Change ints to bools around thread_info executing/resumed
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #include "frame.h" /* required by inferior.h */
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "symtab.h"
28 #include "command.h"
29 #include "bfd.h"
30 #include "target.h"
31 #include "process-stratum-target.h"
32 #include "gdbcore.h"
33 #include "gdbthread.h"
34 #include "regcache.h"
35 #include "regset.h"
36 #include "symfile.h"
37 #include "exec.h"
38 #include "readline/tilde.h"
39 #include "solib.h"
40 #include "filenames.h"
41 #include "progspace.h"
42 #include "objfiles.h"
43 #include "gdb_bfd.h"
44 #include "completer.h"
45 #include "gdbsupport/filestuff.h"
46 #include "build-id.h"
47 #include "gdbsupport/pathstuff.h"
48
49 #ifndef O_LARGEFILE
50 #define O_LARGEFILE 0
51 #endif
52
53 static core_fns *sniff_core_bfd (gdbarch *core_gdbarch,
54 bfd *abfd);
55
56 /* The core file target. */
57
58 static const target_info core_target_info = {
59 "core",
60 N_("Local core dump file"),
61 N_("Use a core file as a target.\n\
62 Specify the filename of the core file.")
63 };
64
65 class core_target final : public process_stratum_target
66 {
67 public:
68 core_target ();
69 ~core_target () override;
70
71 const target_info &info () const override
72 { return core_target_info; }
73
74 void close () override;
75 void detach (inferior *, int) override;
76 void fetch_registers (struct regcache *, int) override;
77
78 enum target_xfer_status xfer_partial (enum target_object object,
79 const char *annex,
80 gdb_byte *readbuf,
81 const gdb_byte *writebuf,
82 ULONGEST offset, ULONGEST len,
83 ULONGEST *xfered_len) override;
84 void files_info () override;
85
86 bool thread_alive (ptid_t ptid) override;
87 const struct target_desc *read_description () override;
88
89 std::string pid_to_str (ptid_t) override;
90
91 const char *thread_name (struct thread_info *) override;
92
93 bool has_all_memory () override { return false; }
94 bool has_memory () override;
95 bool has_stack () override;
96 bool has_registers () override;
97 bool has_execution (inferior *inf) override { return false; }
98
99 bool info_proc (const char *, enum info_proc_what) override;
100
101 /* A few helpers. */
102
103 /* Getter, see variable definition. */
104 struct gdbarch *core_gdbarch ()
105 {
106 return m_core_gdbarch;
107 }
108
109 /* See definition. */
110 void get_core_register_section (struct regcache *regcache,
111 const struct regset *regset,
112 const char *name,
113 int section_min_size,
114 int which,
115 const char *human_name,
116 bool required);
117
118 private: /* per-core data */
119
120 /* The core's section table. Note that these target sections are
121 *not* mapped in the current address spaces' set of target
122 sections --- those should come only from pure executable or
123 shared library bfds. The core bfd sections are an implementation
124 detail of the core target, just like ptrace is for unix child
125 targets. */
126 target_section_table m_core_section_table {};
127
128 /* The core_fns for a core file handler that is prepared to read the
129 core file currently open on core_bfd. */
130 core_fns *m_core_vec = NULL;
131
132 /* FIXME: kettenis/20031023: Eventually this field should
133 disappear. */
134 struct gdbarch *m_core_gdbarch = NULL;
135 };
136
137 core_target::core_target ()
138 {
139 m_core_gdbarch = gdbarch_from_bfd (core_bfd);
140
141 /* Find a suitable core file handler to munch on core_bfd */
142 m_core_vec = sniff_core_bfd (m_core_gdbarch, core_bfd);
143
144 /* Find the data section */
145 if (build_section_table (core_bfd,
146 &m_core_section_table.sections,
147 &m_core_section_table.sections_end))
148 error (_("\"%s\": Can't find sections: %s"),
149 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
150 }
151
152 core_target::~core_target ()
153 {
154 xfree (m_core_section_table.sections);
155 }
156
157 /* List of all available core_fns. On gdb startup, each core file
158 register reader calls deprecated_add_core_fns() to register
159 information on each core format it is prepared to read. */
