import gdb-1999-05-25 snapshot
[deliverable/binutils-gdb.git] / gdb / config / rs6000 / tm-rs6000.h
1 /* Parameters for target execution on an RS6000, for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1997
3 Free Software Foundation, Inc.
4 Contributed by IBM Corporation.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #ifdef __STDC__ /* Forward decls for prototypes */
23 struct frame_info;
24 struct type;
25 struct value;
26 #endif
27
28 /* Minimum possible text address in AIX */
29
30 #define TEXT_SEGMENT_BASE 0x10000000
31
32 /* Load segment of a given pc value. */
33
34 #define PC_LOAD_SEGMENT(PC) pc_load_segment_name(PC)
35 extern char *pc_load_segment_name PARAMS ((CORE_ADDR));
36
37 /* AIX cc seems to get this right. */
38
39 #define BELIEVE_PCC_PROMOTION 1
40
41 /* return true if a given `pc' value is in `call dummy' function. */
42 /* FIXME: This just checks for the end of the stack, which is broken
43 for things like stepping through gcc nested function stubs. */
44 #define PC_IN_CALL_DUMMY(STOP_PC, STOP_SP, STOP_FRAME_ADDR) \
45 (STOP_SP < STOP_PC && STOP_PC < STACK_END_ADDR)
46
47 #if 0
48 extern unsigned int text_start, data_start;
49 extern char *corefile;
50 #endif
51 extern int inferior_pid;
52
53 /* We are missing register descriptions in the system header files. Sigh! */
54
55 struct regs {
56 int gregs [32]; /* general purpose registers */
57 int pc; /* program conter */
58 int ps; /* processor status, or machine state */
59 };
60
61 struct fp_status {
62 double fpregs [32]; /* floating GP registers */
63 };
64
65
66 /* To be used by skip_prologue. */
67
68 struct rs6000_framedata {
69 int offset; /* total size of frame --- the distance
70 by which we decrement sp to allocate
71 the frame */
72 int saved_gpr; /* smallest # of saved gpr */
73 int saved_fpr; /* smallest # of saved fpr */
74 int alloca_reg; /* alloca register number (frame ptr) */
75 char frameless; /* true if frameless functions. */
76 char nosavedpc; /* true if pc not saved. */
77 int gpr_offset; /* offset of saved gprs from prev sp */
78 int fpr_offset; /* offset of saved fprs from prev sp */
79 int lr_offset; /* offset of saved lr */
80 int cr_offset; /* offset of saved cr */
81 };
82
83 /* Define the byte order of the machine. */
84
85 #define TARGET_BYTE_ORDER_DEFAULT BIG_ENDIAN
86
87 /* AIX's assembler doesn't grok dollar signs in identifiers.
88 So we use dots instead. This item must be coordinated with G++. */
89 #undef CPLUS_MARKER
90 #define CPLUS_MARKER '.'
91
92 /* Offset from address of function to start of its code.
93 Zero on most machines. */
94
95 #define FUNCTION_START_OFFSET 0
96
97 /* Advance PC across any function entry prologue instructions
98 to reach some "real" code. */
99
100 extern CORE_ADDR rs6000_skip_prologue PARAMS ((CORE_ADDR));
101 #define SKIP_PROLOGUE(pc) (rs6000_skip_prologue (pc))
102
103 extern CORE_ADDR skip_prologue PARAMS((CORE_ADDR, struct rs6000_framedata *));
104
105
106 /* If PC is in some function-call trampoline code, return the PC
107 where the function itself actually starts. If not, return NULL. */
108
109 #define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc)
110 extern CORE_ADDR skip_trampoline_code PARAMS ((CORE_ADDR));
111
112 /* Number of trap signals we need to skip over, once the inferior process
113 starts running. */
114
115 #define START_INFERIOR_TRAPS_EXPECTED 2
116
117 /* AIX has a couple of strange returns from wait(). */
118
119 #define CHILD_SPECIAL_WAITSTATUS(ourstatus, hoststatus) ( \
120 /* "stop after load" status. */ \
121 (hoststatus) == 0x57c ? (ourstatus)->kind = TARGET_WAITKIND_LOADED, 1 : \
122 \
123 /* signal 0. I have no idea why wait(2) returns with this status word. */ \
124 /* It looks harmless. */ \
125 (hoststatus) == 0x7f ? (ourstatus)->kind = TARGET_WAITKIND_SPURIOUS, 1 : \
126 \
127 /* A normal waitstatus. Let the usual macros deal with it. */ \
128 0)
129
130 /* In xcoff, we cannot process line numbers when we see them. This is
131 mainly because we don't know the boundaries of the include files. So,
132 we postpone that, and then enter and sort(?) the whole line table at
133 once, when we are closing the current symbol table in end_symtab(). */
134
135 #define PROCESS_LINENUMBER_HOOK() aix_process_linenos ()
136 extern void aix_process_linenos PARAMS ((void));
137
138 /* Immediately after a function call, return the saved pc.
