Normalize includes to use common/
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #include "frame.h" /* required by inferior.h */
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "symtab.h"
28 #include "command.h"
29 #include "bfd.h"
30 #include "target.h"
31 #include "process-stratum-target.h"
32 #include "gdbcore.h"
33 #include "gdbthread.h"
34 #include "regcache.h"
35 #include "regset.h"
36 #include "symfile.h"
37 #include "exec.h"
38 #include "readline/readline.h"
39 #include "solib.h"
40 #include "filenames.h"
41 #include "progspace.h"
42 #include "objfiles.h"
43 #include "gdb_bfd.h"
44 #include "completer.h"
45 #include "common/filestuff.h"
46
47 #ifndef O_LARGEFILE
48 #define O_LARGEFILE 0
49 #endif
50
51 static core_fns *sniff_core_bfd (gdbarch *core_gdbarch,
52 bfd *abfd);
53
54 /* The core file target. */
55
56 static const target_info core_target_info = {
57 "core",
58 N_("Local core dump file"),
59 N_("Use a core file as a target. Specify the filename of the core file.")
60 };
61
62 class core_target final : public process_stratum_target
63 {
64 public:
65 core_target ();
66 ~core_target () override;
67
68 const target_info &info () const override
69 { return core_target_info; }
70
71 void close () override;
72 void detach (inferior *, int) override;
73 void fetch_registers (struct regcache *, int) override;
74
75 enum target_xfer_status xfer_partial (enum target_object object,
76 const char *annex,
77 gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, ULONGEST len,
80 ULONGEST *xfered_len) override;
81 void files_info () override;
82
83 bool thread_alive (ptid_t ptid) override;
84 const struct target_desc *read_description () override;
85
86 const char *pid_to_str (ptid_t) override;
87
88 const char *thread_name (struct thread_info *) override;
89
90 bool has_all_memory () override { return false; }
91 bool has_memory () override;
92 bool has_stack () override;
93 bool has_registers () override;
94 bool has_execution (ptid_t) override { return false; }
95
96 bool info_proc (const char *, enum info_proc_what) override;
97
98 /* A few helpers. */
99
100 /* Getter, see variable definition. */
101 struct gdbarch *core_gdbarch ()
102 {
103 return m_core_gdbarch;
104 }
105
106 /* See definition. */
107 void get_core_register_section (struct regcache *regcache,
108 const struct regset *regset,
109 const char *name,
110 int section_min_size,
111 int which,
112 const char *human_name,
113 bool required);
114
115 private: /* per-core data */
116
117 /* The core's section table. Note that these target sections are
118 *not* mapped in the current address spaces' set of target
119 sections --- those should come only from pure executable or
120 shared library bfds. The core bfd sections are an implementation
121 detail of the core target, just like ptrace is for unix child
122 targets. */
123 target_section_table m_core_section_table {};
124
125 /* The core_fns for a core file handler that is prepared to read the
126 core file currently open on core_bfd. */
127 core_fns *m_core_vec = NULL;
128
129 /* FIXME: kettenis/20031023: Eventually this field should
130 disappear. */
131 struct gdbarch *m_core_gdbarch = NULL;
132 };
133
134 core_target::core_target ()
135 {
136 m_core_gdbarch = gdbarch_from_bfd (core_bfd);
137
138 /* Find a suitable core file handler to munch on core_bfd */
139 m_core_vec = sniff_core_bfd (m_core_gdbarch, core_bfd);
140
141 /* Find the data section */
142 if (build_section_table (core_bfd,
143 &m_core_section_table.sections,
144 &m_core_section_table.sections_end))
145 error (_("\"%s\": Can't find sections: %s"),
146 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
147 }
148
149 core_target::~core_target ()
150 {
151 xfree (m_core_section_table.sections);
152 }
153
154 /* List of all available core_fns. On gdb startup, each core file
