72f28076406a0a38aa78a201df321ee223878bb5
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #ifdef HAVE_SYS_FILE_H
25 #include <sys/file.h> /* needed for F_OK and friends */
26 #endif
27 #include "frame.h" /* required by inferior.h */
28 #include "inferior.h"
29 #include "infrun.h"
30 #include "symtab.h"
31 #include "command.h"
32 #include "bfd.h"
33 #include "target.h"
34 #include "gdbcore.h"
35 #include "gdbthread.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "exec.h"
40 #include "readline/readline.h"
41 #include "solib.h"
42 #include "filenames.h"
43 #include "progspace.h"
44 #include "objfiles.h"
45 #include "gdb_bfd.h"
46 #include "completer.h"
47 #include "filestuff.h"
48
49 #ifndef O_LARGEFILE
50 #define O_LARGEFILE 0
51 #endif
52
53 static core_fns *sniff_core_bfd (gdbarch *core_gdbarch,
54 bfd *abfd);
55
56 /* The core file target. */
57
58 static const target_info core_target_info = {
59 "core",
60 N_("Local core dump file"),
61 N_("Use a core file as a target. Specify the filename of the core file.")
62 };
63
64 class core_target final : public target_ops
65 {
66 public:
67 core_target ();
68 ~core_target () override;
69
70 const target_info &info () const override
71 { return core_target_info; }
72
73 void close () override;
74 void detach (inferior *, int) override;
75 void fetch_registers (struct regcache *, int) override;
76
77 enum target_xfer_status xfer_partial (enum target_object object,
78 const char *annex,
79 gdb_byte *readbuf,
80 const gdb_byte *writebuf,
81 ULONGEST offset, ULONGEST len,
82 ULONGEST *xfered_len) override;
83 void files_info () override;
84
85 bool thread_alive (ptid_t ptid) override;
86 const struct target_desc *read_description () override;
87
88 const char *pid_to_str (ptid_t) override;
89
90 const char *thread_name (struct thread_info *) override;
91
92 bool has_memory () override;
93 bool has_stack () override;
94 bool has_registers () override;
95 bool info_proc (const char *, enum info_proc_what) override;
96
97 /* A few helpers. */
98
99 /* Getter, see variable definition. */
100 struct gdbarch *core_gdbarch ()
101 {
102 return m_core_gdbarch;
103 }
104
105 /* See definition. */
106 void get_core_register_section (struct regcache *regcache,
107 const struct regset *regset,
108 const char *name,
109 int section_min_size,
110 int which,
111 const char *human_name,
112 bool required);
113
114 private: /* per-core data */
115
116 /* The core's section table. Note that these target sections are
117 *not* mapped in the current address spaces' set of target
118 sections --- those should come only from pure executable or
119 shared library bfds. The core bfd sections are an implementation
120 detail of the core target, just like ptrace is for unix child
121 targets. */
122 target_section_table m_core_section_table {};
123
124 /* The core_fns for a core file handler that is prepared to read the
125 core file currently open on core_bfd. */
126 core_fns *m_core_vec = NULL;
127
128 /* FIXME: kettenis/20031023: Eventually this field should
129 disappear. */
130 struct gdbarch *m_core_gdbarch = NULL;
131 };
132
133 core_target::core_target ()
134 {
135 to_stratum = process_stratum;
136
137 m_core_gdbarch = gdbarch_from_bfd (core_bfd);
138
139 /* Find a suitable core file handler to munch on core_bfd */
140 m_core_vec = sniff_core_bfd (m_core_gdbarch, core_bfd);
141
142 /* Find the data section */
143 if (build_section_table (core_bfd,
144 &m_core_section_table.sections,
145 &m_core_section_table.sections_end))
146 error (_("\"%s\": Can't find sections: %s"),
147 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
148 }
149
150 core_target::~core_target ()
151 {
152 xfree (m_core_section_table.sections);
153 }
154
