2013-01-31 Aleksandar Ristovski <aristovski@qnx.com>
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "gdb_string.h"
23 #include <errno.h>
24 #include <signal.h>
25 #include <fcntl.h>
26 #ifdef HAVE_SYS_FILE_H
27 #include <sys/file.h> /* needed for F_OK and friends */
28 #endif
29 #include "frame.h" /* required by inferior.h */
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "command.h"
33 #include "bfd.h"
34 #include "target.h"
35 #include "gdbcore.h"
36 #include "gdbthread.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "exec.h"
41 #include "readline/readline.h"
42 #include "gdb_assert.h"
43 #include "exceptions.h"
44 #include "solib.h"
45 #include "filenames.h"
46 #include "progspace.h"
47 #include "objfiles.h"
48 #include "gdb_bfd.h"
49
50 #ifndef O_LARGEFILE
51 #define O_LARGEFILE 0
52 #endif
53
54 /* List of all available core_fns. On gdb startup, each core file
55 register reader calls deprecated_add_core_fns() to register
56 information on each core format it is prepared to read. */
57
58 static struct core_fns *core_file_fns = NULL;
59
60 /* The core_fns for a core file handler that is prepared to read the
61 core file currently open on core_bfd. */
62
63 static struct core_fns *core_vec = NULL;
64
65 /* FIXME: kettenis/20031023: Eventually this variable should
66 disappear. */
67
68 struct gdbarch *core_gdbarch = NULL;
69
70 /* Per-core data. Currently, only the section table. Note that these
71 target sections are *not* mapped in the current address spaces' set
72 of target sections --- those should come only from pure executable
73 or shared library bfds. The core bfd sections are an
74 implementation detail of the core target, just like ptrace is for
75 unix child targets. */
76 static struct target_section_table *core_data;
77
78 static void core_files_info (struct target_ops *);
79
80 static struct core_fns *sniff_core_bfd (bfd *);
81
82 static int gdb_check_format (bfd *);
83
84 static void core_open (char *, int);
85
86 static void core_detach (struct target_ops *ops, char *, int);
87
88 static void core_close (int);
89
90 static void core_close_cleanup (void *ignore);
91
92 static void add_to_thread_list (bfd *, asection *, void *);
93
94 static void init_core_ops (void);
95
96 void _initialize_corelow (void);
97
98 static struct target_ops core_ops;
99
100 /* An arbitrary identifier for the core inferior. */
101 #define CORELOW_PID 1
102
103 /* Link a new core_fns into the global core_file_fns list. Called on
104 gdb startup by the _initialize routine in each core file register
105 reader, to register information about each format the reader is
106 prepared to handle. */
107
108 void
109 deprecated_add_core_fns (struct core_fns *cf)
110 {
111 cf->next = core_file_fns;
112 core_file_fns = cf;
113 }
114
115 /* The default function that core file handlers can use to examine a
116 core file BFD and decide whether or not to accept the job of
117 reading the core file. */
118
119 int
120 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
121 {
122 int result;
123
124 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
125 return (result);
126 }
127
128 /* Walk through the list of core functions to find a set that can
129 handle the core file open on ABFD. Returns pointer to set that is
130 selected. */
131
132 static struct core_fns *
133 sniff_core_bfd (bfd *abfd)
134 {
135 struct core_fns *cf;
136 struct core_fns *yummy = NULL;
137 int matches = 0;;
138
139 /* Don't sniff if we have support for register sets in
140 CORE_GDBARCH. */
141 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
142 return NULL;
143
144 for (cf = core_file_fns; cf != NULL; cf = cf->next)
145 {
146 if (cf->core_sniffer (cf, abfd))
147 {
148 yummy = cf;
149 matches++;
150 }
151 }
152 if (matches > 1)
153 {
154 warning (_("\"%s\": ambiguous core format, %d handlers match"),
155 bfd_get_filename (abfd), matches);
156 }
