Update/correct copyright notices.
[deliverable/binutils-gdb.git] / gdb / config / arm / tm-arm.h
1 /* Definitions to target GDB to ARM targets.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #ifndef TM_ARM_H
23 #define TM_ARM_H
24
25 /* Forward declarations for prototypes. */
26 struct type;
27 struct value;
28
29 /* Target byte order on ARM defaults to selectable, and defaults to
30 little endian. */
31 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
32 #define TARGET_BYTE_ORDER_DEFAULT LITTLE_ENDIAN
33
34 /* IEEE format floating point. */
35 #define IEEE_FLOAT (1)
36 #define TARGET_DOUBLE_FORMAT (target_byte_order == BIG_ENDIAN \
37 ? &floatformat_ieee_double_big \
38 : &floatformat_ieee_double_littlebyte_bigword)
39
40 /* When reading symbols, we need to zap the low bit of the address,
41 which may be set to 1 for Thumb functions. */
42
43 #define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x1)
44
45 /* Remove useless bits from addresses in a running program. */
46
47 CORE_ADDR arm_addr_bits_remove (CORE_ADDR);
48
49 #define ADDR_BITS_REMOVE(val) (arm_addr_bits_remove (val))
50
51 /* Offset from address of function to start of its code. Zero on most
52 machines. */
53
54 #define FUNCTION_START_OFFSET 0
55
56 /* Advance PC across any function entry prologue instructions to reach
57 some "real" code. */
58
59 extern CORE_ADDR arm_skip_prologue (CORE_ADDR pc);
60
61 #define SKIP_PROLOGUE(pc) (arm_skip_prologue (pc))
62
63 /* Immediately after a function call, return the saved pc. Can't
64 always go through the frames for this because on some machines the
65 new frame is not set up until the new function executes some
66 instructions. */
67
68 #define SAVED_PC_AFTER_CALL(frame) arm_saved_pc_after_call (frame)
69 struct frame_info;
70 extern CORE_ADDR arm_saved_pc_after_call (struct frame_info *);
71
72 /* The following define instruction sequences that will cause ARM
73 cpu's to take an undefined instruction trap. These are used to
74 signal a breakpoint to GDB.
75
76 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
77 modes. A different instruction is required for each mode. The ARM
78 cpu's can also be big or little endian. Thus four different
79 instructions are needed to support all cases.
80
81 Note: ARMv4 defines several new instructions that will take the
82 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
83 not in fact add the new instructions. The new undefined
84 instructions in ARMv4 are all instructions that had no defined
85 behaviour in earlier chips. There is no guarantee that they will
86 raise an exception, but may be treated as NOP's. In practice, it
87 may only safe to rely on instructions matching:
88
89 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
90 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
91 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
92
93 Even this may only true if the condition predicate is true. The
94 following use a condition predicate of ALWAYS so it is always TRUE.
95
96 There are other ways of forcing a breakpoint. ARM Linux, RisciX,
97 and I suspect NetBSD will all use a software interrupt rather than
98 an undefined instruction to force a trap. This can be handled by
99 redefining some or all of the following in a target dependent
100 fashion. */
101
102 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
103 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
104 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
105 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
106
107 /* Stack grows downward. */
108
109 #define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
110
111 /* !!!! if we're using RDP, then we're inserting breakpoints and
112 storing their handles instread of what was in memory. It is nice
113 that this is the same size as a handle - otherwise remote-rdp will
114 have to change. */
115
116 /* BREAKPOINT_FROM_PC uses the program counter value to determine
117 whether a 16- or 32-bit breakpoint should be used. It returns a
118 pointer to a string of bytes that encode a breakpoint instruction,
119 stores the length of the string to *lenptr, and adjusts the pc (if
120 necessary) to point to the actual memory location where the
121 breakpoint should be inserted. */
122
123 extern breakpoint_from_pc_fn arm_breakpoint_from_pc;
124 #define BREAKPOINT_FROM_PC(pcptr, lenptr) arm_breakpoint_from_pc (pcptr, lenptr)
125
126 /* Amount PC must be decremented by after a breakpoint. This is often
127 the number of bytes in BREAKPOINT but not always. */
128
129 #define DECR_PC_AFTER_BREAK 0
130
131 /* Code to execute to print interesting information about the floating
132 point processor (if any) or emulator. No need to define if there
133 is nothing to do. */
134 extern void arm_float_info (void);
135
136 #define FLOAT_INFO { arm_float_info (); }
137
138 /* Say how long (ordinary) registers are. This is a piece of bogosity
139 used in push_word and a few other places; REGISTER_RAW_SIZE is the
140 real way to know how big a register is. */
141
142 #define REGISTER_SIZE 4
143
144 /* Say how long FP registers are. Used for documentation purposes and
145 code readability in this header. IEEE extended doubles are 80
146 bits. DWORD aligned they use 96 bits. */
147 #define FP_REGISTER_RAW_SIZE 12
148
149 /* GCC doesn't support long doubles (extended IEEE values). The FP
150 register virtual size is therefore 64 bits. Used for documentation
151 purposes and code readability in this header. */
152 #define FP_REGISTER_VIRTUAL_SIZE 8
153
154 /* Status registers are the same size as general purpose registers.