155 /* List of all available core_fns. On gdb startup, each core file
156 register reader calls deprecated_add_core_fns() to register
157 information on each core format it is prepared to read. */
158
159 static struct core_fns *core_file_fns = NULL;
160
161 static int gdb_check_format (bfd *);
162
163 static void add_to_thread_list (bfd *, asection *, void *);
164
165 /* An arbitrary identifier for the core inferior. */
166 #define CORELOW_PID 1
167
168 /* Link a new core_fns into the global core_file_fns list. Called on
169 gdb startup by the _initialize routine in each core file register
170 reader, to register information about each format the reader is
171 prepared to handle. */
172
173 void
174 deprecated_add_core_fns (struct core_fns *cf)
175 {
176 cf->next = core_file_fns;
177 core_file_fns = cf;
178 }
179
180 /* The default function that core file handlers can use to examine a
181 core file BFD and decide whether or not to accept the job of
182 reading the core file. */
183
184 int
185 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
186 {
187 int result;
188
189 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
190 return (result);
191 }
192
193 /* Walk through the list of core functions to find a set that can
194 handle the core file open on ABFD. Returns pointer to set that is
195 selected. */
196
197 static struct core_fns *
198 sniff_core_bfd (struct gdbarch *core_gdbarch, bfd *abfd)
199 {
200 struct core_fns *cf;
201 struct core_fns *yummy = NULL;
202 int matches = 0;
203
204 /* Don't sniff if we have support for register sets in
205 CORE_GDBARCH. */
206 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
207 return NULL;
208
209 for (cf = core_file_fns; cf != NULL; cf = cf->next)
210 {
211 if (cf->core_sniffer (cf, abfd))
212 {
213 yummy = cf;
214 matches++;
215 }
216 }
217 if (matches > 1)
218 {
219 warning (_("\"%s\": ambiguous core format, %d handlers match"),
220 bfd_get_filename (abfd), matches);
221 }
222 else if (matches == 0)
223 error (_("\"%s\": no core file handler recognizes format"),
224 bfd_get_filename (abfd));
225
226 return (yummy);
227 }
228
229 /* The default is to reject every core file format we see. Either
230 BFD has to recognize it, or we have to provide a function in the
231 core file handler that recognizes it. */
232
233 int
234 default_check_format (bfd *abfd)
235 {
236 return (0);
237 }
238
239 /* Attempt to recognize core file formats that BFD rejects. */
240
241 static int
242 gdb_check_format (bfd *abfd)
243 {
244 struct core_fns *cf;
245
246 for (cf = core_file_fns; cf != NULL; cf = cf->next)
247 {
248 if (cf->check_format (abfd))
249 {
250 return (1);
251 }
252 }
253 return (0);
254 }
255
256 /* Close the core target. */
257
258 void
259 core_target::close ()
260 {
261 if (core_bfd)
262 {
263 inferior_ptid = null_ptid; /* Avoid confusion from thread
264 stuff. */
265 exit_inferior_silent (current_inferior ());
266
267 /* Clear out solib state while the bfd is still open. See
268 comments in clear_solib in solib.c. */
269 clear_solib ();
270
271 current_program_space->cbfd.reset (nullptr);
272 }
273
274 /* Core targets are heap-allocated (see core_target_open), so here
275 we delete ourselves. */
276 delete this;
277 }
278
279 /* Look for sections whose names start with `.reg/' so that we can
280 extract the list of threads in a core file. */
281
282 static void
283 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
284 {
285 ptid_t ptid;
286 int core_tid;
287 int pid, lwpid;
288 asection *reg_sect = (asection *) reg_sect_arg;
289 int fake_pid_p = 0;
290 struct inferior *inf;
291
292 if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
293 return;
294
295 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
296
297 pid = bfd_core_file_pid (core_bfd);
