Rename common to gdbsupport
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #include "frame.h" /* required by inferior.h */
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "symtab.h"
28 #include "command.h"
29 #include "bfd.h"
30 #include "target.h"
31 #include "process-stratum-target.h"
32 #include "gdbcore.h"
33 #include "gdbthread.h"
34 #include "regcache.h"
35 #include "regset.h"
36 #include "symfile.h"
37 #include "exec.h"
38 #include "readline/readline.h"
39 #include "solib.h"
40 #include "filenames.h"
41 #include "progspace.h"
42 #include "objfiles.h"
43 #include "gdb_bfd.h"
44 #include "completer.h"
45 #include "gdbsupport/filestuff.h"
46
47 #ifndef O_LARGEFILE
48 #define O_LARGEFILE 0
49 #endif
50
51 static core_fns *sniff_core_bfd (gdbarch *core_gdbarch,
52 bfd *abfd);
53
54 /* The core file target. */
55
56 static const target_info core_target_info = {
57 "core",
58 N_("Local core dump file"),
59 N_("Use a core file as a target. Specify the filename of the core file.")
60 };
61
62 class core_target final : public process_stratum_target
63 {
64 public:
65 core_target ();
66 ~core_target () override;
67
68 const target_info &info () const override
69 { return core_target_info; }
70
71 void close () override;
72 void detach (inferior *, int) override;
73 void fetch_registers (struct regcache *, int) override;
74
75 enum target_xfer_status xfer_partial (enum target_object object,
76 const char *annex,
77 gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, ULONGEST len,
80 ULONGEST *xfered_len) override;
81 void files_info () override;
82
83 bool thread_alive (ptid_t ptid) override;
84 const struct target_desc *read_description () override;
85
86 std::string pid_to_str (ptid_t) override;
87
88 const char *thread_name (struct thread_info *) override;
89
90 bool has_all_memory () override { return false; }
91 bool has_memory () override;
92 bool has_stack () override;
93 bool has_registers () override;
94 bool has_execution (ptid_t) override { return false; }
95
96 bool info_proc (const char *, enum info_proc_what) override;
97
98 /* A few helpers. */
99
100 /* Getter, see variable definition. */
101 struct gdbarch *core_gdbarch ()
102 {
103 return m_core_gdbarch;
104 }
105
106 /* See definition. */
107 void get_core_register_section (struct regcache *regcache,
108 const struct regset *regset,
109 const char *name,
110 int section_min_size,
111 int which,
112 const char *human_name,
113 bool required);
114
115 private: /* per-core data */
116
117 /* The core's section table. Note that these target sections are
118 *not* mapped in the current address spaces' set of target
119 sections --- those should come only from pure executable or
120 shared library bfds. The core bfd sections are an implementation
121 detail of the core target, just like ptrace is for unix child
122 targets. */
123 target_section_table m_core_section_table {};
124
125 /* The core_fns for a core file handler that is prepared to read the
126 core file currently open on core_bfd. */
127 core_fns *m_core_vec = NULL;
128
129 /* FIXME: kettenis/20031023: Eventually this field should
130 disappear. */
131 struct gdbarch *m_core_gdbarch = NULL;
132 };
133
134 core_target::core_target ()
135 {
136 m_core_gdbarch = gdbarch_from_bfd (core_bfd);
137
138 /* Find a suitable core file handler to munch on core_bfd */
139 m_core_vec = sniff_core_bfd (m_core_gdbarch, core_bfd);
140
141 /* Find the data section */
142 if (build_section_table (core_bfd,
143 &m_core_section_table.sections,
144 &m_core_section_table.sections_end))
145 error (_("\"%s\": Can't find sections: %s"),
146 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
147 }
148
149 core_target::~core_target ()
150 {
151 xfree (m_core_section_table.sections);
152 }
153