139 Can't go through the frames for this because on some machines
140 the new frame is not set up until the new function executes
141 some instructions. */
142
143 #define SAVED_PC_AFTER_CALL(frame) read_register (LR_REGNUM)
144
145 /* Address of end of stack space. */
146
147 #define STACK_END_ADDR 0x2ff80000
148
149 /* Stack grows downward. */
150
151 #define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
152
153 /* This is how arguments pushed onto stack or passed in registers.
154 Stack must be aligned on 64-bit boundaries when synthesizing
155 function calls. We don't need STACK_ALIGN, PUSH_ARGUMENTS will
156 handle it. */
157
158 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
159 (rs6000_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr)))
160 extern CORE_ADDR rs6000_push_arguments PARAMS ((int, struct value **, CORE_ADDR, int, CORE_ADDR));
161
162 /* BREAKPOINT_FROM_PC uses the program counter value to determine the
163 breakpoint that should be used */
164 extern breakpoint_from_pc_fn rs6000_breakpoint_from_pc;
165 #define BREAKPOINT_FROM_PC(pcptr, lenptr) rs6000_breakpoint_from_pc (pcptr, lenptr)
166
167 /* Amount PC must be decremented by after a breakpoint.
168 This is often the number of bytes in BREAKPOINT
169 but not always. */
170
171 #define DECR_PC_AFTER_BREAK 0
172
173 /* Say how long (ordinary) registers are. This is a piece of bogosity
174 used in push_word and a few other places; REGISTER_RAW_SIZE is the
175 real way to know how big a register is. */
176 #define REGISTER_SIZE 4
177
178
179 /* Return the name of register number REG. This may return "" to
180 indicate a register number that's not used on this variant.
181 (Register numbers may be sparse for consistency between variants.) */
182 #define REGISTER_NAME(reg) (rs6000_register_name(reg))
183 extern char *rs6000_register_name (int reg);
184
185 /* Number of machine registers */
186 #define NUM_REGS 183
187
188 /* Register numbers of various important registers.
189 Note that some of these values are "real" register numbers,
190 and correspond to the general registers of the machine,
191 and some are "phony" register numbers which are too large
192 to be actual register numbers as far as the user is concerned
193 but do serve to get the desired values when passed to read_register. */
194
195 #define FP_REGNUM 1 /* Contains address of executing stack frame */
196 #define SP_REGNUM 1 /* Contains address of top of stack */
197 #define TOC_REGNUM 2 /* TOC register */
198 #define FP0_REGNUM 32 /* Floating point register 0 */
199 #define GP0_REGNUM 0 /* GPR register 0 */
200 #define FP0_REGNUM 32 /* FPR (Floating point) register 0 */
201 #define FPLAST_REGNUM 63 /* Last floating point register */
202
203 /* Special purpose registers... */
204 /* P.S. keep these in the same order as in /usr/mstsave.h `mstsave'
205 structure, for easier processing */
206
207 #define PC_REGNUM 64 /* Program counter (instruction address %iar)*/
208 #define PS_REGNUM 65 /* Processor (or machine) status (%msr) */
209 #define CR_REGNUM 66 /* Condition register */
210 #define LR_REGNUM 67 /* Link register */
211 #define CTR_REGNUM 68 /* Count register */
212 #define XER_REGNUM 69 /* Fixed point exception registers */
213 #define MQ_REGNUM 70 /* Multiply/quotient register */
214
215 /* These #defines are used to parse core files and talk to ptrace, so they
216 must remain fixed. */
217 #define FIRST_UISA_SP_REGNUM 64 /* first special register number */
218 #define LAST_UISA_SP_REGNUM 70 /* last special register number */
219
220 /* This is the offset in REG_NAMES at which the `set processor'
221 command starts plugging in its names. */
222 #define FIRST_VARIANT_REGISTER 66
223
224 /* Total amount of space needed to store our copies of the machine's
225 register state, the array `registers'.
