2003-01-18 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / config / sparc / tm-sp64.h
1 /* Target machine sub-parameters for SPARC64, for GDB, the GNU debugger.
2 This is included by other tm-*.h files to define SPARC64 cpu-related info.
3 Copyright 1994, 1995, 1996, 1998, 1999, 2000
4 Free Software Foundation, Inc.
5 This is (obviously) based on the SPARC Vn (n<9) port.
6 Contributed by Doug Evans (dje@cygnus.com).
7 Further modified by Bob Manson (manson@cygnus.com).
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #define GDB_MULTI_ARCH GDB_MULTI_ARCH_PARTIAL
27
28 #ifndef GDB_TARGET_IS_SPARC64
29 #define GDB_TARGET_IS_SPARC64 1
30 #endif
31
32 #include "sparc/tm-sparc.h"
33
34 /* Eeeew. Ok, we have to assume (for now) that the processor really is
35 in sparc64 mode. While this is the same instruction sequence as
36 on the Sparc, the stack frames are offset by +2047 (and the arguments
37 are 8 bytes instead of 4). */
38 /* Instructions are:
39 std %f10, [ %fp + 0x7a7 ]
40 std %f8, [ %fp + 0x79f ]
41 std %f6, [ %fp + 0x797 ]
42 std %f4, [ %fp + 0x78f ]
43 std %f2, [ %fp + 0x787 ]
44 std %f0, [ %fp + 0x77f ]
45 std %g6, [ %fp + 0x777 ]
46 std %g4, [ %fp + 0x76f ]
47 std %g2, [ %fp + 0x767 ]
48 std %g0, [ %fp + 0x75f ]
49 std %fp, [ %fp + 0x757 ]
50 std %i4, [ %fp + 0x74f ]
51 std %i2, [ %fp + 0x747 ]
52 std %i0, [ %fp + 0x73f ]
53 nop
54 nop
55 nop
56 nop
57 rd %tbr, %o0
58 st %o0, [ %fp + 0x72b ]
59 rd %tpc, %o0
60 st %o0, [ %fp + 0x727 ]
61 rd %psr, %o0
62 st %o0, [ %fp + 0x723 ]
63 rd %y, %o0
64 st %o0, [ %fp + 0x71f ]
65 ldx [ %sp + 0x8a7 ], %o5
66 ldx [ %sp + 0x89f ], %o4
67 ldx [ %sp + 0x897 ], %o3
68 ldx [ %sp + 0x88f ], %o2
69 ldx [ %sp + 0x887 ], %o1
70 call %g0
71 ldx [ %sp + 0x87f ], %o0
72 nop
73 ta 1
74 nop
75 nop
76 */
77
78 #if !defined (GDB_MULTI_ARCH) || (GDB_MULTI_ARCH == 0)
79 /*
80 * The following defines must go away for MULTI_ARCH.
81 */
82
83 #ifndef DO_CALL_DUMMY_ON_STACK
84
85 /*
86 * These defines will suffice for the AT_ENTRY_POINT call dummy method.
87 */
88
89 #undef CALL_DUMMY
90 #define CALL_DUMMY {0}
91 #undef CALL_DUMMY_LENGTH
92 #define CALL_DUMMY_LENGTH 0
93 #undef CALL_DUMMY_CALL_OFFSET
94 #define CALL_DUMMY_CALL_OFFSET 0
95 #undef CALL_DUMMY_START_OFFSET
96 #define CALL_DUMMY_START_OFFSET 0
97 #undef CALL_DUMMY_BREAKPOINT_OFFSET
98 #define CALL_DUMMY_BREAKPOINT_OFFSET 0
99 #undef CALL_DUMMY_BREAKPOINT_OFFSET_P
100 #define CALL_DUMMY_BREAKPOINT_OFFSET_P 1
101 #undef CALL_DUMMY_LOCATION
102 #define CALL_DUMMY_LOCATION AT_ENTRY_POINT
103 #undef DEPRECATED_PC_IN_CALL_DUMMY
104 #define DEPRECATED_PC_IN_CALL_DUMMY(pc, sp, frame_address) deprecated_pc_in_call_dummy_at_entry_point (pc, sp, frame_address)
105 #undef CALL_DUMMY_STACK_ADJUST
106 #define CALL_DUMMY_STACK_ADJUST 128
107 #undef SIZEOF_CALL_DUMMY_WORDS
108 #define SIZEOF_CALL_DUMMY_WORDS 0
109 #undef CALL_DUMMY_ADDRESS
110 #define CALL_DUMMY_ADDRESS() entry_point_address()
111 #undef FIX_CALL_DUMMY
112 #define FIX_CALL_DUMMY(DUMMYNAME, PC, FUN, NARGS, ARGS, TYPE, GCC_P)
113 #undef PUSH_RETURN_ADDRESS
114 #define PUSH_RETURN_ADDRESS(PC, SP) sparc_at_entry_push_return_address (PC, SP)
115 extern CORE_ADDR sparc_at_entry_push_return_address (CORE_ADDR pc,
116 CORE_ADDR sp);
117
118 #undef STORE_STRUCT_RETURN
119 #define STORE_STRUCT_RETURN(ADDR, SP) \
120 sparc_at_entry_store_struct_return (ADDR, SP)
121 extern void sparc_at_entry_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
122
123
124 #else
125 /*
126 * Old call dummy method, with CALL_DUMMY on the stack.
