2012-07-05 Hui Zhu <hui_zhu@mentor.com>
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-1987, 1989, 1991-2001, 2003-2012 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "arch-utils.h"
23 #include "gdb_string.h"
24 #include <errno.h>
25 #include <signal.h>
26 #include <fcntl.h>
27 #ifdef HAVE_SYS_FILE_H
28 #include <sys/file.h> /* needed for F_OK and friends */
29 #endif
30 #include "frame.h" /* required by inferior.h */
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "command.h"
34 #include "bfd.h"
35 #include "target.h"
36 #include "gdbcore.h"
37 #include "gdbthread.h"
38 #include "regcache.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "exec.h"
42 #include "readline/readline.h"
43 #include "gdb_assert.h"
44 #include "exceptions.h"
45 #include "solib.h"
46 #include "filenames.h"
47 #include "progspace.h"
48 #include "objfiles.h"
49
50 #ifndef O_LARGEFILE
51 #define O_LARGEFILE 0
52 #endif
53
54 /* List of all available core_fns. On gdb startup, each core file
55 register reader calls deprecated_add_core_fns() to register
56 information on each core format it is prepared to read. */
57
58 static struct core_fns *core_file_fns = NULL;
59
60 /* The core_fns for a core file handler that is prepared to read the
61 core file currently open on core_bfd. */
62
63 static struct core_fns *core_vec = NULL;
64
65 /* FIXME: kettenis/20031023: Eventually this variable should
66 disappear. */
67
68 struct gdbarch *core_gdbarch = NULL;
69
70 /* Per-core data. Currently, only the section table. Note that these
71 target sections are *not* mapped in the current address spaces' set
72 of target sections --- those should come only from pure executable
73 or shared library bfds. The core bfd sections are an
74 implementation detail of the core target, just like ptrace is for
75 unix child targets. */
76 static struct target_section_table *core_data;
77
78 static void core_files_info (struct target_ops *);
79
80 static struct core_fns *sniff_core_bfd (bfd *);
81
82 static int gdb_check_format (bfd *);
83
84 static void core_open (char *, int);
85
86 static void core_detach (struct target_ops *ops, char *, int);
87
88 static void core_close (int);
89
90 static void core_close_cleanup (void *ignore);
91
92 static void add_to_thread_list (bfd *, asection *, void *);
93
94 static void init_core_ops (void);
95
96 void _initialize_corelow (void);
97
98 static struct target_ops core_ops;
99
100 /* An arbitrary identifier for the core inferior. */
101 #define CORELOW_PID 1
102
103 /* Link a new core_fns into the global core_file_fns list. Called on
104 gdb startup by the _initialize routine in each core file register
105 reader, to register information about each format the reader is
106 prepared to handle. */
107
108 void
109 deprecated_add_core_fns (struct core_fns *cf)
110 {
111 cf->next = core_file_fns;
112 core_file_fns = cf;
113 }
114
115 /* The default function that core file handlers can use to examine a
116 core file BFD and decide whether or not to accept the job of
117 reading the core file. */
118
119 int
120 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
121 {
122 int result;
123
124 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
125 return (result);
126 }
127
128 /* Walk through the list of core functions to find a set that can
129 handle the core file open on ABFD. Returns pointer to set that is
130 selected. */
131
132 static struct core_fns *
133 sniff_core_bfd (bfd *abfd)
134 {
135 struct core_fns *cf;
136 struct core_fns *yummy = NULL;
137 int matches = 0;;
138
139 /* Don't sniff if we have support for register sets in
140 CORE_GDBARCH. */
141 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
142 return NULL;
143
144 for (cf = core_file_fns; cf != NULL; cf = cf->next)
145 {
146 if (cf->core_sniffer (cf, abfd))
147 {
148 yummy = cf;
149 matches++;
150 }
151 }
152 if (matches > 1)
153 {
154 warning (_("\"%s\": ambiguous core format, %d handlers match"),
155 bfd_get_filename (abfd), matches);
156 }
157 else if (matches == 0)
158 error (_("\"%s\": no core file handler recognizes format"),
159 bfd_get_filename (abfd));
160
161 return (yummy);
162 }
163
164 /* The default is to reject every core file format we see. Either
165 BFD has to recognize it, or we have to provide a function in the
166 core file handler that recognizes it. */
167
168 int
169 default_check_format (bfd *abfd)
170 {
171 return (0);
172 }
173
174 /* Attempt to recognize core file formats that BFD rejects. */
175
176 static int
177 gdb_check_format (bfd *abfd)
178 {
179 struct core_fns *cf;
180
181 for (cf = core_file_fns; cf != NULL; cf = cf->next)
182 {
183 if (cf->check_format (abfd))
184 {
185 return (1);
186 }
187 }
188 return (0);
189 }
190
191 /* Discard all vestiges of any previous core file and mark data and
192 stack spaces as empty. */
193
194 static void