155 register reader calls deprecated_add_core_fns() to register
156 information on each core format it is prepared to read. */
157
158 static struct core_fns *core_file_fns = NULL;
159
160 static int gdb_check_format (bfd *);
161
162 static void add_to_thread_list (bfd *, asection *, void *);
163
164 /* An arbitrary identifier for the core inferior. */
165 #define CORELOW_PID 1
166
167 /* Link a new core_fns into the global core_file_fns list. Called on
168 gdb startup by the _initialize routine in each core file register
169 reader, to register information about each format the reader is
170 prepared to handle. */
171
172 void
173 deprecated_add_core_fns (struct core_fns *cf)
174 {
175 cf->next = core_file_fns;
176 core_file_fns = cf;
177 }
178
179 /* The default function that core file handlers can use to examine a
180 core file BFD and decide whether or not to accept the job of
181 reading the core file. */
182
183 int
184 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
185 {
186 int result;
187
188 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
189 return (result);
190 }
191
192 /* Walk through the list of core functions to find a set that can
193 handle the core file open on ABFD. Returns pointer to set that is
194 selected. */
195
196 static struct core_fns *
197 sniff_core_bfd (struct gdbarch *core_gdbarch, bfd *abfd)
198 {
199 struct core_fns *cf;
200 struct core_fns *yummy = NULL;
201 int matches = 0;
202
203 /* Don't sniff if we have support for register sets in
204 CORE_GDBARCH. */
205 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
206 return NULL;
207
208 for (cf = core_file_fns; cf != NULL; cf = cf->next)
209 {
210 if (cf->core_sniffer (cf, abfd))
211 {
212 yummy = cf;
213 matches++;
214 }
215 }
216 if (matches > 1)
217 {
218 warning (_("\"%s\": ambiguous core format, %d handlers match"),
219 bfd_get_filename (abfd), matches);
220 }
221 else if (matches == 0)
222 error (_("\"%s\": no core file handler recognizes format"),
223 bfd_get_filename (abfd));
224
225 return (yummy);
226 }
227
228 /* The default is to reject every core file format we see. Either
229 BFD has to recognize it, or we have to provide a function in the
230 core file handler that recognizes it. */
231
232 int
233 default_check_format (bfd *abfd)
234 {
235 return (0);
236 }
237
238 /* Attempt to recognize core file formats that BFD rejects. */
239
240 static int
241 gdb_check_format (bfd *abfd)
242 {
243 struct core_fns *cf;
244
245 for (cf = core_file_fns; cf != NULL; cf = cf->next)
246 {
247 if (cf->check_format (abfd))
248 {
249 return (1);
250 }
251 }
252 return (0);
253 }
254
255 /* Close the core target. */
256
257 void
258 core_target::close ()
259 {
260 if (core_bfd)
261 {
262 inferior_ptid = null_ptid; /* Avoid confusion from thread
263 stuff. */
264 exit_inferior_silent (current_inferior ());
265
266 /* Clear out solib state while the bfd is still open. See
267 comments in clear_solib in solib.c. */
268 clear_solib ();
269
270 current_program_space->cbfd.reset (nullptr);
271 }
272
273 /* Core targets are heap-allocated (see core_target_open), so here
274 we delete ourselves. */
275 delete this;
276 }
277
278 /* Look for sections whose names start with `.reg/' so that we can
279 extract the list of threads in a core file. */
280
281 static void
282 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
283 {
284 ptid_t ptid;
285 int core_tid;
286 int pid, lwpid;
287 asection *reg_sect = (asection *) reg_sect_arg;
288 int fake_pid_p = 0;
289 struct inferior *inf;
290
291 if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
292 return;
293
294 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
295
296 pid = bfd_core_file_pid (core_bfd);
297 if (pid == 0)
298 {
299 fake_pid_p = 1;
300 pid = CORELOW_PID;
301 }
302
303 lwpid = core_tid;
304
305 inf = current_inferior ();
