
825 $$ = 0; /* FIXME */
826 }
827 | '-' operand_6
828 {
829 write_exp_elt_opcode (UNOP_NEG);
830 }
831 | NOT operand_6
832 {
833 write_exp_elt_opcode (UNOP_LOGICAL_NOT);
834 }
835 | parenthesised_expression literal
836 /* We require the string operand to be a literal, to avoid some
837 nasty parsing ambiguities. */
838 {
839 write_exp_elt_opcode (BINOP_CONCAT);
840 }
841 ;
842
843 /* Z.200, 5.3.9 */
844
845 operand_6 : POINTER location
846 {
847 write_exp_elt_opcode (UNOP_ADDR);
848 }
849 | RECEIVE buffer_location
850 {
851 $$ = 0; /* FIXME */
852 }
853 | primitive_value
854 {
855 $$ = 0; /* FIXME */
856 }
857 ;
858
859
860 /* Z.200, 6.2 */
861
862 single_assignment_action :
863 location GDB_ASSIGNMENT value
864 {
865 write_exp_elt_opcode (BINOP_ASSIGN);
866 }
867 ;
868
869 /* Z.200, 6.20.3 */
870
871 chill_value_built_in_routine_call :
872 NUM '(' expression ')'
873 {
874 $$ = 0; /* FIXME */
875 }
876 | PRED '(' expression ')'
877 {
878 $$ = 0; /* FIXME */
879 }
880 | SUCC '(' expression ')'
881 {
882 $$ = 0; /* FIXME */
883 }
884 | ABS '(' expression ')'
885 {
886 $$ = 0; /* FIXME */
887 }
888 | CARD '(' expression ')'
889 {
890 $$ = 0; /* FIXME */
891 }
892 | MAX_TOKEN '(' expression ')'
893 {
894 $$ = 0; /* FIXME */
895 }
896 | MIN_TOKEN '(' expression ')'
897 {
898 $$ = 0; /* FIXME */
899 }
900 | SIZE '(' location ')'
901 {
902 $$ = 0; /* FIXME */
903 }
904 | SIZE '(' mode_argument ')'
905 {
906 $$ = 0; /* FIXME */
907 }
908 | UPPER '(' upper_lower_argument ')'
909 {
910 $$ = 0; /* FIXME */
911 }
912 | LOWER '(' upper_lower_argument ')'
913 {
914 $$ = 0; /* FIXME */
915 }
916 | LENGTH '(' length_argument ')'
917 {
918 $$ = 0; /* FIXME */
919 }
920 ;
921
922 mode_argument : mode_name
923 {
924 $$ = 0; /* FIXME */
925 }
926 | array_mode_name '(' expression ')'
927 {
928 $$ = 0; /* FIXME */
929 }
930 | string_mode_name '(' expression ')'
931 {
932 $$ = 0; /* FIXME */
933 }
934 | variant_structure_mode_name '(' expression_list ')'
935 {
936 $$ = 0; /* FIXME */
937 }
938 ;
939
940 mode_name : TYPENAME
941 ;
942
943 upper_lower_argument : expression
944 {
945 $$ = 0; /* FIXME */
946 }
947 | mode_name
948 {
949 $$ = 0; /* FIXME */
950 }
951 ;
952
953 length_argument : expression
954 {
955 $$ = 0; /* FIXME */
956 }
957 ;
958
959 /* Z.200, 12.4.3 */
960
961 array_primitive_value : primitive_value
962 {
963 $$ = 0;
964 }
965 ;
966
967
968 /* Things which still need productions... */
969
970 array_mode_name : FIXME_08 { $$ = 0; }
971 string_mode_name : FIXME_09 { $$ = 0; }
972 variant_structure_mode_name: FIXME_10 { $$ = 0; }
973 synonym_name : FIXME_11 { $$ = 0; }
974 value_enumeration_name : FIXME_12 { $$ = 0; }
975 value_do_with_name : FIXME_13 { $$ = 0; }
976 value_receive_name : FIXME_14 { $$ = 0; }
977 string_primitive_value : FIXME_15 { $$ = 0; }
978 start_element : FIXME_16 { $$ = 0; }
979 left_element : FIXME_17 { $$ = 0; }
980 right_element : FIXME_18 { $$ = 0; }
981 slice_size : FIXME_19 { $$ = 0; }
982 lower_element : FIXME_20 { $$ = 0; }
983 upper_element : FIXME_21 { $$ = 0; }
984 first_element : FIXME_22 { $$ = 0; }
985 boolean_expression : FIXME_26 { $$ = 0; }
986 case_selector_list : FIXME_27 { $$ = 0; }
987 subexpression : FIXME_28 { $$ = 0; }
988 case_label_specification: FIXME_29 { $$ = 0; }
989 buffer_location : FIXME_30 { $$ = 0; }
990
991 %%
992
993 /* Implementation of a dynamically expandable buffer for processing input
994 characters acquired through lexptr and building a value to return in
995 yylval. */
996
997 static char *tempbuf; /* Current buffer contents */
998 static int tempbufsize; /* Size of allocated buffer */
999 static int tempbufindex; /* Current index into buffer */
1000
1001 #define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
1002
1003 #define CHECKBUF(size) \
1004 do { \
