* config/arm/tm-arm.h: Include "floatformat.h".
[deliverable/binutils-gdb.git] / gdb / config / arm / tm-arm.h
1 /* Definitions to target GDB to ARM targets.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #ifndef TM_ARM_H
23 #define TM_ARM_H
24
25 #include "regcache.h"
26 #include "floatformat.h"
27
28 /* Forward declarations for prototypes. */
29 struct type;
30 struct value;
31
32 /* Target byte order on ARM defaults to selectable, and defaults to
33 little endian. */
34 #define TARGET_BYTE_ORDER_SELECTABLE_P 1
35 #define TARGET_BYTE_ORDER_DEFAULT LITTLE_ENDIAN
36
37 /* IEEE format floating point. */
38 #define IEEE_FLOAT (1)
39 #define TARGET_DOUBLE_FORMAT (target_byte_order == BIG_ENDIAN \
40 ? &floatformat_ieee_double_big \
41 : &floatformat_ieee_double_littlebyte_bigword)
42
43 /* When reading symbols, we need to zap the low bit of the address,
44 which may be set to 1 for Thumb functions. */
45
46 #define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x1)
47
48 /* Remove useless bits from addresses in a running program. */
49
50 CORE_ADDR arm_addr_bits_remove (CORE_ADDR);
51
52 #define ADDR_BITS_REMOVE(val) (arm_addr_bits_remove (val))
53
54 /* Offset from address of function to start of its code. Zero on most
55 machines. */
56
57 #define FUNCTION_START_OFFSET 0
58
59 /* Advance PC across any function entry prologue instructions to reach
60 some "real" code. */
61
62 extern CORE_ADDR arm_skip_prologue (CORE_ADDR pc);
63
64 #define SKIP_PROLOGUE(pc) (arm_skip_prologue (pc))
65
66 /* Immediately after a function call, return the saved pc. Can't
67 always go through the frames for this because on some machines the
68 new frame is not set up until the new function executes some
69 instructions. */
70
71 #define SAVED_PC_AFTER_CALL(frame) arm_saved_pc_after_call (frame)
72 struct frame_info;
73 extern CORE_ADDR arm_saved_pc_after_call (struct frame_info *);
74
75 /* The following define instruction sequences that will cause ARM
76 cpu's to take an undefined instruction trap. These are used to
77 signal a breakpoint to GDB.
78
79 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
80 modes. A different instruction is required for each mode. The ARM
81 cpu's can also be big or little endian. Thus four different
82 instructions are needed to support all cases.
83
84 Note: ARMv4 defines several new instructions that will take the
85 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
86 not in fact add the new instructions. The new undefined
87 instructions in ARMv4 are all instructions that had no defined
88 behaviour in earlier chips. There is no guarantee that they will
89 raise an exception, but may be treated as NOP's. In practice, it
90 may only safe to rely on instructions matching:
91
92 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
93 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
94 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
95
96 Even this may only true if the condition predicate is true. The
97 following use a condition predicate of ALWAYS so it is always TRUE.
98
99 There are other ways of forcing a breakpoint. ARM Linux, RisciX,
100 and I suspect NetBSD will all use a software interrupt rather than
101 an undefined instruction to force a trap. This can be handled by
102 redefining some or all of the following in a target dependent
103 fashion. */
104
105 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
106 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
107 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
108 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
109
110 /* Stack grows downward. */
111
112 #define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
113
114 /* !!!! if we're using RDP, then we're inserting breakpoints and
115 storing their handles instread of what was in memory. It is nice
116 that this is the same size as a handle - otherwise remote-rdp will
117 have to change. */
118
119 /* BREAKPOINT_FROM_PC uses the program counter value to determine
120 whether a 16- or 32-bit breakpoint should be used. It returns a
121 pointer to a string of bytes that encode a breakpoint instruction,
122 stores the length of the string to *lenptr, and adjusts the pc (if
123 necessary) to point to the actual memory location where the
124 breakpoint should be inserted. */
125
126 extern breakpoint_from_pc_fn arm_breakpoint_from_pc;
127 #define BREAKPOINT_FROM_PC(pcptr, lenptr) arm_breakpoint_from_pc (pcptr, lenptr)
128
129 /* Amount PC must be decremented by after a breakpoint. This is often
130 the number of bytes in BREAKPOINT but not always. */
131
132 #define DECR_PC_AFTER_BREAK 0
133
134 /* Code to execute to print interesting information about the floating
135 point processor (if any) or emulator. No need to define if there
136 is nothing to do. */
137 extern void arm_float_info (void);
138
139 #define FLOAT_INFO { arm_float_info (); }
140
141 /* Say how long (ordinary) registers are. This is a piece of bogosity
142 used in push_word and a few other places; REGISTER_RAW_SIZE is the
143 real way to know how big a register is. */
144
145 #define REGISTER_SIZE 4
146
147 /* Say how long FP registers are. Used for documentation purposes and
148 code readability in this header. IEEE extended doubles are 80
149 bits. DWORD aligned they use 96 bits. */
150 #define FP_REGISTER_RAW_SIZE 12
151
152 /* GCC doesn't support long doubles (extended IEEE values). The FP
153 register virtual size is therefore 64 bits. Used for documentation
154 purposes and code readability in this header. */
155 #define FP_REGISTER_VIRTUAL_SIZE 8
156
157 /* Status registers are the same size as general purpose registers.