155 Used for documentation purposes and code readability in this
156 header. */
157 #define STATUS_REGISTER_SIZE REGISTER_SIZE
158
159 /* Number of machine registers. The only define actually required
160 is NUM_REGS. The other definitions are used for documentation
161 purposes and code readability. */
162 /* For 26 bit ARM code, a fake copy of the PC is placed in register 25 (PS)
163 (and called PS for processor status) so the status bits can be cleared
164 from the PC (register 15). For 32 bit ARM code, a copy of CPSR is placed
165 in PS. */
166 #define NUM_FREGS 8 /* Number of floating point registers. */
167 #define NUM_SREGS 2 /* Number of status registers. */
168 #define NUM_GREGS 16 /* Number of general purpose registers. */
169 #define NUM_REGS (NUM_GREGS + NUM_FREGS + NUM_SREGS)
170
171 /* An array of names of registers. */
172 extern char **arm_register_names;
173
174 #define REGISTER_NAME(i) arm_register_names[i]
175
176 /* Register numbers of various important registers. Note that some of
177 these values are "real" register numbers, and correspond to the
178 general registers of the machine, and some are "phony" register
179 numbers which are too large to be actual register numbers as far as
180 the user is concerned but do serve to get the desired values when
181 passed to read_register. */
182
183 #define A1_REGNUM 0 /* first integer-like argument */
184 #define A4_REGNUM 3 /* last integer-like argument */
185 #define AP_REGNUM 11
186 #define FP_REGNUM 11 /* Contains address of executing stack frame */
187 #define SP_REGNUM 13 /* Contains address of top of stack */
188 #define LR_REGNUM 14 /* address to return to from a function call */
189 #define PC_REGNUM 15 /* Contains program counter */
190 #define F0_REGNUM 16 /* first floating point register */
191 #define F3_REGNUM 19 /* last floating point argument register */
192 #define F7_REGNUM 23 /* last floating point register */
193 #define FPS_REGNUM 24 /* floating point status register */
194 #define PS_REGNUM 25 /* Contains processor status */
195
196 #define THUMB_FP_REGNUM 7 /* R7 is frame register on Thumb */
197
198 #define ARM_NUM_ARG_REGS 4
199 #define ARM_LAST_ARG_REGNUM A4_REGNUM
200 #define ARM_NUM_FP_ARG_REGS 4
201 #define ARM_LAST_FP_ARG_REGNUM F3_REGNUM
202
203 /* Instruction condition field values. */
204 #define INST_EQ 0x0
205 #define INST_NE 0x1
206 #define INST_CS 0x2
207 #define INST_CC 0x3
208 #define INST_MI 0x4
209 #define INST_PL 0x5
210 #define INST_VS 0x6
211 #define INST_VC 0x7
212 #define INST_HI 0x8
213 #define INST_LS 0x9
214 #define INST_GE 0xa
215 #define INST_LT 0xb
216 #define INST_GT 0xc
217 #define INST_LE 0xd
218 #define INST_AL 0xe
219 #define INST_NV 0xf
220
221 #define FLAG_N 0x80000000
222 #define FLAG_Z 0x40000000
223 #define FLAG_C 0x20000000
224 #define FLAG_V 0x10000000
225
226
227
228 /* Total amount of space needed to store our copies of the machine's
229 register state, the array `registers'. */
230
231 #define REGISTER_BYTES ((NUM_GREGS * REGISTER_SIZE) + \
232 (NUM_FREGS * FP_REGISTER_RAW_SIZE) + \
233 (NUM_SREGS * STATUS_REGISTER_SIZE))
234
235 /* Index within `registers' of the first byte of the space for
236 register N. */
237
238 #define REGISTER_BYTE(N) \
239 ((N) < F0_REGNUM \
240 ? (N) * REGISTER_SIZE \
241 : ((N) < PS_REGNUM \
242 ? (NUM_GREGS * REGISTER_SIZE + \
243 ((N) - F0_REGNUM) * FP_REGISTER_RAW_SIZE) \
244 : (NUM_GREGS * REGISTER_SIZE + \
245 NUM_FREGS * FP_REGISTER_RAW_SIZE + \
246 ((N) - FPS_REGNUM) * STATUS_REGISTER_SIZE)))