154 /* List of all available core_fns. On gdb startup, each core file
155 register reader calls deprecated_add_core_fns() to register
156 information on each core format it is prepared to read. */
157
158 static struct core_fns *core_file_fns = NULL;
159
160 static int gdb_check_format (bfd *);
161
162 static void add_to_thread_list (bfd *, asection *, void *);
163
164 /* An arbitrary identifier for the core inferior. */
165 #define CORELOW_PID 1
166
167 /* Link a new core_fns into the global core_file_fns list. Called on
168 gdb startup by the _initialize routine in each core file register
169 reader, to register information about each format the reader is
170 prepared to handle. */
171
172 void
173 deprecated_add_core_fns (struct core_fns *cf)
174 {
175 cf->next = core_file_fns;
176 core_file_fns = cf;
177 }
178
179 /* The default function that core file handlers can use to examine a
180 core file BFD and decide whether or not to accept the job of
181 reading the core file. */
182
183 int
184 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
185 {
186 int result;
187
188 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
189 return (result);
190 }
191
192 /* Walk through the list of core functions to find a set that can
193 handle the core file open on ABFD. Returns pointer to set that is
194 selected. */
195
196 static struct core_fns *
197 sniff_core_bfd (struct gdbarch *core_gdbarch, bfd *abfd)
198 {
199 struct core_fns *cf;
200 struct core_fns *yummy = NULL;
201 int matches = 0;
202
203 /* Don't sniff if we have support for register sets in
204 CORE_GDBARCH. */
205 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
206 return NULL;
207
208 for (cf = core_file_fns; cf != NULL; cf = cf->next)
209 {
210 if (cf->core_sniffer (cf, abfd))
211 {
212 yummy = cf;
213 matches++;
214 }
215 }
216 if (matches > 1)
217 {
218 warning (_("\"%s\": ambiguous core format, %d handlers match"),
219 bfd_get_filename (abfd), matches);
220 }
221 else if (matches == 0)
222 error (_("\"%s\": no core file handler recognizes format"),
223 bfd_get_filename (abfd));
224
225 return (yummy);
226 }
227
228 /* The default is to reject every core file format we see. Either
229 BFD has to recognize it, or we have to provide a function in the
230 core file handler that recognizes it. */
231
232 int
233 default_check_format (bfd *abfd)
234 {
235 return (0);
236 }
237
238 /* Attempt to recognize core file formats that BFD rejects. */
239
240 static int
241 gdb_check_format (bfd *abfd)
242 {
243 struct core_fns *cf;
244
245 for (cf = core_file_fns; cf != NULL; cf = cf->next)
246 {
247 if (cf->check_format (abfd))
248 {
249 return (1);
250 }
251 }
252 return (0);
253 }
254
255 /* Close the core target. */
256
257 void
258 core_target::close ()
259 {
260 if (core_bfd)
261 {
262 inferior_ptid = null_ptid; /* Avoid confusion from thread
263 stuff. */
264 exit_inferior_silent (current_inferior ());
265
266 /* Clear out solib state while the bfd is still open. See
267 comments in clear_solib in solib.c. */
268 clear_solib ();
269
270 current_program_space->cbfd.reset (nullptr);
271 }
272
273 /* Core targets are heap-allocated (see core_target_open), so here
274 we delete ourselves. */
275 delete this;
276 }
277
278 /* Look for sections whose names start with `.reg/' so that we can
279 extract the list of threads in a core file. */
280
281 static void
282 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
283 {
284 ptid_t ptid;
285 int core_tid;
286 int pid, lwpid;
287 asection *reg_sect = (asection *) reg_sect_arg;
288 bool fake_pid_p = false;
289 struct inferior *inf;
290
291 if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
292 return;
293
294 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
295
296 pid = bfd_core_file_pid (core_bfd);
297 if (pid == 0)