195 core_close (int quitting)
196 {
197 char *name;
198
199 if (core_bfd)
200 {
201 int pid = ptid_get_pid (inferior_ptid);
202 inferior_ptid = null_ptid; /* Avoid confusion from thread
203 stuff. */
204 if (pid != 0)
205 exit_inferior_silent (pid);
206
207 /* Clear out solib state while the bfd is still open. See
208 comments in clear_solib in solib.c. */
209 clear_solib ();
210
211 if (core_data)
212 {
213 xfree (core_data->sections);
214 xfree (core_data);
215 core_data = NULL;
216 }
217
218 name = bfd_get_filename (core_bfd);
219 gdb_bfd_close_or_warn (core_bfd);
220 xfree (name);
221 core_bfd = NULL;
222 }
223 core_vec = NULL;
224 core_gdbarch = NULL;
225 }
226
227 static void
228 core_close_cleanup (void *ignore)
229 {
230 core_close (0/*ignored*/);
231 }
232
233 /* Look for sections whose names start with `.reg/' so that we can
234 extract the list of threads in a core file. */
235
236 static void
237 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
238 {
239 ptid_t ptid;
240 int core_tid;
241 int pid, lwpid;
242 asection *reg_sect = (asection *) reg_sect_arg;
243 int fake_pid_p = 0;
244 struct inferior *inf;
245
246 if (strncmp (bfd_section_name (abfd, asect), ".reg/", 5) != 0)
247 return;
248
249 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
250
251 pid = bfd_core_file_pid (core_bfd);
252 if (pid == 0)
253 {
254 fake_pid_p = 1;
255 pid = CORELOW_PID;
256 }
257
258 lwpid = core_tid;
259
260 inf = current_inferior ();
261 if (inf->pid == 0)
262 {
263 inferior_appeared (inf, pid);
264 inf->fake_pid_p = fake_pid_p;
265 }
266
267 ptid = ptid_build (pid, lwpid, 0);
268
269 add_thread (ptid);
270
271 /* Warning, Will Robinson, looking at BFD private data! */
272
273 if (reg_sect != NULL
274 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
275 inferior_ptid = ptid; /* Yes, make it current. */
276 }
277
278 /* This routine opens and sets up the core file bfd. */
279
280 static void
281 core_open (char *filename, int from_tty)
282 {
283 const char *p;
284 int siggy;
285 struct cleanup *old_chain;
286 char *temp;
287 bfd *temp_bfd;
288 int scratch_chan;
289 int flags;
290 volatile struct gdb_exception except;
291
292 target_preopen (from_tty);
293 if (!filename)
294 {
295 if (core_bfd)
296 error (_("No core file specified. (Use `detach' "
297 "to stop debugging a core file.)"));
298 else
299 error (_("No core file specified."));
300 }
301
302 filename = tilde_expand (filename);
303 if (!IS_ABSOLUTE_PATH (filename))
304 {
305 temp = concat (current_directory, "/",
306 filename, (char *) NULL);
307 xfree (filename);
308 filename = temp;
309 }
310
311 old_chain = make_cleanup (xfree, filename);
312
313 flags = O_BINARY | O_LARGEFILE;
314 if (write_files)
315 flags |= O_RDWR;
316 else
317 flags |= O_RDONLY;
318 scratch_chan = open (filename, flags, 0);
319 if (scratch_chan < 0)
320 perror_with_name (filename);
321
322 temp_bfd = bfd_fopen (filename, gnutarget,
323 write_files ? FOPEN_RUB : FOPEN_RB,
324 scratch_chan);
325 if (temp_bfd == NULL)
326 perror_with_name (filename);
327
328 if (!bfd_check_format (temp_bfd, bfd_core)
329 && !gdb_check_format (temp_bfd))
330 {
331 /* Do it after the err msg */
332 /* FIXME: should be checking for errors from bfd_close (for one
333 thing, on error it does not free all the storage associated
334 with the bfd). */
335 make_cleanup_bfd_close (temp_bfd);
336 error (_("\"%s\" is not a core dump: %s"),
337 filename, bfd_errmsg (bfd_get_error ()));
338 }
339
340 /* Looks semi-reasonable. Toss the old core file and work on the
341 new. */
342
343 discard_cleanups (old_chain); /* Don't free filename any more */
344 unpush_target (&core_ops);
345 core_bfd = temp_bfd;
346 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
347
348 /* FIXME: kettenis/20031023: This is very dangerous. The
349 CORE_GDBARCH that results from this call may very well be
350 different from CURRENT_GDBARCH. However, its methods may only
351 work if it is selected as the current architecture, because they
352 rely on swapped data (see gdbarch.c). We should get rid of that
353 swapped data. */
354 core_gdbarch = gdbarch_from_bfd (core_bfd);
355
356 /* Find a suitable core file handler to munch on core_bfd */
357 core_vec = sniff_core_bfd (core_bfd);
358
359 validate_files ();
360
361 core_data = XZALLOC (struct target_section_table);
362
363 /* Find the data section */
364 if (build_section_table (core_bfd,
365 &core_data->sections,
366 &core_data->sections_end))
367 error (_("\"%s\": Can't find sections: %s"),
368 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
369
370 /* If we have no exec file, try to set the architecture from the
371 core file. We don't do this unconditionally since an exec file
372 typically contains more information that helps us determine the
373 architecture than a core file. */
374 if (!exec_bfd)
