Make first and last lines of 'command help documentation' consistent.
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #include "frame.h" /* required by inferior.h */
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "symtab.h"
28 #include "command.h"
29 #include "bfd.h"
30 #include "target.h"
31 #include "process-stratum-target.h"
32 #include "gdbcore.h"
33 #include "gdbthread.h"
34 #include "regcache.h"
35 #include "regset.h"
36 #include "symfile.h"
37 #include "exec.h"
38 #include "readline/readline.h"
39 #include "solib.h"
40 #include "filenames.h"
41 #include "progspace.h"
42 #include "objfiles.h"
43 #include "gdb_bfd.h"
44 #include "completer.h"
45 #include "gdbsupport/filestuff.h"
46
47 #ifndef O_LARGEFILE
48 #define O_LARGEFILE 0
49 #endif
50
51 static core_fns *sniff_core_bfd (gdbarch *core_gdbarch,
52 bfd *abfd);
53
54 /* The core file target. */
55
56 static const target_info core_target_info = {
57 "core",
58 N_("Local core dump file"),
59 N_("Use a core file as a target.\n\
60 Specify the filename of the core file.")
61 };
62
63 class core_target final : public process_stratum_target
64 {
65 public:
66 core_target ();
67 ~core_target () override;
68
69 const target_info &info () const override
70 { return core_target_info; }
71
72 void close () override;
73 void detach (inferior *, int) override;
74 void fetch_registers (struct regcache *, int) override;
75
76 enum target_xfer_status xfer_partial (enum target_object object,
77 const char *annex,
78 gdb_byte *readbuf,
79 const gdb_byte *writebuf,
80 ULONGEST offset, ULONGEST len,
81 ULONGEST *xfered_len) override;
82 void files_info () override;
83
84 bool thread_alive (ptid_t ptid) override;
85 const struct target_desc *read_description () override;
86
87 std::string pid_to_str (ptid_t) override;
88
89 const char *thread_name (struct thread_info *) override;
90
91 bool has_all_memory () override { return false; }
92 bool has_memory () override;
93 bool has_stack () override;
94 bool has_registers () override;
95 bool has_execution (ptid_t) override { return false; }
96
97 bool info_proc (const char *, enum info_proc_what) override;
98
99 /* A few helpers. */
100
101 /* Getter, see variable definition. */
102 struct gdbarch *core_gdbarch ()
103 {
104 return m_core_gdbarch;
105 }
106
107 /* See definition. */
108 void get_core_register_section (struct regcache *regcache,
109 const struct regset *regset,
110 const char *name,
111 int section_min_size,
112 int which,
113 const char *human_name,
114 bool required);
115
116 private: /* per-core data */
117
118 /* The core's section table. Note that these target sections are
119 *not* mapped in the current address spaces' set of target
120 sections --- those should come only from pure executable or
121 shared library bfds. The core bfd sections are an implementation
122 detail of the core target, just like ptrace is for unix child
123 targets. */
124 target_section_table m_core_section_table {};
125
126 /* The core_fns for a core file handler that is prepared to read the
127 core file currently open on core_bfd. */
128 core_fns *m_core_vec = NULL;
129
130 /* FIXME: kettenis/20031023: Eventually this field should
131 disappear. */
132 struct gdbarch *m_core_gdbarch = NULL;
133 };
134
135 core_target::core_target ()
136 {
137 m_core_gdbarch = gdbarch_from_bfd (core_bfd);
138
139 /* Find a suitable core file handler to munch on core_bfd */
140 m_core_vec = sniff_core_bfd (m_core_gdbarch, core_bfd);
141
142 /* Find the data section */
143 if (build_section_table (core_bfd,
144 &m_core_section_table.sections,
145 &m_core_section_table.sections_end))
146 error (_("\"%s\": Can't find sections: %s"),
147 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
148 }
149
150 core_target::~core_target ()
151 {
152 xfree (m_core_section_table.sections);