298 if (pid == 0)
299 {
300 fake_pid_p = 1;
301 pid = CORELOW_PID;
302 }
303
304 lwpid = core_tid;
305
306 inf = current_inferior ();
307 if (inf->pid == 0)
308 {
309 inferior_appeared (inf, pid);
310 inf->fake_pid_p = fake_pid_p;
311 }
312
313 ptid = ptid_t (pid, lwpid, 0);
314
315 add_thread (ptid);
316
317 /* Warning, Will Robinson, looking at BFD private data! */
318
319 if (reg_sect != NULL
320 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
321 inferior_ptid = ptid; /* Yes, make it current. */
322 }
323
324 /* Issue a message saying we have no core to debug, if FROM_TTY. */
325
326 static void
327 maybe_say_no_core_file_now (int from_tty)
328 {
329 if (from_tty)
330 printf_filtered (_("No core file now.\n"));
331 }
332
333 /* Backward compatability with old way of specifying core files. */
334
335 void
336 core_file_command (const char *filename, int from_tty)
337 {
338 dont_repeat (); /* Either way, seems bogus. */
339
340 if (filename == NULL)
341 {
342 if (core_bfd != NULL)
343 {
344 target_detach (current_inferior (), from_tty);
345 gdb_assert (core_bfd == NULL);
346 }
347 else
348 maybe_say_no_core_file_now (from_tty);
349 }
350 else
351 core_target_open (filename, from_tty);
352 }
353
354 /* See gdbcore.h. */
355
356 void
357 core_target_open (const char *arg, int from_tty)
358 {
359 const char *p;
360 int siggy;
361 int scratch_chan;
362 int flags;
363
364 target_preopen (from_tty);
365 if (!arg)
366 {
367 if (core_bfd)
368 error (_("No core file specified. (Use `detach' "
369 "to stop debugging a core file.)"));
370 else
371 error (_("No core file specified."));
372 }
373
374 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
375 if (!IS_ABSOLUTE_PATH (filename.get ()))
376 filename.reset (concat (current_directory, "/",
377 filename.get (), (char *) NULL));
378
379 flags = O_BINARY | O_LARGEFILE;
380 if (write_files)
381 flags |= O_RDWR;
382 else
383 flags |= O_RDONLY;
384 scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
385 if (scratch_chan < 0)
386 perror_with_name (filename.get ());
387
388 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
389 write_files ? FOPEN_RUB : FOPEN_RB,
390 scratch_chan));
391 if (temp_bfd == NULL)
392 perror_with_name (filename.get ());
393
394 if (!bfd_check_format (temp_bfd.get (), bfd_core)
395 && !gdb_check_format (temp_bfd.get ()))
396 {
397 /* Do it after the err msg */
398 /* FIXME: should be checking for errors from bfd_close (for one
399 thing, on error it does not free all the storage associated
400 with the bfd). */
401 error (_("\"%s\" is not a core dump: %s"),
402 filename.get (), bfd_errmsg (bfd_get_error ()));
403 }
404
405 current_program_space->cbfd = std::move (temp_bfd);
406
407 core_target *target = new core_target ();
408
409 /* Own the target until it is successfully pushed. */
410 target_ops_up target_holder (target);
411
412 validate_files ();
413
414 /* If we have no exec file, try to set the architecture from the
415 core file. We don't do this unconditionally since an exec file
416 typically contains more information that helps us determine the
417 architecture than a core file. */
418 if (!exec_bfd)
419 set_gdbarch_from_file (core_bfd);
420
421 push_target (target);
422 target_holder.release ();
423
424 inferior_ptid = null_ptid;
425
426 /* Need to flush the register cache (and the frame cache) from a
427 previous debug session. If inferior_ptid ends up the same as the
428 last debug session --- e.g., b foo; run; gcore core1; step; gcore
429 core2; core core1; core core2 --- then there's potential for
430 get_current_regcache to return the cached regcache of the
431 previous session, and the frame cache being stale. */
432 registers_changed ();
433
434 /* Build up thread list from BFD sections, and possibly set the