1005 if (tempbufindex + (size) >= tempbufsize) \
1006 { \
1007 growbuf_by_size (size); \
1008 } \
1009 } while (0);
1010
1011 /* Grow the static temp buffer if necessary, including allocating the first one
1012 on demand. */
1013
1014 static void
1015 growbuf_by_size (count)
1016 int count;
1017 {
1018 int growby;
1019
1020 growby = max (count, GROWBY_MIN_SIZE);
1021 tempbufsize += growby;
1022 if (tempbuf == NULL)
1023 {
1024 tempbuf = (char *) malloc (tempbufsize);
1025 }
1026 else
1027 {
1028 tempbuf = (char *) realloc (tempbuf, tempbufsize);
1029 }
1030 }
1031
1032 /* Try to consume a simple name string token. If successful, returns
1033 a pointer to a nullbyte terminated copy of the name that can be used
1034 in symbol table lookups. If not successful, returns NULL. */
1035
1036 static char *
1037 match_simple_name_string ()
1038 {
1039 char *tokptr = lexptr;
1040
1041 if (isalpha (*tokptr))
1042 {
1043 char *result;
1044 do {
1045 tokptr++;
1046 } while (isalnum (*tokptr) || (*tokptr == '_'));
1047 yylval.sval.ptr = lexptr;
1048 yylval.sval.length = tokptr - lexptr;
1049 lexptr = tokptr;
1050 result = copy_name (yylval.sval);
1051 for (tokptr = result; *tokptr; tokptr++)
1052 if (isupper (*tokptr))
1053 *tokptr = tolower(*tokptr);
1054 return result;
1055 }
1056 return (NULL);
1057 }
1058
1059 /* Start looking for a value composed of valid digits as set by the base
1060 in use. Note that '_' characters are valid anywhere, in any quantity,
1061 and are simply ignored. Since we must find at least one valid digit,
1062 or reject this token as an integer literal, we keep track of how many
1063 digits we have encountered. */
1064
1065 static int
1066 decode_integer_value (base, tokptrptr, ivalptr)
1067 int base;
1068 char **tokptrptr;
1069 int *ivalptr;
1070 {
1071 char *tokptr = *tokptrptr;
1072 int temp;
1073 int digits = 0;
1074
1075 while (*tokptr != '\0')
1076 {
1077 temp = tolower (*tokptr);
1078 tokptr++;
1079 switch (temp)
1080 {
1081 case '_':
1082 continue;
1083 case '0': case '1': case '2': case '3': case '4':
1084 case '5': case '6': case '7': case '8': case '9':
1085 temp -= '0';
1086 break;
1087 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1088 temp -= 'a';
1089 temp += 10;
1090 break;
1091 default:
1092 temp = base;
1093 break;
1094 }
1095 if (temp < base)
1096 {
1097 digits++;
1098 *ivalptr *= base;
1099 *ivalptr += temp;
1100 }
1101 else
1102 {
1103 /* Found something not in domain for current base. */
1104 tokptr--; /* Unconsume what gave us indigestion. */
1105 break;
1106 }
1107 }
1108
1109 /* If we didn't find any digits, then we don't have a valid integer
1110 value, so reject the entire token. Otherwise, update the lexical
1111 scan pointer, and return non-zero for success. */
1112
1113 if (digits == 0)
1114 {
1115 return (0);
1116 }
1117 else
1118 {
1119 *tokptrptr = tokptr;
1120 return (1);
1121 }
1122 }
1123
1124 static int
1125 decode_integer_literal (valptr, tokptrptr)
1126 int *valptr;
1127 char **tokptrptr;
1128 {
1129 char *tokptr = *tokptrptr;
1130 int base = 0;
1131 int ival = 0;
1132 int explicit_base = 0;
1133
1134 /* Look for an explicit base specifier, which is optional. */
1135
1136 switch (*tokptr)
1137 {
1138 case 'd':
1139 case 'D':
1140 explicit_base++;
1141 base = 10;
1142 tokptr++;
1143 break;
1144 case 'b':
1145 case 'B':
1146 explicit_base++;
1147 base = 2;
1148 tokptr++;
1149 break;
1150 case 'h':
1151 case 'H':
1152 explicit_base++;
1153 base = 16;
1154 tokptr++;
1155 break;
1156 case 'o':
1157 case 'O':
1158 explicit_base++;
1159 base = 8;
1160 tokptr++;
1161 break;
1162 default:
1163 base = 10;
1164 break;
1165 }
1166
1167 /* If we found an explicit base ensure that the character after the
1168 explicit base is a single quote. */
1169
1170 if (explicit_base && (*tokptr++ != '\''))