153 }
154
155 /* List of all available core_fns. On gdb startup, each core file
156 register reader calls deprecated_add_core_fns() to register
157 information on each core format it is prepared to read. */
158
159 static struct core_fns *core_file_fns = NULL;
160
161 static int gdb_check_format (bfd *);
162
163 static void add_to_thread_list (bfd *, asection *, void *);
164
165 /* An arbitrary identifier for the core inferior. */
166 #define CORELOW_PID 1
167
168 /* Link a new core_fns into the global core_file_fns list. Called on
169 gdb startup by the _initialize routine in each core file register
170 reader, to register information about each format the reader is
171 prepared to handle. */
172
173 void
174 deprecated_add_core_fns (struct core_fns *cf)
175 {
176 cf->next = core_file_fns;
177 core_file_fns = cf;
178 }
179
180 /* The default function that core file handlers can use to examine a
181 core file BFD and decide whether or not to accept the job of
182 reading the core file. */
183
184 int
185 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
186 {
187 int result;
188
189 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
190 return (result);
191 }
192
193 /* Walk through the list of core functions to find a set that can
194 handle the core file open on ABFD. Returns pointer to set that is
195 selected. */
196
197 static struct core_fns *
198 sniff_core_bfd (struct gdbarch *core_gdbarch, bfd *abfd)
199 {
200 struct core_fns *cf;
201 struct core_fns *yummy = NULL;
202 int matches = 0;
203
204 /* Don't sniff if we have support for register sets in
205 CORE_GDBARCH. */
206 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
207 return NULL;
208
209 for (cf = core_file_fns; cf != NULL; cf = cf->next)
210 {
211 if (cf->core_sniffer (cf, abfd))
212 {
213 yummy = cf;
214 matches++;
215 }
216 }
217 if (matches > 1)
218 {
219 warning (_("\"%s\": ambiguous core format, %d handlers match"),
220 bfd_get_filename (abfd), matches);
221 }
222 else if (matches == 0)
223 error (_("\"%s\": no core file handler recognizes format"),
224 bfd_get_filename (abfd));
225
226 return (yummy);
227 }
228
229 /* The default is to reject every core file format we see. Either
230 BFD has to recognize it, or we have to provide a function in the
231 core file handler that recognizes it. */
232
233 int
234 default_check_format (bfd *abfd)
235 {
236 return (0);
237 }
238
239 /* Attempt to recognize core file formats that BFD rejects. */
240
241 static int
242 gdb_check_format (bfd *abfd)
243 {
244 struct core_fns *cf;
245
246 for (cf = core_file_fns; cf != NULL; cf = cf->next)
247 {
248 if (cf->check_format (abfd))
249 {
250 return (1);
251 }
252 }
253 return (0);
254 }
255
256 /* Close the core target. */
257
258 void
259 core_target::close ()
260 {
261 if (core_bfd)
262 {
263 inferior_ptid = null_ptid; /* Avoid confusion from thread
264 stuff. */
265 exit_inferior_silent (current_inferior ());
266
267 /* Clear out solib state while the bfd is still open. See
268 comments in clear_solib in solib.c. */
269 clear_solib ();
270
271 current_program_space->cbfd.reset (nullptr);
272 }
273
274 /* Core targets are heap-allocated (see core_target_open), so here
275 we delete ourselves. */
276 delete this;
277 }
278
279 /* Look for sections whose names start with `.reg/' so that we can
280 extract the list of threads in a core file. */
281
282 static void
283 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
284 {
285 ptid_t ptid;
286 int core_tid;
287 int pid, lwpid;
288 asection *reg_sect = (asection *) reg_sect_arg;
289 bool fake_pid_p = false;
290 struct inferior *inf;
291
292 if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
293 return;
294
295 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
296
297 pid = bfd_core_file_pid (core_bfd);