435 current thread to the .reg/NN section matching the .reg
436 section. */
437 bfd_map_over_sections (core_bfd, add_to_thread_list,
438 bfd_get_section_by_name (core_bfd, ".reg"));
439
440 if (inferior_ptid == null_ptid)
441 {
442 /* Either we found no .reg/NN section, and hence we have a
443 non-threaded core (single-threaded, from gdb's perspective),
444 or for some reason add_to_thread_list couldn't determine
445 which was the "main" thread. The latter case shouldn't
446 usually happen, but we're dealing with input here, which can
447 always be broken in different ways. */
448 thread_info *thread = first_thread_of_inferior (current_inferior ());
449
450 if (thread == NULL)
451 {
452 inferior_appeared (current_inferior (), CORELOW_PID);
453 inferior_ptid = ptid_t (CORELOW_PID);
454 add_thread_silent (inferior_ptid);
455 }
456 else
457 switch_to_thread (thread);
458 }
459
460 post_create_inferior (target, from_tty);
461
462 /* Now go through the target stack looking for threads since there
463 may be a thread_stratum target loaded on top of target core by
464 now. The layer above should claim threads found in the BFD
465 sections. */
466 TRY
467 {
468 target_update_thread_list ();
469 }
470
471 CATCH (except, RETURN_MASK_ERROR)
472 {
473 exception_print (gdb_stderr, except);
474 }
475 END_CATCH
476
477 p = bfd_core_file_failing_command (core_bfd);
478 if (p)
479 printf_filtered (_("Core was generated by `%s'.\n"), p);
480
481 /* Clearing any previous state of convenience variables. */
482 clear_exit_convenience_vars ();
483
484 siggy = bfd_core_file_failing_signal (core_bfd);
485 if (siggy > 0)
486 {
487 gdbarch *core_gdbarch = target->core_gdbarch ();
488
489 /* If we don't have a CORE_GDBARCH to work with, assume a native
490 core (map gdb_signal from host signals). If we do have
491 CORE_GDBARCH to work with, but no gdb_signal_from_target
492 implementation for that gdbarch, as a fallback measure,
493 assume the host signal mapping. It'll be correct for native
494 cores, but most likely incorrect for cross-cores. */
495 enum gdb_signal sig = (core_gdbarch != NULL
496 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
497 ? gdbarch_gdb_signal_from_target (core_gdbarch,
498 siggy)
499 : gdb_signal_from_host (siggy));
500
501 printf_filtered (_("Program terminated with signal %s, %s.\n"),
502 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
503
504 /* Set the value of the internal variable $_exitsignal,
505 which holds the signal uncaught by the inferior. */
506 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
507 siggy);
508 }
509
510 /* Fetch all registers from core file. */
511 target_fetch_registers (get_current_regcache (), -1);
512
513 /* Now, set up the frame cache, and print the top of stack. */
514 reinit_frame_cache ();
515 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
516
517 /* Current thread should be NUM 1 but the user does not know that.
518 If a program is single threaded gdb in general does not mention
519 anything about threads. That is why the test is >= 2. */
520 if (thread_count () >= 2)
521 {
522 TRY
523 {
524 thread_command (NULL, from_tty);
525 }
526 CATCH (except, RETURN_MASK_ERROR)
527 {
528 exception_print (gdb_stderr, except);
529 }
530 END_CATCH
531 }
532 }
533
534 void
535 core_target::detach (inferior *inf, int from_tty)
536 {
537 /* Note that 'this' is dangling after this call. unpush_target
538 closes the target, and our close implementation deletes
539 'this'. */
540 unpush_target (this);
541
542 reinit_frame_cache ();
543 maybe_say_no_core_file_now (from_tty);
544 }
545
546 /* Try to retrieve registers from a section in core_bfd, and supply
547 them to m_core_vec->core_read_registers, as the register set
548 numbered WHICH.
