C++: dlsym casts in gdb/linux-thread-db.c and gdb/gdbserver/thread-db.c
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #ifdef HAVE_SYS_FILE_H
25 #include <sys/file.h> /* needed for F_OK and friends */
26 #endif
27 #include "frame.h" /* required by inferior.h */
28 #include "inferior.h"
29 #include "infrun.h"
30 #include "symtab.h"
31 #include "command.h"
32 #include "bfd.h"
33 #include "target.h"
34 #include "gdbcore.h"
35 #include "gdbthread.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "exec.h"
40 #include "readline/readline.h"
41 #include "solib.h"
42 #include "filenames.h"
43 #include "progspace.h"
44 #include "objfiles.h"
45 #include "gdb_bfd.h"
46 #include "completer.h"
47 #include "filestuff.h"
48
49 #ifndef O_LARGEFILE
50 #define O_LARGEFILE 0
51 #endif
52
53 /* List of all available core_fns. On gdb startup, each core file
54 register reader calls deprecated_add_core_fns() to register
55 information on each core format it is prepared to read. */
56
57 static struct core_fns *core_file_fns = NULL;
58
59 /* The core_fns for a core file handler that is prepared to read the
60 core file currently open on core_bfd. */
61
62 static struct core_fns *core_vec = NULL;
63
64 /* FIXME: kettenis/20031023: Eventually this variable should
65 disappear. */
66
67 static struct gdbarch *core_gdbarch = NULL;
68
69 /* Per-core data. Currently, only the section table. Note that these
70 target sections are *not* mapped in the current address spaces' set
71 of target sections --- those should come only from pure executable
72 or shared library bfds. The core bfd sections are an
73 implementation detail of the core target, just like ptrace is for
74 unix child targets. */
75 static struct target_section_table *core_data;
76
77 static void core_files_info (struct target_ops *);
78
79 static struct core_fns *sniff_core_bfd (bfd *);
80
81 static int gdb_check_format (bfd *);
82
83 static void core_close (struct target_ops *self);
84
85 static void core_close_cleanup (void *ignore);
86
87 static void add_to_thread_list (bfd *, asection *, void *);
88
89 static void init_core_ops (void);
90
91 void _initialize_corelow (void);
92
93 static struct target_ops core_ops;
94
95 /* An arbitrary identifier for the core inferior. */
96 #define CORELOW_PID 1
97
98 /* Link a new core_fns into the global core_file_fns list. Called on
99 gdb startup by the _initialize routine in each core file register
100 reader, to register information about each format the reader is
101 prepared to handle. */
102
103 void
104 deprecated_add_core_fns (struct core_fns *cf)
105 {
106 cf->next = core_file_fns;
107 core_file_fns = cf;
108 }
109
110 /* The default function that core file handlers can use to examine a
111 core file BFD and decide whether or not to accept the job of
112 reading the core file. */
113
114 int
115 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
116 {
117 int result;
118
119 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
120 return (result);
121 }
122
123 /* Walk through the list of core functions to find a set that can
124 handle the core file open on ABFD. Returns pointer to set that is
125 selected. */
126
127 static struct core_fns *
128 sniff_core_bfd (bfd *abfd)
129 {
130 struct core_fns *cf;
131 struct core_fns *yummy = NULL;
132 int matches = 0;;
133
134 /* Don't sniff if we have support for register sets in
135 CORE_GDBARCH. */
136 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
137 return NULL;
138
139 for (cf = core_file_fns; cf != NULL; cf = cf->next)
140 {
141 if (cf->core_sniffer (cf, abfd))
142 {
143 yummy = cf;