298 if (pid == 0)
299 {
300 fake_pid_p = true;
301 pid = CORELOW_PID;
302 }
303
304 lwpid = core_tid;
305
306 inf = current_inferior ();
307 if (inf->pid == 0)
308 {
309 inferior_appeared (inf, pid);
310 inf->fake_pid_p = fake_pid_p;
311 }
312
313 ptid = ptid_t (pid, lwpid, 0);
314
315 add_thread (ptid);
316
317 /* Warning, Will Robinson, looking at BFD private data! */
318
319 if (reg_sect != NULL
320 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
321 inferior_ptid = ptid; /* Yes, make it current. */
322 }
323
324 /* Issue a message saying we have no core to debug, if FROM_TTY. */
325
326 static void
327 maybe_say_no_core_file_now (int from_tty)
328 {
329 if (from_tty)
330 printf_filtered (_("No core file now.\n"));
331 }
332
333 /* Backward compatability with old way of specifying core files. */
334
335 void
336 core_file_command (const char *filename, int from_tty)
337 {
338 dont_repeat (); /* Either way, seems bogus. */
339
340 if (filename == NULL)
341 {
342 if (core_bfd != NULL)
343 {
344 target_detach (current_inferior (), from_tty);
345 gdb_assert (core_bfd == NULL);
346 }
347 else
348 maybe_say_no_core_file_now (from_tty);
349 }
350 else
351 core_target_open (filename, from_tty);
352 }
353
354 /* See gdbcore.h. */
355
356 void
357 core_target_open (const char *arg, int from_tty)
358 {
359 const char *p;
360 int siggy;
361 int scratch_chan;
362 int flags;
363
364 target_preopen (from_tty);
365 if (!arg)
366 {
367 if (core_bfd)
368 error (_("No core file specified. (Use `detach' "
369 "to stop debugging a core file.)"));
370 else
371 error (_("No core file specified."));
372 }
373
374 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
375 if (!IS_ABSOLUTE_PATH (filename.get ()))
376 filename.reset (concat (current_directory, "/",
377 filename.get (), (char *) NULL));
378
379 flags = O_BINARY | O_LARGEFILE;
380 if (write_files)
381 flags |= O_RDWR;
382 else
383 flags |= O_RDONLY;
384 scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
385 if (scratch_chan < 0)
386 perror_with_name (filename.get ());
387
388 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
389 write_files ? FOPEN_RUB : FOPEN_RB,
390 scratch_chan));
391 if (temp_bfd == NULL)
392 perror_with_name (filename.get ());
393
394 if (!bfd_check_format (temp_bfd.get (), bfd_core)
395 && !gdb_check_format (temp_bfd.get ()))
396 {
397 /* Do it after the err msg */
398 /* FIXME: should be checking for errors from bfd_close (for one
399 thing, on error it does not free all the storage associated
400 with the bfd). */
401 error (_("\"%s\" is not a core dump: %s"),
402 filename.get (), bfd_errmsg (bfd_get_error ()));
403 }
404
405 current_program_space->cbfd = std::move (temp_bfd);
406
407 core_target *target = new core_target ();
408
409 /* Own the target until it is successfully pushed. */
410 target_ops_up target_holder (target);
411
412 validate_files ();
413
414 /* If we have no exec file, try to set the architecture from the
415 core file. We don't do this unconditionally since an exec file
416 typically contains more information that helps us determine the
417 architecture than a core file. */
418 if (!exec_bfd)
419 set_gdbarch_from_file (core_bfd);
420
421 push_target (std::move (target_holder));
422
423 inferior_ptid = null_ptid;
424
425 /* Need to flush the register cache (and the frame cache) from a
426 previous debug session. If inferior_ptid ends up the same as the
427 last debug session --- e.g., b foo; run; gcore core1; step; gcore
428 core2; core core1; core core2 --- then there's potential for
429 get_current_regcache to return the cached regcache of the
430 previous session, and the frame cache being stale. */
431 registers_changed ();
432
433 /* Build up thread list from BFD sections, and possibly set the
