+ * gdbarch.sh (DEPRECATED_EXTRACT_RETURN_VALUE): Rename
[deliverable/binutils-gdb.git] / gdb / config / mips / tm-mips.h
1 /* Definitions to make GDB run on a mips box under 4.3bsd.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000
4 Free Software Foundation, Inc.
5 Contributed by Per Bothner (bothner@cs.wisc.edu) at U.Wisconsin
6 and by Alessandro Forin (af@cs.cmu.edu) at CMU..
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #ifndef TM_MIPS_H
26 #define TM_MIPS_H 1
27
28 #define GDB_MULTI_ARCH 1
29
30 #include "regcache.h"
31
32 struct frame_info;
33 struct symbol;
34 struct type;
35 struct value;
36
37 #include <bfd.h>
38 #include "coff/sym.h" /* Needed for PDR below. */
39 #include "coff/symconst.h"
40
41 /* PC should be masked to remove possible MIPS16 flag */
42 #if !defined (GDB_TARGET_MASK_DISAS_PC)
43 #define GDB_TARGET_MASK_DISAS_PC(addr) UNMAKE_MIPS16_ADDR(addr)
44 #endif
45 #if !defined (GDB_TARGET_UNMASK_DISAS_PC)
46 #define GDB_TARGET_UNMASK_DISAS_PC(addr) MAKE_MIPS16_ADDR(addr)
47 #endif
48
49 /* The name of the usual type of MIPS processor that is in the target
50 system. */
51
52 #define DEFAULT_MIPS_TYPE "generic"
53
54 /* Remove useless bits from the stack pointer. */
55
56 #define TARGET_READ_SP() ADDR_BITS_REMOVE (read_register (SP_REGNUM))
57
58 /* Offset from address of function to start of its code.
59 Zero on most machines. */
60
61 #define FUNCTION_START_OFFSET 0
62
63 /* Return non-zero if PC points to an instruction which will cause a step
64 to execute both the instruction at PC and an instruction at PC+4. */
65 extern int mips_step_skips_delay (CORE_ADDR);
66 #define STEP_SKIPS_DELAY_P (1)
67 #define STEP_SKIPS_DELAY(pc) (mips_step_skips_delay (pc))
68
69 /* Are we currently handling a signal */
70
71 extern int in_sigtramp (CORE_ADDR, char *);
72 #define IN_SIGTRAMP(pc, name) in_sigtramp(pc, name)
73
74 /* Say how long (ordinary) registers are. This is a piece of bogosity
75 used in push_word and a few other places; REGISTER_RAW_SIZE is the
76 real way to know how big a register is. */
77
78 #define REGISTER_SIZE 4
79
80 /* The size of a register. This is predefined in tm-mips64.h. We
81 can't use REGISTER_SIZE because that is used for various other
82 things. */
83
84 #ifndef MIPS_REGSIZE
85 #define MIPS_REGSIZE 4
86 #endif
87
88 /* Number of machine registers */
89
90 #ifndef NUM_REGS
91 #define NUM_REGS 90
92 #endif
93
94 /* Given the register index, return the name of the corresponding
95 register. */
96 extern char *mips_register_name (int regnr);
97 #define REGISTER_NAME(i) mips_register_name (i)
98
99 /* Initializer for an array of names of registers.
100 There should be NUM_REGS strings in this initializer. */
101
102 #ifndef MIPS_REGISTER_NAMES
103 #define MIPS_REGISTER_NAMES \
104 { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
105 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
106 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
107 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", \
108 "sr", "lo", "hi", "bad", "cause","pc", \
109 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
110 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
111 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",\
112 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",\
113 "fsr", "fir", "fp", "", \
114 "", "", "", "", "", "", "", "", \
115 "", "", "", "", "", "", "", "", \
116 }
117 #endif
118
119 /* Register numbers of various important registers.