549
550 If ptid's lwp member is zero, do the single-threaded
551 thing: look for a section named NAME. If ptid's lwp
552 member is non-zero, do the multi-threaded thing: look for a section
553 named "NAME/LWP", where LWP is the shortest ASCII decimal
554 representation of ptid's lwp member.
555
556 HUMAN_NAME is a human-readable name for the kind of registers the
557 NAME section contains, for use in error messages.
558
559 If REQUIRED is true, print an error if the core file doesn't have a
560 section by the appropriate name. Otherwise, just do nothing. */
561
562 void
563 core_target::get_core_register_section (struct regcache *regcache,
564 const struct regset *regset,
565 const char *name,
566 int section_min_size,
567 int which,
568 const char *human_name,
569 bool required)
570 {
571 struct bfd_section *section;
572 bfd_size_type size;
573 char *contents;
574 bool variable_size_section = (regset != NULL
575 && regset->flags & REGSET_VARIABLE_SIZE);
576
577 thread_section_name section_name (name, regcache->ptid ());
578
579 section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
580 if (! section)
581 {
582 if (required)
583 warning (_("Couldn't find %s registers in core file."),
584 human_name);
585 return;
586 }
587
588 size = bfd_section_size (core_bfd, section);
589 if (size < section_min_size)
590 {
591 warning (_("Section `%s' in core file too small."),
592 section_name.c_str ());
593 return;
594 }
595 if (size != section_min_size && !variable_size_section)
596 {
597 warning (_("Unexpected size of section `%s' in core file."),
598 section_name.c_str ());
599 }
600
601 contents = (char *) alloca (size);
602 if (! bfd_get_section_contents (core_bfd, section, contents,
603 (file_ptr) 0, size))
604 {
605 warning (_("Couldn't read %s registers from `%s' section in core file."),
606 human_name, section_name.c_str ());
607 return;
608 }
609
610 if (regset != NULL)
611 {
612 regset->supply_regset (regset, regcache, -1, contents, size);
613 return;
614 }
615
616 gdb_assert (m_core_vec != nullptr);
617 m_core_vec->core_read_registers (regcache, contents, size, which,
618 ((CORE_ADDR)
619 bfd_section_vma (core_bfd, section)));
620 }
621
622 /* Data passed to gdbarch_iterate_over_regset_sections's callback. */
623 struct get_core_registers_cb_data
624 {
625 core_target *target;
626 struct regcache *regcache;
627 };
628
629 /* Callback for get_core_registers that handles a single core file
630 register note section. */
631
632 static void
633 get_core_registers_cb (const char *sect_name, int supply_size, int collect_size,
634 const struct regset *regset,
635 const char *human_name, void *cb_data)
636 {
637 auto *data = (get_core_registers_cb_data *) cb_data;
638 bool required = false;
639 bool variable_size_section = (regset != NULL
640 && regset->flags & REGSET_VARIABLE_SIZE);
641
642 if (!variable_size_section)
643 gdb_assert (supply_size == collect_size);
644
645 if (strcmp (sect_name, ".reg") == 0)
646 {
647 required = true;
648 if (human_name == NULL)
649 human_name = "general-purpose";
650 }
651 else if (strcmp (sect_name, ".reg2") == 0)
652 {
653 if (human_name == NULL)
654 human_name = "floating-point";
655 }
656
657 /* The 'which' parameter is only used when no regset is provided.