160
161 static struct core_fns *core_file_fns = NULL;
162
163 static int gdb_check_format (bfd *);
164
165 static void add_to_thread_list (bfd *, asection *, void *);
166
167 /* An arbitrary identifier for the core inferior. */
168 #define CORELOW_PID 1
169
170 /* Link a new core_fns into the global core_file_fns list. Called on
171 gdb startup by the _initialize routine in each core file register
172 reader, to register information about each format the reader is
173 prepared to handle. */
174
175 void
176 deprecated_add_core_fns (struct core_fns *cf)
177 {
178 cf->next = core_file_fns;
179 core_file_fns = cf;
180 }
181
182 /* The default function that core file handlers can use to examine a
183 core file BFD and decide whether or not to accept the job of
184 reading the core file. */
185
186 int
187 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
188 {
189 int result;
190
191 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
192 return (result);
193 }
194
195 /* Walk through the list of core functions to find a set that can
196 handle the core file open on ABFD. Returns pointer to set that is
197 selected. */
198
199 static struct core_fns *
200 sniff_core_bfd (struct gdbarch *core_gdbarch, bfd *abfd)
201 {
202 struct core_fns *cf;
203 struct core_fns *yummy = NULL;
204 int matches = 0;
205
206 /* Don't sniff if we have support for register sets in
207 CORE_GDBARCH. */
208 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
209 return NULL;
210
211 for (cf = core_file_fns; cf != NULL; cf = cf->next)
212 {
213 if (cf->core_sniffer (cf, abfd))
214 {
215 yummy = cf;
216 matches++;
217 }
218 }
219 if (matches > 1)
220 {
221 warning (_("\"%s\": ambiguous core format, %d handlers match"),
222 bfd_get_filename (abfd), matches);
223 }
224 else if (matches == 0)
225 error (_("\"%s\": no core file handler recognizes format"),
226 bfd_get_filename (abfd));
227
228 return (yummy);
229 }
230
231 /* The default is to reject every core file format we see. Either
232 BFD has to recognize it, or we have to provide a function in the
233 core file handler that recognizes it. */
234
235 int
236 default_check_format (bfd *abfd)
237 {
238 return (0);
239 }
240
241 /* Attempt to recognize core file formats that BFD rejects. */
242
243 static int
244 gdb_check_format (bfd *abfd)
245 {
246 struct core_fns *cf;
247
248 for (cf = core_file_fns; cf != NULL; cf = cf->next)
249 {
250 if (cf->check_format (abfd))
251 {
252 return (1);
253 }
254 }
255 return (0);
256 }
257
258 /* Close the core target. */
259
260 void
261 core_target::close ()
262 {
263 if (core_bfd)
264 {
265 inferior_ptid = null_ptid; /* Avoid confusion from thread
266 stuff. */
267 exit_inferior_silent (current_inferior ());
268
269 /* Clear out solib state while the bfd is still open. See
270 comments in clear_solib in solib.c. */
271 clear_solib ();
272
273 current_program_space->cbfd.reset (nullptr);
274 }
275
276 /* Core targets are heap-allocated (see core_target_open), so here
277 we delete ourselves. */
278 delete this;
279 }
280
281 /* Look for sections whose names start with `.reg/' so that we can
282 extract the list of threads in a core file. */
283
284 static void
285 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
286 {
287 ptid_t ptid;
288 int core_tid;
289 int pid, lwpid;
290 asection *reg_sect = (asection *) reg_sect_arg;
291 bool fake_pid_p = false;
292 struct inferior *inf;
293
294 if (!startswith (bfd_section_name (asect), ".reg/"))
295 return;
296
297 core_tid = atoi (bfd_section_name (asect) + 5);
298
299 pid = bfd_core_file_pid (core_bfd);
300 if (pid == 0)
301 {
302 fake_pid_p = true;
303 pid = CORELOW_PID;
304 }
305
306 lwpid = core_tid;
307
308 inf = current_inferior ();
309 if (inf->pid == 0)
310 {
311 inferior_appeared (inf, pid);
312 inf->fake_pid_p = fake_pid_p;
313 }
314
315 ptid = ptid_t (pid, lwpid, 0);
316
317 add_thread (inf->process_target (), ptid);
318
319 /* Warning, Will Robinson, looking at BFD private data! */
320
321 if (reg_sect != NULL
322 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