120 Note that some of these values are "real" register numbers,
121 and correspond to the general registers of the machine,
122 and some are "phony" register numbers which are too large
123 to be actual register numbers as far as the user is concerned
124 but do serve to get the desired values when passed to read_register. */
125
126 #define ZERO_REGNUM 0 /* read-only register, always 0 */
127 #define V0_REGNUM 2 /* Function integer return value */
128 #define A0_REGNUM 4 /* Loc of first arg during a subr call */
129 #define T9_REGNUM 25 /* Contains address of callee in PIC */
130 #define SP_REGNUM 29 /* Contains address of top of stack */
131 #define RA_REGNUM 31 /* Contains return address value */
132 #define PS_REGNUM 32 /* Contains processor status */
133 #define HI_REGNUM 34 /* Multiple/divide temp */
134 #define LO_REGNUM 33 /* ... */
135 #define BADVADDR_REGNUM 35 /* bad vaddr for addressing exception */
136 #define CAUSE_REGNUM 36 /* describes last exception */
137 #define PC_REGNUM 37 /* Contains program counter */
138 #define FP0_REGNUM 38 /* Floating point register 0 (single float) */
139 #define FPA0_REGNUM (FP0_REGNUM+12) /* First float argument register */
140 #define FCRCS_REGNUM 70 /* FP control/status */
141 #define FCRIR_REGNUM 71 /* FP implementation/revision */
142 #define FP_REGNUM 72 /* Pseudo register that contains true address of executing stack frame */
143 #define UNUSED_REGNUM 73 /* Never used, FIXME */
144 #define FIRST_EMBED_REGNUM 74 /* First CP0 register for embedded use */
145 #define PRID_REGNUM 89 /* Processor ID */
146 #define LAST_EMBED_REGNUM 89 /* Last one */
147
148 /* Define DO_REGISTERS_INFO() to do machine-specific formatting
149 of register dumps. */
150
151 #define DO_REGISTERS_INFO(_regnum, fp) mips_do_registers_info(_regnum, fp)
152 extern void mips_do_registers_info (int, int);
153
154 /* Total amount of space needed to store our copies of the machine's
155 register state, the array `registers'. */
156
157 #define REGISTER_BYTES (NUM_REGS*MIPS_REGSIZE)
158
159 /* Index within `registers' of the first byte of the space for
160 register N. */
161
162 #define REGISTER_BYTE(N) ((N) * MIPS_REGSIZE)
163
164 /* Covert between the RAW and VIRTUAL registers.
165
166 Some MIPS (SR, FSR, FIR) have a `raw' size of MIPS_REGSIZE but are
167 really 32 bit registers. This is a legacy of the 64 bit MIPS GDB
168 protocol which transfers 64 bits for 32 bit registers. */
169
170 extern int mips_register_convertible (int reg_nr);
171 #define REGISTER_CONVERTIBLE(N) (mips_register_convertible ((N)))
172
173
174 void mips_register_convert_to_virtual (int reg_nr, struct type *virtual_type,
175 char *raw_buf, char *virt_buf);
176 #define REGISTER_CONVERT_TO_VIRTUAL(N,VIRTUAL_TYPE,RAW_BUF,VIRT_BUF) \
177 mips_register_convert_to_virtual (N,VIRTUAL_TYPE,RAW_BUF,VIRT_BUF)
178
179 void mips_register_convert_to_raw (struct type *virtual_type, int reg_nr,
180 char *virt_buf, char *raw_buf);
181 #define REGISTER_CONVERT_TO_RAW(VIRTUAL_TYPE,N,VIRT_BUF,RAW_BUF) \
182 mips_register_convert_to_raw (VIRTUAL_TYPE,N,VIRT_BUF,RAW_BUF)
183
184 /* Number of bytes of storage in the program's representation
185 for register N. */
186
187 #define REGISTER_VIRTUAL_SIZE(N) TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (N))
188
189 /* Largest value REGISTER_RAW_SIZE can have. */
190
191 #define MAX_REGISTER_RAW_SIZE 8
192
193 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
194
195 #define MAX_REGISTER_VIRTUAL_SIZE 8
196
197 /* Return the GDB type object for the "standard" data type of data in
198 register N. */
199
200 #ifndef REGISTER_VIRTUAL_TYPE
201 #define REGISTER_VIRTUAL_TYPE(N) \
202 (((N) >= FP0_REGNUM && (N) < FP0_REGNUM+32) ? builtin_type_float \
203 : ((N) == 32 /*SR*/) ? builtin_type_uint32 \
204 : ((N) >= 70 && (N) <= 89) ? builtin_type_uint32 \
205 : builtin_type_int)
206 #endif
207
208 /* All mips targets store doubles in a register pair with the least
209 significant register in the lower numbered register.