144 matches++;
145 }
146 }
147 if (matches > 1)
148 {
149 warning (_("\"%s\": ambiguous core format, %d handlers match"),
150 bfd_get_filename (abfd), matches);
151 }
152 else if (matches == 0)
153 error (_("\"%s\": no core file handler recognizes format"),
154 bfd_get_filename (abfd));
155
156 return (yummy);
157 }
158
159 /* The default is to reject every core file format we see. Either
160 BFD has to recognize it, or we have to provide a function in the
161 core file handler that recognizes it. */
162
163 int
164 default_check_format (bfd *abfd)
165 {
166 return (0);
167 }
168
169 /* Attempt to recognize core file formats that BFD rejects. */
170
171 static int
172 gdb_check_format (bfd *abfd)
173 {
174 struct core_fns *cf;
175
176 for (cf = core_file_fns; cf != NULL; cf = cf->next)
177 {
178 if (cf->check_format (abfd))
179 {
180 return (1);
181 }
182 }
183 return (0);
184 }
185
186 /* Discard all vestiges of any previous core file and mark data and
187 stack spaces as empty. */
188
189 static void
190 core_close (struct target_ops *self)
191 {
192 if (core_bfd)
193 {
194 int pid = ptid_get_pid (inferior_ptid);
195 inferior_ptid = null_ptid; /* Avoid confusion from thread
196 stuff. */
197 if (pid != 0)
198 exit_inferior_silent (pid);
199
200 /* Clear out solib state while the bfd is still open. See
201 comments in clear_solib in solib.c. */
202 clear_solib ();
203
204 if (core_data)
205 {
206 xfree (core_data->sections);
207 xfree (core_data);
208 core_data = NULL;
209 }
210
211 gdb_bfd_unref (core_bfd);
212 core_bfd = NULL;
213 }
214 core_vec = NULL;
215 core_gdbarch = NULL;
216 }
217
218 static void
219 core_close_cleanup (void *ignore)
220 {
221 core_close (NULL);
222 }
223
224 /* Look for sections whose names start with `.reg/' so that we can
225 extract the list of threads in a core file. */
226
227 static void
228 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
229 {
230 ptid_t ptid;
231 int core_tid;
232 int pid, lwpid;
233 asection *reg_sect = (asection *) reg_sect_arg;
234 int fake_pid_p = 0;
235 struct inferior *inf;
236
237 if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
238 return;
239
240 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
241
242 pid = bfd_core_file_pid (core_bfd);
243 if (pid == 0)
244 {
245 fake_pid_p = 1;
246 pid = CORELOW_PID;
247 }
248
249 lwpid = core_tid;
250
251 inf = current_inferior ();
252 if (inf->pid == 0)
253 {
254 inferior_appeared (inf, pid);
255 inf->fake_pid_p = fake_pid_p;
256 }
257
258 ptid = ptid_build (pid, lwpid, 0);
259
260 add_thread (ptid);
261
262 /* Warning, Will Robinson, looking at BFD private data! */
263
264 if (reg_sect != NULL
265 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
266 inferior_ptid = ptid; /* Yes, make it current. */
267 }
268
269 /* This routine opens and sets up the core file bfd. */
270
271 static void
272 core_open (const char *arg, int from_tty)
273 {
274 const char *p;
275 int siggy;
276 struct cleanup *old_chain;
277 char *temp;
278 bfd *temp_bfd;
279 int scratch_chan;
280 int flags;
281 char *filename;
282
283 target_preopen (from_tty);
284 if (!arg)
285 {
286 if (core_bfd)
287 error (_("No core file specified. (Use `detach' "
288 "to stop debugging a core file.)"));
289 else
290 error (_("No core file specified."));
291 }
292
293 filename = tilde_expand (arg);
294 if (!IS_ABSOLUTE_PATH (filename))
295 {
296 temp = concat (current_directory, "/",
297 filename, (char *) NULL);
298 xfree (filename);
299 filename = temp;
300 }
301
302 old_chain = make_cleanup (xfree, filename);
303
304 flags = O_BINARY | O_LARGEFILE;