1171 {
1172 return (0);
1173 }
1174
1175 /* Attempt to decode whatever follows as an integer value in the
1176 indicated base, updating the token pointer in the process and
1177 computing the value into ival. Also, if we have an explicit
1178 base, then the next character must not be a single quote, or we
1179 have a bitstring literal, so reject the entire token in this case.
1180 Otherwise, update the lexical scan pointer, and return non-zero
1181 for success. */
1182
1183 if (!decode_integer_value (base, &tokptr, &ival))
1184 {
1185 return (0);
1186 }
1187 else if (explicit_base && (*tokptr == '\''))
1188 {
1189 return (0);
1190 }
1191 else
1192 {
1193 *valptr = ival;
1194 *tokptrptr = tokptr;
1195 return (1);
1196 }
1197 }
1198
1199 /* If it wasn't for the fact that floating point values can contain '_'
1200 characters, we could just let strtod do all the hard work by letting it
1201 try to consume as much of the current token buffer as possible and
1202 find a legal conversion. Unfortunately we need to filter out the '_'
1203 characters before calling strtod, which we do by copying the other
1204 legal chars to a local buffer to be converted. However since we also
1205 need to keep track of where the last unconsumed character in the input
1206 buffer is, we have transfer only as many characters as may compose a
1207 legal floating point value. */
1208
1209 static int
1210 match_float_literal ()
1211 {
1212 char *tokptr = lexptr;
1213 char *buf;
1214 char *copy;
1215 char ch;
1216 double dval;
1217 extern double strtod ();
1218
1219 /* Make local buffer in which to build the string to convert. This is
1220 required because underscores are valid in chill floating point numbers
1221 but not in the string passed to strtod to convert. The string will be
1222 no longer than our input string. */
1223
1224 copy = buf = (char *) alloca (strlen (tokptr) + 1);
1225
1226 /* Transfer all leading digits to the conversion buffer, discarding any
1227 underscores. */
1228
1229 while (isdigit (*tokptr) || *tokptr == '_')
1230 {
1231 if (*tokptr != '_')
1232 {
1233 *copy++ = *tokptr;
1234 }
1235 tokptr++;
1236 }
1237
1238 /* Now accept either a '.', or one of [eEdD]. Dot is legal regardless
1239 of whether we found any leading digits, and we simply accept it and
1240 continue on to look for the fractional part and/or exponent. One of
1241 [eEdD] is legal only if we have seen digits, and means that there
1242 is no fractional part. If we find neither of these, then this is
1243 not a floating point number, so return failure. */
1244
1245 switch (*tokptr++)
1246 {
1247 case '.':
1248 /* Accept and then look for fractional part and/or exponent. */
1249 *copy++ = '.';
1250 break;
1251
1252 case 'e':
1253 case 'E':
1254 case 'd':
1255 case 'D':
1256 if (copy == buf)
1257 {
1258 return (0);
1259 }
1260 *copy++ = 'e';
1261 goto collect_exponent;
1262 break;
1263
1264 default:
1265 return (0);
1266 break;
1267 }
1268
1269 /* We found a '.', copy any fractional digits to the conversion buffer, up
1270 to the first nondigit, non-underscore character. */
1271
1272 while (isdigit (*tokptr) || *tokptr == '_')
1273 {
1274 if (*tokptr != '_')
1275 {
1276 *copy++ = *tokptr;
1277 }
1278 tokptr++;
1279 }
1280
1281 /* Look for an exponent, which must start with one of [eEdD]. If none
1282 is found, jump directly to trying to convert what we have collected
1283 so far. */
1284
1285 switch (*tokptr)
1286 {
1287 case 'e':
1288 case 'E':
1289 case 'd':
1290 case 'D':
1291 *copy++ = 'e';
1292 tokptr++;
1293 break;
1294 default:
1295 goto convert_float;
1296 break;
1297 }
1298
1299 /* Accept an optional '-' or '+' following one of [eEdD]. */
1300
1301 collect_exponent:
1302 if (*tokptr == '+' || *tokptr == '-')
1303 {
1304 *copy++ = *tokptr++;
1305 }
