import gdb-19990504 snapshot
[deliverable/binutils-gdb.git] / gdb / config / ns32k / tm-merlin.h
1 /* Definitions to target GDB to a merlin under utek 2.1
2 Copyright 1986, 1987, 1989, 1991, 1993 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #define TARGET_BYTE_ORDER LITTLE_ENDIAN
21
22 /* Offset from address of function to start of its code.
23 Zero on most machines. */
24
25 #define FUNCTION_START_OFFSET 0
26
27 /* Advance PC across any function entry prologue instructions
28 to reach some "real" code. */
29
30 extern CORE_ADDR merlin_skip_prologue PARAMS ((CORE_ADDR));
31 #define SKIP_PROLOGUE(pc) (merlin_skip_prologue (pc))
32
33 /* Immediately after a function call, return the saved pc.
34 Can't always go through the frames for this because on some machines
35 the new frame is not set up until the new function executes
36 some instructions. */
37
38 #define SAVED_PC_AFTER_CALL(frame) \
39 read_memory_integer (read_register (SP_REGNUM), 4)
40
41 /* Address of end of stack space. */
42
43 #define STACK_END_ADDR (0x800000)
44
45 /* Stack grows downward. */
46
47 #define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
48
49 /* Sequence of bytes for breakpoint instruction. */
50
51 #define BREAKPOINT {0xf2}
52
53 /* Amount PC must be decremented by after a breakpoint.
54 This is often the number of bytes in BREAKPOINT
55 but not always. */
56
57 #define DECR_PC_AFTER_BREAK 0
58
59 /* Define this to say that the "svc" insn is followed by
60 codes in memory saying which kind of system call it is. */
61
62 #define NS32K_SVC_IMMED_OPERANDS
63
64 /* Say how long (ordinary) registers are. This is a piece of bogosity
65 used in push_word and a few other places; REGISTER_RAW_SIZE is the
66 real way to know how big a register is. */
67
68 #define REGISTER_SIZE 4
69
70 /* Number of machine registers */
71
72 #define NUM_REGS 25
73
74 #define NUM_GENERAL_REGS 8
75
76 /* Initializer for an array of names of registers.
77 There should be NUM_REGS strings in this initializer. */
78
79 #define REGISTER_NAMES {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
80 "pc", "sp", "fp", "ps", \
81 "fsr", \
82 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
83 "l0", "l1", "l2", "l3", "l4", \
84 }
85
86 /* Register numbers of various important registers.
87 Note that some of these values are "real" register numbers,
88 and correspond to the general registers of the machine,
89 and some are "phony" register numbers which are too large
90 to be actual register numbers as far as the user is concerned
91 but do serve to get the desired values when passed to read_register. */
92
93 #define AP_REGNUM FP_REGNUM
94 #define FP_REGNUM 10 /* Contains address of executing stack frame */
95 #define SP_REGNUM 9 /* Contains address of top of stack */
96 #define PC_REGNUM 8 /* Contains program counter */
97 #define PS_REGNUM 11 /* Contains processor status */
98 #define FPS_REGNUM 12 /* Floating point status register */
99 #define FP0_REGNUM 13 /* Floating point register 0 */
100 #define LP0_REGNUM 21 /* Double register 0 (same as FP0) */
101
102 /* Total amount of space needed to store our copies of the machine's
103 register state, the array `registers'. */
104 #define REGISTER_BYTES ((NUM_REGS - 4) * sizeof (int) + 4 * sizeof (double))
105
106 /* Index within `registers' of the first byte of the space for
107 register N. */
108
109 #define REGISTER_BYTE(N) ((N) >= LP0_REGNUM ? \
110 LP0_REGNUM * 4 + ((N) - LP0_REGNUM) * 8 : (N) * 4)
111
112 /* Number of bytes of storage in the actual machine representation
113 for register N. On the 32000, all regs are 4 bytes
114 except for the doubled floating registers. */
115
116 #define REGISTER_RAW_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4)
117
118 /* Number of bytes of storage in the program's representation
119 for register N. On the 32000, all regs are 4 bytes
120 except for the doubled floating registers. */
121
122 #define REGISTER_VIRTUAL_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4)
123
124 /* Largest value REGISTER_RAW_SIZE can have. */
125
126 #define MAX_REGISTER_RAW_SIZE 8
127
128 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
129
130 #define MAX_REGISTER_VIRTUAL_SIZE 8
131
132 /* Return the GDB type object for the "standard" data type
133 of data in register N. */
134
135 #define REGISTER_VIRTUAL_TYPE(N) \
136 ((N) >= FP0_REGNUM ? \
137 ((N) >= LP0_REGNUM ? \
138 builtin_type_double \
139 : builtin_type_float) \
140 : builtin_type_int)
141
142 /* Store the address of the place in which to copy the structure the
143 subroutine will return. This is called from call_function.
144
145 On this machine this is a no-op, as gcc doesn't run on it yet.
146 This calling convention is not used. */
147
148 #define STORE_STRUCT_RETURN(ADDR, SP)
149
150 /* Extract from an array REGBUF containing the (raw) register state
151 a function return value of type TYPE, and copy that, in virtual format,
152 into VALBUF. */
153
154 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
155 memcpy (VALBUF, REGBUF, TYPE_LENGTH (TYPE))
156
157 /* Write into appropriate registers a function return value
158 of type TYPE, given in virtual format. */
159
160 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
161 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
162
163 /* Extract from an array REGBUF containing the (raw) register state
164 the address in which a function should return its structure value,
165 as a CORE_ADDR (or an expression that can be used as one). */
166
167 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
168 \f
169 /* Describe the pointer in each stack frame to the previous stack frame
170 (its caller). */
171
172 /* FRAME_CHAIN takes a frame's nominal address
173 and produces the frame's chain-pointer. */
174
175 /* In the case of the Merlin, the frame's nominal address is the FP value,
176 and at that address is saved previous FP value as a 4-byte word. */
177
178 #define FRAME_CHAIN(thisframe) \
179 (!inside_entry_file ((thisframe)->pc) ? \
180 read_memory_integer ((thisframe)->frame, 4) :\
181 0)
182
183 /* Define other aspects of the stack frame. */
184
185 #define FRAME_SAVED_PC(FRAME) (read_memory_integer ((FRAME)->frame + 4, 4))
186
187 /* compute base of arguments */
188 #define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
189
190 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
191
192 /* Return number of args passed to a frame.