305 if (write_files)
306 flags |= O_RDWR;
307 else
308 flags |= O_RDONLY;
309 scratch_chan = gdb_open_cloexec (filename, flags, 0);
310 if (scratch_chan < 0)
311 perror_with_name (filename);
312
313 temp_bfd = gdb_bfd_fopen (filename, gnutarget,
314 write_files ? FOPEN_RUB : FOPEN_RB,
315 scratch_chan);
316 if (temp_bfd == NULL)
317 perror_with_name (filename);
318
319 if (!bfd_check_format (temp_bfd, bfd_core)
320 && !gdb_check_format (temp_bfd))
321 {
322 /* Do it after the err msg */
323 /* FIXME: should be checking for errors from bfd_close (for one
324 thing, on error it does not free all the storage associated
325 with the bfd). */
326 make_cleanup_bfd_unref (temp_bfd);
327 error (_("\"%s\" is not a core dump: %s"),
328 filename, bfd_errmsg (bfd_get_error ()));
329 }
330
331 /* Looks semi-reasonable. Toss the old core file and work on the
332 new. */
333
334 do_cleanups (old_chain);
335 unpush_target (&core_ops);
336 core_bfd = temp_bfd;
337 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
338
339 core_gdbarch = gdbarch_from_bfd (core_bfd);
340
341 /* Find a suitable core file handler to munch on core_bfd */
342 core_vec = sniff_core_bfd (core_bfd);
343
344 validate_files ();
345
346 core_data = XCNEW (struct target_section_table);
347
348 /* Find the data section */
349 if (build_section_table (core_bfd,
350 &core_data->sections,
351 &core_data->sections_end))
352 error (_("\"%s\": Can't find sections: %s"),
353 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
354
355 /* If we have no exec file, try to set the architecture from the
356 core file. We don't do this unconditionally since an exec file
357 typically contains more information that helps us determine the
358 architecture than a core file. */
359 if (!exec_bfd)
360 set_gdbarch_from_file (core_bfd);
361
362 push_target (&core_ops);
363 discard_cleanups (old_chain);
364
365 /* Do this before acknowledging the inferior, so if
366 post_create_inferior throws (can happen easilly if you're loading
367 a core file with the wrong exec), we aren't left with threads
368 from the previous inferior. */
369 init_thread_list ();
370
371 inferior_ptid = null_ptid;
372
373 /* Need to flush the register cache (and the frame cache) from a
374 previous debug session. If inferior_ptid ends up the same as the
375 last debug session --- e.g., b foo; run; gcore core1; step; gcore
376 core2; core core1; core core2 --- then there's potential for
377 get_current_regcache to return the cached regcache of the
378 previous session, and the frame cache being stale. */
379 registers_changed ();
380
381 /* Build up thread list from BFD sections, and possibly set the
382 current thread to the .reg/NN section matching the .reg
383 section. */
384 bfd_map_over_sections (core_bfd, add_to_thread_list,
385 bfd_get_section_by_name (core_bfd, ".reg"));
386
387 if (ptid_equal (inferior_ptid, null_ptid))
388 {
389 /* Either we found no .reg/NN section, and hence we have a
390 non-threaded core (single-threaded, from gdb's perspective),
391 or for some reason add_to_thread_list couldn't determine
392 which was the "main" thread. The latter case shouldn't
393 usually happen, but we're dealing with input here, which can
394 always be broken in different ways. */
395 struct thread_info *thread = first_thread_of_process (-1);
396
397 if (thread == NULL)
398 {
399 inferior_appeared (current_inferior (), CORELOW_PID);
400 inferior_ptid = pid_to_ptid (CORELOW_PID);
401 add_thread_silent (inferior_ptid);
402 }
403 else
404 switch_to_thread (thread->ptid);
405 }
406
407 post_create_inferior (&core_ops, from_tty);
408