1306
1307 /* Now copy an exponent into the conversion buffer. Note that at the
1308 moment underscores are *not* allowed in exponents. */
1309
1310 while (isdigit (*tokptr))
1311 {
1312 *copy++ = *tokptr++;
1313 }
1314
1315 /* If we transfered any chars to the conversion buffer, try to interpret its
1316 contents as a floating point value. If any characters remain, then we
1317 must not have a valid floating point string. */
1318
1319 convert_float:
1320 *copy = '\0';
1321 if (copy != buf)
1322 {
1323 dval = strtod (buf, &copy);
1324 if (*copy == '\0')
1325 {
1326 yylval.dval = dval;
1327 lexptr = tokptr;
1328 return (FLOAT_LITERAL);
1329 }
1330 }
1331 return (0);
1332 }
1333
1334 /* Recognize a string literal. A string literal is a nonzero sequence
1335 of characters enclosed in matching single or double quotes, except that
1336 a single character inside single quotes is a character literal, which
1337 we reject as a string literal. To embed the terminator character inside
1338 a string, it is simply doubled (I.E. "this""is""one""string") */
1339
1340 static int
1341 match_string_literal ()
1342 {
1343 char *tokptr = lexptr;
1344
1345 for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
1346 {
1347 CHECKBUF (1);
1348 if (*tokptr == *lexptr)
1349 {
1350 if (*(tokptr + 1) == *lexptr)
1351 {
1352 tokptr++;
1353 }
1354 else
1355 {
1356 break;
1357 }
1358 }
1359 tempbuf[tempbufindex++] = *tokptr;
1360 }
1361 if (*tokptr == '\0' /* no terminator */
1362 || tempbufindex == 0 /* no string */
1363 || (tempbufindex == 1 && *tokptr == '\'')) /* char literal */
1364 {
1365 return (0);
1366 }
1367 else
1368 {
1369 tempbuf[tempbufindex] = '\0';
1370 yylval.sval.ptr = tempbuf;
1371 yylval.sval.length = tempbufindex;
1372 lexptr = ++tokptr;
1373 return (CHARACTER_STRING_LITERAL);
1374 }
1375 }
1376
1377 /* Recognize a character literal. A character literal is single character
1378 or a control sequence, enclosed in single quotes. A control sequence
1379 is a comma separated list of one or more integer literals, enclosed
1380 in parenthesis and introduced with a circumflex character.
1381
1382 EX: 'a' '^(7)' '^(7,8)'
1383
1384 As a GNU chill extension, the syntax C'xx' is also recognized as a
1385 character literal, where xx is a hex value for the character.
1386
1387 Note that more than a single character, enclosed in single quotes, is
1388 a string literal.
1389
1390 Also note that the control sequence form is not in GNU Chill since it
1391 is ambiguous with the string literal form using single quotes. I.E.
1392 is '^(7)' a character literal or a string literal. In theory it it
1393 possible to tell by context, but GNU Chill doesn't accept the control
1394 sequence form, so neither do we (for now the code is disabled).
1395
1396 Returns CHARACTER_LITERAL if a match is found.
1397 */
1398
1399 static int
1400 match_character_literal ()
1401 {
1402 char *tokptr = lexptr;
1403 int ival = 0;
1404
1405 if ((tolower (*tokptr) == 'c') && (*(tokptr + 1) == '\''))
1406 {
1407 /* We have a GNU chill extension form, so skip the leading "C'",
1408 decode the hex value, and then ensure that we have a trailing
1409 single quote character. */
1410 tokptr += 2;
1411 if (!decode_integer_value (16, &tokptr, &ival) || (*tokptr != '\''))
1412 {
1413 return (0);
1414 }
1415 tokptr++;
1416 }
1417 else if (*tokptr == '\'')
1418 {
1419 tokptr++;
1420
1421 /* Determine which form we have, either a control sequence or the
1422 single character form. */
1423
1424 if ((*tokptr == '^') && (*(tokptr + 1) == '('))
1425 {
1426 #if 0 /* Disable, see note above. -fnf */
1427 /* Match and decode a control sequence. Return zero if we don't
1428 find a valid integer literal, or if the next unconsumed character
1429 after the integer literal is not the trailing ')'.
