* dwarf2read.c (try_open_dwo_file): Use gdb_bfd_ref and
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-1987, 1989, 1991-2001, 2003-2012 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "arch-utils.h"
23 #include "gdb_string.h"
24 #include <errno.h>
25 #include <signal.h>
26 #include <fcntl.h>
27 #ifdef HAVE_SYS_FILE_H
28 #include <sys/file.h> /* needed for F_OK and friends */
29 #endif
30 #include "frame.h" /* required by inferior.h */
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "command.h"
34 #include "bfd.h"
35 #include "target.h"
36 #include "gdbcore.h"
37 #include "gdbthread.h"
38 #include "regcache.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "exec.h"
42 #include "readline/readline.h"
43 #include "gdb_assert.h"
44 #include "exceptions.h"
45 #include "solib.h"
46 #include "filenames.h"
47 #include "progspace.h"
48 #include "objfiles.h"
49 #include "gdb_bfd.h"
50
51 #ifndef O_LARGEFILE
52 #define O_LARGEFILE 0
53 #endif
54
55 /* List of all available core_fns. On gdb startup, each core file
56 register reader calls deprecated_add_core_fns() to register
57 information on each core format it is prepared to read. */
58
59 static struct core_fns *core_file_fns = NULL;
60
61 /* The core_fns for a core file handler that is prepared to read the
62 core file currently open on core_bfd. */
63
64 static struct core_fns *core_vec = NULL;
65
66 /* FIXME: kettenis/20031023: Eventually this variable should
67 disappear. */
68
69 struct gdbarch *core_gdbarch = NULL;
70
71 /* Per-core data. Currently, only the section table. Note that these
72 target sections are *not* mapped in the current address spaces' set
73 of target sections --- those should come only from pure executable
74 or shared library bfds. The core bfd sections are an
75 implementation detail of the core target, just like ptrace is for
76 unix child targets. */
77 static struct target_section_table *core_data;
78
79 static void core_files_info (struct target_ops *);
80
81 static struct core_fns *sniff_core_bfd (bfd *);
82
83 static int gdb_check_format (bfd *);
84
85 static void core_open (char *, int);
86
87 static void core_detach (struct target_ops *ops, char *, int);
88
89 static void core_close (int);
90
91 static void core_close_cleanup (void *ignore);
92
93 static void add_to_thread_list (bfd *, asection *, void *);
94
95 static void init_core_ops (void);
96
97 void _initialize_corelow (void);
98
99 static struct target_ops core_ops;
100
101 /* An arbitrary identifier for the core inferior. */
102 #define CORELOW_PID 1
103
104 /* Link a new core_fns into the global core_file_fns list. Called on
105 gdb startup by the _initialize routine in each core file register
106 reader, to register information about each format the reader is
107 prepared to handle. */
108
109 void
110 deprecated_add_core_fns (struct core_fns *cf)
111 {
112 cf->next = core_file_fns;
113 core_file_fns = cf;
114 }
115
116 /* The default function that core file handlers can use to examine a
117 core file BFD and decide whether or not to accept the job of
118 reading the core file. */
119
120 int
121 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
122 {
123 int result;
124
125 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
126 return (result);
127 }
128
129 /* Walk through the list of core functions to find a set that can
130 handle the core file open on ABFD. Returns pointer to set that is
131 selected. */
132
133 static struct core_fns *
134 sniff_core_bfd (bfd *abfd)
135 {
136 struct core_fns *cf;
137 struct core_fns *yummy = NULL;
138 int matches = 0;;
139