247
248 /* Number of bytes of storage in the actual machine representation for
249 register N. All registers are 4 bytes, except fp0 - fp7, which are
250 12 bytes in length. */
251 #define REGISTER_RAW_SIZE(N) \
252 ((N) < F0_REGNUM ? REGISTER_SIZE : \
253 (N) < FPS_REGNUM ? FP_REGISTER_RAW_SIZE : STATUS_REGISTER_SIZE)
254
255 /* Number of bytes of storage in a program's representation
256 for register N. */
257 #define REGISTER_VIRTUAL_SIZE(N) \
258 ((N) < F0_REGNUM ? REGISTER_SIZE : \
259 (N) < FPS_REGNUM ? FP_REGISTER_VIRTUAL_SIZE : STATUS_REGISTER_SIZE)
260
261 /* Largest value REGISTER_RAW_SIZE can have. */
262
263 #define MAX_REGISTER_RAW_SIZE FP_REGISTER_RAW_SIZE
264
265 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
266 #define MAX_REGISTER_VIRTUAL_SIZE FP_REGISTER_VIRTUAL_SIZE
267
268 /* Nonzero if register N requires conversion from raw format to
269 virtual format. */
270 extern int arm_register_convertible (unsigned int);
271 #define REGISTER_CONVERTIBLE(REGNUM) (arm_register_convertible (REGNUM))
272
273 /* Convert data from raw format for register REGNUM in buffer FROM to
274 virtual format with type TYPE in buffer TO. */
275
276 extern void arm_register_convert_to_virtual (unsigned int regnum,
277 struct type *type,
278 void *from, void *to);
279 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
280 arm_register_convert_to_virtual (REGNUM, TYPE, FROM, TO)
281
282 /* Convert data from virtual format with type TYPE in buffer FROM to
283 raw format for register REGNUM in buffer TO. */
284
285 extern void arm_register_convert_to_raw (unsigned int regnum,
286 struct type *type,
287 void *from, void *to);
288 #define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
289 arm_register_convert_to_raw (REGNUM, TYPE, FROM, TO)
290
291 /* Return the GDB type object for the "standard" data type of data in
292 register N. */
293
294 #define REGISTER_VIRTUAL_TYPE(N) \
295 (((unsigned)(N) - F0_REGNUM) < NUM_FREGS \
296 ? builtin_type_double : builtin_type_int)
297
298 /* The system C compiler uses a similar structure return convention to gcc */
299 extern use_struct_convention_fn arm_use_struct_convention;
300 #define USE_STRUCT_CONVENTION(gcc_p, type) \
301 arm_use_struct_convention (gcc_p, type)
302
303 /* Store the address of the place in which to copy the structure the
304 subroutine will return. This is called from call_function. */
305
306 #define STORE_STRUCT_RETURN(ADDR, SP) \
307 write_register (A1_REGNUM, (ADDR))
308
309 /* Extract from an array REGBUF containing the (raw) register state a
310 function return value of type TYPE, and copy that, in virtual
311 format, into VALBUF. */
312
313 extern void arm_extract_return_value (struct type *, char[], char *);
314 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
315 arm_extract_return_value ((TYPE), (REGBUF), (VALBUF))
316
317 /* Write into appropriate registers a function return value of type
318 TYPE, given in virtual format. */
319
320 extern void convert_to_extended (void *dbl, void *ptr);
321 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
322 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) { \
323 char _buf[MAX_REGISTER_RAW_SIZE]; \
324 convert_to_extended (VALBUF, _buf); \
325 write_register_bytes (REGISTER_BYTE (F0_REGNUM), _buf, MAX_REGISTER_RAW_SIZE); \
326 } else \
327 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
328
329 /* Extract from an array REGBUF containing the (raw) register state
330 the address in which a function should return its structure value,