1430 FIXME: We currently don't handle the multiple integer literal
1431 form. */
1432 tokptr += 2;
1433 if (!decode_integer_literal (&ival, &tokptr) || (*tokptr++ != ')'))
1434 {
1435 return (0);
1436 }
1437 #else
1438 return (0);
1439 #endif
1440 }
1441 else
1442 {
1443 ival = *tokptr++;
1444 }
1445
1446 /* The trailing quote has not yet been consumed. If we don't find
1447 it, then we have no match. */
1448
1449 if (*tokptr++ != '\'')
1450 {
1451 return (0);
1452 }
1453 }
1454 else
1455 {
1456 /* Not a character literal. */
1457 return (0);
1458 }
1459 yylval.typed_val.val = ival;
1460 yylval.typed_val.type = builtin_type_chill_char;
1461 lexptr = tokptr;
1462 return (CHARACTER_LITERAL);
1463 }
1464
1465 /* Recognize an integer literal, as specified in Z.200 sec 5.2.4.2.
1466 Note that according to 5.2.4.2, a single "_" is also a valid integer
1467 literal, however GNU-chill requires there to be at least one "digit"
1468 in any integer literal. */
1469
1470 static int
1471 match_integer_literal ()
1472 {
1473 char *tokptr = lexptr;
1474 int ival;
1475
1476 if (!decode_integer_literal (&ival, &tokptr))
1477 {
1478 return (0);
1479 }
1480 else
1481 {
1482 yylval.typed_val.val = ival;
1483 yylval.typed_val.type = builtin_type_int;
1484 lexptr = tokptr;
1485 return (INTEGER_LITERAL);
1486 }
1487 }
1488
1489 /* Recognize a bit-string literal, as specified in Z.200 sec 5.2.4.8
1490 Note that according to 5.2.4.8, a single "_" is also a valid bit-string
1491 literal, however GNU-chill requires there to be at least one "digit"
1492 in any bit-string literal. */
1493
1494 static int
1495 match_bitstring_literal ()
1496 {
1497 char *tokptr = lexptr;
1498 int mask;
1499 int bitoffset = 0;
1500 int bitcount = 0;
1501 int base;
1502 int digit;
1503
1504 tempbufindex = 0;
1505
1506 /* Look for the required explicit base specifier. */
1507
1508 switch (*tokptr++)
1509 {
1510 case 'b':
1511 case 'B':
1512 base = 2;
1513 break;
1514 case 'o':
1515 case 'O':
1516 base = 8;
1517 break;
1518 case 'h':
1519 case 'H':
1520 base = 16;
1521 break;
1522 default:
1523 return (0);
1524 break;
1525 }
1526
1527 /* Ensure that the character after the explicit base is a single quote. */
1528
1529 if (*tokptr++ != '\'')
1530 {
1531 return (0);
1532 }
1533
1534 while (*tokptr != '\0' && *tokptr != '\'')
1535 {
1536 digit = tolower (*tokptr);
1537 tokptr++;
1538 switch (digit)
1539 {
1540 case '_':
1541 continue;
1542 case '0': case '1': case '2': case '3': case '4':
1543 case '5': case '6': case '7': case '8': case '9':
1544 digit -= '0';
1545 break;
1546 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1547 digit -= 'a';
1548 digit += 10;
1549 break;
1550 default:
1551 return (0);
1552 break;
1553 }
1554 if (digit >= base)
1555 {
1556 /* Found something not in domain for current base. */
1557 return (0);
1558 }
1559 else
1560 {
1561 /* Extract bits from digit, starting with the msbit appropriate for
1562 the current base, and packing them into the bitstring byte,
1563 starting at the lsbit. */
1564 for (mask = (base >> 1); mask > 0; mask >>= 1)
1565 {
1566 bitcount++;
1567 CHECKBUF (1);
1568 if (digit & mask)
1569 {
1570 tempbuf[tempbufindex] |= (1 << bitoffset);
1571 }
1572 bitoffset++;
1573 if (bitoffset == HOST_CHAR_BIT)
1574 {
1575 bitoffset = 0;
1576 tempbufindex++;
1577 }
1578 }
1579 }
1580 }
1581
1582 /* Verify that we consumed everything up to the trailing single quote,
1583 and that we found some bits (IE not just underbars). */
1584
1585 if (*tokptr++ != '\'')
1586 {
1587 return (0);
1588 }
1589 else
1590 {
1591 yylval.sval.ptr = tempbuf;
1592 yylval.sval.length = bitcount;
1593 lexptr = tokptr;
1594 return (BIT_STRING_LITERAL);
1595 }
1596 }
1597
1598 /* Recognize tokens that start with '$'. These include:
1599
1600 $regname A native register name or a "standard
1601 register name".