140 /* Don't sniff if we have support for register sets in
141 CORE_GDBARCH. */
142 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
143 return NULL;
144
145 for (cf = core_file_fns; cf != NULL; cf = cf->next)
146 {
147 if (cf->core_sniffer (cf, abfd))
148 {
149 yummy = cf;
150 matches++;
151 }
152 }
153 if (matches > 1)
154 {
155 warning (_("\"%s\": ambiguous core format, %d handlers match"),
156 bfd_get_filename (abfd), matches);
157 }
158 else if (matches == 0)
159 error (_("\"%s\": no core file handler recognizes format"),
160 bfd_get_filename (abfd));
161
162 return (yummy);
163 }
164
165 /* The default is to reject every core file format we see. Either
166 BFD has to recognize it, or we have to provide a function in the
167 core file handler that recognizes it. */
168
169 int
170 default_check_format (bfd *abfd)
171 {
172 return (0);
173 }
174
175 /* Attempt to recognize core file formats that BFD rejects. */
176
177 static int
178 gdb_check_format (bfd *abfd)
179 {
180 struct core_fns *cf;
181
182 for (cf = core_file_fns; cf != NULL; cf = cf->next)
183 {
184 if (cf->check_format (abfd))
185 {
186 return (1);
187 }
188 }
189 return (0);
190 }
191
192 /* Discard all vestiges of any previous core file and mark data and
193 stack spaces as empty. */
194
195 static void
196 core_close (int quitting)
197 {
198 char *name;
199
200 if (core_bfd)
201 {
202 int pid = ptid_get_pid (inferior_ptid);
203 inferior_ptid = null_ptid; /* Avoid confusion from thread
204 stuff. */
205 if (pid != 0)
206 exit_inferior_silent (pid);
207
208 /* Clear out solib state while the bfd is still open. See
209 comments in clear_solib in solib.c. */
210 clear_solib ();
211
212 if (core_data)
213 {
214 xfree (core_data->sections);
215 xfree (core_data);
216 core_data = NULL;
217 }
218
219 name = bfd_get_filename (core_bfd);
220 gdb_bfd_unref (core_bfd);
221 xfree (name);
222 core_bfd = NULL;
223 }
224 core_vec = NULL;
225 core_gdbarch = NULL;
226 }
227
228 static void
229 core_close_cleanup (void *ignore)
230 {
231 core_close (0/*ignored*/);
232 }
233
234 /* Look for sections whose names start with `.reg/' so that we can
235 extract the list of threads in a core file. */
236
237 static void
238 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
239 {
240 ptid_t ptid;
241 int core_tid;
242 int pid, lwpid;
243 asection *reg_sect = (asection *) reg_sect_arg;
244 int fake_pid_p = 0;
245 struct inferior *inf;
246
247 if (strncmp (bfd_section_name (abfd, asect), ".reg/", 5) != 0)
248 return;
249
250 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
251
252 pid = bfd_core_file_pid (core_bfd);
253 if (pid == 0)
254 {
255 fake_pid_p = 1;
256 pid = CORELOW_PID;
257 }
258
259 lwpid = core_tid;
260
261 inf = current_inferior ();
262 if (inf->pid == 0)
263 {
264 inferior_appeared (inf, pid);
265 inf->fake_pid_p = fake_pid_p;
266 }
267
268 ptid = ptid_build (pid, lwpid, 0);
269
270 add_thread (ptid);
271
272 /* Warning, Will Robinson, looking at BFD private data! */
273
274 if (reg_sect != NULL
275 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
276 inferior_ptid = ptid; /* Yes, make it current. */
277 }
278
279 /* This routine opens and sets up the core file bfd. */
280
281 static void
282 core_open (char *filename, int from_tty)
283 {
284 const char *p;
285 int siggy;
286 struct cleanup *old_chain;
287 char *temp;
288 bfd *temp_bfd;
289 int scratch_chan;
290 int flags;
291 volatile struct gdb_exception except;
292
293 target_preopen (from_tty);
294 if (!filename)
295 {
296 if (core_bfd)
297 error (_("No core file specified. (Use `detach' "
