* arm-tdep.c: Include elf-bfd.h and coff/internal.h.
[deliverable/binutils-gdb.git] / gdb / config / arm / tm-arm.h
1 /* Definitions to target GDB to ARM targets.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #ifndef TM_ARM_H
23 #define TM_ARM_H
24
25 #include "regcache.h"
26 #include "floatformat.h"
27
28 /* Forward declarations for prototypes. */
29 struct type;
30 struct value;
31
32 /* IEEE format floating point. */
33 #define TARGET_DOUBLE_FORMAT (target_byte_order == BFD_ENDIAN_BIG \
34 ? &floatformat_ieee_double_big \
35 : &floatformat_ieee_double_littlebyte_bigword)
36
37 CORE_ADDR arm_smash_text_address(CORE_ADDR);
38 #define SMASH_TEXT_ADDRESS(ADDR) arm_smash_text_address (ADDR)
39
40 CORE_ADDR arm_addr_bits_remove (CORE_ADDR);
41 #define ADDR_BITS_REMOVE(VAL) arm_addr_bits_remove (VAL)
42
43 /* Offset from address of function to start of its code. Zero on most
44 machines. */
45
46 #define FUNCTION_START_OFFSET 0
47
48 /* Advance PC across any function entry prologue instructions to reach
49 some "real" code. */
50
51 extern CORE_ADDR arm_skip_prologue (CORE_ADDR pc);
52
53 #define SKIP_PROLOGUE(pc) (arm_skip_prologue (pc))
54
55 /* Immediately after a function call, return the saved pc. Can't
56 always go through the frames for this because on some machines the
57 new frame is not set up until the new function executes some
58 instructions. */
59
60 #define SAVED_PC_AFTER_CALL(frame) arm_saved_pc_after_call (frame)
61 struct frame_info;
62 extern CORE_ADDR arm_saved_pc_after_call (struct frame_info *);
63
64 /* The following define instruction sequences that will cause ARM
65 cpu's to take an undefined instruction trap. These are used to
66 signal a breakpoint to GDB.
67
68 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
69 modes. A different instruction is required for each mode. The ARM
70 cpu's can also be big or little endian. Thus four different
71 instructions are needed to support all cases.
72
73 Note: ARMv4 defines several new instructions that will take the
74 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
75 not in fact add the new instructions. The new undefined
76 instructions in ARMv4 are all instructions that had no defined
77 behaviour in earlier chips. There is no guarantee that they will
78 raise an exception, but may be treated as NOP's. In practice, it
79 may only safe to rely on instructions matching:
80
81 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
82 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
83 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
84
85 Even this may only true if the condition predicate is true. The
86 following use a condition predicate of ALWAYS so it is always TRUE.
87
88 There are other ways of forcing a breakpoint. ARM Linux, RISC iX,
89 and NetBSD will all use a software interrupt rather than an
90 undefined instruction to force a trap. This can be handled by
91 redefining some or all of the following in a target dependent
92 fashion. */
93
94 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
95 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
96 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
97 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
98
99 /* Stack grows downward. */
100
101 #define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
102
103 /* !!!! if we're using RDP, then we're inserting breakpoints and
104 storing their handles instread of what was in memory. It is nice
105 that this is the same size as a handle - otherwise remote-rdp will
106 have to change. */
107
108 /* BREAKPOINT_FROM_PC uses the program counter value to determine
109 whether a 16- or 32-bit breakpoint should be used. It returns a
110 pointer to a string of bytes that encode a breakpoint instruction,
111 stores the length of the string to *lenptr, and adjusts the pc (if
112 necessary) to point to the actual memory location where the
113 breakpoint should be inserted. */
114
115 extern breakpoint_from_pc_fn arm_breakpoint_from_pc;
116 #define BREAKPOINT_FROM_PC(pcptr, lenptr) arm_breakpoint_from_pc (pcptr, lenptr)
117
118 /* Amount PC must be decremented by after a breakpoint. This is often
119 the number of bytes in BREAKPOINT but not always. */
120
121 #define DECR_PC_AFTER_BREAK 0
122
123 void arm_print_float_info (void);
124 #define PRINT_FLOAT_INFO() arm_print_float_info ()
125
126 /* Say how long (ordinary) registers are. This is a piece of bogosity
127 used in push_word and a few other places; REGISTER_RAW_SIZE is the
128 real way to know how big a register is. */
129
130 #define REGISTER_SIZE 4
131
132 /* Say how long FP registers are. Used for documentation purposes and
133 code readability in this header. IEEE extended doubles are 80
134 bits. DWORD aligned they use 96 bits. */
135 #define FP_REGISTER_RAW_SIZE 12
136
137 /* GCC doesn't support long doubles (extended IEEE values). The FP
138 register virtual size is therefore 64 bits. Used for documentation
139 purposes and code readability in this header. */
140 #define FP_REGISTER_VIRTUAL_SIZE 8
141
142 /* Status registers are the same size as general purpose registers.
