80e90c0e2b2467422211333951c07eda9178d7ad
[deliverable/binutils-gdb.git] / gdb / config / i386 / tm-i386.h
1 /* Macro definitions for GDB on an Intel i[345]86.
2 Copyright 1995, 1996, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #ifndef TM_I386_H
23 #define TM_I386_H 1
24
25 #define GDB_MULTI_ARCH GDB_MULTI_ARCH_PARTIAL
26
27 #include "regcache.h"
28
29 /* Forward declarations for prototypes. */
30 struct frame_info;
31 struct frame_saved_regs;
32 struct value;
33 struct type;
34
35 #define TARGET_BYTE_ORDER LITTLE_ENDIAN
36
37 /* The format used for `long double' on almost all i386 targets is the
38 i387 extended floating-point format. In fact, of all targets in the
39 GCC 2.95 tree, only OSF/1 does it different, and insists on having
40 a `long double' that's not `long' at all. */
41
42 #define TARGET_LONG_DOUBLE_FORMAT &floatformat_i387_ext
43
44 /* Although the i386 extended floating-point has only 80 significant
45 bits, a `long double' actually takes up 96, probably to enforce
46 alignment. */
47
48 #define TARGET_LONG_DOUBLE_BIT 96
49
50 /* Used for example in valprint.c:print_floating() to enable checking
51 for NaN's */
52
53 #define IEEE_FLOAT (1)
54
55 /* Number of traps that happen between exec'ing the shell to run an
56 inferior, and when we finally get to the inferior code. This is 2
57 on most implementations. */
58
59 #define START_INFERIOR_TRAPS_EXPECTED 2
60
61 /* Offset from address of function to start of its code.
62 Zero on most machines. */
63
64 #define FUNCTION_START_OFFSET 0
65
66 /* Advance PC across any function entry prologue instructions to reach some
67 "real" code. */
68
69 #define SKIP_PROLOGUE(frompc) (i386_skip_prologue (frompc))
70
71 extern int i386_skip_prologue (int);
72
73 /* Immediately after a function call, return the saved pc. */
74
75 #define SAVED_PC_AFTER_CALL(frame) i386_saved_pc_after_call (frame)
76 extern CORE_ADDR i386_saved_pc_after_call (struct frame_info *frame);
77
78 /* Stack grows downward. */
79
80 #define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
81
82 /* Sequence of bytes for breakpoint instruction. */
83
84 #define BREAKPOINT {0xcc}
85
86 /* Amount PC must be decremented by after a breakpoint. This is often the
87 number of bytes in BREAKPOINT but not always. */
88
89 #define DECR_PC_AFTER_BREAK 1
90
91 /* Say how long (ordinary) registers are. This is a piece of bogosity
92 used in push_word and a few other places; REGISTER_RAW_SIZE is the
93 real way to know how big a register is. */
94
95 #define REGISTER_SIZE 4
96
97 /* This register file is parameterized by two macros:
98 HAVE_I387_REGS --- register file should include i387 registers
99 HAVE_SSE_REGS --- register file should include SSE registers
100 If HAVE_SSE_REGS is #defined, then HAVE_I387_REGS must also be #defined.
101
102 However, GDB code should not test those macros with #ifdef, since
103 that makes code which is annoying to multi-arch. Instead, GDB code
104 should check the values of NUM_GREGS, NUM_FREGS, and NUM_SSE_REGS,
105 which will eventually get mapped onto architecture vector entries.
106
107 It's okay to use the macros in tm-*.h files, though, since those
108 files will get completely replaced when we multi-arch anyway. */
109
110 /* Number of general registers, present on every 32-bit x86 variant. */
111 #define NUM_GREGS (16)
112
113 /* Number of floating-point unit registers. */
114 #ifdef HAVE_I387_REGS
115 #define NUM_FREGS (16)
116 #else
117 #define NUM_FREGS (0)
118 #endif
119
120 /* Number of SSE registers. */
121 #ifdef HAVE_SSE_REGS
122 #define NUM_SSE_REGS (9)
123 #else
124 #define NUM_SSE_REGS (0)
125 #endif
126
127 #define NUM_REGS (NUM_GREGS + NUM_FREGS + NUM_SSE_REGS)
128
129 /* Largest number of registers we could have in any configuration. */
130 #define MAX_NUM_REGS (16 + 16 + 9)
131
132 /* Register numbers of various important registers.