298 "to stop debugging a core file.)"));
299 else
300 error (_("No core file specified."));
301 }
302
303 filename = tilde_expand (filename);
304 if (!IS_ABSOLUTE_PATH (filename))
305 {
306 temp = concat (current_directory, "/",
307 filename, (char *) NULL);
308 xfree (filename);
309 filename = temp;
310 }
311
312 old_chain = make_cleanup (xfree, filename);
313
314 flags = O_BINARY | O_LARGEFILE;
315 if (write_files)
316 flags |= O_RDWR;
317 else
318 flags |= O_RDONLY;
319 scratch_chan = open (filename, flags, 0);
320 if (scratch_chan < 0)
321 perror_with_name (filename);
322
323 temp_bfd = gdb_bfd_ref (bfd_fopen (filename, gnutarget,
324 write_files ? FOPEN_RUB : FOPEN_RB,
325 scratch_chan));
326 if (temp_bfd == NULL)
327 perror_with_name (filename);
328
329 if (!bfd_check_format (temp_bfd, bfd_core)
330 && !gdb_check_format (temp_bfd))
331 {
332 /* Do it after the err msg */
333 /* FIXME: should be checking for errors from bfd_close (for one
334 thing, on error it does not free all the storage associated
335 with the bfd). */
336 make_cleanup_bfd_close (temp_bfd);
337 error (_("\"%s\" is not a core dump: %s"),
338 filename, bfd_errmsg (bfd_get_error ()));
339 }
340
341 /* Looks semi-reasonable. Toss the old core file and work on the
342 new. */
343
344 discard_cleanups (old_chain); /* Don't free filename any more */
345 unpush_target (&core_ops);
346 core_bfd = temp_bfd;
347 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
348
349 /* FIXME: kettenis/20031023: This is very dangerous. The
350 CORE_GDBARCH that results from this call may very well be
351 different from CURRENT_GDBARCH. However, its methods may only
352 work if it is selected as the current architecture, because they
353 rely on swapped data (see gdbarch.c). We should get rid of that
354 swapped data. */
355 core_gdbarch = gdbarch_from_bfd (core_bfd);
356
357 /* Find a suitable core file handler to munch on core_bfd */
358 core_vec = sniff_core_bfd (core_bfd);
359
360 validate_files ();
361
362 core_data = XZALLOC (struct target_section_table);
363
364 /* Find the data section */
365 if (build_section_table (core_bfd,
366 &core_data->sections,
367 &core_data->sections_end))
368 error (_("\"%s\": Can't find sections: %s"),
369 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
370
371 /* If we have no exec file, try to set the architecture from the
372 core file. We don't do this unconditionally since an exec file
373 typically contains more information that helps us determine the
374 architecture than a core file. */
375 if (!exec_bfd)
376 set_gdbarch_from_file (core_bfd);
377
378 push_target (&core_ops);
379 discard_cleanups (old_chain);
380
381 /* Do this before acknowledging the inferior, so if
382 post_create_inferior throws (can happen easilly if you're loading
383 a core file with the wrong exec), we aren't left with threads
384 from the previous inferior. */
385 init_thread_list ();
386
387 inferior_ptid = null_ptid;
388
389 /* Need to flush the register cache (and the frame cache) from a
390 previous debug session. If inferior_ptid ends up the same as the
391 last debug session --- e.g., b foo; run; gcore core1; step; gcore
392 core2; core core1; core core2 --- then there's potential for
393 get_current_regcache to return the cached regcache of the
394 previous session, and the frame cache being stale. */
395 registers_changed ();
396
397 /* Build up thread list from BFD sections, and possibly set the
398 current thread to the .reg/NN section matching the .reg
399 section. */
400 bfd_map_over_sections (core_bfd, add_to_thread_list,
401 bfd_get_section_by_name (core_bfd, ".reg"));