157 else if (matches == 0)
158 error (_("\"%s\": no core file handler recognizes format"),
159 bfd_get_filename (abfd));
160
161 return (yummy);
162 }
163
164 /* The default is to reject every core file format we see. Either
165 BFD has to recognize it, or we have to provide a function in the
166 core file handler that recognizes it. */
167
168 int
169 default_check_format (bfd *abfd)
170 {
171 return (0);
172 }
173
174 /* Attempt to recognize core file formats that BFD rejects. */
175
176 static int
177 gdb_check_format (bfd *abfd)
178 {
179 struct core_fns *cf;
180
181 for (cf = core_file_fns; cf != NULL; cf = cf->next)
182 {
183 if (cf->check_format (abfd))
184 {
185 return (1);
186 }
187 }
188 return (0);
189 }
190
191 /* Discard all vestiges of any previous core file and mark data and
192 stack spaces as empty. */
193
194 static void
195 core_close (int quitting)
196 {
197 char *name;
198
199 if (core_bfd)
200 {
201 int pid = ptid_get_pid (inferior_ptid);
202 inferior_ptid = null_ptid; /* Avoid confusion from thread
203 stuff. */
204 if (pid != 0)
205 exit_inferior_silent (pid);
206
207 /* Clear out solib state while the bfd is still open. See
208 comments in clear_solib in solib.c. */
209 clear_solib ();
210
211 if (core_data)
212 {
213 xfree (core_data->sections);
214 xfree (core_data);
215 core_data = NULL;
216 }
217
218 gdb_bfd_unref (core_bfd);
219 core_bfd = NULL;
220 }
221 core_vec = NULL;
222 core_gdbarch = NULL;
223 }
224
225 static void
226 core_close_cleanup (void *ignore)
227 {
228 core_close (0/*ignored*/);
229 }
230
231 /* Look for sections whose names start with `.reg/' so that we can
232 extract the list of threads in a core file. */
233
234 static void
235 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
236 {
237 ptid_t ptid;
238 int core_tid;
239 int pid, lwpid;
240 asection *reg_sect = (asection *) reg_sect_arg;
241 int fake_pid_p = 0;
242 struct inferior *inf;
243
244 if (strncmp (bfd_section_name (abfd, asect), ".reg/", 5) != 0)
245 return;
246
247 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
248
249 pid = bfd_core_file_pid (core_bfd);
250 if (pid == 0)
251 {
252 fake_pid_p = 1;
253 pid = CORELOW_PID;
254 }
255
256 lwpid = core_tid;
257
258 inf = current_inferior ();
259 if (inf->pid == 0)
260 {
261 inferior_appeared (inf, pid);
262 inf->fake_pid_p = fake_pid_p;
263 }
264
265 ptid = ptid_build (pid, lwpid, 0);
266
267 add_thread (ptid);
268
269 /* Warning, Will Robinson, looking at BFD private data! */
270
271 if (reg_sect != NULL
272 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
273 inferior_ptid = ptid; /* Yes, make it current. */
274 }
275
276 /* This routine opens and sets up the core file bfd. */
277
278 static void
279 core_open (char *filename, int from_tty)
280 {
281 const char *p;
282 int siggy;
283 struct cleanup *old_chain;
284 char *temp;
285 bfd *temp_bfd;
286 int scratch_chan;
287 int flags;
288 volatile struct gdb_exception except;
289
290 target_preopen (from_tty);
291 if (!filename)
292 {
293 if (core_bfd)
294 error (_("No core file specified. (Use `detach' "
295 "to stop debugging a core file.)"));
296 else
297 error (_("No core file specified."));
298 }
299
300 filename = tilde_expand (filename);
301 if (!IS_ABSOLUTE_PATH (filename))
302 {
303 temp = concat (current_directory, "/",
304 filename, (char *) NULL);
305 xfree (filename);
306 filename = temp;
307 }
308
309 old_chain = make_cleanup (xfree, filename);
310
311 flags = O_BINARY | O_LARGEFILE;
312 if (write_files)
313 flags |= O_RDWR;
314 else
315 flags |= O_RDONLY;
316 scratch_chan = open (filename, flags, 0);
317 if (scratch_chan < 0)
318 perror_with_name (filename);
319
320 temp_bfd = gdb_bfd_fopen (filename, gnutarget,
321 write_files ? FOPEN_RUB : FOPEN_RB,
322 scratch_chan);
323 if (temp_bfd == NULL)
324 perror_with_name (filename);
325
326 if (!bfd_check_format (temp_bfd, bfd_core)
327 && !gdb_check_format (temp_bfd))