1602 Return token GDB_REGNAME.
1603
1604 $variable A convenience variable with a name chosen
1605 by the user.
1606 Return token GDB_VARIABLE.
1607
1608 $digits Value history with index <digits>, starting
1609 from the first value which has index 1.
1610 Return GDB_LAST.
1611
1612 $$digits Value history with index <digits> relative
1613 to the last value. I.E. $$0 is the last
1614 value, $$1 is the one previous to that, $$2
1615 is the one previous to $$1, etc.
1616 Return token GDB_LAST.
1617
1618 $ | $0 | $$0 The last value in the value history.
1619 Return token GDB_LAST.
1620
1621 $$ An abbreviation for the second to the last
1622 value in the value history, I.E. $$1
1623 Return token GDB_LAST.
1624
1625 Note that we currently assume that register names and convenience
1626 variables follow the convention of starting with a letter or '_'.
1627
1628 */
1629
1630 static int
1631 match_dollar_tokens ()
1632 {
1633 char *tokptr;
1634 int regno;
1635 int namelength;
1636 int negate;
1637 int ival;
1638
1639 /* We will always have a successful match, even if it is just for
1640 a single '$', the abbreviation for $$0. So advance lexptr. */
1641
1642 tokptr = ++lexptr;
1643
1644 if (*tokptr == '_' || isalpha (*tokptr))
1645 {
1646 /* Look for a match with a native register name, usually something
1647 like "r0" for example. */
1648
1649 for (regno = 0; regno < NUM_REGS; regno++)
1650 {
1651 namelength = strlen (reg_names[regno]);
1652 if (STREQN (tokptr, reg_names[regno], namelength)
1653 && !isalnum (tokptr[namelength]))
1654 {
1655 yylval.lval = regno;
1656 lexptr += namelength + 1;
1657 return (GDB_REGNAME);
1658 }
1659 }
1660
1661 /* Look for a match with a standard register name, usually something
1662 like "pc", which gdb always recognizes as the program counter
1663 regardless of what the native register name is. */
1664
1665 for (regno = 0; regno < num_std_regs; regno++)
1666 {
1667 namelength = strlen (std_regs[regno].name);
1668 if (STREQN (tokptr, std_regs[regno].name, namelength)
1669 && !isalnum (tokptr[namelength]))
1670 {
1671 yylval.lval = std_regs[regno].regnum;
1672 lexptr += namelength;
1673 return (GDB_REGNAME);
1674 }
1675 }
1676
1677 /* Attempt to match against a convenience variable. Note that
1678 this will always succeed, because if no variable of that name
1679 already exists, the lookup_internalvar will create one for us.