658 Thus we just set it to -1. */
659 data->target->get_core_register_section (data->regcache, regset, sect_name,
660 supply_size, -1, human_name,
661 required);
662 }
663
664 /* Get the registers out of a core file. This is the machine-
665 independent part. Fetch_core_registers is the machine-dependent
666 part, typically implemented in the xm-file for each
667 architecture. */
668
669 /* We just get all the registers, so we don't use regno. */
670
671 void
672 core_target::fetch_registers (struct regcache *regcache, int regno)
673 {
674 int i;
675 struct gdbarch *gdbarch;
676
677 if (!(m_core_gdbarch != nullptr
678 && gdbarch_iterate_over_regset_sections_p (m_core_gdbarch))
679 && (m_core_vec == NULL || m_core_vec->core_read_registers == NULL))
680 {
681 fprintf_filtered (gdb_stderr,
682 "Can't fetch registers from this type of core file\n");
683 return;
684 }
685
686 gdbarch = regcache->arch ();
687 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
688 {
689 get_core_registers_cb_data data = { this, regcache };
690 gdbarch_iterate_over_regset_sections (gdbarch,
691 get_core_registers_cb,
692 (void *) &data, NULL);
693 }
694 else
695 {
696 get_core_register_section (regcache, NULL,
697 ".reg", 0, 0, "general-purpose", 1);
698 get_core_register_section (regcache, NULL,
699 ".reg2", 0, 2, "floating-point", 0);
700 }
701
702 /* Mark all registers not found in the core as unavailable. */
703 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
704 if (regcache->get_register_status (i) == REG_UNKNOWN)
705 regcache->raw_supply (i, NULL);
706 }
707
708 void
709 core_target::files_info ()
710 {
711 print_section_info (&m_core_section_table, core_bfd);
712 }
713 \f
714 struct spuid_list
715 {
716 gdb_byte *buf;
717 ULONGEST offset;
718 LONGEST len;
719 ULONGEST pos;
720 ULONGEST written;
721 };
722
723 static void
724 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
725 {
726 struct spuid_list *list = (struct spuid_list *) list_p;
727 enum bfd_endian byte_order
728 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
729 int fd, pos = 0;
730
731 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
732 if (pos == 0)
733 return;
734
735 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
736 {
737 store_unsigned_integer (list->buf + list->pos - list->offset,
738 4, byte_order, fd);
739 list->written += 4;
740 }
741 list->pos += 4;
742 }
743
744 enum target_xfer_status
745 core_target::xfer_partial (enum target_object object, const char *annex,
746 gdb_byte *readbuf, const gdb_byte *writebuf,
747 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
748 {
749 switch (object)
750 {
751 case TARGET_OBJECT_MEMORY:
752 return (section_table_xfer_memory_partial
753 (readbuf, writebuf,
754 offset, len, xfered_len,
755 m_core_section_table.sections,
756 m_core_section_table.sections_end,
757 NULL));
758
759 case TARGET_OBJECT_AUXV:
760 if (readbuf)
761 {
762 /* When the aux vector is stored in core file, BFD
763 represents this with a fake section called ".auxv". */
764
765 struct bfd_section *section;
766 bfd_size_type size;
767
768 section = bfd_get_section_by_name (core_bfd, ".auxv");
769 if (section == NULL)
770 return TARGET_XFER_E_IO;
771
772 size = bfd_section_size (core_bfd, section);
773 if (offset >= size)
774 return TARGET_XFER_EOF;
775 size -= offset;
776 if (size > len)
777 size = len;
778
779 if (size == 0)
780 return TARGET_XFER_EOF;
781 if (!bfd_get_section_contents (core_bfd, section, readbuf,
782 (file_ptr) offset, size))
783 {
784 warning (_("Couldn't read NT_AUXV note in core file."));
785 return TARGET_XFER_E_IO;
786 }
787
788 *xfered_len = (ULONGEST) size;
789 return TARGET_XFER_OK;
790 }
791 return TARGET_XFER_E_IO;
792
793 case TARGET_OBJECT_WCOOKIE:
794 if (readbuf)
795 {
796 /* When the StackGhost cookie is stored in core file, BFD
797 represents this with a fake section called