331 as a CORE_ADDR (or an expression that can be used as one). */
332
333 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
334 (extract_address ((PTR)(REGBUF), REGISTER_RAW_SIZE(0)))
335
336 /* Specify that for the native compiler variables for a particular
337 lexical context are listed after the beginning LBRAC instead of
338 before in the executables list of symbols. */
339 #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) (!(gcc_p))
340 \f
341
342 /* Define other aspects of the stack frame. We keep the offsets of
343 all saved registers, 'cause we need 'em a lot! We also keep the
344 current size of the stack frame, and the offset of the frame
345 pointer from the stack pointer (for frameless functions, and when
346 we're still in the prologue of a function with a frame) */
347
348 #define EXTRA_FRAME_INFO \
349 struct frame_saved_regs fsr; \
350 int framesize; \
351 int frameoffset; \
352 int framereg;
353
354 extern void arm_init_extra_frame_info (int fromleaf, struct frame_info * fi);
355 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
356 arm_init_extra_frame_info ((fromleaf), (fi))
357
358 /* Return the frame address. On ARM, it is R11; on Thumb it is R7. */
359 CORE_ADDR arm_target_read_fp (void);
360 #define TARGET_READ_FP() arm_target_read_fp ()
361
362 /* Describe the pointer in each stack frame to the previous stack
363 frame (its caller). */
364
365 /* FRAME_CHAIN takes a frame's nominal address and produces the
366 frame's chain-pointer.
367
368 However, if FRAME_CHAIN_VALID returns zero,
369 it means the given frame is the outermost one and has no caller. */
370
371 #define FRAME_CHAIN(thisframe) arm_frame_chain (thisframe)
372 extern CORE_ADDR arm_frame_chain (struct frame_info *);
373
374 extern int arm_frame_chain_valid (CORE_ADDR, struct frame_info *);
375 #define FRAME_CHAIN_VALID(chain, thisframe) \
376 arm_frame_chain_valid (chain, thisframe)
377
378 /* Define other aspects of the stack frame. */
379
380 /* A macro that tells us whether the function invocation represented
381 by FI does not have a frame on the stack associated with it. If it
382 does not, FRAMELESS is set to 1, else 0.
383
384 Sometimes we have functions that do a little setup (like saving the
385 vN registers with the stmdb instruction, but DO NOT set up a frame.
386 The symbol table will report this as a prologue. However, it is
387 important not to try to parse these partial frames as frames, or we
388 will get really confused.
389
390 So I will demand 3 instructions between the start & end of the
391 prologue before I call it a real prologue, i.e. at least
392 mov ip, sp,
393 stmdb sp!, {}
394 sub sp, ip, #4. */
395
396 extern int arm_frameless_function_invocation (struct frame_info *fi);
397 #define FRAMELESS_FUNCTION_INVOCATION(FI) \
398 (arm_frameless_function_invocation (FI))
399
400 /* Saved Pc. */
401
402 #define FRAME_SAVED_PC(FRAME) arm_frame_saved_pc (FRAME)
403 extern CORE_ADDR arm_frame_saved_pc (struct frame_info *);
404
405 #define FRAME_ARGS_ADDRESS(fi) (fi->frame)
406
407 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
408
409 /* Return number of args passed to a frame.
410 Can return -1, meaning no way to tell. */
411
412 #define FRAME_NUM_ARGS(fi) (-1)
413
414 /* Return number of bytes at start of arglist that are not really args. */
415
416 #define FRAME_ARGS_SKIP 0
417
418 /* Put here the code to store, into a struct frame_saved_regs, the
419 addresses of the saved registers of frame described by FRAME_INFO.