127 */
128
129 #undef CALL_DUMMY
130 #define CALL_DUMMY { 0x9de3bec0fd3fa7f7LL, 0xf93fa7eff53fa7e7LL,\
131 0xf13fa7dfed3fa7d7LL, 0xe93fa7cfe53fa7c7LL,\
132 0xe13fa7bfdd3fa7b7LL, 0xd93fa7afd53fa7a7LL,\
133 0xd13fa79fcd3fa797LL, 0xc93fa78fc53fa787LL,\
134 0xc13fa77fcc3fa777LL, 0xc83fa76fc43fa767LL,\
135 0xc03fa75ffc3fa757LL, 0xf83fa74ff43fa747LL,\
136 0xf03fa73f01000000LL, 0x0100000001000000LL,\
137 0x0100000091580000LL, 0xd027a72b93500000LL,\
138 0xd027a72791480000LL, 0xd027a72391400000LL,\
139 0xd027a71fda5ba8a7LL, 0xd85ba89fd65ba897LL,\
140 0xd45ba88fd25ba887LL, 0x9fc02000d05ba87fLL,\
141 0x0100000091d02001LL, 0x0100000001000000LL }
142
143
144 /* 128 is to reserve space to write the %i/%l registers that will be restored
145 when we resume. */
146 #undef CALL_DUMMY_STACK_ADJUST
147 #define CALL_DUMMY_STACK_ADJUST 128
148
149 /* Size of the call dummy in bytes. */
150 #undef CALL_DUMMY_LENGTH
151 #define CALL_DUMMY_LENGTH 192
152
153 /* Offset within CALL_DUMMY of the 'call' instruction. */
154 #undef CALL_DUMMY_START_OFFSET
155 #define CALL_DUMMY_START_OFFSET 148
156
157 /* Offset within CALL_DUMMY of the 'call' instruction. */
158 #undef CALL_DUMMY_CALL_OFFSET
159 #define CALL_DUMMY_CALL_OFFSET (CALL_DUMMY_START_OFFSET + (5 * 4))
160
161 /* Offset within CALL_DUMMY of the 'ta 1' instruction. */
162 #undef CALL_DUMMY_BREAKPOINT_OFFSET
163 #define CALL_DUMMY_BREAKPOINT_OFFSET (CALL_DUMMY_START_OFFSET + (8 * 4))
164
165 /* Let's GDB know that it can make a call_dummy breakpoint. */
166 #undef CALL_DUMMY_BREAKPOINT_OFFSET_P
167 #define CALL_DUMMY_BREAKPOINT_OFFSET_P 1
168
169 /* Call dummy will be located on the stack. */
170 #undef CALL_DUMMY_LOCATION
171 #define CALL_DUMMY_LOCATION ON_STACK
172 #undef DEPRECATED_PC_IN_CALL_DUMMY
173 #define DEPRECATED_PC_IN_CALL_DUMMY(pc, sp, frame_address) deprecated_pc_in_call_dummy_on_stack (pc, sp, frame_address)
174
175 /* Insert the function address into the call dummy. */
176 #undef FIX_CALL_DUMMY
177 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
178 sparc_fix_call_dummy (dummyname, pc, fun, type, gcc_p)
179 void sparc_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
180 struct type *value_type, int using_gcc);
181
182
183 /* The remainder of these will accept the default definition. */
184 #undef SIZEOF_CALL_DUMMY_WORDS
185 #undef PUSH_RETURN_ADDRESS
186 #undef CALL_DUMMY_ADDRESS
187 #undef STORE_STRUCT_RETURN
188
189 #endif
190
191 /* Does the specified function use the "struct returning" convention
192 or the "value returning" convention? The "value returning" convention
193 almost invariably returns the entire value in registers. The
194 "struct returning" convention often returns the entire value in
195 memory, and passes a pointer (out of or into the function) saying
196 where the value (is or should go).