402
403 if (ptid_equal (inferior_ptid, null_ptid))
404 {
405 /* Either we found no .reg/NN section, and hence we have a
406 non-threaded core (single-threaded, from gdb's perspective),
407 or for some reason add_to_thread_list couldn't determine
408 which was the "main" thread. The latter case shouldn't
409 usually happen, but we're dealing with input here, which can
410 always be broken in different ways. */
411 struct thread_info *thread = first_thread_of_process (-1);
412
413 if (thread == NULL)
414 {
415 inferior_appeared (current_inferior (), CORELOW_PID);
416 inferior_ptid = pid_to_ptid (CORELOW_PID);
417 add_thread_silent (inferior_ptid);
418 }
419 else
420 switch_to_thread (thread->ptid);
421 }
422
423 post_create_inferior (&core_ops, from_tty);
424
425 /* Now go through the target stack looking for threads since there
426 may be a thread_stratum target loaded on top of target core by
427 now. The layer above should claim threads found in the BFD
428 sections. */
429 TRY_CATCH (except, RETURN_MASK_ERROR)
430 {
431 target_find_new_threads ();
432 }
433
434 if (except.reason < 0)
435 exception_print (gdb_stderr, except);
436
437 p = bfd_core_file_failing_command (core_bfd);
438 if (p)
439 printf_filtered (_("Core was generated by `%s'.\n"), p);
440
441 siggy = bfd_core_file_failing_signal (core_bfd);
442 if (siggy > 0)
443 {
444 /* If we don't have a CORE_GDBARCH to work with, assume a native
445 core (map gdb_signal from host signals). If we do have
446 CORE_GDBARCH to work with, but no gdb_signal_from_target
447 implementation for that gdbarch, as a fallback measure,
448 assume the host signal mapping. It'll be correct for native
449 cores, but most likely incorrect for cross-cores. */
450 enum gdb_signal sig = (core_gdbarch != NULL
451 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
452 ? gdbarch_gdb_signal_from_target (core_gdbarch,
453 siggy)
454 : gdb_signal_from_host (siggy));
455
456 printf_filtered (_("Program terminated with signal %d, %s.\n"),
457 siggy, gdb_signal_to_string (sig));
458 }
459
460 /* Fetch all registers from core file. */
461 target_fetch_registers (get_current_regcache (), -1);
462
463 /* Now, set up the frame cache, and print the top of stack. */
464 reinit_frame_cache ();
465 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC);
466 }
467
468 static void
469 core_detach (struct target_ops *ops, char *args, int from_tty)
470 {
471 if (args)
472 error (_("Too many arguments"));
473 unpush_target (ops);
474 reinit_frame_cache ();
475 if (from_tty)
476 printf_filtered (_("No core file now.\n"));
477 }
478
479 #ifdef DEPRECATED_IBM6000_TARGET
480
481 /* Resize the core memory's section table, by NUM_ADDED. Returns a
482 pointer into the first new slot. This will not be necessary when
483 the rs6000 target is converted to use the standard solib
484 framework. */
485
486 struct target_section *
487 deprecated_core_resize_section_table (int num_added)
488 {
489 int old_count;
490
491 old_count = resize_section_table (core_data, num_added);
492 return core_data->sections + old_count;
493 }
494
495 #endif
496
497 /* Try to retrieve registers from a section in core_bfd, and supply
498 them to core_vec->core_read_registers, as the register set numbered
499 WHICH.
500
501 If inferior_ptid's lwp member is zero, do the single-threaded
502 thing: look for a section named NAME. If inferior_ptid's lwp
503 member is non-zero, do the multi-threaded thing: look for a section
504 named "NAME/LWP", where LWP is the shortest ASCII decimal
505 representation of inferior_ptid's lwp member.