323 inferior_ptid = ptid; /* Yes, make it current. */
324 }
325
326 /* Issue a message saying we have no core to debug, if FROM_TTY. */
327
328 static void
329 maybe_say_no_core_file_now (int from_tty)
330 {
331 if (from_tty)
332 printf_filtered (_("No core file now.\n"));
333 }
334
335 /* Backward compatibility with old way of specifying core files. */
336
337 void
338 core_file_command (const char *filename, int from_tty)
339 {
340 dont_repeat (); /* Either way, seems bogus. */
341
342 if (filename == NULL)
343 {
344 if (core_bfd != NULL)
345 {
346 target_detach (current_inferior (), from_tty);
347 gdb_assert (core_bfd == NULL);
348 }
349 else
350 maybe_say_no_core_file_now (from_tty);
351 }
352 else
353 core_target_open (filename, from_tty);
354 }
355
356 /* Locate (and load) an executable file (and symbols) given the core file
357 BFD ABFD. */
358
359 static void
360 locate_exec_from_corefile_build_id (bfd *abfd, int from_tty)
361 {
362 const bfd_build_id *build_id = build_id_bfd_get (abfd);
363 if (build_id == nullptr)
364 return;
365
366 gdb_bfd_ref_ptr execbfd
367 = build_id_to_exec_bfd (build_id->size, build_id->data);
368
369 if (execbfd != nullptr)
370 {
371 exec_file_attach (bfd_get_filename (execbfd.get ()), from_tty);
372 symbol_file_add_main (bfd_get_filename (execbfd.get ()),
373 symfile_add_flag (from_tty ? SYMFILE_VERBOSE : 0));
374 }
375 }
376
377 /* See gdbcore.h. */
378
379 void
380 core_target_open (const char *arg, int from_tty)
381 {
382 const char *p;
383 int siggy;
384 int scratch_chan;
385 int flags;
386
387 target_preopen (from_tty);
388 if (!arg)
389 {
390 if (core_bfd)
391 error (_("No core file specified. (Use `detach' "
392 "to stop debugging a core file.)"));
393 else
394 error (_("No core file specified."));
395 }
396
397 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
398 if (!IS_ABSOLUTE_PATH (filename.get ()))
399 filename = gdb_abspath (filename.get ());
400
401 flags = O_BINARY | O_LARGEFILE;
402 if (write_files)
403 flags |= O_RDWR;
404 else
405 flags |= O_RDONLY;
406 scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
407 if (scratch_chan < 0)
408 perror_with_name (filename.get ());
409
410 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
411 write_files ? FOPEN_RUB : FOPEN_RB,
412 scratch_chan));
413 if (temp_bfd == NULL)
414 perror_with_name (filename.get ());
415
416 if (!bfd_check_format (temp_bfd.get (), bfd_core)
417 && !gdb_check_format (temp_bfd.get ()))
418 {
419 /* Do it after the err msg */
420 /* FIXME: should be checking for errors from bfd_close (for one
421 thing, on error it does not free all the storage associated
422 with the bfd). */
423 error (_("\"%s\" is not a core dump: %s"),
424 filename.get (), bfd_errmsg (bfd_get_error ()));
425 }
426
427 current_program_space->cbfd = std::move (temp_bfd);
428
429 core_target *target = new core_target ();
430
431 /* Own the target until it is successfully pushed. */
432 target_ops_up target_holder (target);
433
434 validate_files ();
435
436 /* If we have no exec file, try to set the architecture from the
437 core file. We don't do this unconditionally since an exec file
438 typically contains more information that helps us determine the
439 architecture than a core file. */
440 if (!exec_bfd)
441 set_gdbarch_from_file (core_bfd);
442
443 push_target (std::move (target_holder));
444
445 inferior_ptid = null_ptid;
446
447 /* Need to flush the register cache (and the frame cache) from a
448 previous debug session. If inferior_ptid ends up the same as the
449 last debug session --- e.g., b foo; run; gcore core1; step; gcore
450 core2; core core1; core core2 --- then there's potential for
451 get_current_regcache to return the cached regcache of the
452 previous session, and the frame cache being stale. */
453 registers_changed ();
454
455 /* Build up thread list from BFD sections, and possibly set the
456 current thread to the .reg/NN section matching the .reg
457 section. */
458 bfd_map_over_sections (core_bfd, add_to_thread_list,