1680 Also note that both lexptr and tokptr currently point to the
1681 start of the input string we are trying to match, and that we
1682 have already tested the first character for non-numeric, so we
1683 don't have to treat it specially. */
1684
1685 while (*tokptr == '_' || isalnum (*tokptr))
1686 {
1687 tokptr++;
1688 }
1689 yylval.sval.ptr = lexptr;
1690 yylval.sval.length = tokptr - lexptr;
1691 yylval.ivar = lookup_internalvar (copy_name (yylval.sval));
1692 lexptr = tokptr;
1693 return (GDB_VARIABLE);
1694 }
1695
1696 /* Since we didn't match against a register name or convenience
1697 variable, our only choice left is a history value. */
1698
1699 if (*tokptr == '$')
1700 {
1701 negate = 1;
1702 ival = 1;
1703 tokptr++;
1704 }
1705 else
1706 {
1707 negate = 0;
1708 ival = 0;
1709 }
1710
1711 /* Attempt to decode more characters as an integer value giving
1712 the index in the history list. If successful, the value will
1713 overwrite ival (currently 0 or 1), and if not, ival will be
1714 left alone, which is good since it is currently correct for
1715 the '$' or '$$' case. */
1716
1717 decode_integer_literal (&ival, &tokptr);
1718 yylval.lval = negate ? -ival : ival;
1719 lexptr = tokptr;
1720 return (GDB_LAST);
1721 }
1722
1723 struct token
1724 {
1725 char *operator;
1726 int token;
1727 };
1728
1729 static const struct token idtokentab[] =
1730 {
1731 { "length", LENGTH },
1732 { "lower", LOWER },
1733 { "upper", UPPER },
1734 { "andif", ANDIF },
1735 { "pred", PRED },
1736 { "succ", SUCC },
1737 { "card", CARD },
1738 { "size", SIZE },
1739 { "orif", ORIF },
1740 { "num", NUM },
1741 { "abs", ABS },
1742 { "max", MAX_TOKEN },
1743 { "min", MIN_TOKEN },
1744 { "mod", MOD },
1745 { "rem", REM },
1746 { "not", NOT },
1747 { "xor", LOGXOR },
1748 { "and", LOGAND },
1749 { "in", IN },
1750 { "or", LOGIOR }
1751 };
1752
1753 static const struct token tokentab2[] =
1754 {
1755 { ":=", GDB_ASSIGNMENT },
1756 { "//", SLASH_SLASH },
1757 { "->", POINTER },
1758 { "/=", NOTEQUAL },
1759 { "<=", LEQ },
1760 { ">=", GTR }
1761 };
1762
1763 /* Read one token, getting characters through lexptr. */
1764 /* This is where we will check to make sure that the language and the
1765 operators used are compatible. */
1766
1767 static int
1768 yylex ()
1769 {
1770 unsigned int i;
1771 int token;
1772 char *simplename;
1773 struct symbol *sym;
1774
1775 /* Skip over any leading whitespace. */
1776 while (isspace (*lexptr))
1777 {
1778 lexptr++;
1779 }
1780 /* Look for special single character cases which can't be the first
1781 character of some other multicharacter token. */
1782 switch (*lexptr)
1783 {
1784 case '\0':
1785 return (0);
1786 case ',':
1787 case '=':
1788 case ';':
1789 case '!':
1790 case '+':
1791 case '*':
1792 case '(':
1793 case ')':
1794 case '[':
1795 case ']':
1796 return (*lexptr++);
1797 }
1798 /* Look for characters which start a particular kind of multicharacter
1799 token, such as a character literal, register name, convenience
1800 variable name, string literal, etc. */
1801 switch (*lexptr)
1802 {
1803 case '\'':
1804 case '\"':
1805 /* First try to match a string literal, which is any nonzero
1806 sequence of characters enclosed in matching single or double
1807 quotes, except that a single character inside single quotes
1808 is a character literal, so we have to catch that case also. */
1809 token = match_string_literal ();
1810 if (token != 0)
1811 {
1812 return (token);
1813 }
1814 if (*lexptr == '\'')
1815 {
1816 token = match_character_literal ();
1817 if (token != 0)
1818 {
1819 return (token);
1820 }
1821 }
1822 break;
1823 case 'C':
1824 case 'c':
1825 token = match_character_literal ();
1826 if (token != 0)
1827 {
1828 return (token);
1829 }
1830 break;
1831 case '$':
1832 token = match_dollar_tokens ();
1833 if (token != 0)
1834 {
1835 return (token);
1836 }
1837 break;
1838 }
1839 /* See if it is a special token of length 2. */
1840 for (i = 0; i < sizeof (tokentab2) / sizeof (tokentab2[0]); i++)