306 if (inf->pid == 0)
307 {
308 inferior_appeared (inf, pid);
309 inf->fake_pid_p = fake_pid_p;
310 }
311
312 ptid = ptid_t (pid, lwpid, 0);
313
314 add_thread (ptid);
315
316 /* Warning, Will Robinson, looking at BFD private data! */
317
318 if (reg_sect != NULL
319 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
320 inferior_ptid = ptid; /* Yes, make it current. */
321 }
322
323 /* Issue a message saying we have no core to debug, if FROM_TTY. */
324
325 static void
326 maybe_say_no_core_file_now (int from_tty)
327 {
328 if (from_tty)
329 printf_filtered (_("No core file now.\n"));
330 }
331
332 /* Backward compatability with old way of specifying core files. */
333
334 void
335 core_file_command (const char *filename, int from_tty)
336 {
337 dont_repeat (); /* Either way, seems bogus. */
338
339 if (filename == NULL)
340 {
341 if (core_bfd != NULL)
342 {
343 target_detach (current_inferior (), from_tty);
344 gdb_assert (core_bfd == NULL);
345 }
346 else
347 maybe_say_no_core_file_now (from_tty);
348 }
349 else
350 core_target_open (filename, from_tty);
351 }
352
353 /* See gdbcore.h. */
354
355 void
356 core_target_open (const char *arg, int from_tty)
357 {
358 const char *p;
359 int siggy;
360 int scratch_chan;
361 int flags;
362
363 target_preopen (from_tty);
364 if (!arg)
365 {
366 if (core_bfd)
367 error (_("No core file specified. (Use `detach' "
368 "to stop debugging a core file.)"));
369 else
370 error (_("No core file specified."));
371 }
372
373 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
374 if (!IS_ABSOLUTE_PATH (filename.get ()))
375 filename.reset (concat (current_directory, "/",
376 filename.get (), (char *) NULL));
377
378 flags = O_BINARY | O_LARGEFILE;
379 if (write_files)
380 flags |= O_RDWR;
381 else
382 flags |= O_RDONLY;
383 scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
384 if (scratch_chan < 0)
385 perror_with_name (filename.get ());
386
387 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
388 write_files ? FOPEN_RUB : FOPEN_RB,
389 scratch_chan));
390 if (temp_bfd == NULL)
391 perror_with_name (filename.get ());
392
393 if (!bfd_check_format (temp_bfd.get (), bfd_core)
394 && !gdb_check_format (temp_bfd.get ()))
395 {
396 /* Do it after the err msg */
397 /* FIXME: should be checking for errors from bfd_close (for one
398 thing, on error it does not free all the storage associated
399 with the bfd). */
400 error (_("\"%s\" is not a core dump: %s"),
401 filename.get (), bfd_errmsg (bfd_get_error ()));
402 }
403
404 current_program_space->cbfd = std::move (temp_bfd);
405
406 core_target *target = new core_target ();
407
408 /* Own the target until it is successfully pushed. */
409 target_ops_up target_holder (target);
410
411 validate_files ();
412
413 /* If we have no exec file, try to set the architecture from the
414 core file. We don't do this unconditionally since an exec file
415 typically contains more information that helps us determine the
416 architecture than a core file. */
417 if (!exec_bfd)
418 set_gdbarch_from_file (core_bfd);
419
420 push_target (target);
421 target_holder.release ();
422
423 inferior_ptid = null_ptid;
424
425 /* Need to flush the register cache (and the frame cache) from a
426 previous debug session. If inferior_ptid ends up the same as the
427 last debug session --- e.g., b foo; run; gcore core1; step; gcore
428 core2; core core1; core core2 --- then there's potential for
429 get_current_regcache to return the cached regcache of the
430 previous session, and the frame cache being stale. */
431 registers_changed ();
432
433 /* Build up thread list from BFD sections, and possibly set the
434 current thread to the .reg/NN section matching the .reg
435 section. */
436 bfd_map_over_sections (core_bfd, add_to_thread_list,
437 bfd_get_section_by_name (core_bfd, ".reg"));
438