459 bfd_get_section_by_name (core_bfd, ".reg"));
460
461 if (inferior_ptid == null_ptid)
462 {
463 /* Either we found no .reg/NN section, and hence we have a
464 non-threaded core (single-threaded, from gdb's perspective),
465 or for some reason add_to_thread_list couldn't determine
466 which was the "main" thread. The latter case shouldn't
467 usually happen, but we're dealing with input here, which can
468 always be broken in different ways. */
469 thread_info *thread = first_thread_of_inferior (current_inferior ());
470
471 if (thread == NULL)
472 {
473 inferior_appeared (current_inferior (), CORELOW_PID);
474 inferior_ptid = ptid_t (CORELOW_PID);
475 add_thread_silent (target, inferior_ptid);
476 }
477 else
478 switch_to_thread (thread);
479 }
480
481 if (exec_bfd == nullptr)
482 locate_exec_from_corefile_build_id (core_bfd, from_tty);
483
484 post_create_inferior (target, from_tty);
485
486 /* Now go through the target stack looking for threads since there
487 may be a thread_stratum target loaded on top of target core by
488 now. The layer above should claim threads found in the BFD
489 sections. */
490 try
491 {
492 target_update_thread_list ();
493 }
494
495 catch (const gdb_exception_error &except)
496 {
497 exception_print (gdb_stderr, except);
498 }
499
500 p = bfd_core_file_failing_command (core_bfd);
501 if (p)
502 printf_filtered (_("Core was generated by `%s'.\n"), p);
503
504 /* Clearing any previous state of convenience variables. */
505 clear_exit_convenience_vars ();
506
507 siggy = bfd_core_file_failing_signal (core_bfd);
508 if (siggy > 0)
509 {
510 gdbarch *core_gdbarch = target->core_gdbarch ();
511
512 /* If we don't have a CORE_GDBARCH to work with, assume a native
513 core (map gdb_signal from host signals). If we do have
514 CORE_GDBARCH to work with, but no gdb_signal_from_target
515 implementation for that gdbarch, as a fallback measure,
516 assume the host signal mapping. It'll be correct for native
517 cores, but most likely incorrect for cross-cores. */
518 enum gdb_signal sig = (core_gdbarch != NULL
519 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
520 ? gdbarch_gdb_signal_from_target (core_gdbarch,
521 siggy)
522 : gdb_signal_from_host (siggy));
523
524 printf_filtered (_("Program terminated with signal %s, %s.\n"),
525 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
526
527 /* Set the value of the internal variable $_exitsignal,
528 which holds the signal uncaught by the inferior. */
529 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
530 siggy);
531 }
532
533 /* Fetch all registers from core file. */
534 target_fetch_registers (get_current_regcache (), -1);
535
536 /* Now, set up the frame cache, and print the top of stack. */
537 reinit_frame_cache ();
538 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
539
540 /* Current thread should be NUM 1 but the user does not know that.
541 If a program is single threaded gdb in general does not mention
542 anything about threads. That is why the test is >= 2. */
543 if (thread_count (target) >= 2)
544 {
545 try
546 {
547 thread_command (NULL, from_tty);
548 }
549 catch (const gdb_exception_error &except)
550 {
551 exception_print (gdb_stderr, except);
552 }
553 }
554 }
555
556 void
557 core_target::detach (inferior *inf, int from_tty)
558 {
559 /* Note that 'this' is dangling after this call. unpush_target
560 closes the target, and our close implementation deletes
561 'this'. */
562 unpush_target (this);
563
564 /* Clear the register cache and the frame cache. */
565 registers_changed ();
566 reinit_frame_cache ();
567 maybe_say_no_core_file_now (from_tty);
568 }
569
570 /* Try to retrieve registers from a section in core_bfd, and supply
571 them to m_core_vec->core_read_registers, as the register set
572 numbered WHICH.
573
574 If ptid's lwp member is zero, do the single-threaded
575 thing: look for a section named NAME. If ptid's lwp
576 member is non-zero, do the multi-threaded thing: look for a section
577 named "NAME/LWP", where LWP is the shortest ASCII decimal
578 representation of ptid's lwp member.