210 If the target is big endian, double register values need conversion
211 between memory and register formats. */
212
213 #define REGISTER_CONVERT_TO_TYPE(n, type, buffer) \
214 do {if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG \
215 && REGISTER_RAW_SIZE (n) == 4 \
216 && (n) >= FP0_REGNUM && (n) < FP0_REGNUM + 32 \
217 && TYPE_CODE(type) == TYPE_CODE_FLT \
218 && TYPE_LENGTH(type) == 8) { \
219 char __temp[4]; \
220 memcpy (__temp, ((char *)(buffer))+4, 4); \
221 memcpy (((char *)(buffer))+4, (buffer), 4); \
222 memcpy (((char *)(buffer)), __temp, 4); }} while (0)
223
224 #define REGISTER_CONVERT_FROM_TYPE(n, type, buffer) \
225 do {if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG \
226 && REGISTER_RAW_SIZE (n) == 4 \
227 && (n) >= FP0_REGNUM && (n) < FP0_REGNUM + 32 \
228 && TYPE_CODE(type) == TYPE_CODE_FLT \
229 && TYPE_LENGTH(type) == 8) { \
230 char __temp[4]; \
231 memcpy (__temp, ((char *)(buffer))+4, 4); \
232 memcpy (((char *)(buffer))+4, (buffer), 4); \
233 memcpy (((char *)(buffer)), __temp, 4); }} while (0)
234
235 /* Store the address of the place in which to copy the structure the
236 subroutine will return. Handled by mips_push_arguments. */
237
238 #define STORE_STRUCT_RETURN(addr, sp)
239 /**/
240
241 /* Extract from an array REGBUF containing the (raw) register state
242 a function return value of type TYPE, and copy that, in virtual format,
243 into VALBUF. XXX floats */
244
245 #define DEPRECATED_EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
246 mips_extract_return_value(TYPE, REGBUF, VALBUF)
247 extern void mips_extract_return_value (struct type *, char[], char *);
248
249 /* Write into appropriate registers a function return value
250 of type TYPE, given in virtual format. */
251
252 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
253 mips_store_return_value(TYPE, VALBUF)
254 extern void mips_store_return_value (struct type *, char *);
255
256 /* Extract from an array REGBUF containing the (raw) register state
257 the address in which a function should return its structure value,
258 as a CORE_ADDR (or an expression that can be used as one). */
259 /* The address is passed in a0 upon entry to the function, but when
260 the function exits, the compiler has copied the value to v0. This
261 convention is specified by the System V ABI, so I think we can rely
262 on it. */
263
264 #define DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
265 (extract_address (REGBUF + REGISTER_BYTE (V0_REGNUM), \
266 REGISTER_RAW_SIZE (V0_REGNUM)))
267
268 extern use_struct_convention_fn mips_use_struct_convention;
269 #define USE_STRUCT_CONVENTION(gcc_p, type) mips_use_struct_convention (gcc_p, type)
270 \f
271 /* Describe the pointer in each stack frame to the previous stack frame
272 (its caller). */
273
274 /* FRAME_CHAIN takes a frame's nominal address
275 and produces the frame's chain-pointer. */
276
277 #define FRAME_CHAIN(thisframe) (CORE_ADDR) mips_frame_chain (thisframe)
278 extern CORE_ADDR mips_frame_chain (struct frame_info *);
279
280 /* Define other aspects of the stack frame. */
281
282
283 /* A macro that tells us whether the function invocation represented
284 by FI does not have a frame on the stack associated with it. If it
285 does not, FRAMELESS is set to 1, else 0. */
286 /* We handle this differently for mips, and maybe we should not */
287
288 #define FRAMELESS_FUNCTION_INVOCATION(FI) (0)
289
290 /* Saved Pc. */
291
292 #define FRAME_SAVED_PC(FRAME) (mips_frame_saved_pc(FRAME))
293 extern CORE_ADDR mips_frame_saved_pc (struct frame_info *);
294
295 #define FRAME_ARGS_ADDRESS(fi) (fi)->frame
296
297 #define FRAME_LOCALS_ADDRESS(fi) (fi)->frame
298
299 /* Return number of args passed to a frame.
