* arm-tdep.c (arm_frameless_function_invocation)
[deliverable/binutils-gdb.git] / gdb / config / arm / tm-arm.h
1 /* Definitions to target GDB to ARM targets.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #ifndef TM_ARM_H
23 #define TM_ARM_H
24
25 #ifndef GDB_MULTI_ARCH
26 #define GDB_MULTI_ARCH 1
27 #endif
28
29 #include "regcache.h"
30 #include "floatformat.h"
31
32 /* Forward declarations for prototypes. */
33 struct type;
34 struct value;
35
36 /* IEEE format floating point. */
37 #define TARGET_DOUBLE_FORMAT (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG \
38 ? &floatformat_ieee_double_big \
39 : &floatformat_ieee_double_littlebyte_bigword)
40
41 CORE_ADDR arm_smash_text_address(CORE_ADDR);
42 #define SMASH_TEXT_ADDRESS(ADDR) arm_smash_text_address (ADDR)
43
44 CORE_ADDR arm_addr_bits_remove (CORE_ADDR);
45 #define ADDR_BITS_REMOVE(VAL) arm_addr_bits_remove (VAL)
46
47 /* Offset from address of function to start of its code. Zero on most
48 machines. */
49
50 #define FUNCTION_START_OFFSET 0
51
52 /* Advance PC across any function entry prologue instructions to reach
53 some "real" code. */
54
55 extern CORE_ADDR arm_skip_prologue (CORE_ADDR pc);
56
57 #define SKIP_PROLOGUE(pc) (arm_skip_prologue (pc))
58
59 /* Immediately after a function call, return the saved pc. Can't
60 always go through the frames for this because on some machines the
61 new frame is not set up until the new function executes some
62 instructions. */
63
64 #define SAVED_PC_AFTER_CALL(frame) arm_saved_pc_after_call (frame)
65 struct frame_info;
66 extern CORE_ADDR arm_saved_pc_after_call (struct frame_info *);
67
68 /* The following define instruction sequences that will cause ARM
69 cpu's to take an undefined instruction trap. These are used to
70 signal a breakpoint to GDB.
71
72 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
73 modes. A different instruction is required for each mode. The ARM
74 cpu's can also be big or little endian. Thus four different
75 instructions are needed to support all cases.
76
77 Note: ARMv4 defines several new instructions that will take the
78 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
79 not in fact add the new instructions. The new undefined
80 instructions in ARMv4 are all instructions that had no defined
81 behaviour in earlier chips. There is no guarantee that they will
82 raise an exception, but may be treated as NOP's. In practice, it
83 may only safe to rely on instructions matching:
84
85 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
86 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
87 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
88
89 Even this may only true if the condition predicate is true. The
90 following use a condition predicate of ALWAYS so it is always TRUE.
91
92 There are other ways of forcing a breakpoint. ARM Linux, RISC iX,
93 and NetBSD will all use a software interrupt rather than an
94 undefined instruction to force a trap. This can be handled by
95 redefining some or all of the following in a target dependent
96 fashion. */
97
98 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
99 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
100 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
101 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
102
103 /* Stack grows downward. */
104
105 #define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
106
107 /* !!!! if we're using RDP, then we're inserting breakpoints and
108 storing their handles instread of what was in memory. It is nice
109 that this is the same size as a handle - otherwise remote-rdp will
110 have to change. */
111
112 /* BREAKPOINT_FROM_PC uses the program counter value to determine
113 whether a 16- or 32-bit breakpoint should be used. It returns a
114 pointer to a string of bytes that encode a breakpoint instruction,
115 stores the length of the string to *lenptr, and adjusts the pc (if
116 necessary) to point to the actual memory location where the
117 breakpoint should be inserted. */
118
119 extern breakpoint_from_pc_fn arm_breakpoint_from_pc;
120 #define BREAKPOINT_FROM_PC(pcptr, lenptr) arm_breakpoint_from_pc (pcptr, lenptr)
121
122 /* Amount PC must be decremented by after a breakpoint. This is often
123 the number of bytes in BREAKPOINT but not always. */
124
125 #define DECR_PC_AFTER_BREAK 0
126
127 void arm_print_float_info (void);
128 #define PRINT_FLOAT_INFO() arm_print_float_info ()
129
130 /* Say how long (ordinary) registers are. This is a piece of bogosity
131 used in push_word and a few other places; REGISTER_RAW_SIZE is the
132 real way to know how big a register is. */
133
134 #define REGISTER_SIZE 4
135
136 /* Say how long FP registers are. Used for documentation purposes and
137 code readability in this header. IEEE extended doubles are 80
138 bits. DWORD aligned they use 96 bits. */
139 #define FP_REGISTER_RAW_SIZE 12
140
141 /* GCC doesn't support long doubles (extended IEEE values). The FP
142 register virtual size is therefore 64 bits. Used for documentation
143 purposes and code readability in this header. */
144 #define FP_REGISTER_VIRTUAL_SIZE 8
145
146 /* Status registers are the same size as general purpose registers.