143 Used for documentation purposes and code readability in this
144 header. */
145 #define STATUS_REGISTER_SIZE REGISTER_SIZE
146
147 /* Number of machine registers. The only define actually required
148 is NUM_REGS. The other definitions are used for documentation
149 purposes and code readability. */
150 /* For 26 bit ARM code, a fake copy of the PC is placed in register 25 (PS)
151 (and called PS for processor status) so the status bits can be cleared
152 from the PC (register 15). For 32 bit ARM code, a copy of CPSR is placed
153 in PS. */
154 #define NUM_FREGS 8 /* Number of floating point registers. */
155 #define NUM_SREGS 2 /* Number of status registers. */
156 #define NUM_GREGS 16 /* Number of general purpose registers. */
157 #define NUM_REGS (NUM_GREGS + NUM_FREGS + NUM_SREGS)
158
159 /* An array of names of registers. */
160 extern char **arm_register_names;
161
162 #define REGISTER_NAME(i) arm_register_name(i)
163 char *arm_register_name (int);
164
165 /* Register numbers of various important registers. Note that some of
166 these values are "real" register numbers, and correspond to the
167 general registers of the machine, and some are "phony" register
168 numbers which are too large to be actual register numbers as far as
169 the user is concerned but do serve to get the desired values when
170 passed to read_register. */
171
172 #define A1_REGNUM 0 /* first integer-like argument */
173 #define A4_REGNUM 3 /* last integer-like argument */
174 #define AP_REGNUM 11
175 #define FP_REGNUM 11 /* Contains address of executing stack frame */
176 #define SP_REGNUM 13 /* Contains address of top of stack */
177 #define LR_REGNUM 14 /* address to return to from a function call */
178 #define PC_REGNUM 15 /* Contains program counter */
179 #define F0_REGNUM 16 /* first floating point register */
180 #define F3_REGNUM 19 /* last floating point argument register */
181 #define F7_REGNUM 23 /* last floating point register */
182 #define FPS_REGNUM 24 /* floating point status register */
183 #define PS_REGNUM 25 /* Contains processor status */
184
185 #define THUMB_FP_REGNUM 7 /* R7 is frame register on Thumb */
186
187 #define ARM_NUM_ARG_REGS 4
188 #define ARM_LAST_ARG_REGNUM A4_REGNUM
189 #define ARM_NUM_FP_ARG_REGS 4
190 #define ARM_LAST_FP_ARG_REGNUM F3_REGNUM
191
192 /* Instruction condition field values. */
193 #define INST_EQ 0x0
194 #define INST_NE 0x1
195 #define INST_CS 0x2
196 #define INST_CC 0x3
197 #define INST_MI 0x4
198 #define INST_PL 0x5
199 #define INST_VS 0x6
200 #define INST_VC 0x7
201 #define INST_HI 0x8
202 #define INST_LS 0x9
203 #define INST_GE 0xa
204 #define INST_LT 0xb
205 #define INST_GT 0xc
206 #define INST_LE 0xd
207 #define INST_AL 0xe
208 #define INST_NV 0xf
209
210 #define FLAG_N 0x80000000
211 #define FLAG_Z 0x40000000
212 #define FLAG_C 0x20000000
213 #define FLAG_V 0x10000000
214
215
216
217 /* Total amount of space needed to store our copies of the machine's
218 register state, the array `registers'. */
219
220 #define REGISTER_BYTES ((NUM_GREGS * REGISTER_SIZE) + \
221 (NUM_FREGS * FP_REGISTER_RAW_SIZE) + \
222 (NUM_SREGS * STATUS_REGISTER_SIZE))
223
224 /* Index within `registers' of the first byte of the space for
225 register N. */
226
227 #define REGISTER_BYTE(N) \
228 ((N) < F0_REGNUM \
229 ? (N) * REGISTER_SIZE \
230 : ((N) < PS_REGNUM \
231 ? (NUM_GREGS * REGISTER_SIZE + \
232 ((N) - F0_REGNUM) * FP_REGISTER_RAW_SIZE) \
233 : (NUM_GREGS * REGISTER_SIZE + \
234 NUM_FREGS * FP_REGISTER_RAW_SIZE + \
235 ((N) - FPS_REGNUM) * STATUS_REGISTER_SIZE)))
236