226 32 4-byte gpr's
227 32 8-byte fpr's
228 7 4-byte UISA special purpose registers,
229 16 4-byte segment registers,
230 32 4-byte standard OEA special-purpose registers,
231 and up to 64 4-byte non-standard OEA special purpose regs.
232 total: (+ (* 32 4) (* 32 8) (* 7 4) (* 16 4) (* 32 4) (* 64 4)) 860 bytes
233 Keep some extra space for now, in case to add more. */
234 #define REGISTER_BYTES 880
235
236
237 /* Index within `registers' of the first byte of the space for
238 register N. */
239
240 #define REGISTER_BYTE(N) \
241 ( \
242 ((N) > FPLAST_REGNUM) ? ((((N) - FPLAST_REGNUM -1) * 4) + 384)\
243 :((N) >= FP0_REGNUM) ? ((((N) - FP0_REGNUM) * 8) + 128) \
244 :((N) * 4) )
245
246 /* Number of bytes of storage in the actual machine representation
247 for register N. */
248 /* Note that the unsigned cast here forces the result of the
249 subtraction to very high positive values if N < FP0_REGNUM */
250
251 #define REGISTER_RAW_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
252
253 /* Number of bytes of storage in the program's representation
254 for register N. On the RS6000, all regs are 4 bytes
255 except the floating point regs which are 8-byte doubles. */
256
257 #define REGISTER_VIRTUAL_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
258
259 /* Largest value REGISTER_RAW_SIZE can have. */
260
261 #define MAX_REGISTER_RAW_SIZE 8
262
263 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
264
265 #define MAX_REGISTER_VIRTUAL_SIZE 8
266
267 /* convert a dbx stab register number (from `r' declaration) to a gdb REGNUM */
268
269 #define STAB_REG_TO_REGNUM(value) (value)
270
271 /* Nonzero if register N requires conversion
272 from raw format to virtual format.
273 The register format for rs6000 floating point registers is always
274 double, we need a conversion if the memory format is float. */
275
276 #define REGISTER_CONVERTIBLE(N) ((N) >= FP0_REGNUM && (N) <= FPLAST_REGNUM)
277
278 /* Convert data from raw format for register REGNUM in buffer FROM
279 to virtual format with type TYPE in buffer TO. */
280
281 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
282 { \
283 if (TYPE_LENGTH (TYPE) != REGISTER_RAW_SIZE (REGNUM)) \
284 { \
285 double val = extract_floating ((FROM), REGISTER_RAW_SIZE (REGNUM)); \
286 store_floating ((TO), TYPE_LENGTH (TYPE), val); \
287 } \
288 else \
289 memcpy ((TO), (FROM), REGISTER_RAW_SIZE (REGNUM)); \
290 }
291
292 /* Convert data from virtual format with type TYPE in buffer FROM
293 to raw format for register REGNUM in buffer TO. */
294
295 #define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
296 { \
297 if (TYPE_LENGTH (TYPE) != REGISTER_RAW_SIZE (REGNUM)) \
298 { \
299 double val = extract_floating ((FROM), TYPE_LENGTH (TYPE)); \
300 store_floating ((TO), REGISTER_RAW_SIZE (REGNUM), val); \
301 } \
302 else \
303 memcpy ((TO), (FROM), REGISTER_RAW_SIZE (REGNUM)); \
304 }
305
306 /* Return the GDB type object for the "standard" data type
307 of data in register N. */
308
309 #define REGISTER_VIRTUAL_TYPE(N) \
310 (((unsigned)(N) - FP0_REGNUM) < 32 ? builtin_type_double : builtin_type_int)
311
312 /* Store the address of the place in which to copy the structure the
313 subroutine will return. This is called from call_function. */
314 /* in RS6000, struct return addresses are passed as an extra parameter in r3.