147 Used for documentation purposes and code readability in this
148 header. */
149 #define STATUS_REGISTER_SIZE REGISTER_SIZE
150
151 /* Number of machine registers. The only define actually required
152 is NUM_REGS. The other definitions are used for documentation
153 purposes and code readability. */
154 /* For 26 bit ARM code, a fake copy of the PC is placed in register 25 (PS)
155 (and called PS for processor status) so the status bits can be cleared
156 from the PC (register 15). For 32 bit ARM code, a copy of CPSR is placed
157 in PS. */
158 #define NUM_FREGS 8 /* Number of floating point registers. */
159 #define NUM_SREGS 2 /* Number of status registers. */
160 #define NUM_GREGS 16 /* Number of general purpose registers. */
161 #define NUM_REGS (NUM_GREGS + NUM_FREGS + NUM_SREGS)
162
163 /* An array of names of registers. */
164 extern char **arm_register_names;
165
166 #define REGISTER_NAME(i) arm_register_name(i)
167 char *arm_register_name (int);
168
169 /* Register numbers of various important registers. Note that some of
170 these values are "real" register numbers, and correspond to the
171 general registers of the machine, and some are "phony" register
172 numbers which are too large to be actual register numbers as far as
173 the user is concerned but do serve to get the desired values when
174 passed to read_register. */
175
176 #define A1_REGNUM 0 /* first integer-like argument */
177 #define A4_REGNUM 3 /* last integer-like argument */
178 #define AP_REGNUM 11
179 #define FP_REGNUM 11 /* Contains address of executing stack frame */
180 #define SP_REGNUM 13 /* Contains address of top of stack */
181 #define LR_REGNUM 14 /* address to return to from a function call */
182 #define PC_REGNUM 15 /* Contains program counter */
183 #define F0_REGNUM 16 /* first floating point register */
184 #define F3_REGNUM 19 /* last floating point argument register */
185 #define F7_REGNUM 23 /* last floating point register */
186 #define FPS_REGNUM 24 /* floating point status register */
187 #define PS_REGNUM 25 /* Contains processor status */
188
189 #define THUMB_FP_REGNUM 7 /* R7 is frame register on Thumb */
190
191 #define ARM_NUM_ARG_REGS 4
192 #define ARM_LAST_ARG_REGNUM A4_REGNUM
193 #define ARM_NUM_FP_ARG_REGS 4
194 #define ARM_LAST_FP_ARG_REGNUM F3_REGNUM
195
196 /* Instruction condition field values. */
197 #define INST_EQ 0x0
198 #define INST_NE 0x1
199 #define INST_CS 0x2
200 #define INST_CC 0x3
201 #define INST_MI 0x4
202 #define INST_PL 0x5
203 #define INST_VS 0x6
204 #define INST_VC 0x7
205 #define INST_HI 0x8
206 #define INST_LS 0x9
207 #define INST_GE 0xa
208 #define INST_LT 0xb
209 #define INST_GT 0xc
210 #define INST_LE 0xd
211 #define INST_AL 0xe
212 #define INST_NV 0xf
213
214 #define FLAG_N 0x80000000
215 #define FLAG_Z 0x40000000
216 #define FLAG_C 0x20000000
217 #define FLAG_V 0x10000000
218
219
220
221 /* Total amount of space needed to store our copies of the machine's
222 register state, the array `registers'. */
223
224 #define REGISTER_BYTES ((NUM_GREGS * REGISTER_SIZE) + \
225 (NUM_FREGS * FP_REGISTER_RAW_SIZE) + \
226 (NUM_SREGS * STATUS_REGISTER_SIZE))
227
228 /* Index within `registers' of the first byte of the space for
229 register N. */
230
231 #define REGISTER_BYTE(N) \
232 ((N) < F0_REGNUM \
233 ? (N) * REGISTER_SIZE \
234 : ((N) < PS_REGNUM \
235 ? (NUM_GREGS * REGISTER_SIZE + \
236 ((N) - F0_REGNUM) * FP_REGISTER_RAW_SIZE) \
237 : (NUM_GREGS * REGISTER_SIZE + \
238 NUM_FREGS * FP_REGISTER_RAW_SIZE + \
239 ((N) - FPS_REGNUM) * STATUS_REGISTER_SIZE)))
240
241 /* Number of bytes of storage in the actual machine representation for
242 register N. All registers are 4 bytes, except fp0 - fp7, which are
243 12 bytes in length. */
244 #define REGISTER_RAW_SIZE(N) \
245 ((N) < F0_REGNUM ? REGISTER_SIZE : \
246 (N) < FPS_REGNUM ? FP_REGISTER_RAW_SIZE : STATUS_REGISTER_SIZE)
247
248 /* Number of bytes of storage in a program's representation
249 for register N. */
250 #define REGISTER_VIRTUAL_SIZE(N) \
251 ((N) < F0_REGNUM ? REGISTER_SIZE : \
252 (N) < FPS_REGNUM ? FP_REGISTER_VIRTUAL_SIZE : STATUS_REGISTER_SIZE)