237 /* Number of bytes of storage in the actual machine representation for
238 register N. All registers are 4 bytes, except fp0 - fp7, which are
239 12 bytes in length. */
240 #define REGISTER_RAW_SIZE(N) \
241 ((N) < F0_REGNUM ? REGISTER_SIZE : \
242 (N) < FPS_REGNUM ? FP_REGISTER_RAW_SIZE : STATUS_REGISTER_SIZE)
243
244 /* Number of bytes of storage in a program's representation
245 for register N. */
246 #define REGISTER_VIRTUAL_SIZE(N) \
247 ((N) < F0_REGNUM ? REGISTER_SIZE : \
248 (N) < FPS_REGNUM ? FP_REGISTER_VIRTUAL_SIZE : STATUS_REGISTER_SIZE)
249
250 /* Largest value REGISTER_RAW_SIZE can have. */
251
252 #define MAX_REGISTER_RAW_SIZE FP_REGISTER_RAW_SIZE
253
254 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
255 #define MAX_REGISTER_VIRTUAL_SIZE FP_REGISTER_VIRTUAL_SIZE
256
257 /* Return the GDB type object for the "standard" data type of data in
258 register N. */
259
260 extern struct type *arm_register_type (int regnum);
261 #define REGISTER_VIRTUAL_TYPE(N) arm_register_type (N)
262
263 /* The system C compiler uses a similar structure return convention to gcc */
264 extern use_struct_convention_fn arm_use_struct_convention;
265 #define USE_STRUCT_CONVENTION(gcc_p, type) \
266 arm_use_struct_convention (gcc_p, type)
267
268 /* Store the address of the place in which to copy the structure the
269 subroutine will return. This is called from call_function. */
270
271 #define STORE_STRUCT_RETURN(ADDR, SP) \
272 write_register (A1_REGNUM, (ADDR))
273
274 /* Extract from an array REGBUF containing the (raw) register state a
275 function return value of type TYPE, and copy that, in virtual
276 format, into VALBUF. */
277
278 extern void arm_extract_return_value (struct type *, char[], char *);
279 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
280 arm_extract_return_value ((TYPE), (REGBUF), (VALBUF))
281
282 /* Write into appropriate registers a function return value of type
283 TYPE, given in virtual format. */
284
285 extern void convert_to_extended (void *dbl, void *ptr);
286 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
287 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) { \
288 char _buf[MAX_REGISTER_RAW_SIZE]; \
289 convert_to_extended (VALBUF, _buf); \
290 write_register_bytes (REGISTER_BYTE (F0_REGNUM), _buf, MAX_REGISTER_RAW_SIZE); \
291 } else \
292 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
293
294 /* Extract from an array REGBUF containing the (raw) register state
295 the address in which a function should return its structure value,
296 as a CORE_ADDR (or an expression that can be used as one). */
297
298 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
299 (extract_address ((PTR)(REGBUF), REGISTER_RAW_SIZE(0)))
300
301 /* Specify that for the native compiler variables for a particular
302 lexical context are listed after the beginning LBRAC instead of
303 before in the executables list of symbols. */
304 #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) (!(gcc_p))
305 \f
306
307 extern void arm_init_extra_frame_info (int fromleaf, struct frame_info * fi);
308 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
309 arm_init_extra_frame_info ((fromleaf), (fi))
310
311 /* Return the frame address. On ARM, it is R11; on Thumb it is R7. */
312 CORE_ADDR arm_target_read_fp (void);
313 #define TARGET_READ_FP() arm_target_read_fp ()
314
315 /* Describe the pointer in each stack frame to the previous stack
316 frame (its caller). */
317
318 /* FRAME_CHAIN takes a frame's nominal address and produces the
319 frame's chain-pointer.