409 /* Now go through the target stack looking for threads since there
410 may be a thread_stratum target loaded on top of target core by
411 now. The layer above should claim threads found in the BFD
412 sections. */
413 TRY
414 {
415 target_update_thread_list ();
416 }
417
418 CATCH (except, RETURN_MASK_ERROR)
419 {
420 exception_print (gdb_stderr, except);
421 }
422 END_CATCH
423
424 p = bfd_core_file_failing_command (core_bfd);
425 if (p)
426 printf_filtered (_("Core was generated by `%s'.\n"), p);
427
428 /* Clearing any previous state of convenience variables. */
429 clear_exit_convenience_vars ();
430
431 siggy = bfd_core_file_failing_signal (core_bfd);
432 if (siggy > 0)
433 {
434 /* If we don't have a CORE_GDBARCH to work with, assume a native
435 core (map gdb_signal from host signals). If we do have
436 CORE_GDBARCH to work with, but no gdb_signal_from_target
437 implementation for that gdbarch, as a fallback measure,
438 assume the host signal mapping. It'll be correct for native
439 cores, but most likely incorrect for cross-cores. */
440 enum gdb_signal sig = (core_gdbarch != NULL
441 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
442 ? gdbarch_gdb_signal_from_target (core_gdbarch,
443 siggy)
444 : gdb_signal_from_host (siggy));
445
446 printf_filtered (_("Program terminated with signal %s, %s.\n"),
447 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
448
449 /* Set the value of the internal variable $_exitsignal,
450 which holds the signal uncaught by the inferior. */
451 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
452 siggy);
453 }
454
455 /* Fetch all registers from core file. */
456 target_fetch_registers (get_current_regcache (), -1);
457
458 /* Now, set up the frame cache, and print the top of stack. */
459 reinit_frame_cache ();
460 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
461
462 /* Current thread should be NUM 1 but the user does not know that.
463 If a program is single threaded gdb in general does not mention
464 anything about threads. That is why the test is >= 2. */
465 if (thread_count () >= 2)
466 {
467 TRY
468 {
469 thread_command (NULL, from_tty);
470 }
471 CATCH (except, RETURN_MASK_ERROR)
472 {
473 exception_print (gdb_stderr, except);
474 }
475 END_CATCH
476 }
477 }
478
479 static void
480 core_detach (struct target_ops *ops, const char *args, int from_tty)
481 {
482 if (args)
483 error (_("Too many arguments"));
484 unpush_target (ops);
485 reinit_frame_cache ();
486 if (from_tty)
487 printf_filtered (_("No core file now.\n"));
488 }
489
490 /* Try to retrieve registers from a section in core_bfd, and supply
491 them to core_vec->core_read_registers, as the register set numbered
492 WHICH.
493
494 If inferior_ptid's lwp member is zero, do the single-threaded
495 thing: look for a section named NAME. If inferior_ptid's lwp
496 member is non-zero, do the multi-threaded thing: look for a section
497 named "NAME/LWP", where LWP is the shortest ASCII decimal
498 representation of inferior_ptid's lwp member.
499
500 HUMAN_NAME is a human-readable name for the kind of registers the
501 NAME section contains, for use in error messages.
502
503 If REQUIRED is non-zero, print an error if the core file doesn't
504 have a section by the appropriate name. Otherwise, just do
505 nothing. */
506
507 static void
508 get_core_register_section (struct regcache *regcache,
509 const struct regset *regset,
510 const char *name,
511 int min_size,
512 int which,
513 const char *human_name,
514 int required)
515 {
516 static char *section_name = NULL;
517 struct bfd_section *section;