315 In function return, callee is not responsible of returning this address back.
316 Since gdb needs to find it, we will store in a designated variable
317 `rs6000_struct_return_address'. */
318
319 extern CORE_ADDR rs6000_struct_return_address;
320
321 #define STORE_STRUCT_RETURN(ADDR, SP) \
322 { write_register (3, (ADDR)); \
323 rs6000_struct_return_address = (ADDR); }
324
325 /* Extract from an array REGBUF containing the (raw) register state
326 a function return value of type TYPE, and copy that, in virtual format,
327 into VALBUF. */
328
329 /* #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
330 memcpy (VALBUF, REGBUF, TYPE_LENGTH (TYPE)) */
331
332 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
333 extract_return_value(TYPE,REGBUF,VALBUF)
334 extern void extract_return_value PARAMS ((struct type *, char [], char *));
335
336 /* Write into appropriate registers a function return value
337 of type TYPE, given in virtual format. */
338
339 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
340 { \
341 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) \
342 \
343 /* Floating point values are returned starting from FPR1 and up. \
344 Say a double_double_double type could be returned in \
345 FPR1/FPR2/FPR3 triple. */ \
346 \
347 write_register_bytes (REGISTER_BYTE (FP0_REGNUM+1), (VALBUF), \
348 TYPE_LENGTH (TYPE)); \
349 else \
350 /* Everything else is returned in GPR3 and up. */ \
351 write_register_bytes (REGISTER_BYTE (GP0_REGNUM+3), (VALBUF), \
352 TYPE_LENGTH (TYPE)); \
353 }
354
355
356 /* Extract from an array REGBUF containing the (raw) register state
357 the address in which a function should return its structure value,
358 as a CORE_ADDR (or an expression that can be used as one). */
359
360 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) rs6000_struct_return_address
361 \f
362 /* Describe the pointer in each stack frame to the previous stack frame
363 (its caller). */
364
365 /* FRAME_CHAIN takes a frame's nominal address
366 and produces the frame's chain-pointer. */
367
368 /* In the case of the RS6000, the frame's nominal address
369 is the address of a 4-byte word containing the calling frame's address. */
370
371 #define FRAME_CHAIN(thisframe) rs6000_frame_chain (thisframe)
372 CORE_ADDR rs6000_frame_chain PARAMS ((struct frame_info *));
373
374 /* Define other aspects of the stack frame. */
375
376 /* A macro that tells us whether the function invocation represented
377 by FI does not have a frame on the stack associated with it. If it
378 does not, FRAMELESS is set to 1, else 0. */
379
380 #define FRAMELESS_FUNCTION_INVOCATION(FI) \
381 (frameless_function_invocation (FI))
382
383 extern int frameless_function_invocation PARAMS((struct frame_info *));
384
385 #define INIT_FRAME_PC_FIRST(fromleaf, prev) \
386 prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \
387 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
388 #define INIT_FRAME_PC(fromleaf, prev) /* nothing */
389 extern void rs6000_init_extra_frame_info (int fromleaf, struct frame_info *);
390 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) rs6000_init_extra_frame_info (fromleaf, fi)
391
392 /* If the kernel has to deliver a signal, it pushes a sigcontext
393 structure on the stack and then calls the signal handler, passing
394 the address of the sigcontext in an argument register. Usually
395 the signal handler doesn't save this register, so we have to
396 access the sigcontext structure via an offset from the signal handler
397 frame.