158 Used for documentation purposes and code readability in this
159 header. */
160 #define STATUS_REGISTER_SIZE REGISTER_SIZE
161
162 /* Number of machine registers. The only define actually required
163 is NUM_REGS. The other definitions are used for documentation
164 purposes and code readability. */
165 /* For 26 bit ARM code, a fake copy of the PC is placed in register 25 (PS)
166 (and called PS for processor status) so the status bits can be cleared
167 from the PC (register 15). For 32 bit ARM code, a copy of CPSR is placed
168 in PS. */
169 #define NUM_FREGS 8 /* Number of floating point registers. */
170 #define NUM_SREGS 2 /* Number of status registers. */
171 #define NUM_GREGS 16 /* Number of general purpose registers. */
172 #define NUM_REGS (NUM_GREGS + NUM_FREGS + NUM_SREGS)
173
174 /* An array of names of registers. */
175 extern char **arm_register_names;
176
177 #define REGISTER_NAME(i) arm_register_names[i]
178
179 /* Register numbers of various important registers. Note that some of
180 these values are "real" register numbers, and correspond to the
181 general registers of the machine, and some are "phony" register
182 numbers which are too large to be actual register numbers as far as
183 the user is concerned but do serve to get the desired values when
184 passed to read_register. */
185
186 #define A1_REGNUM 0 /* first integer-like argument */
187 #define A4_REGNUM 3 /* last integer-like argument */
188 #define AP_REGNUM 11
189 #define FP_REGNUM 11 /* Contains address of executing stack frame */
190 #define SP_REGNUM 13 /* Contains address of top of stack */
191 #define LR_REGNUM 14 /* address to return to from a function call */
192 #define PC_REGNUM 15 /* Contains program counter */
193 #define F0_REGNUM 16 /* first floating point register */
194 #define F3_REGNUM 19 /* last floating point argument register */
195 #define F7_REGNUM 23 /* last floating point register */
196 #define FPS_REGNUM 24 /* floating point status register */
197 #define PS_REGNUM 25 /* Contains processor status */
198
199 #define THUMB_FP_REGNUM 7 /* R7 is frame register on Thumb */
200
201 #define ARM_NUM_ARG_REGS 4
202 #define ARM_LAST_ARG_REGNUM A4_REGNUM
203 #define ARM_NUM_FP_ARG_REGS 4
204 #define ARM_LAST_FP_ARG_REGNUM F3_REGNUM
205
206 /* Instruction condition field values. */
207 #define INST_EQ 0x0
208 #define INST_NE 0x1
209 #define INST_CS 0x2
210 #define INST_CC 0x3
211 #define INST_MI 0x4
212 #define INST_PL 0x5
213 #define INST_VS 0x6
214 #define INST_VC 0x7
215 #define INST_HI 0x8
216 #define INST_LS 0x9
217 #define INST_GE 0xa
218 #define INST_LT 0xb
219 #define INST_GT 0xc
220 #define INST_LE 0xd
221 #define INST_AL 0xe
222 #define INST_NV 0xf
223
224 #define FLAG_N 0x80000000
225 #define FLAG_Z 0x40000000
226 #define FLAG_C 0x20000000
227 #define FLAG_V 0x10000000
228
229
230
231 /* Total amount of space needed to store our copies of the machine's
232 register state, the array `registers'. */
233
234 #define REGISTER_BYTES ((NUM_GREGS * REGISTER_SIZE) + \
235 (NUM_FREGS * FP_REGISTER_RAW_SIZE) + \
236 (NUM_SREGS * STATUS_REGISTER_SIZE))
237
238 /* Index within `registers' of the first byte of the space for
239 register N. */
240
241 #define REGISTER_BYTE(N) \
242 ((N) < F0_REGNUM \
243 ? (N) * REGISTER_SIZE \
244 : ((N) < PS_REGNUM \
245 ? (NUM_GREGS * REGISTER_SIZE + \
246 ((N) - F0_REGNUM) * FP_REGISTER_RAW_SIZE) \
247 : (NUM_GREGS * REGISTER_SIZE + \
248 NUM_FREGS * FP_REGISTER_RAW_SIZE + \
249 ((N) - FPS_REGNUM) * STATUS_REGISTER_SIZE)))