518 bfd_size_type size;
519 char *contents;
520
521 xfree (section_name);
522
523 if (ptid_get_lwp (inferior_ptid))
524 section_name = xstrprintf ("%s/%ld", name,
525 ptid_get_lwp (inferior_ptid));
526 else
527 section_name = xstrdup (name);
528
529 section = bfd_get_section_by_name (core_bfd, section_name);
530 if (! section)
531 {
532 if (required)
533 warning (_("Couldn't find %s registers in core file."),
534 human_name);
535 return;
536 }
537
538 size = bfd_section_size (core_bfd, section);
539 if (size < min_size)
540 {
541 warning (_("Section `%s' in core file too small."), section_name);
542 return;
543 }
544 if (size != min_size && !(regset->flags & REGSET_VARIABLE_SIZE))
545 {
546 warning (_("Unexpected size of section `%s' in core file."),
547 section_name);
548 }
549
550 contents = alloca (size);
551 if (! bfd_get_section_contents (core_bfd, section, contents,
552 (file_ptr) 0, size))
553 {
554 warning (_("Couldn't read %s registers from `%s' section in core file."),
555 human_name, name);
556 return;
557 }
558
559 if (regset != NULL)
560 {
561 regset->supply_regset (regset, regcache, -1, contents, size);
562 return;
563 }
564
565 gdb_assert (core_vec);
566 core_vec->core_read_registers (regcache, contents, size, which,
567 ((CORE_ADDR)
568 bfd_section_vma (core_bfd, section)));
569 }
570
571 /* Callback for get_core_registers that handles a single core file
572 register note section. */
573
574 static void
575 get_core_registers_cb (const char *sect_name, int size,
576 const struct regset *regset,
577 const char *human_name, void *cb_data)
578 {
579 struct regcache *regcache = (struct regcache *) cb_data;
580 int required = 0;
581
582 if (strcmp (sect_name, ".reg") == 0)
583 {
584 required = 1;
585 if (human_name == NULL)
586 human_name = "general-purpose";
587 }
588 else if (strcmp (sect_name, ".reg2") == 0)
589 {
590 if (human_name == NULL)
591 human_name = "floating-point";
592 }
593
594 /* The 'which' parameter is only used when no regset is provided.
595 Thus we just set it to -1. */
596 get_core_register_section (regcache, regset, sect_name,
597 size, -1, human_name, required);
598 }
599
600 /* Get the registers out of a core file. This is the machine-
601 independent part. Fetch_core_registers is the machine-dependent
602 part, typically implemented in the xm-file for each
603 architecture. */
604
605 /* We just get all the registers, so we don't use regno. */
606
607 static void
608 get_core_registers (struct target_ops *ops,
609 struct regcache *regcache, int regno)
610 {
611 int i;
612 struct gdbarch *gdbarch;
613
614 if (!(core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
615 && (core_vec == NULL || core_vec->core_read_registers == NULL))
616 {
617 fprintf_filtered (gdb_stderr,
618 "Can't fetch registers from this type of core file\n");
619 return;
620 }
621
622 gdbarch = get_regcache_arch (regcache);
623 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
624 gdbarch_iterate_over_regset_sections (gdbarch,
625 get_core_registers_cb,
626 (void *) regcache, NULL);
627 else
628 {
629 get_core_register_section (regcache, NULL,
630 ".reg", 0, 0, "general-purpose", 1);
631 get_core_register_section (regcache, NULL,
632 ".reg2", 0, 2, "floating-point", 0);
633 }
634
635 /* Mark all registers not found in the core as unavailable. */
636 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
637 if (regcache_register_status (regcache, i) == REG_UNKNOWN)
638 regcache_raw_supply (regcache, i, NULL);
639 }
640
641 static void
642 core_files_info (struct target_ops *t)
643 {
644 print_section_info (core_data, core_bfd);
645 }
