35c998cae04bafa7b417f9e2ab4bdcece0626423
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdb_string.h"
25 #include <errno.h>
26 #include <signal.h>
27 #include <fcntl.h>
28 #ifdef HAVE_SYS_FILE_H
29 #include <sys/file.h> /* needed for F_OK and friends */
30 #endif
31 #include "frame.h" /* required by inferior.h */
32 #include "inferior.h"
33 #include "symtab.h"
34 #include "command.h"
35 #include "bfd.h"
36 #include "target.h"
37 #include "gdbcore.h"
38 #include "gdbthread.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "symfile.h"
42 #include "exec.h"
43 #include "readline/readline.h"
44 #include "gdb_assert.h"
45 #include "exceptions.h"
46 #include "solib.h"
47 #include "filenames.h"
48
49
50 #ifndef O_LARGEFILE
51 #define O_LARGEFILE 0
52 #endif
53
54 /* List of all available core_fns. On gdb startup, each core file
55 register reader calls deprecated_add_core_fns() to register
56 information on each core format it is prepared to read. */
57
58 static struct core_fns *core_file_fns = NULL;
59
60 /* The core_fns for a core file handler that is prepared to read the core
61 file currently open on core_bfd. */
62
63 static struct core_fns *core_vec = NULL;
64
65 /* FIXME: kettenis/20031023: Eventually this variable should
66 disappear. */
67
68 struct gdbarch *core_gdbarch = NULL;
69
70 static void core_files_info (struct target_ops *);
71
72 static struct core_fns *sniff_core_bfd (bfd *);
73
74 static int gdb_check_format (bfd *);
75
76 static void core_open (char *, int);
77
78 static void core_detach (struct target_ops *ops, char *, int);
79
80 static void core_close (int);
81
82 static void core_close_cleanup (void *ignore);
83
84 static void get_core_registers (struct regcache *, int);
85
86 static void add_to_thread_list (bfd *, asection *, void *);
87
88 static int core_file_thread_alive (ptid_t tid);
89
90 static void init_core_ops (void);
91
92 void _initialize_corelow (void);
93
94 struct target_ops core_ops;
95
96 /* An arbitrary identifier for the core inferior. */
97 #define CORELOW_PID 1
98
99 /* Link a new core_fns into the global core_file_fns list. Called on gdb
100 startup by the _initialize routine in each core file register reader, to
101 register information about each format the the reader is prepared to
102 handle. */
103
104 void
105 deprecated_add_core_fns (struct core_fns *cf)
106 {
107 cf->next = core_file_fns;
108 core_file_fns = cf;
109 }
110
111 /* The default function that core file handlers can use to examine a
112 core file BFD and decide whether or not to accept the job of
113 reading the core file. */
114
115 int
116 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
117 {
118 int result;
119
120 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
121 return (result);
122 }
123
124 /* Walk through the list of core functions to find a set that can
125 handle the core file open on ABFD. Default to the first one in the
126 list if nothing matches. Returns pointer to set that is
127 selected. */
128
129 static struct core_fns *
130 sniff_core_bfd (bfd *abfd)
131 {
132 struct core_fns *cf;
133 struct core_fns *yummy = NULL;
134 int matches = 0;;
135
136 /* Don't sniff if we have support for register sets in CORE_GDBARCH. */
137 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
138 return NULL;
139
140 for (cf = core_file_fns; cf != NULL; cf = cf->next)
141 {
142 if (cf->core_sniffer (cf, abfd))
143 {
144 yummy = cf;
145 matches++;
146 }
147 }
148 if (matches > 1)
149 {
150 warning (_("\"%s\": ambiguous core format, %d handlers match"),
151 bfd_get_filename (abfd), matches);
152 }
153 else if (matches == 0)
154 {
155 warning (_("\"%s\": no core file handler recognizes format, using default"),
156 bfd_get_filename (abfd));
157 }
158 if (yummy == NULL)
159 {
160 yummy = core_file_fns;
161 }
162 return (yummy);
163 }
164
165 /* The default is to reject every core file format we see. Either
166 BFD has to recognize it, or we have to provide a function in the
167 core file handler that recognizes it. */
168
169 int
170 default_check_format (bfd *abfd)
171 {
172 return (0);
173 }
174