133 Note that some of these values are "real" register numbers,
134 and correspond to the general registers of the machine,
135 and some are "phony" register numbers which are too large
136 to be actual register numbers as far as the user is concerned
137 but do serve to get the desired values when passed to read_register. */
138
139 #define FP_REGNUM 5 /* (ebp) Contains address of executing stack
140 frame */
141 #define SP_REGNUM 4 /* (usp) Contains address of top of stack */
142 #define PC_REGNUM 8 /* (eip) Contains program counter */
143 #define PS_REGNUM 9 /* (ps) Contains processor status */
144
145 /* These registers are present only if HAVE_I387_REGS is #defined.
146 We promise that FP0 .. FP7 will always be consecutive register numbers. */
147 #define FP0_REGNUM 16 /* first FPU floating-point register */
148 #define FP7_REGNUM 23 /* last FPU floating-point register */
149
150 /* All of these control registers (except for FCOFF and FDOFF) are
151 sixteen bits long (at most) in the FPU, but are zero-extended to
152 thirty-two bits in GDB's register file. This makes it easier to
153 compute the size of the control register file, and somewhat easier
154 to convert to and from the FSAVE instruction's 32-bit format. */
155 #define FIRST_FPU_CTRL_REGNUM 24
156 #define FCTRL_REGNUM 24 /* FPU control word */
157 #define FPC_REGNUM 24 /* old name for FCTRL_REGNUM */
158 #define FSTAT_REGNUM 25 /* FPU status word */
159 #define FTAG_REGNUM 26 /* FPU register tag word */
160 #define FCS_REGNUM 27 /* FPU instruction's code segment selector
161 16 bits, called "FPU Instruction Pointer
162 Selector" in the x86 manuals */
163 #define FCOFF_REGNUM 28 /* FPU instruction's offset within segment
164 ("Fpu Code OFFset") */
165 #define FDS_REGNUM 29 /* FPU operand's data segment */
166 #define FDOFF_REGNUM 30 /* FPU operand's offset within segment */
167 #define FOP_REGNUM 31 /* FPU opcode, bottom eleven bits */
168 #define LAST_FPU_CTRL_REGNUM 31
169
170 /* These registers are present only if HAVE_SSE_REGS is #defined.
171 We promise that XMM0 .. XMM7 will always have consecutive reg numbers. */
172 #define XMM0_REGNUM 32 /* first SSE data register */
173 #define XMM7_REGNUM 39 /* last SSE data register */
174 #define MXCSR_REGNUM 40 /* Streaming SIMD Extension control/status */
175
176 #define IS_FP_REGNUM(n) (FP0_REGNUM <= (n) && (n) <= FP7_REGNUM)
177 #define IS_SSE_REGNUM(n) (XMM0_REGNUM <= (n) && (n) <= XMM7_REGNUM)
178
179 #define FPU_REG_RAW_SIZE (10)
180
181 /* Return the name of register REG. */
182
183 #define REGISTER_NAME(reg) i386_register_name ((reg))
184 extern char *i386_register_name (int reg);
185
186 /* Use the "default" register numbering scheme for stabs and COFF. */
187
188 #define STAB_REG_TO_REGNUM(reg) i386_stab_reg_to_regnum ((reg))
189 #define SDB_REG_TO_REGNUM(reg) i386_stab_reg_to_regnum ((reg))
190 extern int i386_stab_reg_to_regnum (int reg);
191
192 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
193
194 #define DWARF_REG_TO_REGNUM(reg) i386_dwarf_reg_to_regnum ((reg))
195 #define DWARF2_REG_TO_REGNUM(reg) i386_dwarf_reg_to_regnum ((reg))
196 extern int i386_dwarf_reg_to_regnum (int reg);
197
198 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to be
199 in use on any of the supported i386 targets. */
200 \f
201
202 /* Sizes of individual register sets. These cover the entire register
203 file, so summing up the sizes of those portions actually present
204 yields REGISTER_BYTES. */
205 #define SIZEOF_GREGS (NUM_GREGS * 4)
206 #define SIZEOF_FPU_REGS (8 * FPU_REG_RAW_SIZE)
207 #define SIZEOF_FPU_CTRL_REGS \
208 ((LAST_FPU_CTRL_REGNUM - FIRST_FPU_CTRL_REGNUM + 1) * 4)
209 #define SIZEOF_SSE_REGS (8 * 16 + 4)
210
211
212 /* Total amount of space needed to store our copies of the machine's register
213 state, the array `registers'. */
214 #ifdef HAVE_SSE_REGS
215 #define REGISTER_BYTES \
216 (SIZEOF_GREGS + SIZEOF_FPU_REGS + SIZEOF_FPU_CTRL_REGS + SIZEOF_SSE_REGS)
217 #else
218 #ifdef HAVE_I387_REGS
219 #define REGISTER_BYTES (SIZEOF_GREGS + SIZEOF_FPU_REGS + SIZEOF_FPU_CTRL_REGS)