328 {
329 /* Do it after the err msg */
330 /* FIXME: should be checking for errors from bfd_close (for one
331 thing, on error it does not free all the storage associated
332 with the bfd). */
333 make_cleanup_bfd_unref (temp_bfd);
334 error (_("\"%s\" is not a core dump: %s"),
335 filename, bfd_errmsg (bfd_get_error ()));
336 }
337
338 /* Looks semi-reasonable. Toss the old core file and work on the
339 new. */
340
341 do_cleanups (old_chain);
342 unpush_target (&core_ops);
343 core_bfd = temp_bfd;
344 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
345
346 core_gdbarch = gdbarch_from_bfd (core_bfd);
347
348 /* Find a suitable core file handler to munch on core_bfd */
349 core_vec = sniff_core_bfd (core_bfd);
350
351 validate_files ();
352
353 core_data = XZALLOC (struct target_section_table);
354
355 /* Find the data section */
356 if (build_section_table (core_bfd,
357 &core_data->sections,
358 &core_data->sections_end))
359 error (_("\"%s\": Can't find sections: %s"),
360 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
361
362 /* If we have no exec file, try to set the architecture from the
363 core file. We don't do this unconditionally since an exec file
364 typically contains more information that helps us determine the
365 architecture than a core file. */
366 if (!exec_bfd)
367 set_gdbarch_from_file (core_bfd);
368
369 push_target (&core_ops);
370 discard_cleanups (old_chain);
371
372 /* Do this before acknowledging the inferior, so if
373 post_create_inferior throws (can happen easilly if you're loading
374 a core file with the wrong exec), we aren't left with threads
375 from the previous inferior. */
376 init_thread_list ();
377
378 inferior_ptid = null_ptid;
379
380 /* Need to flush the register cache (and the frame cache) from a
381 previous debug session. If inferior_ptid ends up the same as the
382 last debug session --- e.g., b foo; run; gcore core1; step; gcore
383 core2; core core1; core core2 --- then there's potential for
384 get_current_regcache to return the cached regcache of the
385 previous session, and the frame cache being stale. */
386 registers_changed ();
387
388 /* Build up thread list from BFD sections, and possibly set the
389 current thread to the .reg/NN section matching the .reg
390 section. */
391 bfd_map_over_sections (core_bfd, add_to_thread_list,
392 bfd_get_section_by_name (core_bfd, ".reg"));
393
394 if (ptid_equal (inferior_ptid, null_ptid))
395 {
396 /* Either we found no .reg/NN section, and hence we have a
397 non-threaded core (single-threaded, from gdb's perspective),
398 or for some reason add_to_thread_list couldn't determine
399 which was the "main" thread. The latter case shouldn't
400 usually happen, but we're dealing with input here, which can
401 always be broken in different ways. */
402 struct thread_info *thread = first_thread_of_process (-1);
403
404 if (thread == NULL)
405 {
406 inferior_appeared (current_inferior (), CORELOW_PID);
407 inferior_ptid = pid_to_ptid (CORELOW_PID);
408 add_thread_silent (inferior_ptid);
409 }
410 else
411 switch_to_thread (thread->ptid);
412 }
413
414 post_create_inferior (&core_ops, from_tty);
415
416 /* Now go through the target stack looking for threads since there
417 may be a thread_stratum target loaded on top of target core by
418 now. The layer above should claim threads found in the BFD
419 sections. */
420 TRY_CATCH (except, RETURN_MASK_ERROR)
421 {
422 target_find_new_threads ();
423 }
424
425 if (except.reason < 0)
426 exception_print (gdb_stderr, except);
427
428 p = bfd_core_file_failing_command (core_bfd);
429 if (p)
430 printf_filtered (_("Core was generated by `%s'.\n"), p);
431
432 siggy = bfd_core_file_failing_signal (core_bfd);
433 if (siggy > 0)
434 {
435 /* If we don't have a CORE_GDBARCH to work with, assume a native
436 core (map gdb_signal from host signals). If we do have