506
507 HUMAN_NAME is a human-readable name for the kind of registers the
508 NAME section contains, for use in error messages.
509
510 If REQUIRED is non-zero, print an error if the core file doesn't
511 have a section by the appropriate name. Otherwise, just do
512 nothing. */
513
514 static void
515 get_core_register_section (struct regcache *regcache,
516 const char *name,
517 int which,
518 const char *human_name,
519 int required)
520 {
521 static char *section_name = NULL;
522 struct bfd_section *section;
523 bfd_size_type size;
524 char *contents;
525
526 xfree (section_name);
527
528 if (ptid_get_lwp (inferior_ptid))
529 section_name = xstrprintf ("%s/%ld", name,
530 ptid_get_lwp (inferior_ptid));
531 else
532 section_name = xstrdup (name);
533
534 section = bfd_get_section_by_name (core_bfd, section_name);
535 if (! section)
536 {
537 if (required)
538 warning (_("Couldn't find %s registers in core file."),
539 human_name);
540 return;
541 }
542
543 size = bfd_section_size (core_bfd, section);
544 contents = alloca (size);
545 if (! bfd_get_section_contents (core_bfd, section, contents,
546 (file_ptr) 0, size))
547 {
548 warning (_("Couldn't read %s registers from `%s' section in core file."),
549 human_name, name);
550 return;
551 }
552
553 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
554 {
555 const struct regset *regset;
556
557 regset = gdbarch_regset_from_core_section (core_gdbarch,
558 name, size);
559 if (regset == NULL)
560 {
561 if (required)
562 warning (_("Couldn't recognize %s registers in core file."),
563 human_name);
564 return;
565 }
566
567 regset->supply_regset (regset, regcache, -1, contents, size);
568 return;
569 }
570
571 gdb_assert (core_vec);
572 core_vec->core_read_registers (regcache, contents, size, which,
573 ((CORE_ADDR)
574 bfd_section_vma (core_bfd, section)));
575 }
576
577
578 /* Get the registers out of a core file. This is the machine-
579 independent part. Fetch_core_registers is the machine-dependent
580 part, typically implemented in the xm-file for each
581 architecture. */
582
583 /* We just get all the registers, so we don't use regno. */
584
585 static void
586 get_core_registers (struct target_ops *ops,
587 struct regcache *regcache, int regno)
588 {
589 struct core_regset_section *sect_list;
590 int i;
591
592 if (!(core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
593 && (core_vec == NULL || core_vec->core_read_registers == NULL))
594 {
595 fprintf_filtered (gdb_stderr,
596 "Can't fetch registers from this type of core file\n");
597 return;
598 }
599
600 sect_list = gdbarch_core_regset_sections (get_regcache_arch (regcache));
601 if (sect_list)
602 while (sect_list->sect_name != NULL)
603 {
604 if (strcmp (sect_list->sect_name, ".reg") == 0)
605 get_core_register_section (regcache, sect_list->sect_name,
606 0, sect_list->human_name, 1);
607 else if (strcmp (sect_list->sect_name, ".reg2") == 0)
608 get_core_register_section (regcache, sect_list->sect_name,
609 2, sect_list->human_name, 0);
610 else
611 get_core_register_section (regcache, sect_list->sect_name,
612 3, sect_list->human_name, 0);
613
614 sect_list++;
615 }
616
617 else
618 {
619 get_core_register_section (regcache,
620 ".reg", 0, "general-purpose", 1);
621 get_core_register_section (regcache,
622 ".reg2", 2, "floating-point", 0);
623 }
624
625 /* Mark all registers not found in the core as unavailable. */
626 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
627 if (regcache_register_status (regcache, i) == REG_UNKNOWN)
628 regcache_raw_supply (regcache, i, NULL);
629 }
630
631 static void
632 core_files_info (struct target_ops *t)
633 {
634 print_section_info (core_data, core_bfd);
635 }
636 \f
637 struct spuid_list
638 {
639 gdb_byte *buf;
640 ULONGEST offset;
641 LONGEST len;
642 ULONGEST pos;
643 ULONGEST written;
644 };
645
646 static void
647 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
648 {
649 struct spuid_list *list = list_p;
650 enum bfd_endian byte_order
651 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
652 int fd, pos = 0;
653
654 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
655 if (pos == 0)
656 return;
657
658 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