220 #else
221 #define REGISTER_BYTES (SIZEOF_GREGS)
222 #endif
223 #endif
224
225 /* Return the offset into the register array of the start of register
226 number REG. */
227 #define REGISTER_BYTE(reg) i386_register_byte ((reg))
228 extern int i386_register_byte (int reg);
229
230 /* Return the number of bytes of storage in GDB's register array
231 occupied by register REG. */
232 #define REGISTER_RAW_SIZE(reg) i386_register_raw_size ((reg))
233 extern int i386_register_raw_size (int reg);
234
235 /* Largest value REGISTER_RAW_SIZE can have. */
236 #define MAX_REGISTER_RAW_SIZE 16
237
238 /* Return the size in bytes of the virtual type of register REG. */
239 #define REGISTER_VIRTUAL_SIZE(reg) i386_register_virtual_size ((reg))
240 extern int i386_register_virtual_size (int reg);
241
242 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
243 #define MAX_REGISTER_VIRTUAL_SIZE 16
244
245 /* Return the GDB type object for the "standard" data type of data in
246 register REGNUM. */
247
248 #define REGISTER_VIRTUAL_TYPE(regnum) i386_register_virtual_type (regnum)
249 extern struct type *i386_register_virtual_type (int regnum);
250
251 /* Return true iff register REGNUM's virtual format is different from
252 its raw format. */
253
254 #define REGISTER_CONVERTIBLE(regnum) i386_register_convertible (regnum)
255 extern int i386_register_convertible (int regnum);
256
257 /* Convert data from raw format for register REGNUM in buffer FROM to
258 virtual format with type TYPE in buffer TO. */
259
260 #define REGISTER_CONVERT_TO_VIRTUAL(regnum, type, from, to) \
261 i386_register_convert_to_virtual ((regnum), (type), (from), (to))
262 extern void i386_register_convert_to_virtual (int regnum, struct type *type,
263 char *from, char *to);
264
265 /* Convert data from virtual format with type TYPE in buffer FROM to
266 raw format for register REGNUM in buffer TO. */
267
268 #define REGISTER_CONVERT_TO_RAW(type, regnum, from, to) \
269 i386_register_convert_to_raw ((type), (regnum), (from), (to))
270 extern void i386_register_convert_to_raw (struct type *type, int regnum,
271 char *from, char *to);
272
273 /* Print out the i387 floating point state. */
274 #ifdef HAVE_I387_REGS
275 extern void i387_float_info (void);
276 #define FLOAT_INFO { i387_float_info (); }
277 #endif
278 \f
279
280 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
281 i386_push_arguments ((nargs), (args), (sp), (struct_return), (struct_addr))
282 extern CORE_ADDR i386_push_arguments (int nargs, struct value **args,
283 CORE_ADDR sp, int struct_return,
284 CORE_ADDR struct_addr);
285
286 /* Store the address of the place in which to copy the structure the
287 subroutine will return. This is called from call_function. */
288
289 #define STORE_STRUCT_RETURN(addr, sp) \
290 i386_store_struct_return ((addr), (sp))
291 extern void i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
292
293 /* Extract from an array REGBUF containing the (raw) register state
294 a function return value of type TYPE, and copy that, in virtual format,
295 into VALBUF. */
296
297 #define EXTRACT_RETURN_VALUE(type, regbuf, valbuf) \
298 i386_extract_return_value ((type), (regbuf), (valbuf))
299 extern void i386_extract_return_value (struct type *type, char *regbuf,
300 char *valbuf);
301
302 /* Write into the appropriate registers a function return value stored
303 in VALBUF of type TYPE, given in virtual format. */
304
305 #define STORE_RETURN_VALUE(type, valbuf) \
306 i386_store_return_value ((type), (valbuf))
307 extern void i386_store_return_value (struct type *type, char *valbuf);
308
309 /* Extract from an array REGBUF containing the (raw) register state
310 the address in which a function should return its structure value,
311 as a CORE_ADDR. */
312
313 #define EXTRACT_STRUCT_VALUE_ADDRESS(regbuf) \
314 i386_extract_struct_value_address ((regbuf))
315 extern CORE_ADDR i386_extract_struct_value_address (char *regbuf);
316
317 /* The following redefines make backtracing through sigtramp work.