197
198 Since this sometimes depends on whether it was compiled with GCC,
199 this is also an argument. This is used in call_function to build a
200 stack, and in value_being_returned to print return values.
201
202 On Sparc64, we only pass pointers to structs if they're larger than
203 32 bytes. Otherwise they're stored in %o0-%o3 (floating-point
204 values go into %fp0-%fp3). */
205
206 #undef USE_STRUCT_CONVENTION
207 #define USE_STRUCT_CONVENTION(gcc_p, type) (TYPE_LENGTH (type) > 32)
208
209 CORE_ADDR sparc64_push_arguments (int,
210 struct value **, CORE_ADDR, int, CORE_ADDR);
211 #undef PUSH_ARGUMENTS
212 #define PUSH_ARGUMENTS(A,B,C,D,E) \
213 (sparc64_push_arguments ((A), (B), (C), (D), (E)))
214
215 /* Store the address of the place in which to copy the structure the
216 subroutine will return. This is called from call_function. */
217 /* FIXME: V9 uses %o0 for this. */
218
219 #undef STORE_STRUCT_RETURN
220 #define STORE_STRUCT_RETURN(ADDR, SP) \
221 { target_write_memory ((SP)+(16*8), (char *)&(ADDR), 8); }
222
223 /* Stack must be aligned on 128-bit boundaries when synthesizing
224 function calls. */
225
226 #undef STACK_ALIGN
227 #define STACK_ALIGN(ADDR) (((ADDR) + 15 ) & -16)
228
229 /* Initializer for an array of names of registers.
230 There should be NUM_REGS strings in this initializer. */
231 /* Some of these registers are only accessible from priviledged mode.
232 They are here for kernel debuggers, etc. */
233 /* FIXME: icc and xcc are currently considered separate registers.
234 This may have to change and consider them as just one (ccr).
235 Let's postpone this as long as we can. It's nice to be able to set
236 them individually. */
237 /* FIXME: fcc0-3 are currently separate, even though they are also part of
238 fsr. May have to remove them but let's postpone this as long as
239 possible. It's nice to be able to set them individually. */
240 /* FIXME: Whether to include f33, f35, etc. here is not clear.
241 There are advantages and disadvantages. */
242
243 #undef REGISTER_NAMES
244 #define REGISTER_NAMES \
245 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", \
246 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", \
247 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", \
248 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", \
249 \
250 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
251 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
252 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
253 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
254 "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46", \
255 "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62", \
256 \
257 "pc", "npc", "ccr", "fsr", "fprs", "y", "asi", \
258 "ver", "tick", "pil", "pstate", \
259 "tstate", "tba", "tl", "tt", "tpc", "tnpc", "wstate", \
260 "cwp", "cansave", "canrestore", "cleanwin", "otherwin", \
261 "asr16", "asr17", "asr18", "asr19", "asr20", "asr21", \
262 "asr22", "asr23", "asr24", "asr25", "asr26", "asr27", \
263 "asr28", "asr29", "asr30", "asr31", \
264 /* These are here at the end to simplify removing them if we have to. */ \
265 "icc", "xcc", "fcc0", "fcc1", "fcc2", "fcc3" \
266 }
267
268 #undef REG_STRUCT_HAS_ADDR
269 #define REG_STRUCT_HAS_ADDR(gcc_p,type) (TYPE_LENGTH (type) > 32)
270
271 extern CORE_ADDR sparc64_read_sp ();
272 extern CORE_ADDR sparc64_read_fp ();
273 extern void sparc64_write_sp (CORE_ADDR);
274
275 #define TARGET_READ_SP() (sparc64_read_sp ())
276 #define TARGET_READ_FP() (sparc64_read_fp ())
277 #define TARGET_WRITE_SP(X) (sparc64_write_sp (X))
278
279 #undef DEPRECATED_EXTRACT_RETURN_VALUE
280 #define DEPRECATED_EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
281 sp64_extract_return_value(TYPE, REGBUF, VALBUF, 0)
282 extern void sp64_extract_return_value (struct type *, char[], char *, int);
283
284 /* Register numbers of various important registers.