659 {
660 store_unsigned_integer (list->buf + list->pos - list->offset,
661 4, byte_order, fd);
662 list->written += 4;
663 }
664 list->pos += 4;
665 }
666
667 static LONGEST
668 core_xfer_partial (struct target_ops *ops, enum target_object object,
669 const char *annex, gdb_byte *readbuf,
670 const gdb_byte *writebuf, ULONGEST offset,
671 LONGEST len)
672 {
673 switch (object)
674 {
675 case TARGET_OBJECT_MEMORY:
676 return section_table_xfer_memory_partial (readbuf, writebuf,
677 offset, len,
678 core_data->sections,
679 core_data->sections_end,
680 NULL);
681
682 case TARGET_OBJECT_AUXV:
683 if (readbuf)
684 {
685 /* When the aux vector is stored in core file, BFD
686 represents this with a fake section called ".auxv". */
687
688 struct bfd_section *section;
689 bfd_size_type size;
690
691 section = bfd_get_section_by_name (core_bfd, ".auxv");
692 if (section == NULL)
693 return -1;
694
695 size = bfd_section_size (core_bfd, section);
696 if (offset >= size)
697 return 0;
698 size -= offset;
699 if (size > len)
700 size = len;
701 if (size > 0
702 && !bfd_get_section_contents (core_bfd, section, readbuf,
703 (file_ptr) offset, size))
704 {
705 warning (_("Couldn't read NT_AUXV note in core file."));
706 return -1;
707 }
708
709 return size;
710 }
711 return -1;
712
713 case TARGET_OBJECT_WCOOKIE:
714 if (readbuf)
715 {
716 /* When the StackGhost cookie is stored in core file, BFD
717 represents this with a fake section called
718 ".wcookie". */
719
720 struct bfd_section *section;
721 bfd_size_type size;
722
723 section = bfd_get_section_by_name (core_bfd, ".wcookie");
724 if (section == NULL)
725 return -1;
726
727 size = bfd_section_size (core_bfd, section);
728 if (offset >= size)
729 return 0;
730 size -= offset;
731 if (size > len)
732 size = len;
733 if (size > 0
734 && !bfd_get_section_contents (core_bfd, section, readbuf,
735 (file_ptr) offset, size))
736 {
737 warning (_("Couldn't read StackGhost cookie in core file."));
738 return -1;
739 }
740
741 return size;
742 }
743 return -1;
744
745 case TARGET_OBJECT_LIBRARIES:
746 if (core_gdbarch
747 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
748 {
749 if (writebuf)
750 return -1;
751 return
752 gdbarch_core_xfer_shared_libraries (core_gdbarch,
753 readbuf, offset, len);
754 }
755 /* FALL THROUGH */
756
757 case TARGET_OBJECT_SPU:
758 if (readbuf && annex)
759 {
760 /* When the SPU contexts are stored in a core file, BFD
761 represents this with a fake section called
762 "SPU/<annex>". */
763
764 struct bfd_section *section;
765 bfd_size_type size;
766 char sectionstr[100];
767
768 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
769
770 section = bfd_get_section_by_name (core_bfd, sectionstr);
771 if (section == NULL)
772 return -1;
773
774 size = bfd_section_size (core_bfd, section);
775 if (offset >= size)
776 return 0;
777 size -= offset;
778 if (size > len)
779 size = len;
780 if (size > 0
781 && !bfd_get_section_contents (core_bfd, section, readbuf,
782 (file_ptr) offset, size))
783 {
784 warning (_("Couldn't read SPU section in core file."));
785 return -1;
786 }
787
788 return size;
789 }
790 else if (readbuf)
791 {
792 /* NULL annex requests list of all present spuids. */
793 struct spuid_list list;
794
795 list.buf = readbuf;
796 list.offset = offset;
797 list.len = len;
798 list.pos = 0;
799 list.written = 0;
800 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
801 return list.written;
802 }
803 return -1;
804
805 default:
806 if (ops->beneath != NULL)
807 return ops->beneath->to_xfer_partial (ops->beneath, object,
808 annex, readbuf,
809 writebuf, offset, len);
810 return -1;
811 }
812 }
813
814 \f
815 /* If mourn is being called in all the right places, this could be say
816 `gdb internal error' (since generic_mourn calls
817 breakpoint_init_inferior). */
818
819 static int
820 ignore (struct gdbarch *gdbarch, struct bp_target_info *bp_tgt)
821 {
822 return 0;
823 }
824
825
826 /* Okay, let's be honest: threads gleaned from a core file aren't
827 exactly lively, are they? On the other hand, if we don't claim
828 that each & every one is alive, then we don't get any of them
829 to appear in an "info thread" command, which is quite a useful
830 behaviour.