437 CORE_GDBARCH to work with, but no gdb_signal_from_target
438 implementation for that gdbarch, as a fallback measure,
439 assume the host signal mapping. It'll be correct for native
440 cores, but most likely incorrect for cross-cores. */
441 enum gdb_signal sig = (core_gdbarch != NULL
442 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
443 ? gdbarch_gdb_signal_from_target (core_gdbarch,
444 siggy)
445 : gdb_signal_from_host (siggy));
446
447 printf_filtered (_("Program terminated with signal %d, %s.\n"),
448 siggy, gdb_signal_to_string (sig));
449 }
450
451 /* Fetch all registers from core file. */
452 target_fetch_registers (get_current_regcache (), -1);
453
454 /* Now, set up the frame cache, and print the top of stack. */
455 reinit_frame_cache ();
456 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC);
457 }
458
459 static void
460 core_detach (struct target_ops *ops, char *args, int from_tty)
461 {
462 if (args)
463 error (_("Too many arguments"));
464 unpush_target (ops);
465 reinit_frame_cache ();
466 if (from_tty)
467 printf_filtered (_("No core file now.\n"));
468 }
469
470 #ifdef DEPRECATED_IBM6000_TARGET
471
472 /* Resize the core memory's section table, by NUM_ADDED. Returns a
473 pointer into the first new slot. This will not be necessary when
474 the rs6000 target is converted to use the standard solib
475 framework. */
476
477 struct target_section *
478 deprecated_core_resize_section_table (int num_added)
479 {
480 int old_count;
481
482 old_count = resize_section_table (core_data, num_added);
483 return core_data->sections + old_count;
484 }
485
486 #endif
487
488 /* Try to retrieve registers from a section in core_bfd, and supply
489 them to core_vec->core_read_registers, as the register set numbered
490 WHICH.
491
492 If inferior_ptid's lwp member is zero, do the single-threaded
493 thing: look for a section named NAME. If inferior_ptid's lwp
494 member is non-zero, do the multi-threaded thing: look for a section
495 named "NAME/LWP", where LWP is the shortest ASCII decimal
496 representation of inferior_ptid's lwp member.
497
498 HUMAN_NAME is a human-readable name for the kind of registers the
499 NAME section contains, for use in error messages.
500
501 If REQUIRED is non-zero, print an error if the core file doesn't
502 have a section by the appropriate name. Otherwise, just do
503 nothing. */
504
505 static void
506 get_core_register_section (struct regcache *regcache,
507 const char *name,
508 int which,
509 const char *human_name,
510 int required)
511 {
512 static char *section_name = NULL;
513 struct bfd_section *section;
514 bfd_size_type size;
515 char *contents;
516
517 xfree (section_name);
518
519 if (ptid_get_lwp (inferior_ptid))
520 section_name = xstrprintf ("%s/%ld", name,
521 ptid_get_lwp (inferior_ptid));
522 else
523 section_name = xstrdup (name);
524
525 section = bfd_get_section_by_name (core_bfd, section_name);
526 if (! section)
527 {
528 if (required)
529 warning (_("Couldn't find %s registers in core file."),
530 human_name);
531 return;
532 }
533
534 size = bfd_section_size (core_bfd, section);
535 contents = alloca (size);
536 if (! bfd_get_section_contents (core_bfd, section, contents,
537 (file_ptr) 0, size))
538 {
539 warning (_("Couldn't read %s registers from `%s' section in core file."),
540 human_name, name);
541 return;
542 }
543
544 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
545 {
546 const struct regset *regset;
547
548 regset = gdbarch_regset_from_core_section (core_gdbarch,
549 name, size);
550 if (regset == NULL)
551 {
552 if (required)
553 warning (_("Couldn't recognize %s registers in core file."),
554 human_name);
555 return;
556 }
557
558 regset->supply_regset (regset, regcache, -1, contents, size);
559 return;
560 }
561
562 gdb_assert (core_vec);
563 core_vec->core_read_registers (regcache, contents, size, which,
564 ((CORE_ADDR)
565 bfd_section_vma (core_bfd, section)));