439 if (inferior_ptid == null_ptid)
440 {
441 /* Either we found no .reg/NN section, and hence we have a
442 non-threaded core (single-threaded, from gdb's perspective),
443 or for some reason add_to_thread_list couldn't determine
444 which was the "main" thread. The latter case shouldn't
445 usually happen, but we're dealing with input here, which can
446 always be broken in different ways. */
447 thread_info *thread = first_thread_of_inferior (current_inferior ());
448
449 if (thread == NULL)
450 {
451 inferior_appeared (current_inferior (), CORELOW_PID);
452 inferior_ptid = ptid_t (CORELOW_PID);
453 add_thread_silent (inferior_ptid);
454 }
455 else
456 switch_to_thread (thread);
457 }
458
459 post_create_inferior (target, from_tty);
460
461 /* Now go through the target stack looking for threads since there
462 may be a thread_stratum target loaded on top of target core by
463 now. The layer above should claim threads found in the BFD
464 sections. */
465 TRY
466 {
467 target_update_thread_list ();
468 }
469
470 CATCH (except, RETURN_MASK_ERROR)
471 {
472 exception_print (gdb_stderr, except);
473 }
474 END_CATCH
475
476 p = bfd_core_file_failing_command (core_bfd);
477 if (p)
478 printf_filtered (_("Core was generated by `%s'.\n"), p);
479
480 /* Clearing any previous state of convenience variables. */
481 clear_exit_convenience_vars ();
482
483 siggy = bfd_core_file_failing_signal (core_bfd);
484 if (siggy > 0)
485 {
486 gdbarch *core_gdbarch = target->core_gdbarch ();
487
488 /* If we don't have a CORE_GDBARCH to work with, assume a native
489 core (map gdb_signal from host signals). If we do have
490 CORE_GDBARCH to work with, but no gdb_signal_from_target
491 implementation for that gdbarch, as a fallback measure,
492 assume the host signal mapping. It'll be correct for native
493 cores, but most likely incorrect for cross-cores. */
494 enum gdb_signal sig = (core_gdbarch != NULL
495 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
496 ? gdbarch_gdb_signal_from_target (core_gdbarch,
497 siggy)
498 : gdb_signal_from_host (siggy));
499
500 printf_filtered (_("Program terminated with signal %s, %s.\n"),
501 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
502
503 /* Set the value of the internal variable $_exitsignal,
504 which holds the signal uncaught by the inferior. */
505 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
506 siggy);
507 }
508
509 /* Fetch all registers from core file. */
510 target_fetch_registers (get_current_regcache (), -1);
511
512 /* Now, set up the frame cache, and print the top of stack. */
513 reinit_frame_cache ();
514 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
515
516 /* Current thread should be NUM 1 but the user does not know that.
517 If a program is single threaded gdb in general does not mention
518 anything about threads. That is why the test is >= 2. */
519 if (thread_count () >= 2)
520 {
521 TRY
522 {
523 thread_command (NULL, from_tty);
524 }
525 CATCH (except, RETURN_MASK_ERROR)
526 {
527 exception_print (gdb_stderr, except);
528 }
529 END_CATCH
530 }
531 }
532
533 void
534 core_target::detach (inferior *inf, int from_tty)
535 {
536 /* Note that 'this' is dangling after this call. unpush_target
537 closes the target, and our close implementation deletes
538 'this'. */
539 unpush_target (this);
540
541 reinit_frame_cache ();
542 maybe_say_no_core_file_now (from_tty);
543 }
544
545 /* Try to retrieve registers from a section in core_bfd, and supply
546 them to m_core_vec->core_read_registers, as the register set
547 numbered WHICH.
548
549 If ptid's lwp member is zero, do the single-threaded
550 thing: look for a section named NAME. If ptid's lwp
551 member is non-zero, do the multi-threaded thing: look for a section
552 named "NAME/LWP", where LWP is the shortest ASCII decimal
553 representation of ptid's lwp member.