831 */
832 static int
833 core_thread_alive (struct target_ops *ops, ptid_t ptid)
834 {
835 return 1;
836 }
837
838 /* Ask the current architecture what it knows about this core file.
839 That will be used, in turn, to pick a better architecture. This
840 wrapper could be avoided if targets got a chance to specialize
841 core_ops. */
842
843 static const struct target_desc *
844 core_read_description (struct target_ops *target)
845 {
846 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
847 return gdbarch_core_read_description (core_gdbarch,
848 target, core_bfd);
849
850 return NULL;
851 }
852
853 static char *
854 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
855 {
856 static char buf[64];
857 struct inferior *inf;
858 int pid;
859
860 /* The preferred way is to have a gdbarch/OS specific
861 implementation. */
862 if (core_gdbarch
863 && gdbarch_core_pid_to_str_p (core_gdbarch))
864 return gdbarch_core_pid_to_str (core_gdbarch, ptid);
865
866 /* Otherwise, if we don't have one, we'll just fallback to
867 "process", with normal_pid_to_str. */
868
869 /* Try the LWPID field first. */
870 pid = ptid_get_lwp (ptid);
871 if (pid != 0)
872 return normal_pid_to_str (pid_to_ptid (pid));
873
874 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
875 only if it isn't a fake PID. */
876 inf = find_inferior_pid (ptid_get_pid (ptid));
877 if (inf != NULL && !inf->fake_pid_p)
878 return normal_pid_to_str (ptid);
879
880 /* No luck. We simply don't have a valid PID to print. */
881 xsnprintf (buf, sizeof buf, "<main task>");
882 return buf;
883 }
884
885 static int
886 core_has_memory (struct target_ops *ops)
887 {
888 return (core_bfd != NULL);
889 }
890
891 static int
892 core_has_stack (struct target_ops *ops)
893 {
894 return (core_bfd != NULL);
895 }
896
897 static int
898 core_has_registers (struct target_ops *ops)
899 {
900 return (core_bfd != NULL);
901 }
902
903 /* Fill in core_ops with its defined operations and properties. */
904
905 static void
906 init_core_ops (void)
907 {
908 core_ops.to_shortname = "core";
909 core_ops.to_longname = "Local core dump file";
910 core_ops.to_doc =
911 "Use a core file as a target. Specify the filename of the core file.";
912 core_ops.to_open = core_open;
913 core_ops.to_close = core_close;
914 core_ops.to_attach = find_default_attach;
915 core_ops.to_detach = core_detach;
916 core_ops.to_fetch_registers = get_core_registers;
917 core_ops.to_xfer_partial = core_xfer_partial;
918 core_ops.to_files_info = core_files_info;
919 core_ops.to_insert_breakpoint = ignore;
920 core_ops.to_remove_breakpoint = ignore;
921 core_ops.to_create_inferior = find_default_create_inferior;
922 core_ops.to_thread_alive = core_thread_alive;
923 core_ops.to_read_description = core_read_description;
924 core_ops.to_pid_to_str = core_pid_to_str;
925 core_ops.to_stratum = process_stratum;
926 core_ops.to_has_memory = core_has_memory;
927 core_ops.to_has_stack = core_has_stack;
928 core_ops.to_has_registers = core_has_registers;
929 core_ops.to_magic = OPS_MAGIC;
930
931 if (core_target)
932 internal_error (__FILE__, __LINE__,
933 _("init_core_ops: core target already exists (\"%s\")."),
934 core_target->to_longname);
935 core_target = &core_ops;
936 }
937
938 void
939 _initialize_corelow (void)
940 {
941 init_core_ops ();
942
943 add_target (&core_ops);
944 }
This page took 0.048179 seconds and 4 git commands to generate.