579
580 HUMAN_NAME is a human-readable name for the kind of registers the
581 NAME section contains, for use in error messages.
582
583 If REQUIRED is true, print an error if the core file doesn't have a
584 section by the appropriate name. Otherwise, just do nothing. */
585
586 void
587 core_target::get_core_register_section (struct regcache *regcache,
588 const struct regset *regset,
589 const char *name,
590 int section_min_size,
591 int which,
592 const char *human_name,
593 bool required)
594 {
595 struct bfd_section *section;
596 bfd_size_type size;
597 bool variable_size_section = (regset != NULL
598 && regset->flags & REGSET_VARIABLE_SIZE);
599
600 thread_section_name section_name (name, regcache->ptid ());
601
602 section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
603 if (! section)
604 {
605 if (required)
606 warning (_("Couldn't find %s registers in core file."),
607 human_name);
608 return;
609 }
610
611 size = bfd_section_size (section);
612 if (size < section_min_size)
613 {
614 warning (_("Section `%s' in core file too small."),
615 section_name.c_str ());
616 return;
617 }
618 if (size != section_min_size && !variable_size_section)
619 {
620 warning (_("Unexpected size of section `%s' in core file."),
621 section_name.c_str ());
622 }
623
624 gdb::byte_vector contents (size);
625 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
626 (file_ptr) 0, size))
627 {
628 warning (_("Couldn't read %s registers from `%s' section in core file."),
629 human_name, section_name.c_str ());
630 return;
631 }
632
633 if (regset != NULL)
634 {
635 regset->supply_regset (regset, regcache, -1, contents.data (), size);
636 return;
637 }
638
639 gdb_assert (m_core_vec != nullptr);
640 m_core_vec->core_read_registers (regcache, contents.data (), size, which,
641 (CORE_ADDR) bfd_section_vma (section));
642 }
643
644 /* Data passed to gdbarch_iterate_over_regset_sections's callback. */
645 struct get_core_registers_cb_data
646 {
647 core_target *target;
648 struct regcache *regcache;
649 };
650
651 /* Callback for get_core_registers that handles a single core file
652 register note section. */
653
654 static void
655 get_core_registers_cb (const char *sect_name, int supply_size, int collect_size,
656 const struct regset *regset,
657 const char *human_name, void *cb_data)
658 {
659 auto *data = (get_core_registers_cb_data *) cb_data;
660 bool required = false;
661 bool variable_size_section = (regset != NULL
662 && regset->flags & REGSET_VARIABLE_SIZE);
663
664 if (!variable_size_section)
665 gdb_assert (supply_size == collect_size);
666
667 if (strcmp (sect_name, ".reg") == 0)
668 {
669 required = true;
670 if (human_name == NULL)
671 human_name = "general-purpose";
672 }
673 else if (strcmp (sect_name, ".reg2") == 0)
674 {
675 if (human_name == NULL)
676 human_name = "floating-point";
677 }
678
679 /* The 'which' parameter is only used when no regset is provided.
680 Thus we just set it to -1. */
681 data->target->get_core_register_section (data->regcache, regset, sect_name,
682 supply_size, -1, human_name,
683 required);
684 }
685
686 /* Get the registers out of a core file. This is the machine-
687 independent part. Fetch_core_registers is the machine-dependent
688 part, typically implemented in the xm-file for each
689 architecture. */
690
691 /* We just get all the registers, so we don't use regno. */
692
693 void
694 core_target::fetch_registers (struct regcache *regcache, int regno)
695 {
696 int i;
697 struct gdbarch *gdbarch;
698
699 if (!(m_core_gdbarch != nullptr
700 && gdbarch_iterate_over_regset_sections_p (m_core_gdbarch))
701 && (m_core_vec == NULL || m_core_vec->core_read_registers == NULL))
702 {
703 fprintf_filtered (gdb_stderr,
704 "Can't fetch registers from this type of core file\n");
705 return;
706 }
707
708 gdbarch = regcache->arch ();
709 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
710 {
711 get_core_registers_cb_data data = { this, regcache };
712 gdbarch_iterate_over_regset_sections (gdbarch,
713 get_core_registers_cb,
714 (void *) &data, NULL);
715 }
716 else
717 {
718 get_core_register_section (regcache, NULL,
719 ".reg", 0, 0, "general-purpose", 1);
720 get_core_register_section (regcache, NULL,
721 ".reg2", 0, 2, "floating-point", 0);
722 }