554
555 HUMAN_NAME is a human-readable name for the kind of registers the
556 NAME section contains, for use in error messages.
557
558 If REQUIRED is true, print an error if the core file doesn't have a
559 section by the appropriate name. Otherwise, just do nothing. */
560
561 void
562 core_target::get_core_register_section (struct regcache *regcache,
563 const struct regset *regset,
564 const char *name,
565 int section_min_size,
566 int which,
567 const char *human_name,
568 bool required)
569 {
570 struct bfd_section *section;
571 bfd_size_type size;
572 char *contents;
573 bool variable_size_section = (regset != NULL
574 && regset->flags & REGSET_VARIABLE_SIZE);
575
576 thread_section_name section_name (name, regcache->ptid ());
577
578 section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
579 if (! section)
580 {
581 if (required)
582 warning (_("Couldn't find %s registers in core file."),
583 human_name);
584 return;
585 }
586
587 size = bfd_section_size (core_bfd, section);
588 if (size < section_min_size)
589 {
590 warning (_("Section `%s' in core file too small."),
591 section_name.c_str ());
592 return;
593 }
594 if (size != section_min_size && !variable_size_section)
595 {
596 warning (_("Unexpected size of section `%s' in core file."),
597 section_name.c_str ());
598 }
599
600 contents = (char *) alloca (size);
601 if (! bfd_get_section_contents (core_bfd, section, contents,
602 (file_ptr) 0, size))
603 {
604 warning (_("Couldn't read %s registers from `%s' section in core file."),
605 human_name, section_name.c_str ());
606 return;
607 }
608
609 if (regset != NULL)
610 {
611 regset->supply_regset (regset, regcache, -1, contents, size);
612 return;
613 }
614
615 gdb_assert (m_core_vec != nullptr);
616 m_core_vec->core_read_registers (regcache, contents, size, which,
617 ((CORE_ADDR)
618 bfd_section_vma (core_bfd, section)));
619 }
620
621 /* Data passed to gdbarch_iterate_over_regset_sections's callback. */
622 struct get_core_registers_cb_data
623 {
624 core_target *target;
625 struct regcache *regcache;
626 };
627
628 /* Callback for get_core_registers that handles a single core file
629 register note section. */
630
631 static void
632 get_core_registers_cb (const char *sect_name, int supply_size, int collect_size,
633 const struct regset *regset,
634 const char *human_name, void *cb_data)
635 {
636 auto *data = (get_core_registers_cb_data *) cb_data;
637 bool required = false;
638 bool variable_size_section = (regset != NULL
639 && regset->flags & REGSET_VARIABLE_SIZE);
640
641 if (!variable_size_section)
642 gdb_assert (supply_size == collect_size);
643
644 if (strcmp (sect_name, ".reg") == 0)
645 {
646 required = true;
647 if (human_name == NULL)
648 human_name = "general-purpose";
649 }
650 else if (strcmp (sect_name, ".reg2") == 0)
651 {
652 if (human_name == NULL)
653 human_name = "floating-point";
654 }
655
656 /* The 'which' parameter is only used when no regset is provided.