398 The following constants were determined by experimentation on AIX 3.2. */
399 #define SIG_FRAME_PC_OFFSET 96
400 #define SIG_FRAME_LR_OFFSET 108
401 #define SIG_FRAME_FP_OFFSET 284
402
403 /* Default offset from SP where the LR is stored */
404 #define DEFAULT_LR_SAVE 8
405
406 /* Return saved PC from a frame */
407 #define FRAME_SAVED_PC(FRAME) frame_saved_pc (FRAME)
408
409 extern unsigned long frame_saved_pc PARAMS ((struct frame_info *));
410
411 extern CORE_ADDR rs6000_frame_args_address PARAMS ((struct frame_info *));
412 #define FRAME_ARGS_ADDRESS(FI) rs6000_frame_args_address (FI)
413
414 #define FRAME_LOCALS_ADDRESS(FI) FRAME_ARGS_ADDRESS(FI)
415
416
417 /* Set VAL to the number of args passed to frame described by FI.
418 Can set VAL to -1, meaning no way to tell. */
419
420 /* We can't tell how many args there are
421 now that the C compiler delays popping them. */
422
423 #define FRAME_NUM_ARGS(fi) (-1)
424
425 /* Return number of bytes at start of arglist that are not really args. */
426
427 #define FRAME_ARGS_SKIP 8 /* Not sure on this. FIXMEmgo */
428
429 /* Put here the code to store, into a struct frame_saved_regs,
430 the addresses of the saved registers of frame described by FRAME_INFO.
431 This includes special registers such as pc and fp saved in special
432 ways in the stack frame. sp is even more special:
433 the address we return for it IS the sp for the next frame. */
434 /* In the following implementation for RS6000, we did *not* save sp. I am
435 not sure if it will be needed. The following macro takes care of gpr's
436 and fpr's only. */
437
438 extern void rs6000_frame_init_saved_regs PARAMS ((struct frame_info *));
439 #define FRAME_INIT_SAVED_REGS(FI) rs6000_frame_init_saved_regs (FI)
440
441 /* Things needed for making the inferior call functions. */
442
443 /* Push an empty stack frame, to record the current PC, etc. */
444 /* Change these names into rs6k_{push, pop}_frame(). FIXMEmgo. */
445
446 #define PUSH_DUMMY_FRAME push_dummy_frame ()
447 extern void push_dummy_frame PARAMS ((void));
448
449 /* Discard from the stack the innermost frame,
450 restoring all saved registers. */
451
452 #define POP_FRAME pop_frame ()
453 extern void pop_frame PARAMS ((void));
454
455 /* This sequence of words is the instructions:
456
457 mflr r0 // 0x7c0802a6
458 // save fpr's
459 stfd r?, num(r1) // 0xd8010000 there should be 32 of this??
460 // save gpr's
461 stm r0, num(r1) // 0xbc010000
462 stu r1, num(r1) // 0x94210000
463
464 // the function we want to branch might be in a different load
465 // segment. reset the toc register. Note that the actual toc address
466 // will be fix by fix_call_dummy () along with function address.
467
468 st r2, 0x14(r1) // 0x90410014 save toc register
469 liu r2, 0x1234 // 0x3c401234 reset a new toc value 0x12345678
470 oril r2, r2,0x5678 // 0x60425678
471
472 // load absolute address 0x12345678 to r0
473 liu r0, 0x1234 // 0x3c001234
474 oril r0, r0,0x5678 // 0x60005678
475 mtctr r0 // 0x7c0903a6 ctr <- r0
476 bctrl // 0x4e800421 jump subroutine 0x12345678 (%ctr)
477 cror 0xf, 0xf, 0xf // 0x4def7b82
478 brpt // 0x7d821008, breakpoint
479 cror 0xf, 0xf, 0xf // 0x4def7b82 (for 8 byte alignment)
480
481
482 We actually start executing by saving the toc register first, since the pushing
483 of the registers is done by PUSH_DUMMY_FRAME. If this were real code,
484 the arguments for the function called by the `bctrl' would be pushed
485 between the `stu' and the `bctrl', and we could allow it to execute through.