285 Note that some of these values are "real" register numbers,
286 and correspond to the general registers of the machine,
287 and some are "phony" register numbers which are too large
288 to be actual register numbers as far as the user is concerned
289 but do serve to get the desired values when passed to read_register. */
290
291 #if 0 /* defined in tm-sparc.h, replicated
292 for doc purposes */
293 #define G0_REGNUM 0 /* %g0 */
294 #define G1_REGNUM 1 /* %g1 */
295 #define O0_REGNUM 8 /* %o0 */
296 #define SP_REGNUM 14 /* Contains address of top of stack, \
297 which is also the bottom of the frame. */
298 #define RP_REGNUM 15 /* Contains return address value, *before* \
299 any windows get switched. */
300 #define O7_REGNUM 15 /* Last local reg not saved on stack frame */
301 #define L0_REGNUM 16 /* First local reg that's saved on stack frame
302 rather than in machine registers */
303 #define I0_REGNUM 24 /* %i0 */
304 #define FP_REGNUM 30 /* Contains address of executing stack frame */
305 #define I7_REGNUM 31 /* Last local reg saved on stack frame */
306 #define FP0_REGNUM 32 /* Floating point register 0 */
307 #endif
308
309 /*#define FP_MAX_REGNUM 80*/ /* 1 + last fp reg number */
310
311 /* #undef v8 misc. regs */
312
313 #undef Y_REGNUM
314 #undef PS_REGNUM
315 #undef WIM_REGNUM
316 #undef TBR_REGNUM
317 #undef PC_REGNUM
318 #undef NPC_REGNUM
319 #undef FPS_REGNUM
320 #undef CPS_REGNUM
321
322 /* v9 misc. and priv. regs */
323
324 #define C0_REGNUM 80 /* Start of control registers */
325
326 #define PC_REGNUM (C0_REGNUM + 0) /* Current PC */
327 #define NPC_REGNUM (C0_REGNUM + 1) /* Next PC */
328 #define CCR_REGNUM (C0_REGNUM + 2) /* Condition Code Register (%xcc,%icc) */
329 #define FSR_REGNUM (C0_REGNUM + 3) /* Floating Point State */
330 #define FPRS_REGNUM (C0_REGNUM + 4) /* Floating Point Registers State */
331 #define Y_REGNUM (C0_REGNUM + 5) /* Temp register for multiplication, etc. */
332 #define ASI_REGNUM (C0_REGNUM + 6) /* Alternate Space Identifier */
333 #define VER_REGNUM (C0_REGNUM + 7) /* Version register */
334 #define TICK_REGNUM (C0_REGNUM + 8) /* Tick register */
335 #define PIL_REGNUM (C0_REGNUM + 9) /* Processor Interrupt Level */
336 #define PSTATE_REGNUM (C0_REGNUM + 10) /* Processor State */
337 #define TSTATE_REGNUM (C0_REGNUM + 11) /* Trap State */
338 #define TBA_REGNUM (C0_REGNUM + 12) /* Trap Base Address */
339 #define TL_REGNUM (C0_REGNUM + 13) /* Trap Level */
340 #define TT_REGNUM (C0_REGNUM + 14) /* Trap Type */
341 #define TPC_REGNUM (C0_REGNUM + 15) /* Trap pc */
342 #define TNPC_REGNUM (C0_REGNUM + 16) /* Trap npc */
343 #define WSTATE_REGNUM (C0_REGNUM + 17) /* Window State */
344 #define CWP_REGNUM (C0_REGNUM + 18) /* Current Window Pointer */
345 #define CANSAVE_REGNUM (C0_REGNUM + 19) /* Savable Windows */
346 #define CANRESTORE_REGNUM (C0_REGNUM + 20) /* Restorable Windows */
347 #define CLEANWIN_REGNUM (C0_REGNUM + 21) /* Clean Windows */
348 #define OTHERWIN_REGNUM (C0_REGNUM + 22) /* Other Windows */
349 #define ASR_REGNUM(n) (C0_REGNUM+(23-16)+(n)) /* Ancillary State Register
350 (n = 16...31) */
351 #define ICC_REGNUM (C0_REGNUM + 39) /* 32 bit condition codes */
352 #define XCC_REGNUM (C0_REGNUM + 40) /* 64 bit condition codes */
353 #define FCC0_REGNUM (C0_REGNUM + 41) /* fp cc reg 0 */
354 #define FCC1_REGNUM (C0_REGNUM + 42) /* fp cc reg 1 */
355 #define FCC2_REGNUM (C0_REGNUM + 43) /* fp cc reg 2 */
356 #define FCC3_REGNUM (C0_REGNUM + 44) /* fp cc reg 3 */
357
358 /* Number of machine registers. */
359
360 #undef NUM_REGS
361 #define NUM_REGS 125
362
363 /* Total amount of space needed to store our copies of the machine's
364 register state, the array `registers'.