320
321 However, if FRAME_CHAIN_VALID returns zero,
322 it means the given frame is the outermost one and has no caller. */
323
324 CORE_ADDR arm_frame_chain (struct frame_info *);
325 #define FRAME_CHAIN(thisframe) arm_frame_chain (thisframe)
326
327 int arm_frame_chain_valid (CORE_ADDR, struct frame_info *);
328 #define FRAME_CHAIN_VALID(chain, thisframe) \
329 arm_frame_chain_valid (chain, thisframe)
330
331 /* Define other aspects of the stack frame. */
332
333 int arm_frameless_function_invocation (struct frame_info *fi);
334 #define FRAMELESS_FUNCTION_INVOCATION(FI) arm_frameless_function_invocation(FI)
335
336 CORE_ADDR arm_frame_saved_pc (struct frame_info *);
337 #define FRAME_SAVED_PC(FI) arm_frame_saved_pc (FI)
338
339 CORE_ADDR arm_frame_args_address(struct frame_info *);
340 #define FRAME_ARGS_ADDRESS(FI) arm_frame_args_address(FI)
341
342 CORE_ADDR arm_frame_locals_address(struct frame_info *);
343 #define FRAME_LOCALS_ADDRESS(FI) arm_frame_locals_address(FI)
344
345 int arm_frame_num_args(struct frame_info *);
346 #define FRAME_NUM_ARGS(FI) arm_frame_num_args(FI)
347
348 /* Return number of bytes at start of arglist that are not really args. */
349
350 #define FRAME_ARGS_SKIP 0
351
352 /* Put here the code to store, into a struct frame_saved_regs, the
353 addresses of the saved registers of frame described by FRAME_INFO.
354 This includes special registers such as pc and fp saved in special
355 ways in the stack frame. sp is even more special: the address we
356 return for it IS the sp for the next frame. */
357
358 void arm_frame_init_saved_regs (struct frame_info *);
359 #define FRAME_INIT_SAVED_REGS(frame_info) \
360 arm_frame_init_saved_regs (frame_info);
361
362 /* Things needed for making the inferior call functions. */
363
364 CORE_ADDR arm_push_arguments (int, struct value **, CORE_ADDR, int, CORE_ADDR);
365 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
366 arm_push_arguments ((nargs), (args), (sp), (struct_return), (struct_addr))
367
368 /* Push an empty stack frame, to record the current PC, etc. */
369
370 void arm_push_dummy_frame (void);
371
372 #define PUSH_DUMMY_FRAME arm_push_dummy_frame ()
373
374 /* Discard from the stack the innermost frame, restoring all registers. */
375
376 void arm_pop_frame (void);
377
378 #define POP_FRAME arm_pop_frame ()
379
380 #define CALL_DUMMY_P (1)
381
382 #define CALL_DUMMY_WORDS arm_call_dummy_words
383 extern LONGEST arm_call_dummy_words[];
384
385 #define SIZEOF_CALL_DUMMY_WORDS (3 * sizeof (LONGEST))
386
387 #define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */
388
389 #define CALL_DUMMY_BREAKPOINT_OFFSET arm_call_dummy_breakpoint_offset()
390 extern int arm_call_dummy_breakpoint_offset (void);
391
392 /* Insert the specified number of args and function address into a
393 call sequence of the above form stored at DUMMYNAME. */
394
395 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
396 arm_fix_call_dummy ((dummyname), (pc), (fun), (nargs), (args), (type), (gcc_p))
397
398 void arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
399 int nargs, struct value ** args,
400 struct type * type, int gcc_p);
401
402 /* Most ARMs don't have single stepping capability, so provide a
403 single-stepping mechanism by default */
404 #undef SOFTWARE_SINGLE_STEP_P
405 #define SOFTWARE_SINGLE_STEP_P() 1
406
407 #define SOFTWARE_SINGLE_STEP(sig,bpt) arm_software_single_step((sig), (bpt))
408 void arm_software_single_step (int, int);
409
410 CORE_ADDR arm_get_next_pc (CORE_ADDR pc);
411
412
413 struct minimal_symbol;
414
415 void arm_elf_make_msymbol_special(asymbol *, struct minimal_symbol *);
416 #define ELF_MAKE_MSYMBOL_SPECIAL(SYM,MSYM) \
417 arm_elf_make_msymbol_special (SYM, MSYM)
418
419 void arm_coff_make_msymbol_special(int, struct minimal_symbol *);
420 #define COFF_MAKE_MSYMBOL_SPECIAL(VAL,MSYM) \
421 arm_coff_make_msymbol_special (VAL, MSYM)
422
423 /* The first 0x20 bytes are the trap vectors. */
424 #define LOWEST_PC 0x20
425
426 /* Function to determine whether MEMADDR is in a Thumb function. */
427 extern int arm_pc_is_thumb (bfd_vma memaddr);
428
429 /* Function to determine whether MEMADDR is in a call dummy called from
430 a Thumb function. */
431 extern int arm_pc_is_thumb_dummy (bfd_vma memaddr);
432
433 #endif /* TM_ARM_H */
This page took 0.038227 seconds and 4 git commands to generate.