298 {
299 fake_pid_p = true;
300 pid = CORELOW_PID;
301 }
302
303 lwpid = core_tid;
304
305 inf = current_inferior ();
306 if (inf->pid == 0)
307 {
308 inferior_appeared (inf, pid);
309 inf->fake_pid_p = fake_pid_p;
310 }
311
312 ptid = ptid_t (pid, lwpid, 0);
313
314 add_thread (ptid);
315
316 /* Warning, Will Robinson, looking at BFD private data! */
317
318 if (reg_sect != NULL
319 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
320 inferior_ptid = ptid; /* Yes, make it current. */
321 }
322
323 /* Issue a message saying we have no core to debug, if FROM_TTY. */
324
325 static void
326 maybe_say_no_core_file_now (int from_tty)
327 {
328 if (from_tty)
329 printf_filtered (_("No core file now.\n"));
330 }
331
332 /* Backward compatability with old way of specifying core files. */
333
334 void
335 core_file_command (const char *filename, int from_tty)
336 {
337 dont_repeat (); /* Either way, seems bogus. */
338
339 if (filename == NULL)
340 {
341 if (core_bfd != NULL)
342 {
343 target_detach (current_inferior (), from_tty);
344 gdb_assert (core_bfd == NULL);
345 }
346 else
347 maybe_say_no_core_file_now (from_tty);
348 }
349 else
350 core_target_open (filename, from_tty);
351 }
352
353 /* See gdbcore.h. */
354
355 void
356 core_target_open (const char *arg, int from_tty)
357 {
358 const char *p;
359 int siggy;
360 int scratch_chan;
361 int flags;
362
363 target_preopen (from_tty);
364 if (!arg)
365 {
366 if (core_bfd)
367 error (_("No core file specified. (Use `detach' "
368 "to stop debugging a core file.)"));
369 else
370 error (_("No core file specified."));
371 }
372
373 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
374 if (!IS_ABSOLUTE_PATH (filename.get ()))
375 filename.reset (concat (current_directory, "/",
376 filename.get (), (char *) NULL));
377
378 flags = O_BINARY | O_LARGEFILE;
379 if (write_files)
380 flags |= O_RDWR;
381 else
382 flags |= O_RDONLY;
383 scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
384 if (scratch_chan < 0)
385 perror_with_name (filename.get ());
386
387 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
388 write_files ? FOPEN_RUB : FOPEN_RB,
389 scratch_chan));
390 if (temp_bfd == NULL)
391 perror_with_name (filename.get ());
392
393 if (!bfd_check_format (temp_bfd.get (), bfd_core)
394 && !gdb_check_format (temp_bfd.get ()))
395 {
396 /* Do it after the err msg */
397 /* FIXME: should be checking for errors from bfd_close (for one
398 thing, on error it does not free all the storage associated
399 with the bfd). */
400 error (_("\"%s\" is not a core dump: %s"),
401 filename.get (), bfd_errmsg (bfd_get_error ()));
402 }
403
404 current_program_space->cbfd = std::move (temp_bfd);
405
406 core_target *target = new core_target ();
407
408 /* Own the target until it is successfully pushed. */
409 target_ops_up target_holder (target);
410
411 validate_files ();
412
413 /* If we have no exec file, try to set the architecture from the
414 core file. We don't do this unconditionally since an exec file
415 typically contains more information that helps us determine the
416 architecture than a core file. */
417 if (!exec_bfd)
418 set_gdbarch_from_file (core_bfd);
419
420 push_target (std::move (target_holder));
421
422 inferior_ptid = null_ptid;
423
424 /* Need to flush the register cache (and the frame cache) from a
425 previous debug session. If inferior_ptid ends up the same as the
426 last debug session --- e.g., b foo; run; gcore core1; step; gcore
427 core2; core core1; core core2 --- then there's potential for
428 get_current_regcache to return the cached regcache of the
429 previous session, and the frame cache being stale. */
430 registers_changed ();
431
432 /* Build up thread list from BFD sections, and possibly set the
433 current thread to the .reg/NN section matching the .reg