798 ".wcookie". */
799
800 struct bfd_section *section;
801 bfd_size_type size;
802
803 section = bfd_get_section_by_name (core_bfd, ".wcookie");
804 if (section == NULL)
805 return TARGET_XFER_E_IO;
806
807 size = bfd_section_size (core_bfd, section);
808 if (offset >= size)
809 return TARGET_XFER_EOF;
810 size -= offset;
811 if (size > len)
812 size = len;
813
814 if (size == 0)
815 return TARGET_XFER_EOF;
816 if (!bfd_get_section_contents (core_bfd, section, readbuf,
817 (file_ptr) offset, size))
818 {
819 warning (_("Couldn't read StackGhost cookie in core file."));
820 return TARGET_XFER_E_IO;
821 }
822
823 *xfered_len = (ULONGEST) size;
824 return TARGET_XFER_OK;
825
826 }
827 return TARGET_XFER_E_IO;
828
829 case TARGET_OBJECT_LIBRARIES:
830 if (m_core_gdbarch != nullptr
831 && gdbarch_core_xfer_shared_libraries_p (m_core_gdbarch))
832 {
833 if (writebuf)
834 return TARGET_XFER_E_IO;
835 else
836 {
837 *xfered_len = gdbarch_core_xfer_shared_libraries (m_core_gdbarch,
838 readbuf,
839 offset, len);
840
841 if (*xfered_len == 0)
842 return TARGET_XFER_EOF;
843 else
844 return TARGET_XFER_OK;
845 }
846 }
847 /* FALL THROUGH */
848
849 case TARGET_OBJECT_LIBRARIES_AIX:
850 if (m_core_gdbarch != nullptr
851 && gdbarch_core_xfer_shared_libraries_aix_p (m_core_gdbarch))
852 {
853 if (writebuf)
854 return TARGET_XFER_E_IO;
855 else
856 {
857 *xfered_len
858 = gdbarch_core_xfer_shared_libraries_aix (m_core_gdbarch,
859 readbuf, offset,
860 len);
861
862 if (*xfered_len == 0)
863 return TARGET_XFER_EOF;
864 else
865 return TARGET_XFER_OK;
866 }
867 }
868 /* FALL THROUGH */
869
870 case TARGET_OBJECT_SPU:
871 if (readbuf && annex)
872 {
873 /* When the SPU contexts are stored in a core file, BFD
874 represents this with a fake section called
875 "SPU/<annex>". */
876
877 struct bfd_section *section;
878 bfd_size_type size;
879 char sectionstr[100];
880
881 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
882
883 section = bfd_get_section_by_name (core_bfd, sectionstr);
884 if (section == NULL)
885 return TARGET_XFER_E_IO;
886
887 size = bfd_section_size (core_bfd, section);
888 if (offset >= size)
889 return TARGET_XFER_EOF;
890 size -= offset;
891 if (size > len)
892 size = len;
893
894 if (size == 0)
895 return TARGET_XFER_EOF;
896 if (!bfd_get_section_contents (core_bfd, section, readbuf,
897 (file_ptr) offset, size))
898 {
899 warning (_("Couldn't read SPU section in core file."));
900 return TARGET_XFER_E_IO;
901 }
902
903 *xfered_len = (ULONGEST) size;
904 return TARGET_XFER_OK;
905 }
906 else if (readbuf)
907 {
908 /* NULL annex requests list of all present spuids. */
909 struct spuid_list list;
910
911 list.buf = readbuf;
912 list.offset = offset;
913 list.len = len;
914 list.pos = 0;
915 list.written = 0;
916 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
917
918 if (list.written == 0)
919 return TARGET_XFER_EOF;
920 else
921 {
922 *xfered_len = (ULONGEST) list.written;
923 return TARGET_XFER_OK;
924 }
925 }
926 return TARGET_XFER_E_IO;
927
928 case TARGET_OBJECT_SIGNAL_INFO:
929 if (readbuf)
930 {
931 if (m_core_gdbarch != nullptr
932 && gdbarch_core_xfer_siginfo_p (m_core_gdbarch))
933 {
934 LONGEST l = gdbarch_core_xfer_siginfo (m_core_gdbarch, readbuf,
935 offset, len);
936
937 if (l >= 0)
938 {
939 *xfered_len = l;
940 if (l == 0)
941 return TARGET_XFER_EOF;
942 else
943 return TARGET_XFER_OK;
944 }
945 }
946 }
947 return TARGET_XFER_E_IO;
948
949 default:
950 return this->beneath ()->xfer_partial (object, annex, readbuf,
951 writebuf, offset, len,
952 xfered_len);
953 }
954 }
955
956 \f
957
958 /* Okay, let's be honest: threads gleaned from a core file aren't
959 exactly lively, are they? On the other hand, if we don't claim
960 that each & every one is alive, then we don't get any of them
961 to appear in an "info thread" command, which is quite a useful
962 behaviour.