723
724 /* Mark all registers not found in the core as unavailable. */
725 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
726 if (regcache->get_register_status (i) == REG_UNKNOWN)
727 regcache->raw_supply (i, NULL);
728 }
729
730 void
731 core_target::files_info ()
732 {
733 print_section_info (&m_core_section_table, core_bfd);
734 }
735 \f
736 enum target_xfer_status
737 core_target::xfer_partial (enum target_object object, const char *annex,
738 gdb_byte *readbuf, const gdb_byte *writebuf,
739 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
740 {
741 switch (object)
742 {
743 case TARGET_OBJECT_MEMORY:
744 return (section_table_xfer_memory_partial
745 (readbuf, writebuf,
746 offset, len, xfered_len,
747 m_core_section_table.sections,
748 m_core_section_table.sections_end,
749 NULL));
750
751 case TARGET_OBJECT_AUXV:
752 if (readbuf)
753 {
754 /* When the aux vector is stored in core file, BFD
755 represents this with a fake section called ".auxv". */
756
757 struct bfd_section *section;
758 bfd_size_type size;
759
760 section = bfd_get_section_by_name (core_bfd, ".auxv");
761 if (section == NULL)
762 return TARGET_XFER_E_IO;
763
764 size = bfd_section_size (section);
765 if (offset >= size)
766 return TARGET_XFER_EOF;
767 size -= offset;
768 if (size > len)
769 size = len;
770
771 if (size == 0)
772 return TARGET_XFER_EOF;
773 if (!bfd_get_section_contents (core_bfd, section, readbuf,
774 (file_ptr) offset, size))
775 {
776 warning (_("Couldn't read NT_AUXV note in core file."));
777 return TARGET_XFER_E_IO;
778 }
779
780 *xfered_len = (ULONGEST) size;
781 return TARGET_XFER_OK;
782 }
783 return TARGET_XFER_E_IO;
784
785 case TARGET_OBJECT_WCOOKIE:
786 if (readbuf)
787 {
788 /* When the StackGhost cookie is stored in core file, BFD
789 represents this with a fake section called
790 ".wcookie". */
791
792 struct bfd_section *section;
793 bfd_size_type size;
794
795 section = bfd_get_section_by_name (core_bfd, ".wcookie");
796 if (section == NULL)
797 return TARGET_XFER_E_IO;
798
799 size = bfd_section_size (section);
800 if (offset >= size)
801 return TARGET_XFER_EOF;
802 size -= offset;
803 if (size > len)
804 size = len;
805
806 if (size == 0)
807 return TARGET_XFER_EOF;
808 if (!bfd_get_section_contents (core_bfd, section, readbuf,
809 (file_ptr) offset, size))
810 {
811 warning (_("Couldn't read StackGhost cookie in core file."));
812 return TARGET_XFER_E_IO;
813 }
814
815 *xfered_len = (ULONGEST) size;
816 return TARGET_XFER_OK;
817
818 }
819 return TARGET_XFER_E_IO;
820
821 case TARGET_OBJECT_LIBRARIES:
822 if (m_core_gdbarch != nullptr
823 && gdbarch_core_xfer_shared_libraries_p (m_core_gdbarch))
824 {
825 if (writebuf)
826 return TARGET_XFER_E_IO;
827 else
828 {
829 *xfered_len = gdbarch_core_xfer_shared_libraries (m_core_gdbarch,
830 readbuf,
831 offset, len);
832
833 if (*xfered_len == 0)
834 return TARGET_XFER_EOF;
835 else
836 return TARGET_XFER_OK;
837 }
838 }
839 /* FALL THROUGH */
840
841 case TARGET_OBJECT_LIBRARIES_AIX:
842 if (m_core_gdbarch != nullptr
843 && gdbarch_core_xfer_shared_libraries_aix_p (m_core_gdbarch))
844 {
845 if (writebuf)
846 return TARGET_XFER_E_IO;
847 else
848 {
849 *xfered_len
850 = gdbarch_core_xfer_shared_libraries_aix (m_core_gdbarch,
851 readbuf, offset,
852 len);
853
854 if (*xfered_len == 0)
855 return TARGET_XFER_EOF;
856 else
857 return TARGET_XFER_OK;
858 }
859 }
860 /* FALL THROUGH */
861
862 case TARGET_OBJECT_SIGNAL_INFO:
863 if (readbuf)
864 {
865 if (m_core_gdbarch != nullptr
866 && gdbarch_core_xfer_siginfo_p (m_core_gdbarch))
867 {
868 LONGEST l = gdbarch_core_xfer_siginfo (m_core_gdbarch, readbuf,
869 offset, len);
870
871 if (l >= 0)
872 {
873 *xfered_len = l;
874 if (l == 0)
875 return TARGET_XFER_EOF;
876 else
877 return TARGET_XFER_OK;
878 }
879 }
880 }
881 return TARGET_XFER_E_IO;
882
883 default:
884 return this->beneath ()->xfer_partial (object, annex, readbuf,
885 writebuf, offset, len,
886 xfered_len);
887 }
888 }
889
890 \f
891
892 /* Okay, let's be honest: threads gleaned from a core file aren't
893 exactly lively, are they? On the other hand, if we don't claim
894 that each & every one is alive, then we don't get any of them
895 to appear in an "info thread" command, which is quite a useful
896 behaviour.