175 /* Attempt to recognize core file formats that BFD rejects. */
176
177 static int
178 gdb_check_format (bfd *abfd)
179 {
180 struct core_fns *cf;
181
182 for (cf = core_file_fns; cf != NULL; cf = cf->next)
183 {
184 if (cf->check_format (abfd))
185 {
186 return (1);
187 }
188 }
189 return (0);
190 }
191
192 /* Discard all vestiges of any previous core file and mark data and stack
193 spaces as empty. */
194
195 static void
196 core_close (int quitting)
197 {
198 char *name;
199
200 if (core_bfd)
201 {
202 inferior_ptid = null_ptid; /* Avoid confusion from thread stuff */
203 delete_inferior_silent (CORELOW_PID);
204
205 /* Clear out solib state while the bfd is still open. See
206 comments in clear_solib in solib.c. */
207 clear_solib ();
208
209 name = bfd_get_filename (core_bfd);
210 if (!bfd_close (core_bfd))
211 warning (_("cannot close \"%s\": %s"),
212 name, bfd_errmsg (bfd_get_error ()));
213 xfree (name);
214 core_bfd = NULL;
215 if (core_ops.to_sections)
216 {
217 xfree (core_ops.to_sections);
218 core_ops.to_sections = NULL;
219 core_ops.to_sections_end = NULL;
220 }
221 }
222 core_vec = NULL;
223 core_gdbarch = NULL;
224 }
225
226 static void
227 core_close_cleanup (void *ignore)
228 {
229 core_close (0/*ignored*/);
230 }
231
232 /* Look for sections whose names start with `.reg/' so that we can extract the
233 list of threads in a core file. */
234
235 static void
236 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
237 {
238 ptid_t ptid;
239 int thread_id;
240 asection *reg_sect = (asection *) reg_sect_arg;
241
242 if (strncmp (bfd_section_name (abfd, asect), ".reg/", 5) != 0)
243 return;
244
245 thread_id = atoi (bfd_section_name (abfd, asect) + 5);
246
247 ptid = ptid_build (ptid_get_pid (inferior_ptid), thread_id, 0);
248
249 if (ptid_get_lwp (inferior_ptid) == 0)
250 /* The main thread has already been added before getting here, and
251 this is the first time we hear about a thread id. Assume this
252 is the main thread. */
253 thread_change_ptid (inferior_ptid, ptid);
254 else
255 /* Nope, really a new thread. */
256 add_thread (ptid);
257
258 /* Warning, Will Robinson, looking at BFD private data! */
259
260 if (reg_sect != NULL
261 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
262 inferior_ptid = ptid; /* Yes, make it current */
263 }
264
265 /* This routine opens and sets up the core file bfd. */
266
267 static void
268 core_open (char *filename, int from_tty)
269 {
270 const char *p;
271 int siggy;
272 struct cleanup *old_chain;
273 char *temp;
274 bfd *temp_bfd;
275 int scratch_chan;
276 int flags;
277 int corelow_pid = CORELOW_PID;
278
279 target_preopen (from_tty);
280 if (!filename)
281 {
282 if (core_bfd)
283 error (_("No core file specified. (Use `detach' to stop debugging a core file.)"));
284 else
285 error (_("No core file specified."));
286 }
287
288 filename = tilde_expand (filename);
289 if (!IS_ABSOLUTE_PATH(filename))
290 {
291 temp = concat (current_directory, "/", filename, (char *)NULL);
292 xfree (filename);
293 filename = temp;
294 }
295
296 old_chain = make_cleanup (xfree, filename);
297
298 flags = O_BINARY | O_LARGEFILE;
299 if (write_files)
300 flags |= O_RDWR;
301 else
302 flags |= O_RDONLY;
303 scratch_chan = open (filename, flags, 0);
304 if (scratch_chan < 0)
305 perror_with_name (filename);
306
307 temp_bfd = bfd_fopen (filename, gnutarget,
308 write_files ? FOPEN_RUB : FOPEN_RB,
309 scratch_chan);
310 if (temp_bfd == NULL)
311 perror_with_name (filename);
312
313 if (!bfd_check_format (temp_bfd, bfd_core) &&
314 !gdb_check_format (temp_bfd))
315 {
316 /* Do it after the err msg */
317 /* FIXME: should be checking for errors from bfd_close (for one thing,
318 on error it does not free all the storage associated with the
319 bfd). */
320 make_cleanup_bfd_close (temp_bfd);
321 error (_("\"%s\" is not a core dump: %s"),
322 filename, bfd_errmsg (bfd_get_error ()));
323 }
324
325 /* Looks semi-reasonable. Toss the old core file and work on the new. */
326
327 discard_cleanups (old_chain); /* Don't free filename any more */
328 unpush_target (&core_ops);
329 core_bfd = temp_bfd;