434 section. */
435 bfd_map_over_sections (core_bfd, add_to_thread_list,
436 bfd_get_section_by_name (core_bfd, ".reg"));
437
438 if (inferior_ptid == null_ptid)
439 {
440 /* Either we found no .reg/NN section, and hence we have a
441 non-threaded core (single-threaded, from gdb's perspective),
442 or for some reason add_to_thread_list couldn't determine
443 which was the "main" thread. The latter case shouldn't
444 usually happen, but we're dealing with input here, which can
445 always be broken in different ways. */
446 thread_info *thread = first_thread_of_inferior (current_inferior ());
447
448 if (thread == NULL)
449 {
450 inferior_appeared (current_inferior (), CORELOW_PID);
451 inferior_ptid = ptid_t (CORELOW_PID);
452 add_thread_silent (inferior_ptid);
453 }
454 else
455 switch_to_thread (thread);
456 }
457
458 post_create_inferior (target, from_tty);
459
460 /* Now go through the target stack looking for threads since there
461 may be a thread_stratum target loaded on top of target core by
462 now. The layer above should claim threads found in the BFD
463 sections. */
464 try
465 {
466 target_update_thread_list ();
467 }
468
469 catch (const gdb_exception_error &except)
470 {
471 exception_print (gdb_stderr, except);
472 }
473
474 p = bfd_core_file_failing_command (core_bfd);
475 if (p)
476 printf_filtered (_("Core was generated by `%s'.\n"), p);
477
478 /* Clearing any previous state of convenience variables. */
479 clear_exit_convenience_vars ();
480
481 siggy = bfd_core_file_failing_signal (core_bfd);
482 if (siggy > 0)
483 {
484 gdbarch *core_gdbarch = target->core_gdbarch ();
485
486 /* If we don't have a CORE_GDBARCH to work with, assume a native
487 core (map gdb_signal from host signals). If we do have
488 CORE_GDBARCH to work with, but no gdb_signal_from_target
489 implementation for that gdbarch, as a fallback measure,
490 assume the host signal mapping. It'll be correct for native
491 cores, but most likely incorrect for cross-cores. */
492 enum gdb_signal sig = (core_gdbarch != NULL
493 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
494 ? gdbarch_gdb_signal_from_target (core_gdbarch,
495 siggy)
496 : gdb_signal_from_host (siggy));
497
498 printf_filtered (_("Program terminated with signal %s, %s.\n"),
499 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
500
501 /* Set the value of the internal variable $_exitsignal,
502 which holds the signal uncaught by the inferior. */
503 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
504 siggy);
505 }
506
507 /* Fetch all registers from core file. */
508 target_fetch_registers (get_current_regcache (), -1);
509
510 /* Now, set up the frame cache, and print the top of stack. */
511 reinit_frame_cache ();
512 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
513
514 /* Current thread should be NUM 1 but the user does not know that.
515 If a program is single threaded gdb in general does not mention
516 anything about threads. That is why the test is >= 2. */
517 if (thread_count () >= 2)
518 {
519 try
520 {
521 thread_command (NULL, from_tty);
522 }
523 catch (const gdb_exception_error &except)
524 {
525 exception_print (gdb_stderr, except);
526 }
527 }
528 }
529
530 void
531 core_target::detach (inferior *inf, int from_tty)
532 {
533 /* Note that 'this' is dangling after this call. unpush_target
534 closes the target, and our close implementation deletes
535 'this'. */
536 unpush_target (this);
537
538 /* Clear the register cache and the frame cache. */
539 registers_changed ();
540 reinit_frame_cache ();
541 maybe_say_no_core_file_now (from_tty);
542 }
543
544 /* Try to retrieve registers from a section in core_bfd, and supply
545 them to m_core_vec->core_read_registers, as the register set
546 numbered WHICH.