420 This includes special registers such as pc and fp saved in special
421 ways in the stack frame. sp is even more special: the address we
422 return for it IS the sp for the next frame. */
423
424 struct frame_saved_regs;
425 struct frame_info;
426 void arm_frame_find_saved_regs (struct frame_info * fi,
427 struct frame_saved_regs * fsr);
428
429 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
430 arm_frame_find_saved_regs (frame_info, &(frame_saved_regs));
431
432 /* Things needed for making the inferior call functions. */
433
434 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
435 sp = arm_push_arguments ((nargs), (args), (sp), (struct_return), (struct_addr))
436 extern CORE_ADDR arm_push_arguments (int, struct value **, CORE_ADDR, int,
437 CORE_ADDR);
438
439 /* Push an empty stack frame, to record the current PC, etc. */
440
441 void arm_push_dummy_frame (void);
442
443 #define PUSH_DUMMY_FRAME arm_push_dummy_frame ()
444
445 /* Discard from the stack the innermost frame, restoring all registers. */
446
447 void arm_pop_frame (void);
448
449 #define POP_FRAME arm_pop_frame ()
450
451 /* This sequence of words is the instructions
452
453 mov lr,pc
454 mov pc,r4
455 illegal
456
457 Note this is 12 bytes. */
458
459 #define CALL_DUMMY {0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe}
460 #define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */
461
462 #define CALL_DUMMY_BREAKPOINT_OFFSET arm_call_dummy_breakpoint_offset()
463 extern int arm_call_dummy_breakpoint_offset (void);
464
465 /* Insert the specified number of args and function address into a
466 call sequence of the above form stored at DUMMYNAME. */
467
468 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
469 arm_fix_call_dummy ((dummyname), (pc), (fun), (nargs), (args), (type), (gcc_p))
470
471 void arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
472 int nargs, struct value ** args,
473 struct type * type, int gcc_p);
474
475 CORE_ADDR arm_get_next_pc (CORE_ADDR pc);
476
477 /* Macros for setting and testing a bit in a minimal symbol that marks
478 it as Thumb function. The MSB of the minimal symbol's "info" field
479 is used for this purpose. This field is already being used to store
480 the symbol size, so the assumption is that the symbol size cannot
481 exceed 2^31.
482
483 COFF_MAKE_MSYMBOL_SPECIAL
484 ELF_MAKE_MSYMBOL_SPECIAL
485
486 These macros test whether the COFF or ELF symbol corresponds to a
487 thumb function, and set a "special" bit in a minimal symbol to
488 indicate that it does.
489
490 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
491 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
492 MSYMBOL_SIZE Returns the size of the minimal symbol,
493 i.e. the "info" field with the "special" bit
494 masked out
495 */
496
497 extern int coff_sym_is_thumb (int val);
498
499 #define MSYMBOL_SET_SPECIAL(msym) \
500 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000)
501 #define MSYMBOL_IS_SPECIAL(msym) \
502 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
503 #define MSYMBOL_SIZE(msym) \
504 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
505
506 /* Thumb symbols are of type STT_LOPROC, (synonymous with STT_ARM_TFUNC) */
507 #define ELF_MAKE_MSYMBOL_SPECIAL(sym,msym) \
508 { if(ELF_ST_TYPE(((elf_symbol_type *)(sym))->internal_elf_sym.st_info) == STT_LOPROC) \
509 MSYMBOL_SET_SPECIAL(msym); }
510
511 #define COFF_MAKE_MSYMBOL_SPECIAL(val,msym) \
512 { if(coff_sym_is_thumb(val)) MSYMBOL_SET_SPECIAL(msym); }
513
514 /* The first 0x20 bytes are the trap vectors. */
515 #define LOWEST_PC 0x20
516
517 /* Function to determine whether MEMADDR is in a Thumb function. */
518 extern int arm_pc_is_thumb (bfd_vma memaddr);
519
520 /* Function to determine whether MEMADDR is in a call dummy called from
521 a Thumb function. */
522 extern int arm_pc_is_thumb_dummy (bfd_vma memaddr);
523
524 #endif /* TM_ARM_H */
This page took 0.053406 seconds and 4 git commands to generate.