646 \f
647 struct spuid_list
648 {
649 gdb_byte *buf;
650 ULONGEST offset;
651 LONGEST len;
652 ULONGEST pos;
653 ULONGEST written;
654 };
655
656 static void
657 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
658 {
659 struct spuid_list *list = list_p;
660 enum bfd_endian byte_order
661 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
662 int fd, pos = 0;
663
664 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
665 if (pos == 0)
666 return;
667
668 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
669 {
670 store_unsigned_integer (list->buf + list->pos - list->offset,
671 4, byte_order, fd);
672 list->written += 4;
673 }
674 list->pos += 4;
675 }
676
677 /* Read siginfo data from the core, if possible. Returns -1 on
678 failure. Otherwise, returns the number of bytes read. ABFD is the
679 core file's BFD; READBUF, OFFSET, and LEN are all as specified by
680 the to_xfer_partial interface. */
681
682 static LONGEST
683 get_core_siginfo (bfd *abfd, gdb_byte *readbuf, ULONGEST offset, ULONGEST len)
684 {
685 asection *section;
686 char *section_name;
687 const char *name = ".note.linuxcore.siginfo";
688
689 if (ptid_get_lwp (inferior_ptid))
690 section_name = xstrprintf ("%s/%ld", name,
691 ptid_get_lwp (inferior_ptid));
692 else
693 section_name = xstrdup (name);
694
695 section = bfd_get_section_by_name (abfd, section_name);
696 xfree (section_name);
697 if (section == NULL)
698 return -1;
699
700 if (!bfd_get_section_contents (abfd, section, readbuf, offset, len))
701 return -1;
702
703 return len;
704 }
705
706 static enum target_xfer_status
707 core_xfer_partial (struct target_ops *ops, enum target_object object,
708 const char *annex, gdb_byte *readbuf,
709 const gdb_byte *writebuf, ULONGEST offset,
710 ULONGEST len, ULONGEST *xfered_len)
711 {
712 switch (object)
713 {
714 case TARGET_OBJECT_MEMORY:
715 return section_table_xfer_memory_partial (readbuf, writebuf,
716 offset, len, xfered_len,
717 core_data->sections,
718 core_data->sections_end,
719 NULL);
720
721 case TARGET_OBJECT_AUXV:
722 if (readbuf)
723 {
724 /* When the aux vector is stored in core file, BFD
725 represents this with a fake section called ".auxv". */
726
727 struct bfd_section *section;
728 bfd_size_type size;
729
730 section = bfd_get_section_by_name (core_bfd, ".auxv");
731 if (section == NULL)
732 return TARGET_XFER_E_IO;
733
734 size = bfd_section_size (core_bfd, section);
735 if (offset >= size)
736 return TARGET_XFER_EOF;
737 size -= offset;
738 if (size > len)
739 size = len;
740
741 if (size == 0)
742 return TARGET_XFER_EOF;
743 if (!bfd_get_section_contents (core_bfd, section, readbuf,
744 (file_ptr) offset, size))
745 {
746 warning (_("Couldn't read NT_AUXV note in core file."));
747 return TARGET_XFER_E_IO;
748 }
749
750 *xfered_len = (ULONGEST) size;
751 return TARGET_XFER_OK;
752 }
753 return TARGET_XFER_E_IO;
754
755 case TARGET_OBJECT_WCOOKIE:
756 if (readbuf)
757 {
758 /* When the StackGhost cookie is stored in core file, BFD
759 represents this with a fake section called
760 ".wcookie". */
761
762 struct bfd_section *section;
763 bfd_size_type size;
764
765 section = bfd_get_section_by_name (core_bfd, ".wcookie");
766 if (section == NULL)
767 return TARGET_XFER_E_IO;
768
769 size = bfd_section_size (core_bfd, section);
770 if (offset >= size)
771 return TARGET_XFER_EOF;
772 size -= offset;
773 if (size > len)
774 size = len;
775
776 if (size == 0)
777 return TARGET_XFER_EOF;
778 if (!bfd_get_section_contents (core_bfd, section, readbuf,
779 (file_ptr) offset, size))
780 {
781 warning (_("Couldn't read StackGhost cookie in core file."));