253
254 /* Largest value REGISTER_RAW_SIZE can have. */
255
256 #define MAX_REGISTER_RAW_SIZE FP_REGISTER_RAW_SIZE
257
258 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
259 #define MAX_REGISTER_VIRTUAL_SIZE FP_REGISTER_VIRTUAL_SIZE
260
261 /* Return the GDB type object for the "standard" data type of data in
262 register N. */
263
264 extern struct type *arm_register_type (int regnum);
265 #define REGISTER_VIRTUAL_TYPE(N) arm_register_type (N)
266
267 /* The system C compiler uses a similar structure return convention to gcc */
268 extern use_struct_convention_fn arm_use_struct_convention;
269 #define USE_STRUCT_CONVENTION(gcc_p, type) \
270 arm_use_struct_convention (gcc_p, type)
271
272 /* Store the address of the place in which to copy the structure the
273 subroutine will return. This is called from call_function. */
274
275 #define STORE_STRUCT_RETURN(ADDR, SP) \
276 write_register (A1_REGNUM, (ADDR))
277
278 /* Extract from an array REGBUF containing the (raw) register state a
279 function return value of type TYPE, and copy that, in virtual
280 format, into VALBUF. */
281
282 extern void arm_extract_return_value (struct type *, char[], char *);
283 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
284 arm_extract_return_value ((TYPE), (REGBUF), (VALBUF))
285
286 /* Write into appropriate registers a function return value of type
287 TYPE, given in virtual format. */
288
289 extern void convert_to_extended (void *dbl, void *ptr);
290 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
291 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) { \
292 char _buf[MAX_REGISTER_RAW_SIZE]; \
293 convert_to_extended (VALBUF, _buf); \
294 write_register_bytes (REGISTER_BYTE (F0_REGNUM), _buf, MAX_REGISTER_RAW_SIZE); \
295 } else \
296 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
297
298 /* Extract from an array REGBUF containing the (raw) register state
299 the address in which a function should return its structure value,
300 as a CORE_ADDR (or an expression that can be used as one). */
301
302 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
303 (extract_address ((PTR)(REGBUF), REGISTER_RAW_SIZE(0)))
304
305 /* Specify that for the native compiler variables for a particular
306 lexical context are listed after the beginning LBRAC instead of
307 before in the executables list of symbols. */
308 #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) (!(gcc_p))
309 \f
310 #define CALL_DUMMY_WORDS arm_call_dummy_words
311 extern LONGEST arm_call_dummy_words[];
312
313 #define SIZEOF_CALL_DUMMY_WORDS (3 * sizeof (LONGEST))
314
315 #define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */
316
317 #define CALL_DUMMY_BREAKPOINT_OFFSET arm_call_dummy_breakpoint_offset()
318 extern int arm_call_dummy_breakpoint_offset (void);
319
320 /* Insert the specified number of args and function address into a
321 call sequence of the above form stored at DUMMYNAME. */
322
323 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
324 arm_fix_call_dummy ((dummyname), (pc), (fun), (nargs), (args), (type), (gcc_p))
325
326 void arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
327 int nargs, struct value ** args,
328 struct type * type, int gcc_p);
329
330 /* Most ARMs don't have single stepping capability, so provide a
331 single-stepping mechanism by default */
332 #undef SOFTWARE_SINGLE_STEP_P
333 #define SOFTWARE_SINGLE_STEP_P() 1
334
335 #define SOFTWARE_SINGLE_STEP(sig,bpt) arm_software_single_step((sig), (bpt))
336 void arm_software_single_step (int, int);
337
338 struct minimal_symbol;
339
340 void arm_elf_make_msymbol_special(asymbol *, struct minimal_symbol *);
341 #define ELF_MAKE_MSYMBOL_SPECIAL(SYM,MSYM) \
342 arm_elf_make_msymbol_special (SYM, MSYM)
343
344 void arm_coff_make_msymbol_special(int, struct minimal_symbol *);
345 #define COFF_MAKE_MSYMBOL_SPECIAL(VAL,MSYM) \
346 arm_coff_make_msymbol_special (VAL, MSYM)
347
348 /* The first 0x20 bytes are the trap vectors. */
349 #define LOWEST_PC 0x20
350
351 #endif /* TM_ARM_H */
This page took 0.038099 seconds and 4 git commands to generate.