547
548 If ptid's lwp member is zero, do the single-threaded
549 thing: look for a section named NAME. If ptid's lwp
550 member is non-zero, do the multi-threaded thing: look for a section
551 named "NAME/LWP", where LWP is the shortest ASCII decimal
552 representation of ptid's lwp member.
553
554 HUMAN_NAME is a human-readable name for the kind of registers the
555 NAME section contains, for use in error messages.
556
557 If REQUIRED is true, print an error if the core file doesn't have a
558 section by the appropriate name. Otherwise, just do nothing. */
559
560 void
561 core_target::get_core_register_section (struct regcache *regcache,
562 const struct regset *regset,
563 const char *name,
564 int section_min_size,
565 int which,
566 const char *human_name,
567 bool required)
568 {
569 struct bfd_section *section;
570 bfd_size_type size;
571 char *contents;
572 bool variable_size_section = (regset != NULL
573 && regset->flags & REGSET_VARIABLE_SIZE);
574
575 thread_section_name section_name (name, regcache->ptid ());
576
577 section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
578 if (! section)
579 {
580 if (required)
581 warning (_("Couldn't find %s registers in core file."),
582 human_name);
583 return;
584 }
585
586 size = bfd_section_size (core_bfd, section);
587 if (size < section_min_size)
588 {
589 warning (_("Section `%s' in core file too small."),
590 section_name.c_str ());
591 return;
592 }
593 if (size != section_min_size && !variable_size_section)
594 {
595 warning (_("Unexpected size of section `%s' in core file."),
596 section_name.c_str ());
597 }
598
599 contents = (char *) alloca (size);
600 if (! bfd_get_section_contents (core_bfd, section, contents,
601 (file_ptr) 0, size))
602 {
603 warning (_("Couldn't read %s registers from `%s' section in core file."),
604 human_name, section_name.c_str ());
605 return;
606 }
607
608 if (regset != NULL)
609 {
610 regset->supply_regset (regset, regcache, -1, contents, size);
611 return;
612 }
613
614 gdb_assert (m_core_vec != nullptr);
615 m_core_vec->core_read_registers (regcache, contents, size, which,
616 ((CORE_ADDR)
617 bfd_section_vma (core_bfd, section)));
618 }
619
620 /* Data passed to gdbarch_iterate_over_regset_sections's callback. */
621 struct get_core_registers_cb_data
622 {
623 core_target *target;
624 struct regcache *regcache;
625 };
626
627 /* Callback for get_core_registers that handles a single core file
628 register note section. */
629
630 static void
631 get_core_registers_cb (const char *sect_name, int supply_size, int collect_size,
632 const struct regset *regset,
633 const char *human_name, void *cb_data)
634 {
635 auto *data = (get_core_registers_cb_data *) cb_data;
636 bool required = false;
637 bool variable_size_section = (regset != NULL
638 && regset->flags & REGSET_VARIABLE_SIZE);
639
640 if (!variable_size_section)
641 gdb_assert (supply_size == collect_size);
642
643 if (strcmp (sect_name, ".reg") == 0)
644 {
645 required = true;
646 if (human_name == NULL)
647 human_name = "general-purpose";
648 }
649 else if (strcmp (sect_name, ".reg2") == 0)
650 {
651 if (human_name == NULL)
652 human_name = "floating-point";
653 }
654
655 /* The 'which' parameter is only used when no regset is provided.