434 current thread to the .reg/NN section matching the .reg
435 section. */
436 bfd_map_over_sections (core_bfd, add_to_thread_list,
437 bfd_get_section_by_name (core_bfd, ".reg"));
438
439 if (inferior_ptid == null_ptid)
440 {
441 /* Either we found no .reg/NN section, and hence we have a
442 non-threaded core (single-threaded, from gdb's perspective),
443 or for some reason add_to_thread_list couldn't determine
444 which was the "main" thread. The latter case shouldn't
445 usually happen, but we're dealing with input here, which can
446 always be broken in different ways. */
447 thread_info *thread = first_thread_of_inferior (current_inferior ());
448
449 if (thread == NULL)
450 {
451 inferior_appeared (current_inferior (), CORELOW_PID);
452 inferior_ptid = ptid_t (CORELOW_PID);
453 add_thread_silent (inferior_ptid);
454 }
455 else
456 switch_to_thread (thread);
457 }
458
459 post_create_inferior (target, from_tty);
460
461 /* Now go through the target stack looking for threads since there
462 may be a thread_stratum target loaded on top of target core by
463 now. The layer above should claim threads found in the BFD
464 sections. */
465 try
466 {
467 target_update_thread_list ();
468 }
469
470 catch (const gdb_exception_error &except)
471 {
472 exception_print (gdb_stderr, except);
473 }
474
475 p = bfd_core_file_failing_command (core_bfd);
476 if (p)
477 printf_filtered (_("Core was generated by `%s'.\n"), p);
478
479 /* Clearing any previous state of convenience variables. */
480 clear_exit_convenience_vars ();
481
482 siggy = bfd_core_file_failing_signal (core_bfd);
483 if (siggy > 0)
484 {
485 gdbarch *core_gdbarch = target->core_gdbarch ();
486
487 /* If we don't have a CORE_GDBARCH to work with, assume a native
488 core (map gdb_signal from host signals). If we do have
489 CORE_GDBARCH to work with, but no gdb_signal_from_target
490 implementation for that gdbarch, as a fallback measure,
491 assume the host signal mapping. It'll be correct for native
492 cores, but most likely incorrect for cross-cores. */
493 enum gdb_signal sig = (core_gdbarch != NULL
494 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
495 ? gdbarch_gdb_signal_from_target (core_gdbarch,
496 siggy)
497 : gdb_signal_from_host (siggy));
498
499 printf_filtered (_("Program terminated with signal %s, %s.\n"),
500 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
501
502 /* Set the value of the internal variable $_exitsignal,
503 which holds the signal uncaught by the inferior. */
504 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
505 siggy);
506 }
507
508 /* Fetch all registers from core file. */
509 target_fetch_registers (get_current_regcache (), -1);
510
511 /* Now, set up the frame cache, and print the top of stack. */
512 reinit_frame_cache ();
513 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
514
515 /* Current thread should be NUM 1 but the user does not know that.
516 If a program is single threaded gdb in general does not mention
517 anything about threads. That is why the test is >= 2. */
518 if (thread_count () >= 2)
519 {
520 try
521 {
522 thread_command (NULL, from_tty);
523 }
524 catch (const gdb_exception_error &except)
525 {
526 exception_print (gdb_stderr, except);
527 }
528 }
529 }
530
531 void
532 core_target::detach (inferior *inf, int from_tty)
533 {
534 /* Note that 'this' is dangling after this call. unpush_target
535 closes the target, and our close implementation deletes
536 'this'. */
537 unpush_target (this);
538
539 /* Clear the register cache and the frame cache. */
540 registers_changed ();
541 reinit_frame_cache ();
542 maybe_say_no_core_file_now (from_tty);
543 }
544
545 /* Try to retrieve registers from a section in core_bfd, and supply
546 them to m_core_vec->core_read_registers, as the register set
547 numbered WHICH.