657 Thus we just set it to -1. */
658 data->target->get_core_register_section (data->regcache, regset, sect_name,
659 supply_size, -1, human_name,
660 required);
661 }
662
663 /* Get the registers out of a core file. This is the machine-
664 independent part. Fetch_core_registers is the machine-dependent
665 part, typically implemented in the xm-file for each
666 architecture. */
667
668 /* We just get all the registers, so we don't use regno. */
669
670 void
671 core_target::fetch_registers (struct regcache *regcache, int regno)
672 {
673 int i;
674 struct gdbarch *gdbarch;
675
676 if (!(m_core_gdbarch != nullptr
677 && gdbarch_iterate_over_regset_sections_p (m_core_gdbarch))
678 && (m_core_vec == NULL || m_core_vec->core_read_registers == NULL))
679 {
680 fprintf_filtered (gdb_stderr,
681 "Can't fetch registers from this type of core file\n");
682 return;
683 }
684
685 gdbarch = regcache->arch ();
686 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
687 {
688 get_core_registers_cb_data data = { this, regcache };
689 gdbarch_iterate_over_regset_sections (gdbarch,
690 get_core_registers_cb,
691 (void *) &data, NULL);
692 }
693 else
694 {
695 get_core_register_section (regcache, NULL,
696 ".reg", 0, 0, "general-purpose", 1);
697 get_core_register_section (regcache, NULL,
698 ".reg2", 0, 2, "floating-point", 0);
699 }
700
701 /* Mark all registers not found in the core as unavailable. */
702 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
703 if (regcache->get_register_status (i) == REG_UNKNOWN)
704 regcache->raw_supply (i, NULL);
705 }
706
707 void
708 core_target::files_info ()
709 {
710 print_section_info (&m_core_section_table, core_bfd);
711 }
712 \f
713 struct spuid_list
714 {
715 gdb_byte *buf;
716 ULONGEST offset;
717 LONGEST len;
718 ULONGEST pos;
719 ULONGEST written;
720 };
721
722 static void
723 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
724 {
725 struct spuid_list *list = (struct spuid_list *) list_p;
726 enum bfd_endian byte_order
727 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
728 int fd, pos = 0;
729
730 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
731 if (pos == 0)
732 return;
733
734 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
735 {
736 store_unsigned_integer (list->buf + list->pos - list->offset,
737 4, byte_order, fd);
738 list->written += 4;
739 }
740 list->pos += 4;
741 }
742
743 enum target_xfer_status
744 core_target::xfer_partial (enum target_object object, const char *annex,
745 gdb_byte *readbuf, const gdb_byte *writebuf,
746 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
747 {
748 switch (object)
749 {
750 case TARGET_OBJECT_MEMORY:
751 return (section_table_xfer_memory_partial
752 (readbuf, writebuf,
753 offset, len, xfered_len,
754 m_core_section_table.sections,
755 m_core_section_table.sections_end,
756 NULL));
757
758 case TARGET_OBJECT_AUXV:
759 if (readbuf)
760 {
761 /* When the aux vector is stored in core file, BFD
762 represents this with a fake section called ".auxv". */
763
764 struct bfd_section *section;
765 bfd_size_type size;
766
767 section = bfd_get_section_by_name (core_bfd, ".auxv");
768 if (section == NULL)
769 return TARGET_XFER_E_IO;
770
771 size = bfd_section_size (core_bfd, section);
772 if (offset >= size)
773 return TARGET_XFER_EOF;
774 size -= offset;
775 if (size > len)
776 size = len;
777
778 if (size == 0)
779 return TARGET_XFER_EOF;
780 if (!bfd_get_section_contents (core_bfd, section, readbuf,
781 (file_ptr) offset, size))
782 {
783 warning (_("Couldn't read NT_AUXV note in core file."));
784 return TARGET_XFER_E_IO;
785 }
786
787 *xfered_len = (ULONGEST) size;
788 return TARGET_XFER_OK;
789 }
790 return TARGET_XFER_E_IO;
791
792 case TARGET_OBJECT_WCOOKIE:
793 if (readbuf)
794 {
795 /* When the StackGhost cookie is stored in core file, BFD
796 represents this with a fake section called