486 But the arguments have to be pushed by GDB after the PUSH_DUMMY_FRAME is done,
487 and we cannot allow to push the registers again.
488 */
489
490 #define CALL_DUMMY {0x7c0802a6, 0xd8010000, 0xbc010000, 0x94210000, \
491 0x90410014, 0x3c401234, 0x60425678, \
492 0x3c001234, 0x60005678, 0x7c0903a6, 0x4e800421, \
493 0x4def7b82, 0x7d821008, 0x4def7b82 }
494
495
496 /* keep this as multiple of 8 (%sp requires 8 byte alignment) */
497 #define CALL_DUMMY_LENGTH 56
498
499 #define CALL_DUMMY_START_OFFSET 16
500
501 /* Insert the specified number of args and function address into a
502 call sequence of the above form stored at DUMMYNAME. */
503
504 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
505 rs6000_fix_call_dummy (dummyname, pc, fun, nargs, args, type, gcc_p)
506 extern void rs6000_fix_call_dummy PARAMS ((char *, CORE_ADDR, CORE_ADDR,
507 int, struct value **,
508 struct type *, int));
509
510 /* Hook in rs6000-tdep.c for determining the TOC address when
511 calling functions in the inferior. */
512 extern CORE_ADDR (*find_toc_address_hook) PARAMS ((CORE_ADDR));
513
514 /* xcoffread.c provides a function to determine the TOC offset
515 for a given object file.
516 It is used under native AIX configurations for determining the
517 TOC address when calling functions in the inferior. */
518 #ifdef __STDC__
519 struct objfile;
520 #endif
521 extern CORE_ADDR get_toc_offset PARAMS ((struct objfile *));
522
523 /* Usually a function pointer's representation is simply the address
524 of the function. On the RS/6000 however, a function pointer is
525 represented by a pointer to a TOC entry. This TOC entry contains
526 three words, the first word is the address of the function, the
527 second word is the TOC pointer (r2), and the third word is the
528 static chain value. Throughout GDB it is currently assumed that a
529 function pointer contains the address of the function, which is not
530 easy to fix. In addition, the conversion of a function address to
531 a function pointer would require allocation of a TOC entry in the
532 inferior's memory space, with all its drawbacks. To be able to
533 call C++ virtual methods in the inferior (which are called via
534 function pointers), find_function_addr uses this macro to get the
535 function address from a function pointer. */
536
537 #define CONVERT_FROM_FUNC_PTR_ADDR(ADDR) \
538 (is_magic_function_pointer (ADDR) ? read_memory_integer (ADDR, 4) : (ADDR))
539 extern int is_magic_function_pointer PARAMS ((CORE_ADDR));
540
541 /* Flag for machine-specific stuff in shared files. FIXME */
542 #define IBM6000_TARGET
543
544 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
545
546 #define SOFTWARE_SINGLE_STEP_P 1
547 extern void rs6000_software_single_step PARAMS ((unsigned int, int));
548 #define SOFTWARE_SINGLE_STEP(sig,bp_p) rs6000_software_single_step (sig, bp_p)
549
550 /* If the current gcc for for this target does not produce correct debugging
551 information for float parameters, both prototyped and unprototyped, then
552 define this macro. This forces gdb to always assume that floats are
553 passed as doubles and then converted in the callee.
554
555 For the PowerPC, it appears that the debug info marks the parameters as
556 floats regardless of whether the function is prototyped, but the actual
557 values are always passed in as doubles. Thus by setting this to 1, both
558 types of calls will work. */
559
560 #define COERCE_FLOAT_TO_DOUBLE 1
This page took 0.040897 seconds and 4 git commands to generate.