566 }
567
568
569 /* Get the registers out of a core file. This is the machine-
570 independent part. Fetch_core_registers is the machine-dependent
571 part, typically implemented in the xm-file for each
572 architecture. */
573
574 /* We just get all the registers, so we don't use regno. */
575
576 static void
577 get_core_registers (struct target_ops *ops,
578 struct regcache *regcache, int regno)
579 {
580 struct core_regset_section *sect_list;
581 int i;
582
583 if (!(core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
584 && (core_vec == NULL || core_vec->core_read_registers == NULL))
585 {
586 fprintf_filtered (gdb_stderr,
587 "Can't fetch registers from this type of core file\n");
588 return;
589 }
590
591 sect_list = gdbarch_core_regset_sections (get_regcache_arch (regcache));
592 if (sect_list)
593 while (sect_list->sect_name != NULL)
594 {
595 if (strcmp (sect_list->sect_name, ".reg") == 0)
596 get_core_register_section (regcache, sect_list->sect_name,
597 0, sect_list->human_name, 1);
598 else if (strcmp (sect_list->sect_name, ".reg2") == 0)
599 get_core_register_section (regcache, sect_list->sect_name,
600 2, sect_list->human_name, 0);
601 else
602 get_core_register_section (regcache, sect_list->sect_name,
603 3, sect_list->human_name, 0);
604
605 sect_list++;
606 }
607
608 else
609 {
610 get_core_register_section (regcache,
611 ".reg", 0, "general-purpose", 1);
612 get_core_register_section (regcache,
613 ".reg2", 2, "floating-point", 0);
614 }
615
616 /* Mark all registers not found in the core as unavailable. */
617 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
618 if (regcache_register_status (regcache, i) == REG_UNKNOWN)
619 regcache_raw_supply (regcache, i, NULL);
620 }
621
622 static void
623 core_files_info (struct target_ops *t)
624 {
625 print_section_info (core_data, core_bfd);
626 }
627 \f
628 struct spuid_list
629 {
630 gdb_byte *buf;
631 ULONGEST offset;
632 LONGEST len;
633 ULONGEST pos;
634 ULONGEST written;
635 };
636
637 static void
638 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
639 {
640 struct spuid_list *list = list_p;
641 enum bfd_endian byte_order
642 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
643 int fd, pos = 0;
644
645 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
646 if (pos == 0)
647 return;
648
649 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
650 {
651 store_unsigned_integer (list->buf + list->pos - list->offset,
652 4, byte_order, fd);
653 list->written += 4;
654 }
655 list->pos += 4;
656 }
657
658 /* Read siginfo data from the core, if possible. Returns -1 on
659 failure. Otherwise, returns the number of bytes read. ABFD is the
660 core file's BFD; READBUF, OFFSET, and LEN are all as specified by
661 the to_xfer_partial interface. */
662
663 static LONGEST
664 get_core_siginfo (bfd *abfd, gdb_byte *readbuf, ULONGEST offset, LONGEST len)
665 {
666 asection *section;
667 long pid;
668 char *section_name;
669 const char *name = ".note.linuxcore.siginfo";
670
671 if (ptid_get_lwp (inferior_ptid))
672 section_name = xstrprintf ("%s/%ld", name,
673 ptid_get_lwp (inferior_ptid));
674 else
675 section_name = xstrdup (name);
676
677 section = bfd_get_section_by_name (abfd, section_name);
678 xfree (section_name);
679 if (section == NULL)
680 return -1;
681
682 if (!bfd_get_section_contents (abfd, section, readbuf, offset, len))
683 return -1;
684
685 return len;
686 }
687
688 static LONGEST
689 core_xfer_partial (struct target_ops *ops, enum target_object object,
690 const char *annex, gdb_byte *readbuf,
691 const gdb_byte *writebuf, ULONGEST offset,
692 LONGEST len)
693 {
694 switch (object)
695 {
696 case TARGET_OBJECT_MEMORY:
697 return section_table_xfer_memory_partial (readbuf, writebuf,
698 offset, len,
699 core_data->sections,
700 core_data->sections_end,
701 NULL);
702
703 case TARGET_OBJECT_AUXV:
704 if (readbuf)
705 {