656 Thus we just set it to -1. */
657 data->target->get_core_register_section (data->regcache, regset, sect_name,
658 supply_size, -1, human_name,
659 required);
660 }
661
662 /* Get the registers out of a core file. This is the machine-
663 independent part. Fetch_core_registers is the machine-dependent
664 part, typically implemented in the xm-file for each
665 architecture. */
666
667 /* We just get all the registers, so we don't use regno. */
668
669 void
670 core_target::fetch_registers (struct regcache *regcache, int regno)
671 {
672 int i;
673 struct gdbarch *gdbarch;
674
675 if (!(m_core_gdbarch != nullptr
676 && gdbarch_iterate_over_regset_sections_p (m_core_gdbarch))
677 && (m_core_vec == NULL || m_core_vec->core_read_registers == NULL))
678 {
679 fprintf_filtered (gdb_stderr,
680 "Can't fetch registers from this type of core file\n");
681 return;
682 }
683
684 gdbarch = regcache->arch ();
685 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
686 {
687 get_core_registers_cb_data data = { this, regcache };
688 gdbarch_iterate_over_regset_sections (gdbarch,
689 get_core_registers_cb,
690 (void *) &data, NULL);
691 }
692 else
693 {
694 get_core_register_section (regcache, NULL,
695 ".reg", 0, 0, "general-purpose", 1);
696 get_core_register_section (regcache, NULL,
697 ".reg2", 0, 2, "floating-point", 0);
698 }
699
700 /* Mark all registers not found in the core as unavailable. */
701 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
702 if (regcache->get_register_status (i) == REG_UNKNOWN)
703 regcache->raw_supply (i, NULL);
704 }
705
706 void
707 core_target::files_info ()
708 {
709 print_section_info (&m_core_section_table, core_bfd);
710 }
711 \f
712 struct spuid_list
713 {
714 gdb_byte *buf;
715 ULONGEST offset;
716 LONGEST len;
717 ULONGEST pos;
718 ULONGEST written;
719 };
720
721 static void
722 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
723 {
724 struct spuid_list *list = (struct spuid_list *) list_p;
725 enum bfd_endian byte_order
726 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
727 int fd, pos = 0;
728
729 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
730 if (pos == 0)
731 return;
732
733 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
734 {
735 store_unsigned_integer (list->buf + list->pos - list->offset,
736 4, byte_order, fd);
737 list->written += 4;
738 }
739 list->pos += 4;
740 }
741
742 enum target_xfer_status
743 core_target::xfer_partial (enum target_object object, const char *annex,
744 gdb_byte *readbuf, const gdb_byte *writebuf,
745 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
746 {
747 switch (object)
748 {
749 case TARGET_OBJECT_MEMORY:
750 return (section_table_xfer_memory_partial
751 (readbuf, writebuf,
752 offset, len, xfered_len,
753 m_core_section_table.sections,
754 m_core_section_table.sections_end,
755 NULL));
756
757 case TARGET_OBJECT_AUXV:
758 if (readbuf)
759 {
760 /* When the aux vector is stored in core file, BFD
761 represents this with a fake section called ".auxv". */
762
763 struct bfd_section *section;
764 bfd_size_type size;
765
766 section = bfd_get_section_by_name (core_bfd, ".auxv");
767 if (section == NULL)
768 return TARGET_XFER_E_IO;
769
770 size = bfd_section_size (core_bfd, section);
771 if (offset >= size)
772 return TARGET_XFER_EOF;
773 size -= offset;
774 if (size > len)
775 size = len;
776
777 if (size == 0)
778 return TARGET_XFER_EOF;
779 if (!bfd_get_section_contents (core_bfd, section, readbuf,
780 (file_ptr) offset, size))
781 {
782 warning (_("Couldn't read NT_AUXV note in core file."));
783 return TARGET_XFER_E_IO;
784 }
785
786 *xfered_len = (ULONGEST) size;
787 return TARGET_XFER_OK;
788 }
789 return TARGET_XFER_E_IO;
790
791 case TARGET_OBJECT_WCOOKIE:
792 if (readbuf)
793 {
794 /* When the StackGhost cookie is stored in core file, BFD
795 represents this with a fake section called