318 They manufacture a fake sigtramp frame and obtain the saved pc in sigtramp
319 from the sigcontext structure which is pushed by the kernel on the
320 user stack, along with a pointer to it. */
321
322 /* Return the chain-pointer for FRAME. In the case of the i386, the
323 frame's nominal address is the address of a 4-byte word containing
324 the calling frame's address. */
325
326 #define FRAME_CHAIN(frame) i386_frame_chain ((frame))
327 extern CORE_ADDR i386_frame_chain (struct frame_info *frame);
328
329 /* Determine whether the function invocation represented by FRAME does
330 not have a from on the stack associated with it. If it does not,
331 return non-zero, otherwise return zero. */
332
333 #define FRAMELESS_FUNCTION_INVOCATION(frame) \
334 i386_frameless_function_invocation (frame)
335 extern int i386_frameless_function_invocation (struct frame_info *frame);
336
337 /* Return the saved program counter for FRAME. */
338
339 #define FRAME_SAVED_PC(frame) i386_frame_saved_pc (frame)
340 extern CORE_ADDR i386_frame_saved_pc (struct frame_info *frame);
341
342 #define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
343
344 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
345
346 /* Return number of args passed to a frame. Can return -1, meaning no way
347 to tell, which is typical now that the C compiler delays popping them. */
348
349 #define FRAME_NUM_ARGS(fi) (i386_frame_num_args(fi))
350
351 extern int i386_frame_num_args (struct frame_info *);
352
353 /* Return number of bytes at start of arglist that are not really args. */
354
355 #define FRAME_ARGS_SKIP 8
356
357 /* Put here the code to store, into a struct frame_saved_regs,
358 the addresses of the saved registers of frame described by FRAME_INFO.
359 This includes special registers such as pc and fp saved in special
360 ways in the stack frame. sp is even more special:
361 the address we return for it IS the sp for the next frame. */
362
363 extern void i386_frame_init_saved_regs (struct frame_info *);
364 #define FRAME_INIT_SAVED_REGS(FI) i386_frame_init_saved_regs (FI)
365
366 \f
367
368 /* Things needed for making the inferior call functions. */
369
370 /* "An argument's size is increased, if necessary, to make it a
371 multiple of [32 bit] words. This may require tail padding,
372 depending on the size of the argument" - from the x86 ABI. */
373 #define PARM_BOUNDARY 32
374
375 /* Push an empty stack frame, to record the current PC, etc. */
376
377 #define PUSH_DUMMY_FRAME { i386_push_dummy_frame (); }
378
379 extern void i386_push_dummy_frame (void);
380
381 /* Discard from the stack the innermost frame, restoring all registers. */
382
383 #define POP_FRAME { i386_pop_frame (); }
384
385 extern void i386_pop_frame (void);
386 \f
387
388 /* this is
389 * call 11223344 (32 bit relative)
390 * int3
391 */
392
393 #define CALL_DUMMY { 0x223344e8, 0xcc11 }
394
395 #define CALL_DUMMY_LENGTH 8
396
397 #define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */
398
399 #define CALL_DUMMY_BREAKPOINT_OFFSET 5
400
401 /* Insert the specified number of args and function address
402 into a call sequence of the above form stored at DUMMYNAME. */
403
404 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
405 i386_fix_call_dummy (dummyname, pc, fun, nargs, args, type, gcc_p)
406 extern void i386_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
407 int nargs, struct value **args,
408 struct type *type, int gcc_p);
409
410 /* FIXME: kettenis/2000-06-12: These do not belong here. */
411 extern void print_387_control_word (unsigned int);
412 extern void print_387_status_word (unsigned int);
413
414 /* Offset from SP to first arg on stack at first instruction of a function */
415
416 #define SP_ARG0 (1 * 4)
417
418 #endif /* ifndef TM_I386_H */
This page took 0.039298 seconds and 3 git commands to generate.