193 Can return -1, meaning no way to tell. */
194
195 #define FRAME_NUM_ARGS(numargs, fi) \
196 { CORE_ADDR pc; \
197 int insn; \
198 int addr_mode; \
199 int width; \
200 \
201 pc = FRAME_SAVED_PC (fi); \
202 insn = read_memory_integer (pc,2); \
203 addr_mode = (insn >> 11) & 0x1f; \
204 insn = insn & 0x7ff; \
205 if ((insn & 0x7fc) == 0x57c \
206 && addr_mode == 0x14) /* immediate */ \
207 { if (insn == 0x57c) /* adjspb */ \
208 width = 1; \
209 else if (insn == 0x57d) /* adjspw */ \
210 width = 2; \
211 else if (insn == 0x57f) /* adjspd */ \
212 width = 4; \
213 numargs = read_memory_integer (pc+2,width); \
214 if (width > 1) \
215 flip_bytes (&numargs, width); \
216 numargs = - sign_extend (numargs, width*8) / 4; } \
217 else numargs = -1; \
218 }
219
220 /* Return number of bytes at start of arglist that are not really args. */
221
222 #define FRAME_ARGS_SKIP 8
223
224 /* Put here the code to store, into a struct frame_saved_regs,
225 the addresses of the saved registers of frame described by FRAME_INFO.
226 This includes special registers such as pc and fp saved in special
227 ways in the stack frame. sp is even more special:
228 the address we return for it IS the sp for the next frame. */
229
230 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
231 { int regmask,regnum; \
232 int localcount; \
233 CORE_ADDR enter_addr; \
234 CORE_ADDR next_addr; \
235 \
236 enter_addr = get_pc_function_start ((frame_info)->pc); \
237 regmask = read_memory_integer (enter_addr+1, 1); \
238 localcount = ns32k_localcount (enter_addr); \
239 next_addr = (frame_info)->frame + localcount; \
240 for (regnum = 0; regnum < 8; regnum++, regmask >>= 1) \
241 (frame_saved_regs).regs[regnum] \
242 = (regmask & 1) ? (next_addr -= 4) : 0; \
243 (frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame + 4; \
244 (frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 4; \
245 (frame_saved_regs).regs[FP_REGNUM] \
246 = read_memory_integer ((frame_info)->frame, 4); }
247
248 \f
249 /* Things needed for making the inferior call functions. */
250
251 /* Push an empty stack frame, to record the current PC, etc. */
252
253 #define PUSH_DUMMY_FRAME \
254 { register CORE_ADDR sp = read_register (SP_REGNUM); \
255 register int regnum; \
256 sp = push_word (sp, read_register (PC_REGNUM)); \
257 sp = push_word (sp, read_register (FP_REGNUM)); \
258 write_register (FP_REGNUM, sp); \
259 for (regnum = 0; regnum < 8; regnum++) \
260 sp = push_word (sp, read_register (regnum)); \
261 write_register (SP_REGNUM, sp); \
262 }
263
264 /* Discard from the stack the innermost frame, restoring all registers. */
265
266 #define POP_FRAME \
267 { register struct frame_info *frame = get_current_frame (); \
268 register CORE_ADDR fp; \
269 register int regnum; \
270 struct frame_saved_regs fsr; \
271 struct frame_info *fi; \
272 fp = frame->frame; \
273 get_frame_saved_regs (frame, &fsr); \
274 for (regnum = 0; regnum < 8; regnum++) \
275 if (fsr.regs[regnum]) \
276 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
277 write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
278 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
279 write_register (SP_REGNUM, fp + 8); \
280 flush_cached_frames (); \
281 }
282
283 /* This sequence of words is the instructions
284 enter 0xff,0 82 ff 00
285 jsr @0x00010203 7f ae c0 01 02 03
286 adjspd 0x69696969 7f a5 01 02 03 04
287 bpt f2
288 Note this is 16 bytes. */
289
290 #define CALL_DUMMY { 0x7f00ff82, 0x0201c0ae, 0x01a57f03, 0xf2040302 }
291
292 #define CALL_DUMMY_START_OFFSET 3
293 #define CALL_DUMMY_LENGTH 16
294 #define CALL_DUMMY_ADDR 5
295 #define CALL_DUMMY_NARGS 11
296
297 /* Insert the specified number of args and function address
298 into a call sequence of the above form stored at DUMMYNAME. */
299
300 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
301 { int flipped = fun | 0xc0000000; \
302 flip_bytes (&flipped, 4); \
303 *((int *) (((char *) dummyname)+CALL_DUMMY_ADDR)) = flipped; \
304 flipped = - nargs * 4; \
305 flip_bytes (&flipped, 4); \
306 *((int *) (((char *) dummyname)+CALL_DUMMY_NARGS)) = flipped; \
307 }
This page took 0.036887 seconds and 4 git commands to generate.