330 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
331
332 /* FIXME: kettenis/20031023: This is very dangerous. The
333 CORE_GDBARCH that results from this call may very well be
334 different from CURRENT_GDBARCH. However, its methods may only
335 work if it is selected as the current architecture, because they
336 rely on swapped data (see gdbarch.c). We should get rid of that
337 swapped data. */
338 core_gdbarch = gdbarch_from_bfd (core_bfd);
339
340 /* Find a suitable core file handler to munch on core_bfd */
341 core_vec = sniff_core_bfd (core_bfd);
342
343 validate_files ();
344
345 /* Find the data section */
346 if (build_section_table (core_bfd, &core_ops.to_sections,
347 &core_ops.to_sections_end))
348 error (_("\"%s\": Can't find sections: %s"),
349 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
350
351 /* If we have no exec file, try to set the architecture from the
352 core file. We don't do this unconditionally since an exec file
353 typically contains more information that helps us determine the
354 architecture than a core file. */
355 if (!exec_bfd)
356 set_gdbarch_from_file (core_bfd);
357
358 push_target (&core_ops);
359 discard_cleanups (old_chain);
360
361 add_inferior_silent (corelow_pid);
362
363 /* Do this before acknowledging the inferior, so if
364 post_create_inferior throws (can happen easilly if you're loading
365 a core file with the wrong exec), we aren't left with threads
366 from the previous inferior. */
367 init_thread_list ();
368
369 /* Set INFERIOR_PTID early, so an upper layer can rely on it being
370 set while in the target_find_new_threads call below. */
371 inferior_ptid = pid_to_ptid (corelow_pid);
372
373 /* Assume ST --- Add a main task. We'll later detect when we go
374 from ST to MT. */
375 add_thread_silent (inferior_ptid);
376
377 /* This is done first, before anything has a chance to query the
378 inferior for information such as symbols. */
379 post_create_inferior (&core_ops, from_tty);
380
381 /* Build up thread list from BFD sections, and possibly set the
382 current thread to the .reg/NN section matching the .reg
383 section. */
384 bfd_map_over_sections (core_bfd, add_to_thread_list,
385 bfd_get_section_by_name (core_bfd, ".reg"));
386
387 /* Now go through the target stack looking for threads since there
388 may be a thread_stratum target loaded on top of target core by
389 now. The layer above should claim threads found in the BFD
390 sections. */
391 target_find_new_threads ();
392
393 p = bfd_core_file_failing_command (core_bfd);
394 if (p)
395 printf_filtered (_("Core was generated by `%s'.\n"), p);
396
397 siggy = bfd_core_file_failing_signal (core_bfd);
398 if (siggy > 0)
399 /* NOTE: target_signal_from_host() converts a target signal value
400 into gdb's internal signal value. Unfortunately gdb's internal
401 value is called ``target_signal'' and this function got the
402 name ..._from_host(). */
403 printf_filtered (_("Program terminated with signal %d, %s.\n"), siggy,
404 target_signal_to_string (
405 gdbarch_target_signal_from_host (core_gdbarch, siggy)));
406
407 /* Fetch all registers from core file. */
408 target_fetch_registers (get_current_regcache (), -1);
409
410 /* Now, set up the frame cache, and print the top of stack. */
411 reinit_frame_cache ();
412 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC);
413 }
414
415 static void
416 core_detach (struct target_ops *ops, char *args, int from_tty)
417 {
418 if (args)
419 error (_("Too many arguments"));
420 unpush_target (ops);
421 reinit_frame_cache ();
422 if (from_tty)
423 printf_filtered (_("No core file now.\n"));
424 }
425
426
427 /* Try to retrieve registers from a section in core_bfd, and supply
428 them to core_vec->core_read_registers, as the register set numbered
429 WHICH.
430
431 If inferior_ptid's lwp member is zero, do the single-threaded
432 thing: look for a section named NAME. If inferior_ptid's lwp
433 member is non-zero, do the multi-threaded thing: look for a section
434 named "NAME/LWP", where LWP is the shortest ASCII decimal
435 representation of inferior_ptid's lwp member.