782 return TARGET_XFER_E_IO;
783 }
784
785 *xfered_len = (ULONGEST) size;
786 return TARGET_XFER_OK;
787
788 }
789 return TARGET_XFER_E_IO;
790
791 case TARGET_OBJECT_LIBRARIES:
792 if (core_gdbarch
793 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
794 {
795 if (writebuf)
796 return TARGET_XFER_E_IO;
797 else
798 {
799 *xfered_len = gdbarch_core_xfer_shared_libraries (core_gdbarch,
800 readbuf,
801 offset, len);
802
803 if (*xfered_len == 0)
804 return TARGET_XFER_EOF;
805 else
806 return TARGET_XFER_OK;
807 }
808 }
809 /* FALL THROUGH */
810
811 case TARGET_OBJECT_LIBRARIES_AIX:
812 if (core_gdbarch
813 && gdbarch_core_xfer_shared_libraries_aix_p (core_gdbarch))
814 {
815 if (writebuf)
816 return TARGET_XFER_E_IO;
817 else
818 {
819 *xfered_len
820 = gdbarch_core_xfer_shared_libraries_aix (core_gdbarch,
821 readbuf, offset,
822 len);
823
824 if (*xfered_len == 0)
825 return TARGET_XFER_EOF;
826 else
827 return TARGET_XFER_OK;
828 }
829 }
830 /* FALL THROUGH */
831
832 case TARGET_OBJECT_SPU:
833 if (readbuf && annex)
834 {
835 /* When the SPU contexts are stored in a core file, BFD
836 represents this with a fake section called
837 "SPU/<annex>". */
838
839 struct bfd_section *section;
840 bfd_size_type size;
841 char sectionstr[100];
842
843 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
844
845 section = bfd_get_section_by_name (core_bfd, sectionstr);
846 if (section == NULL)
847 return TARGET_XFER_E_IO;
848
849 size = bfd_section_size (core_bfd, section);
850 if (offset >= size)
851 return TARGET_XFER_EOF;
852 size -= offset;
853 if (size > len)
854 size = len;
855
856 if (size == 0)
857 return TARGET_XFER_EOF;
858 if (!bfd_get_section_contents (core_bfd, section, readbuf,
859 (file_ptr) offset, size))
860 {
861 warning (_("Couldn't read SPU section in core file."));
862 return TARGET_XFER_E_IO;
863 }
864
865 *xfered_len = (ULONGEST) size;
866 return TARGET_XFER_OK;
867 }
868 else if (readbuf)
869 {
870 /* NULL annex requests list of all present spuids. */
871 struct spuid_list list;
872
873 list.buf = readbuf;
874 list.offset = offset;
875 list.len = len;
876 list.pos = 0;
877 list.written = 0;
878 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
879
880 if (list.written == 0)
881 return TARGET_XFER_EOF;
882 else
883 {
884 *xfered_len = (ULONGEST) list.written;
885 return TARGET_XFER_OK;
886 }
887 }
888 return TARGET_XFER_E_IO;
889
890 case TARGET_OBJECT_SIGNAL_INFO:
891 if (readbuf)
892 {
893 LONGEST l = get_core_siginfo (core_bfd, readbuf, offset, len);
894
895 if (l > 0)
896 {
897 *xfered_len = len;
898 return TARGET_XFER_OK;
899 }
900 }
901 return TARGET_XFER_E_IO;
902
903 default:
904 return ops->beneath->to_xfer_partial (ops->beneath, object,
905 annex, readbuf,
906 writebuf, offset, len,
907 xfered_len);
908 }
909 }
910
911 \f
912 /* If mourn is being called in all the right places, this could be say
913 `gdb internal error' (since generic_mourn calls
914 breakpoint_init_inferior). */
915
916 static int
917 ignore (struct target_ops *ops, struct gdbarch *gdbarch,
918 struct bp_target_info *bp_tgt)
919 {
920 return 0;
921 }
922
923
924 /* Okay, let's be honest: threads gleaned from a core file aren't
925 exactly lively, are they? On the other hand, if we don't claim
926 that each & every one is alive, then we don't get any of them
927 to appear in an "info thread" command, which is quite a useful
928 behaviour.
929 */
930 static int
931 core_thread_alive (struct target_ops *ops, ptid_t ptid)
932 {
933 return 1;
934 }
935
936 /* Ask the current architecture what it knows about this core file.