365 Some of the registers aren't 64 bits, but it's a lot simpler just to assume
366 they all are (since most of them are). */
367 #undef REGISTER_BYTES
368 #define REGISTER_BYTES (32*8+32*8+45*8)
369
370 /* Index within `registers' of the first byte of the space for
371 register N. */
372 #undef REGISTER_BYTE
373 #define REGISTER_BYTE(N) \
374 ((N) < 32 ? (N)*8 \
375 : (N) < 64 ? 32*8 + ((N)-32)*4 \
376 : (N) < C0_REGNUM ? 32*8 + 32*4 + ((N)-64)*8 \
377 : 64*8 + ((N)-C0_REGNUM)*8)
378
379 /* Say how long (ordinary) registers are. This is a piece of bogosity
380 used in push_word and a few other places; REGISTER_RAW_SIZE is the
381 real way to know how big a register is. */
382
383 #undef REGISTER_SIZE
384 #define REGISTER_SIZE 8
385
386 /* Number of bytes of storage in the actual machine representation
387 for register N. */
388
389 #undef REGISTER_RAW_SIZE
390 #define REGISTER_RAW_SIZE(N) \
391 ((N) < 32 ? 8 : (N) < 64 ? 4 : 8)
392
393 /* Number of bytes of storage in the program's representation
394 for register N. */
395
396 #undef REGISTER_VIRTUAL_SIZE
397 #define REGISTER_VIRTUAL_SIZE(N) \
398 ((N) < 32 ? 8 : (N) < 64 ? 4 : 8)
399
400 /* Largest value REGISTER_RAW_SIZE can have. */
401 /* tm-sparc.h defines this as 8, but play it safe. */
402
403 #undef MAX_REGISTER_RAW_SIZE
404 #define MAX_REGISTER_RAW_SIZE 8
405
406 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
407 /* tm-sparc.h defines this as 8, but play it safe. */
408
409 #undef MAX_REGISTER_VIRTUAL_SIZE
410 #define MAX_REGISTER_VIRTUAL_SIZE 8
411
412 /* Return the GDB type object for the "standard" data type
413 of data in register N. */
414
415 #undef REGISTER_VIRTUAL_TYPE
416 #define REGISTER_VIRTUAL_TYPE(N) \
417 ((N) < 32 ? builtin_type_long_long \
418 : (N) < 64 ? builtin_type_float \
419 : (N) < 80 ? builtin_type_double \
420 : builtin_type_long_long)
421
422 /* We use to support both 32 bit and 64 bit pointers.
423 We can't anymore because TARGET_PTR_BIT must now be a constant. */
424 #undef TARGET_PTR_BIT
425 #define TARGET_PTR_BIT 64
426
427 /* Longs are 64 bits. */
428 #undef TARGET_LONG_BIT
429 #define TARGET_LONG_BIT 64
430
431 #undef TARGET_LONG_LONG_BIT
432 #define TARGET_LONG_LONG_BIT 64
433
434 /* Return number of bytes at start of arglist that are not really args. */
435
436 #undef FRAME_ARGS_SKIP
437 #define FRAME_ARGS_SKIP 136
438
439 #endif /* GDB_MULTI_ARCH */
440 \f
441 /* Offsets into jmp_buf.
442 FIXME: This was borrowed from the v8 stuff and will probably have to change
443 for v9. */
444
445 #define JB_ELEMENT_SIZE 8 /* Size of each element in jmp_buf */
446
447 #define JB_ONSSTACK 0
448 #define JB_SIGMASK 1
449 #define JB_SP 2
450 #define JB_PC 3
451 #define JB_NPC 4
452 #define JB_PSR 5
453 #define JB_G1 6
454 #define JB_O0 7
455 #define JB_WBCNT 8
456
457 /* Figure out where the longjmp will land. We expect that we have
458 just entered longjmp and haven't yet setup the stack frame, so the
459 args are still in the output regs. %o0 (O0_REGNUM) points at the
460 jmp_buf structure from which we extract the pc (JB_PC) that we will
461 land at. The pc is copied into ADDR. This routine returns true on
462 success */
463
464 extern int get_longjmp_target (CORE_ADDR *);
465
466 #define GET_LONGJMP_TARGET(ADDR) get_longjmp_target(ADDR)
467
468 #undef TM_PRINT_INSN_MACH
469 #define TM_PRINT_INSN_MACH bfd_mach_sparc_v9a
470
This page took 0.04026 seconds and 4 git commands to generate.