797 ".wcookie". */
798
799 struct bfd_section *section;
800 bfd_size_type size;
801
802 section = bfd_get_section_by_name (core_bfd, ".wcookie");
803 if (section == NULL)
804 return TARGET_XFER_E_IO;
805
806 size = bfd_section_size (core_bfd, section);
807 if (offset >= size)
808 return TARGET_XFER_EOF;
809 size -= offset;
810 if (size > len)
811 size = len;
812
813 if (size == 0)
814 return TARGET_XFER_EOF;
815 if (!bfd_get_section_contents (core_bfd, section, readbuf,
816 (file_ptr) offset, size))
817 {
818 warning (_("Couldn't read StackGhost cookie in core file."));
819 return TARGET_XFER_E_IO;
820 }
821
822 *xfered_len = (ULONGEST) size;
823 return TARGET_XFER_OK;
824
825 }
826 return TARGET_XFER_E_IO;
827
828 case TARGET_OBJECT_LIBRARIES:
829 if (m_core_gdbarch != nullptr
830 && gdbarch_core_xfer_shared_libraries_p (m_core_gdbarch))
831 {
832 if (writebuf)
833 return TARGET_XFER_E_IO;
834 else
835 {
836 *xfered_len = gdbarch_core_xfer_shared_libraries (m_core_gdbarch,
837 readbuf,
838 offset, len);
839
840 if (*xfered_len == 0)
841 return TARGET_XFER_EOF;
842 else
843 return TARGET_XFER_OK;
844 }
845 }
846 /* FALL THROUGH */
847
848 case TARGET_OBJECT_LIBRARIES_AIX:
849 if (m_core_gdbarch != nullptr
850 && gdbarch_core_xfer_shared_libraries_aix_p (m_core_gdbarch))
851 {
852 if (writebuf)
853 return TARGET_XFER_E_IO;
854 else
855 {
856 *xfered_len
857 = gdbarch_core_xfer_shared_libraries_aix (m_core_gdbarch,
858 readbuf, offset,
859 len);
860
861 if (*xfered_len == 0)
862 return TARGET_XFER_EOF;
863 else
864 return TARGET_XFER_OK;
865 }
866 }
867 /* FALL THROUGH */
868
869 case TARGET_OBJECT_SPU:
870 if (readbuf && annex)
871 {
872 /* When the SPU contexts are stored in a core file, BFD
873 represents this with a fake section called
874 "SPU/<annex>". */
875
876 struct bfd_section *section;
877 bfd_size_type size;
878 char sectionstr[100];
879
880 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
881
882 section = bfd_get_section_by_name (core_bfd, sectionstr);
883 if (section == NULL)
884 return TARGET_XFER_E_IO;
885
886 size = bfd_section_size (core_bfd, section);
887 if (offset >= size)
888 return TARGET_XFER_EOF;
889 size -= offset;
890 if (size > len)
891 size = len;
892
893 if (size == 0)
894 return TARGET_XFER_EOF;
895 if (!bfd_get_section_contents (core_bfd, section, readbuf,
896 (file_ptr) offset, size))
897 {
898 warning (_("Couldn't read SPU section in core file."));
899 return TARGET_XFER_E_IO;
900 }
901
902 *xfered_len = (ULONGEST) size;
903 return TARGET_XFER_OK;
904 }
905 else if (readbuf)
906 {
907 /* NULL annex requests list of all present spuids. */
908 struct spuid_list list;
909
910 list.buf = readbuf;
911 list.offset = offset;
912 list.len = len;
913 list.pos = 0;
914 list.written = 0;
915 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
916
917 if (list.written == 0)
918 return TARGET_XFER_EOF;
919 else
920 {
921 *xfered_len = (ULONGEST) list.written;
922 return TARGET_XFER_OK;
923 }
924 }
925 return TARGET_XFER_E_IO;
926
927 case TARGET_OBJECT_SIGNAL_INFO:
928 if (readbuf)
929 {
930 if (m_core_gdbarch != nullptr
931 && gdbarch_core_xfer_siginfo_p (m_core_gdbarch))
932 {
933 LONGEST l = gdbarch_core_xfer_siginfo (m_core_gdbarch, readbuf,
934 offset, len);
935
936 if (l >= 0)
937 {
938 *xfered_len = l;
939 if (l == 0)
940 return TARGET_XFER_EOF;
941 else
942 return TARGET_XFER_OK;
943 }
944 }
945 }
946 return TARGET_XFER_E_IO;
947
948 default:
949 return this->beneath ()->xfer_partial (object, annex, readbuf,
950 writebuf, offset, len,
951 xfered_len);
952 }
953 }
954
955 \f
956
957 /* Okay, let's be honest: threads gleaned from a core file aren't
958 exactly lively, are they? On the other hand, if we don't claim
959 that each & every one is alive, then we don't get any of them
960 to appear in an "info thread" command, which is quite a useful
961 behaviour.