548
549 If ptid's lwp member is zero, do the single-threaded
550 thing: look for a section named NAME. If ptid's lwp
551 member is non-zero, do the multi-threaded thing: look for a section
552 named "NAME/LWP", where LWP is the shortest ASCII decimal
553 representation of ptid's lwp member.
554
555 HUMAN_NAME is a human-readable name for the kind of registers the
556 NAME section contains, for use in error messages.
557
558 If REQUIRED is true, print an error if the core file doesn't have a
559 section by the appropriate name. Otherwise, just do nothing. */
560
561 void
562 core_target::get_core_register_section (struct regcache *regcache,
563 const struct regset *regset,
564 const char *name,
565 int section_min_size,
566 int which,
567 const char *human_name,
568 bool required)
569 {
570 struct bfd_section *section;
571 bfd_size_type size;
572 char *contents;
573 bool variable_size_section = (regset != NULL
574 && regset->flags & REGSET_VARIABLE_SIZE);
575
576 thread_section_name section_name (name, regcache->ptid ());
577
578 section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
579 if (! section)
580 {
581 if (required)
582 warning (_("Couldn't find %s registers in core file."),
583 human_name);
584 return;
585 }
586
587 size = bfd_section_size (core_bfd, section);
588 if (size < section_min_size)
589 {
590 warning (_("Section `%s' in core file too small."),
591 section_name.c_str ());
592 return;
593 }
594 if (size != section_min_size && !variable_size_section)
595 {
596 warning (_("Unexpected size of section `%s' in core file."),
597 section_name.c_str ());
598 }
599
600 contents = (char *) alloca (size);
601 if (! bfd_get_section_contents (core_bfd, section, contents,
602 (file_ptr) 0, size))
603 {
604 warning (_("Couldn't read %s registers from `%s' section in core file."),
605 human_name, section_name.c_str ());
606 return;
607 }
608
609 if (regset != NULL)
610 {
611 regset->supply_regset (regset, regcache, -1, contents, size);
612 return;
613 }
614
615 gdb_assert (m_core_vec != nullptr);
616 m_core_vec->core_read_registers (regcache, contents, size, which,
617 ((CORE_ADDR)
618 bfd_section_vma (core_bfd, section)));
619 }
620
621 /* Data passed to gdbarch_iterate_over_regset_sections's callback. */
622 struct get_core_registers_cb_data
623 {
624 core_target *target;
625 struct regcache *regcache;
626 };
627
628 /* Callback for get_core_registers that handles a single core file
629 register note section. */
630
631 static void
632 get_core_registers_cb (const char *sect_name, int supply_size, int collect_size,
633 const struct regset *regset,
634 const char *human_name, void *cb_data)
635 {
636 auto *data = (get_core_registers_cb_data *) cb_data;
637 bool required = false;
638 bool variable_size_section = (regset != NULL
639 && regset->flags & REGSET_VARIABLE_SIZE);
640
641 if (!variable_size_section)
642 gdb_assert (supply_size == collect_size);
643
644 if (strcmp (sect_name, ".reg") == 0)
645 {
646 required = true;
647 if (human_name == NULL)
648 human_name = "general-purpose";
649 }
650 else if (strcmp (sect_name, ".reg2") == 0)
651 {
652 if (human_name == NULL)
653 human_name = "floating-point";
654 }
655
656 /* The 'which' parameter is only used when no regset is provided.