250
251 /* Number of bytes of storage in the actual machine representation for
252 register N. All registers are 4 bytes, except fp0 - fp7, which are
253 12 bytes in length. */
254 #define REGISTER_RAW_SIZE(N) \
255 ((N) < F0_REGNUM ? REGISTER_SIZE : \
256 (N) < FPS_REGNUM ? FP_REGISTER_RAW_SIZE : STATUS_REGISTER_SIZE)
257
258 /* Number of bytes of storage in a program's representation
259 for register N. */
260 #define REGISTER_VIRTUAL_SIZE(N) \
261 ((N) < F0_REGNUM ? REGISTER_SIZE : \
262 (N) < FPS_REGNUM ? FP_REGISTER_VIRTUAL_SIZE : STATUS_REGISTER_SIZE)
263
264 /* Largest value REGISTER_RAW_SIZE can have. */
265
266 #define MAX_REGISTER_RAW_SIZE FP_REGISTER_RAW_SIZE
267
268 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
269 #define MAX_REGISTER_VIRTUAL_SIZE FP_REGISTER_VIRTUAL_SIZE
270
271 /* Nonzero if register N requires conversion from raw format to
272 virtual format. */
273 extern int arm_register_convertible (unsigned int);
274 #define REGISTER_CONVERTIBLE(REGNUM) (arm_register_convertible (REGNUM))
275
276 /* Convert data from raw format for register REGNUM in buffer FROM to
277 virtual format with type TYPE in buffer TO. */
278
279 extern void arm_register_convert_to_virtual (unsigned int regnum,
280 struct type *type,
281 void *from, void *to);
282 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
283 arm_register_convert_to_virtual (REGNUM, TYPE, FROM, TO)
284
285 /* Convert data from virtual format with type TYPE in buffer FROM to
286 raw format for register REGNUM in buffer TO. */
287
288 extern void arm_register_convert_to_raw (unsigned int regnum,
289 struct type *type,
290 void *from, void *to);
291 #define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
292 arm_register_convert_to_raw (REGNUM, TYPE, FROM, TO)
293
294 /* Return the GDB type object for the "standard" data type of data in
295 register N. */
296
297 #define REGISTER_VIRTUAL_TYPE(N) \
298 (((unsigned)(N) - F0_REGNUM) < NUM_FREGS \
299 ? builtin_type_double : builtin_type_int)
300
301 /* The system C compiler uses a similar structure return convention to gcc */
302 extern use_struct_convention_fn arm_use_struct_convention;
303 #define USE_STRUCT_CONVENTION(gcc_p, type) \
304 arm_use_struct_convention (gcc_p, type)
305
306 /* Store the address of the place in which to copy the structure the
307 subroutine will return. This is called from call_function. */
308
309 #define STORE_STRUCT_RETURN(ADDR, SP) \
310 write_register (A1_REGNUM, (ADDR))
311
312 /* Extract from an array REGBUF containing the (raw) register state a
313 function return value of type TYPE, and copy that, in virtual
314 format, into VALBUF. */
315
316 extern void arm_extract_return_value (struct type *, char[], char *);
317 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
318 arm_extract_return_value ((TYPE), (REGBUF), (VALBUF))
319
320 /* Write into appropriate registers a function return value of type
321 TYPE, given in virtual format. */
322
323 extern void convert_to_extended (void *dbl, void *ptr);
324 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
325 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) { \
326 char _buf[MAX_REGISTER_RAW_SIZE]; \
327 convert_to_extended (VALBUF, _buf); \
328 write_register_bytes (REGISTER_BYTE (F0_REGNUM), _buf, MAX_REGISTER_RAW_SIZE); \
329 } else \
330 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
331
332 /* Extract from an array REGBUF containing the (raw) register state
333 the address in which a function should return its structure value,