436
437 HUMAN_NAME is a human-readable name for the kind of registers the
438 NAME section contains, for use in error messages.
439
440 If REQUIRED is non-zero, print an error if the core file doesn't
441 have a section by the appropriate name. Otherwise, just do nothing. */
442
443 static void
444 get_core_register_section (struct regcache *regcache,
445 char *name,
446 int which,
447 char *human_name,
448 int required)
449 {
450 static char *section_name = NULL;
451 struct bfd_section *section;
452 bfd_size_type size;
453 char *contents;
454
455 xfree (section_name);
456 if (ptid_get_lwp (inferior_ptid))
457 section_name = xstrprintf ("%s/%ld", name, ptid_get_lwp (inferior_ptid));
458 else
459 section_name = xstrdup (name);
460
461 section = bfd_get_section_by_name (core_bfd, section_name);
462 if (! section)
463 {
464 if (required)
465 warning (_("Couldn't find %s registers in core file."), human_name);
466 return;
467 }
468
469 size = bfd_section_size (core_bfd, section);
470 contents = alloca (size);
471 if (! bfd_get_section_contents (core_bfd, section, contents,
472 (file_ptr) 0, size))
473 {
474 warning (_("Couldn't read %s registers from `%s' section in core file."),
475 human_name, name);
476 return;
477 }
478
479 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
480 {
481 const struct regset *regset;
482
483 regset = gdbarch_regset_from_core_section (core_gdbarch, name, size);
484 if (regset == NULL)
485 {
486 if (required)
487 warning (_("Couldn't recognize %s registers in core file."),
488 human_name);
489 return;
490 }
491
492 regset->supply_regset (regset, regcache, -1, contents, size);
493 return;
494 }
495
496 gdb_assert (core_vec);
497 core_vec->core_read_registers (regcache, contents, size, which,
498 ((CORE_ADDR)
499 bfd_section_vma (core_bfd, section)));
500 }
501
502
503 /* Get the registers out of a core file. This is the machine-
504 independent part. Fetch_core_registers is the machine-dependent
505 part, typically implemented in the xm-file for each architecture. */
506
507 /* We just get all the registers, so we don't use regno. */
508
509 static void
510 get_core_registers (struct regcache *regcache, int regno)
511 {
512 int i;
513
514 if (!(core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
515 && (core_vec == NULL || core_vec->core_read_registers == NULL))
516 {
517 fprintf_filtered (gdb_stderr,
518 "Can't fetch registers from this type of core file\n");
519 return;
520 }
521
522 get_core_register_section (regcache,
523 ".reg", 0, "general-purpose", 1);
524 get_core_register_section (regcache,
525 ".reg2", 2, "floating-point", 0);
526 get_core_register_section (regcache,
527 ".reg-xfp", 3, "extended floating-point", 0);
528 get_core_register_section (regcache,
529 ".reg-ppc-vmx", 3, "ppc Altivec", 0);
530 get_core_register_section (regcache,
531 ".reg-ppc-vsx", 4, "POWER7 VSX", 0);
532
533 /* Supply dummy value for all registers not found in the core. */
534 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
535 if (!regcache_valid_p (regcache, i))
536 regcache_raw_supply (regcache, i, NULL);
537 }
538
539 static void
540 core_files_info (struct target_ops *t)
541 {
542 print_section_info (t, core_bfd);
543 }
544 \f
545 static LONGEST
546 core_xfer_partial (struct target_ops *ops, enum target_object object,
547 const char *annex, gdb_byte *readbuf,
548 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
549 {
550 switch (object)
551 {
552 case TARGET_OBJECT_MEMORY:
553 if (readbuf)
554 return (*ops->deprecated_xfer_memory) (offset, readbuf,
555 len, 0/*read*/, NULL, ops);
556 if (writebuf)
557 return (*ops->deprecated_xfer_memory) (offset, (gdb_byte *) writebuf,
558 len, 1/*write*/, NULL, ops);
559 return -1;
560
561 case TARGET_OBJECT_AUXV:
562 if (readbuf)
563 {
564 /* When the aux vector is stored in core file, BFD
565 represents this with a fake section called ".auxv". */
566
567 struct bfd_section *section;
568 bfd_size_type size;
569 char *contents;
570
571 section = bfd_get_section_by_name (core_bfd, ".auxv");
572 if (section == NULL)
573 return -1;
574
575 size = bfd_section_size (core_bfd, section);
576 if (offset >= size)
577 return 0;
578 size -= offset;
579 if (size > len)
580 size = len;
581 if (size > 0
582 && !bfd_get_section_contents (core_bfd, section, readbuf,
583 (file_ptr) offset, size))
584 {
585 warning (_("Couldn't read NT_AUXV note in core file."));