657 Thus we just set it to -1. */
658 data->target->get_core_register_section (data->regcache, regset, sect_name,
659 supply_size, -1, human_name,
660 required);
661 }
662
663 /* Get the registers out of a core file. This is the machine-
664 independent part. Fetch_core_registers is the machine-dependent
665 part, typically implemented in the xm-file for each
666 architecture. */
667
668 /* We just get all the registers, so we don't use regno. */
669
670 void
671 core_target::fetch_registers (struct regcache *regcache, int regno)
672 {
673 int i;
674 struct gdbarch *gdbarch;
675
676 if (!(m_core_gdbarch != nullptr
677 && gdbarch_iterate_over_regset_sections_p (m_core_gdbarch))
678 && (m_core_vec == NULL || m_core_vec->core_read_registers == NULL))
679 {
680 fprintf_filtered (gdb_stderr,
681 "Can't fetch registers from this type of core file\n");
682 return;
683 }
684
685 gdbarch = regcache->arch ();
686 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
687 {
688 get_core_registers_cb_data data = { this, regcache };
689 gdbarch_iterate_over_regset_sections (gdbarch,
690 get_core_registers_cb,
691 (void *) &data, NULL);
692 }
693 else
694 {
695 get_core_register_section (regcache, NULL,
696 ".reg", 0, 0, "general-purpose", 1);
697 get_core_register_section (regcache, NULL,
698 ".reg2", 0, 2, "floating-point", 0);
699 }
700
701 /* Mark all registers not found in the core as unavailable. */
702 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
703 if (regcache->get_register_status (i) == REG_UNKNOWN)
704 regcache->raw_supply (i, NULL);
705 }
706
707 void
708 core_target::files_info ()
709 {
710 print_section_info (&m_core_section_table, core_bfd);
711 }
712 \f
713 struct spuid_list
714 {
715 gdb_byte *buf;
716 ULONGEST offset;
717 LONGEST len;
718 ULONGEST pos;
719 ULONGEST written;
720 };
721
722 static void
723 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
724 {
725 struct spuid_list *list = (struct spuid_list *) list_p;
726 enum bfd_endian byte_order
727 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
728 int fd, pos = 0;
729
730 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
731 if (pos == 0)
732 return;
733
734 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
735 {
736 store_unsigned_integer (list->buf + list->pos - list->offset,
737 4, byte_order, fd);
738 list->written += 4;
739 }
740 list->pos += 4;
741 }
742
743 enum target_xfer_status
744 core_target::xfer_partial (enum target_object object, const char *annex,
745 gdb_byte *readbuf, const gdb_byte *writebuf,
746 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
747 {
748 switch (object)
749 {
750 case TARGET_OBJECT_MEMORY:
751 return (section_table_xfer_memory_partial
752 (readbuf, writebuf,
753 offset, len, xfered_len,
754 m_core_section_table.sections,
755 m_core_section_table.sections_end,
756 NULL));
757
758 case TARGET_OBJECT_AUXV:
759 if (readbuf)
760 {
761 /* When the aux vector is stored in core file, BFD
762 represents this with a fake section called ".auxv". */
763
764 struct bfd_section *section;
765 bfd_size_type size;
766
767 section = bfd_get_section_by_name (core_bfd, ".auxv");
768 if (section == NULL)
769 return TARGET_XFER_E_IO;
770
771 size = bfd_section_size (core_bfd, section);
772 if (offset >= size)
773 return TARGET_XFER_EOF;
774 size -= offset;
775 if (size > len)
776 size = len;
777
778 if (size == 0)
779 return TARGET_XFER_EOF;
780 if (!bfd_get_section_contents (core_bfd, section, readbuf,
781 (file_ptr) offset, size))
782 {
783 warning (_("Couldn't read NT_AUXV note in core file."));
784 return TARGET_XFER_E_IO;
785 }
786
787 *xfered_len = (ULONGEST) size;
788 return TARGET_XFER_OK;
789 }
790 return TARGET_XFER_E_IO;
791
792 case TARGET_OBJECT_WCOOKIE:
793 if (readbuf)
794 {
795 /* When the StackGhost cookie is stored in core file, BFD
796 represents this with a fake section called