796 ".wcookie". */
797
798 struct bfd_section *section;
799 bfd_size_type size;
800
801 section = bfd_get_section_by_name (core_bfd, ".wcookie");
802 if (section == NULL)
803 return TARGET_XFER_E_IO;
804
805 size = bfd_section_size (core_bfd, section);
806 if (offset >= size)
807 return TARGET_XFER_EOF;
808 size -= offset;
809 if (size > len)
810 size = len;
811
812 if (size == 0)
813 return TARGET_XFER_EOF;
814 if (!bfd_get_section_contents (core_bfd, section, readbuf,
815 (file_ptr) offset, size))
816 {
817 warning (_("Couldn't read StackGhost cookie in core file."));
818 return TARGET_XFER_E_IO;
819 }
820
821 *xfered_len = (ULONGEST) size;
822 return TARGET_XFER_OK;
823
824 }
825 return TARGET_XFER_E_IO;
826
827 case TARGET_OBJECT_LIBRARIES:
828 if (m_core_gdbarch != nullptr
829 && gdbarch_core_xfer_shared_libraries_p (m_core_gdbarch))
830 {
831 if (writebuf)
832 return TARGET_XFER_E_IO;
833 else
834 {
835 *xfered_len = gdbarch_core_xfer_shared_libraries (m_core_gdbarch,
836 readbuf,
837 offset, len);
838
839 if (*xfered_len == 0)
840 return TARGET_XFER_EOF;
841 else
842 return TARGET_XFER_OK;
843 }
844 }
845 /* FALL THROUGH */
846
847 case TARGET_OBJECT_LIBRARIES_AIX:
848 if (m_core_gdbarch != nullptr
849 && gdbarch_core_xfer_shared_libraries_aix_p (m_core_gdbarch))
850 {
851 if (writebuf)
852 return TARGET_XFER_E_IO;
853 else
854 {
855 *xfered_len
856 = gdbarch_core_xfer_shared_libraries_aix (m_core_gdbarch,
857 readbuf, offset,
858 len);
859
860 if (*xfered_len == 0)
861 return TARGET_XFER_EOF;
862 else
863 return TARGET_XFER_OK;
864 }
865 }
866 /* FALL THROUGH */
867
868 case TARGET_OBJECT_SPU:
869 if (readbuf && annex)
870 {
871 /* When the SPU contexts are stored in a core file, BFD
872 represents this with a fake section called
873 "SPU/<annex>". */
874
875 struct bfd_section *section;
876 bfd_size_type size;
877 char sectionstr[100];
878
879 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
880
881 section = bfd_get_section_by_name (core_bfd, sectionstr);
882 if (section == NULL)
883 return TARGET_XFER_E_IO;
884
885 size = bfd_section_size (core_bfd, section);
886 if (offset >= size)
887 return TARGET_XFER_EOF;
888 size -= offset;
889 if (size > len)
890 size = len;
891
892 if (size == 0)
893 return TARGET_XFER_EOF;
894 if (!bfd_get_section_contents (core_bfd, section, readbuf,
895 (file_ptr) offset, size))
896 {
897 warning (_("Couldn't read SPU section in core file."));
898 return TARGET_XFER_E_IO;
899 }
900
901 *xfered_len = (ULONGEST) size;
902 return TARGET_XFER_OK;
903 }
904 else if (readbuf)
905 {
906 /* NULL annex requests list of all present spuids. */
907 struct spuid_list list;
908
909 list.buf = readbuf;
910 list.offset = offset;
911 list.len = len;
912 list.pos = 0;
913 list.written = 0;
914 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
915
916 if (list.written == 0)
917 return TARGET_XFER_EOF;
918 else
919 {
920 *xfered_len = (ULONGEST) list.written;
921 return TARGET_XFER_OK;
922 }
923 }
924 return TARGET_XFER_E_IO;
925
926 case TARGET_OBJECT_SIGNAL_INFO:
927 if (readbuf)
928 {
929 if (m_core_gdbarch != nullptr
930 && gdbarch_core_xfer_siginfo_p (m_core_gdbarch))
931 {
932 LONGEST l = gdbarch_core_xfer_siginfo (m_core_gdbarch, readbuf,
933 offset, len);
934
935 if (l >= 0)
936 {
937 *xfered_len = l;
938 if (l == 0)
939 return TARGET_XFER_EOF;
940 else
941 return TARGET_XFER_OK;
942 }
943 }
944 }
945 return TARGET_XFER_E_IO;
946
947 default:
948 return this->beneath ()->xfer_partial (object, annex, readbuf,
949 writebuf, offset, len,
950 xfered_len);
951 }
952 }
953
954 \f
955
956 /* Okay, let's be honest: threads gleaned from a core file aren't
957 exactly lively, are they? On the other hand, if we don't claim
958 that each & every one is alive, then we don't get any of them
959 to appear in an "info thread" command, which is quite a useful
960 behaviour.