962 */
963 bool
964 core_target::thread_alive (ptid_t ptid)
965 {
966 return true;
967 }
968
969 /* Ask the current architecture what it knows about this core file.
970 That will be used, in turn, to pick a better architecture. This
971 wrapper could be avoided if targets got a chance to specialize
972 core_target. */
973
974 const struct target_desc *
975 core_target::read_description ()
976 {
977 if (m_core_gdbarch && gdbarch_core_read_description_p (m_core_gdbarch))
978 {
979 const struct target_desc *result;
980
981 result = gdbarch_core_read_description (m_core_gdbarch, this, core_bfd);
982 if (result != NULL)
983 return result;
984 }
985
986 return this->beneath ()->read_description ();
987 }
988
989 const char *
990 core_target::pid_to_str (ptid_t ptid)
991 {
992 static char buf[64];
993 struct inferior *inf;
994 int pid;
995
996 /* The preferred way is to have a gdbarch/OS specific
997 implementation. */
998 if (m_core_gdbarch != nullptr
999 && gdbarch_core_pid_to_str_p (m_core_gdbarch))
1000 return gdbarch_core_pid_to_str (m_core_gdbarch, ptid);
1001
1002 /* Otherwise, if we don't have one, we'll just fallback to
1003 "process", with normal_pid_to_str. */
1004
1005 /* Try the LWPID field first. */
1006 pid = ptid.lwp ();
1007 if (pid != 0)
1008 return normal_pid_to_str (ptid_t (pid));
1009
1010 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
1011 only if it isn't a fake PID. */
1012 inf = find_inferior_ptid (ptid);
1013 if (inf != NULL && !inf->fake_pid_p)
1014 return normal_pid_to_str (ptid);
1015
1016 /* No luck. We simply don't have a valid PID to print. */
1017 xsnprintf (buf, sizeof buf, "<main task>");
1018 return buf;
1019 }
1020
1021 const char *
1022 core_target::thread_name (struct thread_info *thr)
1023 {
1024 if (m_core_gdbarch != nullptr
1025 && gdbarch_core_thread_name_p (m_core_gdbarch))
1026 return gdbarch_core_thread_name (m_core_gdbarch, thr);
1027 return NULL;
1028 }
1029
1030 bool
1031 core_target::has_memory ()
1032 {
1033 return (core_bfd != NULL);
1034 }
1035
1036 bool
1037 core_target::has_stack ()
1038 {
1039 return (core_bfd != NULL);
1040 }
1041
1042 bool
1043 core_target::has_registers ()
1044 {
1045 return (core_bfd != NULL);
1046 }
1047
1048 /* Implement the to_info_proc method. */
1049
1050 bool
1051 core_target::info_proc (const char *args, enum info_proc_what request)
1052 {
1053 struct gdbarch *gdbarch = get_current_arch ();
1054
1055 /* Since this is the core file target, call the 'core_info_proc'
1056 method on gdbarch, not 'info_proc'. */
1057 if (gdbarch_core_info_proc_p (gdbarch))
1058 gdbarch_core_info_proc (gdbarch, args, request);
1059
1060 return true;
1061 }
1062
1063 void
1064 _initialize_corelow (void)
1065 {
1066 add_target (core_target_info, core_target_open, filename_completer);
1067 }
This page took 0.05723 seconds and 4 git commands to generate.