706 /* When the aux vector is stored in core file, BFD
707 represents this with a fake section called ".auxv". */
708
709 struct bfd_section *section;
710 bfd_size_type size;
711
712 section = bfd_get_section_by_name (core_bfd, ".auxv");
713 if (section == NULL)
714 return -1;
715
716 size = bfd_section_size (core_bfd, section);
717 if (offset >= size)
718 return 0;
719 size -= offset;
720 if (size > len)
721 size = len;
722 if (size > 0
723 && !bfd_get_section_contents (core_bfd, section, readbuf,
724 (file_ptr) offset, size))
725 {
726 warning (_("Couldn't read NT_AUXV note in core file."));
727 return -1;
728 }
729
730 return size;
731 }
732 return -1;
733
734 case TARGET_OBJECT_WCOOKIE:
735 if (readbuf)
736 {
737 /* When the StackGhost cookie is stored in core file, BFD
738 represents this with a fake section called
739 ".wcookie". */
740
741 struct bfd_section *section;
742 bfd_size_type size;
743
744 section = bfd_get_section_by_name (core_bfd, ".wcookie");
745 if (section == NULL)
746 return -1;
747
748 size = bfd_section_size (core_bfd, section);
749 if (offset >= size)
750 return 0;
751 size -= offset;
752 if (size > len)
753 size = len;
754 if (size > 0
755 && !bfd_get_section_contents (core_bfd, section, readbuf,
756 (file_ptr) offset, size))
757 {
758 warning (_("Couldn't read StackGhost cookie in core file."));
759 return -1;
760 }
761
762 return size;
763 }
764 return -1;
765
766 case TARGET_OBJECT_LIBRARIES:
767 if (core_gdbarch
768 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
769 {
770 if (writebuf)
771 return -1;
772 return
773 gdbarch_core_xfer_shared_libraries (core_gdbarch,
774 readbuf, offset, len);
775 }
776 /* FALL THROUGH */
777
778 case TARGET_OBJECT_SPU:
779 if (readbuf && annex)
780 {
781 /* When the SPU contexts are stored in a core file, BFD
782 represents this with a fake section called
783 "SPU/<annex>". */
784
785 struct bfd_section *section;
786 bfd_size_type size;
787 char sectionstr[100];
788
789 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
790
791 section = bfd_get_section_by_name (core_bfd, sectionstr);
792 if (section == NULL)
793 return -1;
794
795 size = bfd_section_size (core_bfd, section);
796 if (offset >= size)
797 return 0;
798 size -= offset;
799 if (size > len)
800 size = len;
801 if (size > 0
802 && !bfd_get_section_contents (core_bfd, section, readbuf,
803 (file_ptr) offset, size))
804 {
805 warning (_("Couldn't read SPU section in core file."));
806 return -1;
807 }
808
809 return size;
810 }
811 else if (readbuf)
812 {
813 /* NULL annex requests list of all present spuids. */
814 struct spuid_list list;
815
816 list.buf = readbuf;
817 list.offset = offset;
818 list.len = len;
819 list.pos = 0;
820 list.written = 0;
821 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
822 return list.written;
823 }
824 return -1;
825
826 case TARGET_OBJECT_SIGNAL_INFO:
827 if (readbuf)
828 return get_core_siginfo (core_bfd, readbuf, offset, len);
829 return -1;
830
831 default:
832 if (ops->beneath != NULL)
833 return ops->beneath->to_xfer_partial (ops->beneath, object,
834 annex, readbuf,
835 writebuf, offset, len);
836 return -1;
837 }
838 }
839
840 \f
841 /* If mourn is being called in all the right places, this could be say
842 `gdb internal error' (since generic_mourn calls
843 breakpoint_init_inferior). */
844
845 static int
846 ignore (struct gdbarch *gdbarch, struct bp_target_info *bp_tgt)
847 {
848 return 0;
849 }
850
851
852 /* Okay, let's be honest: threads gleaned from a core file aren't
853 exactly lively, are they? On the other hand, if we don't claim
854 that each & every one is alive, then we don't get any of them
855 to appear in an "info thread" command, which is quite a useful
856 behaviour.
857 */
858 static int
859 core_thread_alive (struct target_ops *ops, ptid_t ptid)
860 {
861 return 1;
862 }
863
864 /* Ask the current architecture what it knows about this core file.