1841 {
1842 if (STREQN (lexptr, tokentab2[i].operator, 2))
1843 {
1844 lexptr += 2;
1845 return (tokentab2[i].token);
1846 }
1847 }
1848 /* Look for single character cases which which could be the first
1849 character of some other multicharacter token, but aren't, or we
1850 would already have found it. */
1851 switch (*lexptr)
1852 {
1853 case '-':
1854 case ':':
1855 case '/':
1856 case '<':
1857 case '>':
1858 return (*lexptr++);
1859 }
1860 /* Look for a float literal before looking for an integer literal, so
1861 we match as much of the input stream as possible. */
1862 token = match_float_literal ();
1863 if (token != 0)
1864 {
1865 return (token);
1866 }
1867 token = match_bitstring_literal ();
1868 if (token != 0)
1869 {
1870 return (token);
1871 }
1872 token = match_integer_literal ();
1873 if (token != 0)
1874 {
1875 return (token);
1876 }
1877
1878 /* Try to match a simple name string, and if a match is found, then
1879 further classify what sort of name it is and return an appropriate
1880 token. Note that attempting to match a simple name string consumes
1881 the token from lexptr, so we can't back out if we later find that
1882 we can't classify what sort of name it is. */
1883
1884 simplename = match_simple_name_string ();
1885
1886 if (simplename != NULL)
1887 {
1888 /* See if it is a reserved identifier. */
1889 for (i = 0; i < sizeof (idtokentab) / sizeof (idtokentab[0]); i++)
1890 {
1891 if (STREQ (simplename, idtokentab[i].operator))
1892 {
1893 return (idtokentab[i].token);
1894 }
1895 }
1896
1897 /* Look for other special tokens. */
1898 if (STREQ (simplename, "true"))
1899 {
1900 yylval.ulval = 1;
1901 return (BOOLEAN_LITERAL);
1902 }
1903 if (STREQ (simplename, "false"))
1904 {
1905 yylval.ulval = 0;
1906 return (BOOLEAN_LITERAL);
1907 }
1908
1909 sym = lookup_symbol (simplename, expression_context_block,
1910 VAR_NAMESPACE, (int *) NULL,
1911 (struct symtab **) NULL);
1912 if (sym != NULL)
1913 {
1914 yylval.ssym.stoken.ptr = NULL;
1915 yylval.ssym.stoken.length = 0;
1916 yylval.ssym.sym = sym;
1917 yylval.ssym.is_a_field_of_this = 0; /* FIXME, C++'ism */
1918 switch (SYMBOL_CLASS (sym))
1919 {
1920 case LOC_BLOCK:
1921 /* Found a procedure name. */
1922 return (GENERAL_PROCEDURE_NAME);
1923 case LOC_STATIC:
1924 /* Found a global or local static variable. */
1925 return (LOCATION_NAME);
1926 case LOC_REGISTER:
1927 case LOC_ARG:
1928 case LOC_REF_ARG:
1929 case LOC_REGPARM:
1930 case LOC_LOCAL:
1931 case LOC_LOCAL_ARG:
1932 if (innermost_block == NULL
1933 || contained_in (block_found, innermost_block))
1934 {
1935 innermost_block = block_found;
1936 }
1937 return (LOCATION_NAME);
1938 break;
1939 case LOC_CONST:
1940 case LOC_LABEL:
1941 return (LOCATION_NAME);
1942 break;
1943 case LOC_TYPEDEF:
1944 yylval.tsym.type = SYMBOL_TYPE (sym);
1945 return TYPENAME;
1946 case LOC_UNDEF:
1947 case LOC_CONST_BYTES:
1948 case LOC_OPTIMIZED_OUT:
1949 error ("Symbol \"%s\" names no location.", simplename);
1950 break;
1951 }
1952 }
1953 else if (!have_full_symbols () && !have_partial_symbols ())
1954 {
1955 error ("No symbol table is loaded. Use the \"file\" command.");
1956 }
1957 else
1958 {
1959 error ("No symbol \"%s\" in current context.", simplename);
1960 }
1961 }
1962
1963 /* Catch single character tokens which are not part of some
1964 longer token. */
1965
1966 switch (*lexptr)
1967 {
1968 case '.': /* Not float for example. */
1969 lexptr++;
1970 while (isspace (*lexptr)) lexptr++;
1971 simplename = match_simple_name_string ();
1972 if (!simplename)
1973 return '.';
1974 return FIELD_NAME;
1975 }
1976
1977 return (ILLEGAL_TOKEN);
1978 }
1979
1980 void
1981 yyerror (msg)
1982 char *msg; /* unused */
1983 {
1984 printf ("Parsing: %s\n", lexptr);
1985 if (yychar < 256)
1986 {
1987 error ("Invalid syntax in expression near character '%c'.", yychar);
1988 }
1989 else
1990 {
1991 error ("Invalid syntax in expression");
1992 }
1993 }
This page took 0.069119 seconds and 5 git commands to generate.