961 */
962 bool
963 core_target::thread_alive (ptid_t ptid)
964 {
965 return true;
966 }
967
968 /* Ask the current architecture what it knows about this core file.
969 That will be used, in turn, to pick a better architecture. This
970 wrapper could be avoided if targets got a chance to specialize
971 core_target. */
972
973 const struct target_desc *
974 core_target::read_description ()
975 {
976 if (m_core_gdbarch && gdbarch_core_read_description_p (m_core_gdbarch))
977 {
978 const struct target_desc *result;
979
980 result = gdbarch_core_read_description (m_core_gdbarch, this, core_bfd);
981 if (result != NULL)
982 return result;
983 }
984
985 return this->beneath ()->read_description ();
986 }
987
988 std::string
989 core_target::pid_to_str (ptid_t ptid)
990 {
991 struct inferior *inf;
992 int pid;
993
994 /* The preferred way is to have a gdbarch/OS specific
995 implementation. */
996 if (m_core_gdbarch != nullptr
997 && gdbarch_core_pid_to_str_p (m_core_gdbarch))
998 return gdbarch_core_pid_to_str (m_core_gdbarch, ptid);
999
1000 /* Otherwise, if we don't have one, we'll just fallback to
1001 "process", with normal_pid_to_str. */
1002
1003 /* Try the LWPID field first. */
1004 pid = ptid.lwp ();
1005 if (pid != 0)
1006 return normal_pid_to_str (ptid_t (pid));
1007
1008 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
1009 only if it isn't a fake PID. */
1010 inf = find_inferior_ptid (ptid);
1011 if (inf != NULL && !inf->fake_pid_p)
1012 return normal_pid_to_str (ptid);
1013
1014 /* No luck. We simply don't have a valid PID to print. */
1015 return "<main task>";
1016 }
1017
1018 const char *
1019 core_target::thread_name (struct thread_info *thr)
1020 {
1021 if (m_core_gdbarch != nullptr
1022 && gdbarch_core_thread_name_p (m_core_gdbarch))
1023 return gdbarch_core_thread_name (m_core_gdbarch, thr);
1024 return NULL;
1025 }
1026
1027 bool
1028 core_target::has_memory ()
1029 {
1030 return (core_bfd != NULL);
1031 }
1032
1033 bool
1034 core_target::has_stack ()
1035 {
1036 return (core_bfd != NULL);
1037 }
1038
1039 bool
1040 core_target::has_registers ()
1041 {
1042 return (core_bfd != NULL);
1043 }
1044
1045 /* Implement the to_info_proc method. */
1046
1047 bool
1048 core_target::info_proc (const char *args, enum info_proc_what request)
1049 {
1050 struct gdbarch *gdbarch = get_current_arch ();
1051
1052 /* Since this is the core file target, call the 'core_info_proc'
1053 method on gdbarch, not 'info_proc'. */
1054 if (gdbarch_core_info_proc_p (gdbarch))
1055 gdbarch_core_info_proc (gdbarch, args, request);
1056
1057 return true;
1058 }
1059
1060 void
1061 _initialize_corelow (void)
1062 {
1063 add_target (core_target_info, core_target_open, filename_completer);
1064 }
This page took 0.053141 seconds and 4 git commands to generate.