797 ".wcookie". */
798
799 struct bfd_section *section;
800 bfd_size_type size;
801
802 section = bfd_get_section_by_name (core_bfd, ".wcookie");
803 if (section == NULL)
804 return TARGET_XFER_E_IO;
805
806 size = bfd_section_size (core_bfd, section);
807 if (offset >= size)
808 return TARGET_XFER_EOF;
809 size -= offset;
810 if (size > len)
811 size = len;
812
813 if (size == 0)
814 return TARGET_XFER_EOF;
815 if (!bfd_get_section_contents (core_bfd, section, readbuf,
816 (file_ptr) offset, size))
817 {
818 warning (_("Couldn't read StackGhost cookie in core file."));
819 return TARGET_XFER_E_IO;
820 }
821
822 *xfered_len = (ULONGEST) size;
823 return TARGET_XFER_OK;
824
825 }
826 return TARGET_XFER_E_IO;
827
828 case TARGET_OBJECT_LIBRARIES:
829 if (m_core_gdbarch != nullptr
830 && gdbarch_core_xfer_shared_libraries_p (m_core_gdbarch))
831 {
832 if (writebuf)
833 return TARGET_XFER_E_IO;
834 else
835 {
836 *xfered_len = gdbarch_core_xfer_shared_libraries (m_core_gdbarch,
837 readbuf,
838 offset, len);
839
840 if (*xfered_len == 0)
841 return TARGET_XFER_EOF;
842 else
843 return TARGET_XFER_OK;
844 }
845 }
846 /* FALL THROUGH */
847
848 case TARGET_OBJECT_LIBRARIES_AIX:
849 if (m_core_gdbarch != nullptr
850 && gdbarch_core_xfer_shared_libraries_aix_p (m_core_gdbarch))
851 {
852 if (writebuf)
853 return TARGET_XFER_E_IO;
854 else
855 {
856 *xfered_len
857 = gdbarch_core_xfer_shared_libraries_aix (m_core_gdbarch,
858 readbuf, offset,
859 len);
860
861 if (*xfered_len == 0)
862 return TARGET_XFER_EOF;
863 else
864 return TARGET_XFER_OK;
865 }
866 }
867 /* FALL THROUGH */
868
869 case TARGET_OBJECT_SPU:
870 if (readbuf && annex)
871 {
872 /* When the SPU contexts are stored in a core file, BFD
873 represents this with a fake section called
874 "SPU/<annex>". */
875
876 struct bfd_section *section;
877 bfd_size_type size;
878 char sectionstr[100];
879
880 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
881
882 section = bfd_get_section_by_name (core_bfd, sectionstr);
883 if (section == NULL)
884 return TARGET_XFER_E_IO;
885
886 size = bfd_section_size (core_bfd, section);
887 if (offset >= size)
888 return TARGET_XFER_EOF;
889 size -= offset;
890 if (size > len)
891 size = len;
892
893 if (size == 0)
894 return TARGET_XFER_EOF;
895 if (!bfd_get_section_contents (core_bfd, section, readbuf,
896 (file_ptr) offset, size))
897 {
898 warning (_("Couldn't read SPU section in core file."));
899 return TARGET_XFER_E_IO;
900 }
901
902 *xfered_len = (ULONGEST) size;
903 return TARGET_XFER_OK;
904 }
905 else if (readbuf)
906 {
907 /* NULL annex requests list of all present spuids. */
908 struct spuid_list list;
909
910 list.buf = readbuf;
911 list.offset = offset;
912 list.len = len;
913 list.pos = 0;
914 list.written = 0;
915 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
916
917 if (list.written == 0)
918 return TARGET_XFER_EOF;
919 else
920 {
921 *xfered_len = (ULONGEST) list.written;
922 return TARGET_XFER_OK;
923 }
924 }
925 return TARGET_XFER_E_IO;
926
927 case TARGET_OBJECT_SIGNAL_INFO:
928 if (readbuf)
929 {
930 if (m_core_gdbarch != nullptr
931 && gdbarch_core_xfer_siginfo_p (m_core_gdbarch))
932 {
933 LONGEST l = gdbarch_core_xfer_siginfo (m_core_gdbarch, readbuf,
934 offset, len);
935
936 if (l >= 0)
937 {
938 *xfered_len = l;
939 if (l == 0)
940 return TARGET_XFER_EOF;
941 else
942 return TARGET_XFER_OK;
943 }
944 }
945 }
946 return TARGET_XFER_E_IO;
947
948 default:
949 return this->beneath ()->xfer_partial (object, annex, readbuf,
950 writebuf, offset, len,
951 xfered_len);
952 }
953 }
954
955 \f
956
957 /* Okay, let's be honest: threads gleaned from a core file aren't
958 exactly lively, are they? On the other hand, if we don't claim
959 that each & every one is alive, then we don't get any of them
960 to appear in an "info thread" command, which is quite a useful
961 behaviour.