300 Can return -1, meaning no way to tell. */
301
302 #define FRAME_NUM_ARGS(fi) (mips_frame_num_args(fi))
303 extern int mips_frame_num_args (struct frame_info *);
304
305 /* Return number of bytes at start of arglist that are not really args. */
306
307 #define FRAME_ARGS_SKIP 0
308
309 /* Put here the code to store, into a struct frame_saved_regs,
310 the addresses of the saved registers of frame described by FRAME_INFO.
311 This includes special registers such as pc and fp saved in special
312 ways in the stack frame. sp is even more special:
313 the address we return for it IS the sp for the next frame. */
314
315 #define FRAME_INIT_SAVED_REGS(frame_info) \
316 do { \
317 if ((frame_info)->saved_regs == NULL) \
318 mips_find_saved_regs (frame_info); \
319 (frame_info)->saved_regs[SP_REGNUM] = (frame_info)->frame; \
320 } while (0)
321 extern void mips_find_saved_regs (struct frame_info *);
322 \f
323
324 /* Things needed for making the inferior call functions. */
325
326 /* Stack must be aligned on 32-bit boundaries when synthesizing
327 function calls. We don't need STACK_ALIGN, PUSH_ARGUMENTS will
328 handle it. */
329
330 extern CORE_ADDR mips_push_arguments (int, struct value **, CORE_ADDR, int,
331 CORE_ADDR);
332 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
333 (mips_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr)))
334
335 extern CORE_ADDR mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp);
336 #define PUSH_RETURN_ADDRESS(PC, SP) (mips_push_return_address ((PC), (SP)))
337
338 /* Push an empty stack frame, to record the current PC, etc. */
339
340 #define PUSH_DUMMY_FRAME mips_push_dummy_frame()
341 extern void mips_push_dummy_frame (void);
342
343 /* Discard from the stack the innermost frame, restoring all registers. */
344
345 #define POP_FRAME mips_pop_frame()
346 extern void mips_pop_frame (void);
347
348 #define CALL_DUMMY_START_OFFSET (0)
349
350 #define CALL_DUMMY_BREAKPOINT_OFFSET (0)
351
352 /* When calling functions on Irix 5 (or any MIPS SVR4 ABI compliant
353 platform), $t9 ($25) (Dest_Reg) contains the address of the callee
354 (used for PIC). It doesn't hurt to do this on other systems; $t9
355 will be ignored. */
356 #define FIX_CALL_DUMMY(dummyname, start_sp, fun, nargs, args, rettype, gcc_p) \
357 write_register(T9_REGNUM, fun)
358
359 #define CALL_DUMMY_ADDRESS() (mips_call_dummy_address ())
360 extern CORE_ADDR mips_call_dummy_address (void);
361
362 /* Special symbol found in blocks associated with routines. We can hang
363 mips_extra_func_info_t's off of this. */
364
365 #define MIPS_EFI_SYMBOL_NAME "__GDB_EFI_INFO__"
366 extern void ecoff_relocate_efi (struct symbol *, CORE_ADDR);
367
368 /* Specific information about a procedure.
369 This overlays the MIPS's PDR records,
370 mipsread.c (ab)uses this to save memory */
371
372 typedef struct mips_extra_func_info
373 {
374 long numargs; /* number of args to procedure (was iopt) */
375 bfd_vma high_addr; /* upper address bound */
376 long frame_adjust; /* offset of FP from SP (used on MIPS16) */
377 PDR pdr; /* Procedure descriptor record */
378 }
379 *mips_extra_func_info_t;
380
381 extern void mips_init_extra_frame_info (int fromleaf, struct frame_info *);
382 #define INIT_EXTRA_FRAME_INFO(fromleaf, fci) \
383 mips_init_extra_frame_info(fromleaf, fci)
384
385 extern void mips_print_extra_frame_info (struct frame_info *frame);
386 #define PRINT_EXTRA_FRAME_INFO(fi) \
387 mips_print_extra_frame_info (fi)
388
389 /* It takes two values to specify a frame on the MIPS.