897 */
898 bool
899 core_target::thread_alive (ptid_t ptid)
900 {
901 return true;
902 }
903
904 /* Ask the current architecture what it knows about this core file.
905 That will be used, in turn, to pick a better architecture. This
906 wrapper could be avoided if targets got a chance to specialize
907 core_target. */
908
909 const struct target_desc *
910 core_target::read_description ()
911 {
912 if (m_core_gdbarch && gdbarch_core_read_description_p (m_core_gdbarch))
913 {
914 const struct target_desc *result;
915
916 result = gdbarch_core_read_description (m_core_gdbarch, this, core_bfd);
917 if (result != NULL)
918 return result;
919 }
920
921 return this->beneath ()->read_description ();
922 }
923
924 std::string
925 core_target::pid_to_str (ptid_t ptid)
926 {
927 struct inferior *inf;
928 int pid;
929
930 /* The preferred way is to have a gdbarch/OS specific
931 implementation. */
932 if (m_core_gdbarch != nullptr
933 && gdbarch_core_pid_to_str_p (m_core_gdbarch))
934 return gdbarch_core_pid_to_str (m_core_gdbarch, ptid);
935
936 /* Otherwise, if we don't have one, we'll just fallback to
937 "process", with normal_pid_to_str. */
938
939 /* Try the LWPID field first. */
940 pid = ptid.lwp ();
941 if (pid != 0)
942 return normal_pid_to_str (ptid_t (pid));
943
944 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
945 only if it isn't a fake PID. */
946 inf = find_inferior_ptid (this, ptid);
947 if (inf != NULL && !inf->fake_pid_p)
948 return normal_pid_to_str (ptid);
949
950 /* No luck. We simply don't have a valid PID to print. */
951 return "<main task>";
952 }
953
954 const char *
955 core_target::thread_name (struct thread_info *thr)
956 {
957 if (m_core_gdbarch != nullptr
958 && gdbarch_core_thread_name_p (m_core_gdbarch))
959 return gdbarch_core_thread_name (m_core_gdbarch, thr);
960 return NULL;
961 }
962
963 bool
964 core_target::has_memory ()
965 {
966 return (core_bfd != NULL);
967 }
968
969 bool
970 core_target::has_stack ()
971 {
972 return (core_bfd != NULL);
973 }
974
975 bool
976 core_target::has_registers ()
977 {
978 return (core_bfd != NULL);
979 }
980
981 /* Implement the to_info_proc method. */
982
983 bool
984 core_target::info_proc (const char *args, enum info_proc_what request)
985 {
986 struct gdbarch *gdbarch = get_current_arch ();
987
988 /* Since this is the core file target, call the 'core_info_proc'
989 method on gdbarch, not 'info_proc'. */
990 if (gdbarch_core_info_proc_p (gdbarch))
991 gdbarch_core_info_proc (gdbarch, args, request);
992
993 return true;
994 }
995
996 void _initialize_corelow ();
997 void
998 _initialize_corelow ()
999 {
1000 add_target (core_target_info, core_target_open, filename_completer);
1001 }
This page took 0.061078 seconds and 4 git commands to generate.