334 as a CORE_ADDR (or an expression that can be used as one). */
335
336 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
337 (extract_address ((PTR)(REGBUF), REGISTER_RAW_SIZE(0)))
338
339 /* Specify that for the native compiler variables for a particular
340 lexical context are listed after the beginning LBRAC instead of
341 before in the executables list of symbols. */
342 #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) (!(gcc_p))
343 \f
344
345 /* Define other aspects of the stack frame. We keep the offsets of
346 all saved registers, 'cause we need 'em a lot! We also keep the
347 current size of the stack frame, and the offset of the frame
348 pointer from the stack pointer (for frameless functions, and when
349 we're still in the prologue of a function with a frame) */
350
351 #define EXTRA_FRAME_INFO \
352 struct frame_saved_regs fsr; \
353 int framesize; \
354 int frameoffset; \
355 int framereg;
356
357 extern void arm_init_extra_frame_info (int fromleaf, struct frame_info * fi);
358 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
359 arm_init_extra_frame_info ((fromleaf), (fi))
360
361 /* Return the frame address. On ARM, it is R11; on Thumb it is R7. */
362 CORE_ADDR arm_target_read_fp (void);
363 #define TARGET_READ_FP() arm_target_read_fp ()
364
365 /* Describe the pointer in each stack frame to the previous stack
366 frame (its caller). */
367
368 /* FRAME_CHAIN takes a frame's nominal address and produces the
369 frame's chain-pointer.
370
371 However, if FRAME_CHAIN_VALID returns zero,
372 it means the given frame is the outermost one and has no caller. */
373
374 #define FRAME_CHAIN(thisframe) arm_frame_chain (thisframe)
375 extern CORE_ADDR arm_frame_chain (struct frame_info *);
376
377 extern int arm_frame_chain_valid (CORE_ADDR, struct frame_info *);
378 #define FRAME_CHAIN_VALID(chain, thisframe) \
379 arm_frame_chain_valid (chain, thisframe)
380
381 /* Define other aspects of the stack frame. */
382
383 /* A macro that tells us whether the function invocation represented
384 by FI does not have a frame on the stack associated with it. If it
385 does not, FRAMELESS is set to 1, else 0.
386
387 Sometimes we have functions that do a little setup (like saving the
388 vN registers with the stmdb instruction, but DO NOT set up a frame.
389 The symbol table will report this as a prologue. However, it is
390 important not to try to parse these partial frames as frames, or we
391 will get really confused.
392
393 So I will demand 3 instructions between the start & end of the
394 prologue before I call it a real prologue, i.e. at least
395 mov ip, sp,
396 stmdb sp!, {}
397 sub sp, ip, #4. */
398
399 extern int arm_frameless_function_invocation (struct frame_info *fi);
400 #define FRAMELESS_FUNCTION_INVOCATION(FI) \
401 (arm_frameless_function_invocation (FI))
402
403 /* Saved Pc. */
404
405 #define FRAME_SAVED_PC(FRAME) arm_frame_saved_pc (FRAME)
406 extern CORE_ADDR arm_frame_saved_pc (struct frame_info *);
407
408 #define FRAME_ARGS_ADDRESS(fi) (fi->frame)
409
410 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
411
412 /* Return number of args passed to a frame.
413 Can return -1, meaning no way to tell. */
414
415 #define FRAME_NUM_ARGS(fi) (-1)
416
417 /* Return number of bytes at start of arglist that are not really args. */
418
419 #define FRAME_ARGS_SKIP 0
420
421 /* Put here the code to store, into a struct frame_saved_regs, the
422 addresses of the saved registers of frame described by FRAME_INFO.