586 return -1;
587 }
588
589 return size;
590 }
591 return -1;
592
593 case TARGET_OBJECT_WCOOKIE:
594 if (readbuf)
595 {
596 /* When the StackGhost cookie is stored in core file, BFD
597 represents this with a fake section called ".wcookie". */
598
599 struct bfd_section *section;
600 bfd_size_type size;
601 char *contents;
602
603 section = bfd_get_section_by_name (core_bfd, ".wcookie");
604 if (section == NULL)
605 return -1;
606
607 size = bfd_section_size (core_bfd, section);
608 if (offset >= size)
609 return 0;
610 size -= offset;
611 if (size > len)
612 size = len;
613 if (size > 0
614 && !bfd_get_section_contents (core_bfd, section, readbuf,
615 (file_ptr) offset, size))
616 {
617 warning (_("Couldn't read StackGhost cookie in core file."));
618 return -1;
619 }
620
621 return size;
622 }
623 return -1;
624
625 case TARGET_OBJECT_LIBRARIES:
626 if (core_gdbarch
627 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
628 {
629 if (writebuf)
630 return -1;
631 return
632 gdbarch_core_xfer_shared_libraries (core_gdbarch,
633 readbuf, offset, len);
634 }
635 /* FALL THROUGH */
636
637 default:
638 if (ops->beneath != NULL)
639 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
640 readbuf, writebuf, offset, len);
641 return -1;
642 }
643 }
644
645 \f
646 /* If mourn is being called in all the right places, this could be say
647 `gdb internal error' (since generic_mourn calls breakpoint_init_inferior). */
648
649 static int
650 ignore (struct bp_target_info *bp_tgt)
651 {
652 return 0;
653 }
654
655
656 /* Okay, let's be honest: threads gleaned from a core file aren't
657 exactly lively, are they? On the other hand, if we don't claim
658 that each & every one is alive, then we don't get any of them
659 to appear in an "info thread" command, which is quite a useful
660 behaviour.
661 */
662 static int
663 core_file_thread_alive (ptid_t tid)
664 {
665 return 1;
666 }
667
668 /* Ask the current architecture what it knows about this core file.
669 That will be used, in turn, to pick a better architecture. This
670 wrapper could be avoided if targets got a chance to specialize
671 core_ops. */
672
673 static const struct target_desc *
674 core_read_description (struct target_ops *target)
675 {
676 if (gdbarch_core_read_description_p (current_gdbarch))
677 return gdbarch_core_read_description (current_gdbarch, target, core_bfd);
678
679 return NULL;
680 }
681
682 static char *
683 core_pid_to_str (ptid_t ptid)
684 {
685 static char buf[64];
686
687 if (ptid_get_lwp (ptid) == 0)
688 xsnprintf (buf, sizeof buf, "<main task>");
689 else
690 xsnprintf (buf, sizeof buf, "Thread %ld", ptid_get_lwp (ptid));
691
692 return buf;
693 }
694
695 /* Fill in core_ops with its defined operations and properties. */
696
697 static void
698 init_core_ops (void)
699 {
700 core_ops.to_shortname = "core";
701 core_ops.to_longname = "Local core dump file";
702 core_ops.to_doc =
703 "Use a core file as a target. Specify the filename of the core file.";
704 core_ops.to_open = core_open;
705 core_ops.to_close = core_close;
706 core_ops.to_attach = find_default_attach;
707 core_ops.to_detach = core_detach;
708 core_ops.to_fetch_registers = get_core_registers;
709 core_ops.to_xfer_partial = core_xfer_partial;
710 core_ops.deprecated_xfer_memory = xfer_memory;
711 core_ops.to_files_info = core_files_info;
712 core_ops.to_insert_breakpoint = ignore;
713 core_ops.to_remove_breakpoint = ignore;
714 core_ops.to_create_inferior = find_default_create_inferior;
715 core_ops.to_thread_alive = core_file_thread_alive;
716 core_ops.to_read_description = core_read_description;
717 core_ops.to_pid_to_str = core_pid_to_str;
718 core_ops.to_stratum = core_stratum;
719 core_ops.to_has_memory = 1;
720 core_ops.to_has_stack = 1;
721 core_ops.to_has_registers = 1;
722 core_ops.to_magic = OPS_MAGIC;
723 }
724
725 /* non-zero if we should not do the add_target call in
726 _initialize_corelow; not initialized (i.e., bss) so that
727 the target can initialize it (i.e., data) if appropriate.
728 This needs to be set at compile time because we don't know
729 for sure whether the target's initialize routine is called
730 before us or after us. */
731 int coreops_suppress_target;
732
733 void
734 _initialize_corelow (void)
735 {
736 init_core_ops ();
737
738 if (!coreops_suppress_target)
739 add_target (&core_ops);
740 }
This page took 0.044895 seconds and 4 git commands to generate.