963 */
964 bool
965 core_target::thread_alive (ptid_t ptid)
966 {
967 return true;
968 }
969
970 /* Ask the current architecture what it knows about this core file.
971 That will be used, in turn, to pick a better architecture. This
972 wrapper could be avoided if targets got a chance to specialize
973 core_target. */
974
975 const struct target_desc *
976 core_target::read_description ()
977 {
978 if (m_core_gdbarch && gdbarch_core_read_description_p (m_core_gdbarch))
979 {
980 const struct target_desc *result;
981
982 result = gdbarch_core_read_description (m_core_gdbarch, this, core_bfd);
983 if (result != NULL)
984 return result;
985 }
986
987 return this->beneath ()->read_description ();
988 }
989
990 const char *
991 core_target::pid_to_str (ptid_t ptid)
992 {
993 static char buf[64];
994 struct inferior *inf;
995 int pid;
996
997 /* The preferred way is to have a gdbarch/OS specific
998 implementation. */
999 if (m_core_gdbarch != nullptr
1000 && gdbarch_core_pid_to_str_p (m_core_gdbarch))
1001 return gdbarch_core_pid_to_str (m_core_gdbarch, ptid);
1002
1003 /* Otherwise, if we don't have one, we'll just fallback to
1004 "process", with normal_pid_to_str. */
1005
1006 /* Try the LWPID field first. */
1007 pid = ptid.lwp ();
1008 if (pid != 0)
1009 return normal_pid_to_str (ptid_t (pid));
1010
1011 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
1012 only if it isn't a fake PID. */
1013 inf = find_inferior_ptid (ptid);
1014 if (inf != NULL && !inf->fake_pid_p)
1015 return normal_pid_to_str (ptid);
1016
1017 /* No luck. We simply don't have a valid PID to print. */
1018 xsnprintf (buf, sizeof buf, "<main task>");
1019 return buf;
1020 }
1021
1022 const char *
1023 core_target::thread_name (struct thread_info *thr)
1024 {
1025 if (m_core_gdbarch != nullptr
1026 && gdbarch_core_thread_name_p (m_core_gdbarch))
1027 return gdbarch_core_thread_name (m_core_gdbarch, thr);
1028 return NULL;
1029 }
1030
1031 bool
1032 core_target::has_memory ()
1033 {
1034 return (core_bfd != NULL);
1035 }
1036
1037 bool
1038 core_target::has_stack ()
1039 {
1040 return (core_bfd != NULL);
1041 }
1042
1043 bool
1044 core_target::has_registers ()
1045 {
1046 return (core_bfd != NULL);
1047 }
1048
1049 /* Implement the to_info_proc method. */
1050
1051 bool
1052 core_target::info_proc (const char *args, enum info_proc_what request)
1053 {
1054 struct gdbarch *gdbarch = get_current_arch ();
1055
1056 /* Since this is the core file target, call the 'core_info_proc'
1057 method on gdbarch, not 'info_proc'. */
1058 if (gdbarch_core_info_proc_p (gdbarch))
1059 gdbarch_core_info_proc (gdbarch, args, request);
1060
1061 return true;
1062 }
1063
1064 void
1065 _initialize_corelow (void)
1066 {
1067 add_target (core_target_info, core_target_open, filename_completer);
1068 }
This page took 0.073913 seconds and 4 git commands to generate.