962 */
963 bool
964 core_target::thread_alive (ptid_t ptid)
965 {
966 return true;
967 }
968
969 /* Ask the current architecture what it knows about this core file.
970 That will be used, in turn, to pick a better architecture. This
971 wrapper could be avoided if targets got a chance to specialize
972 core_target. */
973
974 const struct target_desc *
975 core_target::read_description ()
976 {
977 if (m_core_gdbarch && gdbarch_core_read_description_p (m_core_gdbarch))
978 {
979 const struct target_desc *result;
980
981 result = gdbarch_core_read_description (m_core_gdbarch, this, core_bfd);
982 if (result != NULL)
983 return result;
984 }
985
986 return this->beneath ()->read_description ();
987 }
988
989 std::string
990 core_target::pid_to_str (ptid_t ptid)
991 {
992 struct inferior *inf;
993 int pid;
994
995 /* The preferred way is to have a gdbarch/OS specific
996 implementation. */
997 if (m_core_gdbarch != nullptr
998 && gdbarch_core_pid_to_str_p (m_core_gdbarch))
999 return gdbarch_core_pid_to_str (m_core_gdbarch, ptid);
1000
1001 /* Otherwise, if we don't have one, we'll just fallback to
1002 "process", with normal_pid_to_str. */
1003
1004 /* Try the LWPID field first. */
1005 pid = ptid.lwp ();
1006 if (pid != 0)
1007 return normal_pid_to_str (ptid_t (pid));
1008
1009 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
1010 only if it isn't a fake PID. */
1011 inf = find_inferior_ptid (ptid);
1012 if (inf != NULL && !inf->fake_pid_p)
1013 return normal_pid_to_str (ptid);
1014
1015 /* No luck. We simply don't have a valid PID to print. */
1016 return "<main task>";
1017 }
1018
1019 const char *
1020 core_target::thread_name (struct thread_info *thr)
1021 {
1022 if (m_core_gdbarch != nullptr
1023 && gdbarch_core_thread_name_p (m_core_gdbarch))
1024 return gdbarch_core_thread_name (m_core_gdbarch, thr);
1025 return NULL;
1026 }
1027
1028 bool
1029 core_target::has_memory ()
1030 {
1031 return (core_bfd != NULL);
1032 }
1033
1034 bool
1035 core_target::has_stack ()
1036 {
1037 return (core_bfd != NULL);
1038 }
1039
1040 bool
1041 core_target::has_registers ()
1042 {
1043 return (core_bfd != NULL);
1044 }
1045
1046 /* Implement the to_info_proc method. */
1047
1048 bool
1049 core_target::info_proc (const char *args, enum info_proc_what request)
1050 {
1051 struct gdbarch *gdbarch = get_current_arch ();
1052
1053 /* Since this is the core file target, call the 'core_info_proc'
1054 method on gdbarch, not 'info_proc'. */
1055 if (gdbarch_core_info_proc_p (gdbarch))
1056 gdbarch_core_info_proc (gdbarch, args, request);
1057
1058 return true;
1059 }
1060
1061 void
1062 _initialize_corelow (void)
1063 {
1064 add_target (core_target_info, core_target_open, filename_completer);
1065 }
This page took 0.05945 seconds and 4 git commands to generate.