423 This includes special registers such as pc and fp saved in special
424 ways in the stack frame. sp is even more special: the address we
425 return for it IS the sp for the next frame. */
426
427 struct frame_saved_regs;
428 struct frame_info;
429 void arm_frame_find_saved_regs (struct frame_info * fi,
430 struct frame_saved_regs * fsr);
431
432 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
433 arm_frame_find_saved_regs (frame_info, &(frame_saved_regs));
434
435 /* Things needed for making the inferior call functions. */
436
437 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
438 sp = arm_push_arguments ((nargs), (args), (sp), (struct_return), (struct_addr))
439 extern CORE_ADDR arm_push_arguments (int, struct value **, CORE_ADDR, int,
440 CORE_ADDR);
441
442 /* Push an empty stack frame, to record the current PC, etc. */
443
444 void arm_push_dummy_frame (void);
445
446 #define PUSH_DUMMY_FRAME arm_push_dummy_frame ()
447
448 /* Discard from the stack the innermost frame, restoring all registers. */
449
450 void arm_pop_frame (void);
451
452 #define POP_FRAME arm_pop_frame ()
453
454 /* This sequence of words is the instructions
455
456 mov lr,pc
457 mov pc,r4
458 illegal
459
460 Note this is 12 bytes. */
461
462 #define CALL_DUMMY {0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe}
463 #define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */
464
465 #define CALL_DUMMY_BREAKPOINT_OFFSET arm_call_dummy_breakpoint_offset()
466 extern int arm_call_dummy_breakpoint_offset (void);
467
468 /* Insert the specified number of args and function address into a
469 call sequence of the above form stored at DUMMYNAME. */
470
471 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
472 arm_fix_call_dummy ((dummyname), (pc), (fun), (nargs), (args), (type), (gcc_p))
473
474 void arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
475 int nargs, struct value ** args,
476 struct type * type, int gcc_p);
477
478 CORE_ADDR arm_get_next_pc (CORE_ADDR pc);
479
480 /* Macros for setting and testing a bit in a minimal symbol that marks
481 it as Thumb function. The MSB of the minimal symbol's "info" field
482 is used for this purpose. This field is already being used to store
483 the symbol size, so the assumption is that the symbol size cannot
484 exceed 2^31.
485
486 COFF_MAKE_MSYMBOL_SPECIAL
487 ELF_MAKE_MSYMBOL_SPECIAL
488
489 These macros test whether the COFF or ELF symbol corresponds to a
490 thumb function, and set a "special" bit in a minimal symbol to
491 indicate that it does.
492
493 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
494 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
495 MSYMBOL_SIZE Returns the size of the minimal symbol,
496 i.e. the "info" field with the "special" bit
497 masked out
498 */
499
500 extern int coff_sym_is_thumb (int val);
501
502 #define MSYMBOL_SET_SPECIAL(msym) \
503 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000)
504 #define MSYMBOL_IS_SPECIAL(msym) \
505 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
506 #define MSYMBOL_SIZE(msym) \
507 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
508
509 /* Thumb symbols are of type STT_LOPROC, (synonymous with STT_ARM_TFUNC) */
510 #define ELF_MAKE_MSYMBOL_SPECIAL(sym,msym) \
511 { if(ELF_ST_TYPE(((elf_symbol_type *)(sym))->internal_elf_sym.st_info) == STT_LOPROC) \
512 MSYMBOL_SET_SPECIAL(msym); }
513
514 #define COFF_MAKE_MSYMBOL_SPECIAL(val,msym) \
515 { if(coff_sym_is_thumb(val)) MSYMBOL_SET_SPECIAL(msym); }
516
517 /* The first 0x20 bytes are the trap vectors. */
518 #define LOWEST_PC 0x20
519
520 /* Function to determine whether MEMADDR is in a Thumb function. */
521 extern int arm_pc_is_thumb (bfd_vma memaddr);
522
523 /* Function to determine whether MEMADDR is in a call dummy called from
524 a Thumb function. */
525 extern int arm_pc_is_thumb_dummy (bfd_vma memaddr);
526
527 #endif /* TM_ARM_H */
This page took 0.039449 seconds and 4 git commands to generate.