390
391 In fact, the *PC* is the primary value that sets up a frame. The
392 PC is looked up to see what function it's in; symbol information
393 from that function tells us which register is the frame pointer
394 base, and what offset from there is the "virtual frame pointer".
395 (This is usually an offset from SP.) On most non-MIPS machines,
396 the primary value is the SP, and the PC, if needed, disambiguates
397 multiple functions with the same SP. But on the MIPS we can't do
398 that since the PC is not stored in the same part of the frame every
399 time. This does not seem to be a very clever way to set up frames,
400 but there is nothing we can do about that. */
401
402 #define SETUP_ARBITRARY_FRAME(argc, argv) setup_arbitrary_frame (argc, argv)
403 extern struct frame_info *setup_arbitrary_frame (int, CORE_ADDR *);
404
405 /* Select the default mips disassembler */
406
407 #define TM_PRINT_INSN_MACH 0
408
409
410 /* These are defined in mdebugread.c and are used in mips-tdep.c */
411 extern CORE_ADDR sigtramp_address, sigtramp_end;
412 extern void fixup_sigtramp (void);
413
414 /* Defined in mips-tdep.c and used in remote-mips.c */
415 extern char *mips_read_processor_type (void);
416
417 /* Functions for dealing with MIPS16 call and return stubs. */
418 #define IN_SOLIB_CALL_TRAMPOLINE(pc, name) mips_in_call_stub (pc, name)
419 #define IN_SOLIB_RETURN_TRAMPOLINE(pc, name) mips_in_return_stub (pc, name)
420 #define SKIP_TRAMPOLINE_CODE(pc) mips_skip_stub (pc)
421 #define IGNORE_HELPER_CALL(pc) mips_ignore_helper (pc)
422 extern int mips_in_call_stub (CORE_ADDR pc, char *name);
423 extern int mips_in_return_stub (CORE_ADDR pc, char *name);
424 extern CORE_ADDR mips_skip_stub (CORE_ADDR pc);
425 extern int mips_ignore_helper (CORE_ADDR pc);
426
427 #ifndef TARGET_MIPS
428 #define TARGET_MIPS
429 #endif
430
431 /* Definitions and declarations used by mips-tdep.c and remote-mips.c */
432 #define MIPS_INSTLEN 4 /* Length of an instruction */
433 #define MIPS16_INSTLEN 2 /* Length of an instruction on MIPS16 */
434 #define MIPS_NUMREGS 32 /* Number of integer or float registers */
435 typedef unsigned long t_inst; /* Integer big enough to hold an instruction */
436
437 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
438 macros to test, set, or clear bit 0 of addresses. */
439 #define IS_MIPS16_ADDR(addr) ((addr) & 1)
440 #define MAKE_MIPS16_ADDR(addr) ((addr) | 1)
441 #define UNMAKE_MIPS16_ADDR(addr) ((addr) & ~1)
442
443 #endif /* TM_MIPS_H */
444
445 /* Macros for setting and testing a bit in a minimal symbol that
446 marks it as 16-bit function. The MSB of the minimal symbol's
447 "info" field is used for this purpose. This field is already
448 being used to store the symbol size, so the assumption is
449 that the symbol size cannot exceed 2^31.
450
451 ELF_MAKE_MSYMBOL_SPECIAL
452 tests whether an ELF symbol is "special", i.e. refers
453 to a 16-bit function, and sets a "special" bit in a
454 minimal symbol to mark it as a 16-bit function
455 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
456 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
457 the "info" field with the "special" bit masked out
458 */
459
460 #define ELF_MAKE_MSYMBOL_SPECIAL(sym,msym) \
461 { \
462 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16) { \
463 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000); \
464 SYMBOL_VALUE_ADDRESS (msym) |= 1; \
465 } \
466 }
467
468 #define MSYMBOL_IS_SPECIAL(msym) \
469 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
470 #define MSYMBOL_SIZE(msym) \
471 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
472
473
474 /* Command to set the processor type. */
475 extern void mips_set_processor_type_command (char *, int);
476
477
478 /* Single step based on where the current instruction will take us. */
479 extern void mips_software_single_step (enum target_signal, int);
This page took 0.039189 seconds and 5 git commands to generate.