865 That will be used, in turn, to pick a better architecture. This
866 wrapper could be avoided if targets got a chance to specialize
867 core_ops. */
868
869 static const struct target_desc *
870 core_read_description (struct target_ops *target)
871 {
872 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
873 return gdbarch_core_read_description (core_gdbarch,
874 target, core_bfd);
875
876 return NULL;
877 }
878
879 static char *
880 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
881 {
882 static char buf[64];
883 struct inferior *inf;
884 int pid;
885
886 /* The preferred way is to have a gdbarch/OS specific
887 implementation. */
888 if (core_gdbarch
889 && gdbarch_core_pid_to_str_p (core_gdbarch))
890 return gdbarch_core_pid_to_str (core_gdbarch, ptid);
891
892 /* Otherwise, if we don't have one, we'll just fallback to
893 "process", with normal_pid_to_str. */
894
895 /* Try the LWPID field first. */
896 pid = ptid_get_lwp (ptid);
897 if (pid != 0)
898 return normal_pid_to_str (pid_to_ptid (pid));
899
900 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
901 only if it isn't a fake PID. */
902 inf = find_inferior_pid (ptid_get_pid (ptid));
903 if (inf != NULL && !inf->fake_pid_p)
904 return normal_pid_to_str (ptid);
905
906 /* No luck. We simply don't have a valid PID to print. */
907 xsnprintf (buf, sizeof buf, "<main task>");
908 return buf;
909 }
910
911 static int
912 core_has_memory (struct target_ops *ops)
913 {
914 return (core_bfd != NULL);
915 }
916
917 static int
918 core_has_stack (struct target_ops *ops)
919 {
920 return (core_bfd != NULL);
921 }
922
923 static int
924 core_has_registers (struct target_ops *ops)
925 {
926 return (core_bfd != NULL);
927 }
928
929 /* Implement the to_info_proc method. */
930
931 static void
932 core_info_proc (struct target_ops *ops, char *args, enum info_proc_what request)
933 {
934 struct gdbarch *gdbarch = get_current_arch ();
935
936 /* Since this is the core file target, call the 'core_info_proc'
937 method on gdbarch, not 'info_proc'. */
938 if (gdbarch_core_info_proc_p (gdbarch))
939 gdbarch_core_info_proc (gdbarch, args, request);
940 }
941
942 /* Fill in core_ops with its defined operations and properties. */
943
944 static void
945 init_core_ops (void)
946 {
947 core_ops.to_shortname = "core";
948 core_ops.to_longname = "Local core dump file";
949 core_ops.to_doc =
950 "Use a core file as a target. Specify the filename of the core file.";
951 core_ops.to_open = core_open;
952 core_ops.to_close = core_close;
953 core_ops.to_attach = find_default_attach;
954 core_ops.to_detach = core_detach;
955 core_ops.to_fetch_registers = get_core_registers;
956 core_ops.to_xfer_partial = core_xfer_partial;
957 core_ops.to_files_info = core_files_info;
958 core_ops.to_insert_breakpoint = ignore;
959 core_ops.to_remove_breakpoint = ignore;
960 core_ops.to_create_inferior = find_default_create_inferior;
961 core_ops.to_thread_alive = core_thread_alive;
962 core_ops.to_read_description = core_read_description;
963 core_ops.to_pid_to_str = core_pid_to_str;
964 core_ops.to_stratum = process_stratum;
965 core_ops.to_has_memory = core_has_memory;
966 core_ops.to_has_stack = core_has_stack;
967 core_ops.to_has_registers = core_has_registers;
968 core_ops.to_info_proc = core_info_proc;
969 core_ops.to_magic = OPS_MAGIC;
970
971 if (core_target)
972 internal_error (__FILE__, __LINE__,
973 _("init_core_ops: core target already exists (\"%s\")."),
974 core_target->to_longname);
975 core_target = &core_ops;
976 }
977
978 void
979 _initialize_corelow (void)
980 {
981 init_core_ops ();
982
983 add_target (&core_ops);
984 }
This page took 0.048871 seconds and 4 git commands to generate.