937 That will be used, in turn, to pick a better architecture. This
938 wrapper could be avoided if targets got a chance to specialize
939 core_ops. */
940
941 static const struct target_desc *
942 core_read_description (struct target_ops *target)
943 {
944 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
945 {
946 const struct target_desc *result;
947
948 result = gdbarch_core_read_description (core_gdbarch,
949 target, core_bfd);
950 if (result != NULL)
951 return result;
952 }
953
954 return target->beneath->to_read_description (target->beneath);
955 }
956
957 static char *
958 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
959 {
960 static char buf[64];
961 struct inferior *inf;
962 int pid;
963
964 /* The preferred way is to have a gdbarch/OS specific
965 implementation. */
966 if (core_gdbarch
967 && gdbarch_core_pid_to_str_p (core_gdbarch))
968 return gdbarch_core_pid_to_str (core_gdbarch, ptid);
969
970 /* Otherwise, if we don't have one, we'll just fallback to
971 "process", with normal_pid_to_str. */
972
973 /* Try the LWPID field first. */
974 pid = ptid_get_lwp (ptid);
975 if (pid != 0)
976 return normal_pid_to_str (pid_to_ptid (pid));
977
978 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
979 only if it isn't a fake PID. */
980 inf = find_inferior_ptid (ptid);
981 if (inf != NULL && !inf->fake_pid_p)
982 return normal_pid_to_str (ptid);
983
984 /* No luck. We simply don't have a valid PID to print. */
985 xsnprintf (buf, sizeof buf, "<main task>");
986 return buf;
987 }
988
989 static int
990 core_has_memory (struct target_ops *ops)
991 {
992 return (core_bfd != NULL);
993 }
994
995 static int
996 core_has_stack (struct target_ops *ops)
997 {
998 return (core_bfd != NULL);
999 }
1000
1001 static int
1002 core_has_registers (struct target_ops *ops)
1003 {
1004 return (core_bfd != NULL);
1005 }
1006
1007 /* Implement the to_info_proc method. */
1008
1009 static void
1010 core_info_proc (struct target_ops *ops, const char *args,
1011 enum info_proc_what request)
1012 {
1013 struct gdbarch *gdbarch = get_current_arch ();
1014
1015 /* Since this is the core file target, call the 'core_info_proc'
1016 method on gdbarch, not 'info_proc'. */
1017 if (gdbarch_core_info_proc_p (gdbarch))
1018 gdbarch_core_info_proc (gdbarch, args, request);
1019 }
1020
1021 /* Fill in core_ops with its defined operations and properties. */
1022
1023 static void
1024 init_core_ops (void)
1025 {
1026 core_ops.to_shortname = "core";
1027 core_ops.to_longname = "Local core dump file";
1028 core_ops.to_doc =
1029 "Use a core file as a target. Specify the filename of the core file.";
1030 core_ops.to_open = core_open;
1031 core_ops.to_close = core_close;
1032 core_ops.to_detach = core_detach;
1033 core_ops.to_fetch_registers = get_core_registers;
1034 core_ops.to_xfer_partial = core_xfer_partial;
1035 core_ops.to_files_info = core_files_info;
1036 core_ops.to_insert_breakpoint = ignore;
1037 core_ops.to_remove_breakpoint = ignore;
1038 core_ops.to_thread_alive = core_thread_alive;
1039 core_ops.to_read_description = core_read_description;
1040 core_ops.to_pid_to_str = core_pid_to_str;
1041 core_ops.to_stratum = process_stratum;
1042 core_ops.to_has_memory = core_has_memory;
1043 core_ops.to_has_stack = core_has_stack;
1044 core_ops.to_has_registers = core_has_registers;
1045 core_ops.to_info_proc = core_info_proc;
1046 core_ops.to_magic = OPS_MAGIC;
1047
1048 if (core_target)
1049 internal_error (__FILE__, __LINE__,
1050 _("init_core_ops: core target already exists (\"%s\")."),
1051 core_target->to_longname);
1052 core_target = &core_ops;
1053 }
1054
1055 void
1056 _initialize_corelow (void)
1057 {
1058 init_core_ops ();
1059
1060 add_target_with_completer (&core_ops, filename_completer);
1061 }
This page took 0.067992 seconds and 4 git commands to generate.