375 set_gdbarch_from_file (core_bfd);
376
377 push_target (&core_ops);
378 discard_cleanups (old_chain);
379
380 /* Do this before acknowledging the inferior, so if
381 post_create_inferior throws (can happen easilly if you're loading
382 a core file with the wrong exec), we aren't left with threads
383 from the previous inferior. */
384 init_thread_list ();
385
386 inferior_ptid = null_ptid;
387
388 /* Need to flush the register cache (and the frame cache) from a
389 previous debug session. If inferior_ptid ends up the same as the
390 last debug session --- e.g., b foo; run; gcore core1; step; gcore
391 core2; core core1; core core2 --- then there's potential for
392 get_current_regcache to return the cached regcache of the
393 previous session, and the frame cache being stale. */
394 registers_changed ();
395
396 /* Build up thread list from BFD sections, and possibly set the
397 current thread to the .reg/NN section matching the .reg
398 section. */
399 bfd_map_over_sections (core_bfd, add_to_thread_list,
400 bfd_get_section_by_name (core_bfd, ".reg"));
401
402 if (ptid_equal (inferior_ptid, null_ptid))
403 {
404 /* Either we found no .reg/NN section, and hence we have a
405 non-threaded core (single-threaded, from gdb's perspective),
406 or for some reason add_to_thread_list couldn't determine
407 which was the "main" thread. The latter case shouldn't
408 usually happen, but we're dealing with input here, which can
409 always be broken in different ways. */
410 struct thread_info *thread = first_thread_of_process (-1);
411
412 if (thread == NULL)
413 {
414 inferior_appeared (current_inferior (), CORELOW_PID);
415 inferior_ptid = pid_to_ptid (CORELOW_PID);
416 add_thread_silent (inferior_ptid);
417 }
418 else
419 switch_to_thread (thread->ptid);
420 }
421
422 post_create_inferior (&core_ops, from_tty);
423
424 /* Now go through the target stack looking for threads since there
425 may be a thread_stratum target loaded on top of target core by
426 now. The layer above should claim threads found in the BFD
427 sections. */
428 TRY_CATCH (except, RETURN_MASK_ERROR)
429 {
430 target_find_new_threads ();
431 }
432
433 if (except.reason < 0)
434 exception_print (gdb_stderr, except);
435
436 p = bfd_core_file_failing_command (core_bfd);
437 if (p)
438 printf_filtered (_("Core was generated by `%s'.\n"), p);
439
440 siggy = bfd_core_file_failing_signal (core_bfd);
441 if (siggy > 0)
442 {
443 /* If we don't have a CORE_GDBARCH to work with, assume a native
444 core (map gdb_signal from host signals). If we do have
445 CORE_GDBARCH to work with, but no gdb_signal_from_target
446 implementation for that gdbarch, as a fallback measure,
447 assume the host signal mapping. It'll be correct for native
448 cores, but most likely incorrect for cross-cores. */
449 enum gdb_signal sig = (core_gdbarch != NULL
450 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
451 ? gdbarch_gdb_signal_from_target (core_gdbarch,
452 siggy)
453 : gdb_signal_from_host (siggy));
454
455 printf_filtered (_("Program terminated with signal %d, %s.\n"),
456 siggy, gdb_signal_to_string (sig));
457 }
458
459 /* Fetch all registers from core file. */
460 target_fetch_registers (get_current_regcache (), -1);
461
462 /* Now, set up the frame cache, and print the top of stack. */
463 reinit_frame_cache ();
464 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC);
465 }
466
467 static void
468 core_detach (struct target_ops *ops, char *args, int from_tty)
469 {
470 if (args)
471 error (_("Too many arguments"));
472 unpush_target (ops);
473 reinit_frame_cache ();
474 if (from_tty)
475 printf_filtered (_("No core file now.\n"));
476 }
477
478 #ifdef DEPRECATED_IBM6000_TARGET
479
480 /* Resize the core memory's section table, by NUM_ADDED. Returns a
481 pointer into the first new slot. This will not be necessary when
482 the rs6000 target is converted to use the standard solib
483 framework. */
484
485 struct target_section *
486 deprecated_core_resize_section_table (int num_added)
487 {
488 int old_count;
489
490 old_count = resize_section_table (core_data, num_added);
491 return core_data->sections + old_count;
492 }
493
494 #endif
495
496 /* Try to retrieve registers from a section in core_bfd, and supply
497 them to core_vec->core_read_registers, as the register set numbered
498 WHICH.
499
500 If inferior_ptid's lwp member is zero, do the single-threaded
501 thing: look for a section named NAME. If inferior_ptid's lwp
502 member is non-zero, do the multi-threaded thing: look for a section
503 named "NAME/LWP", where LWP is the shortest ASCII decimal
504 representation of inferior_ptid's lwp member.
505
506 HUMAN_NAME is a human-readable name for the kind of registers the
507 NAME section contains, for use in error messages.
508
509 If REQUIRED is non-zero, print an error if the core file doesn't
510 have a section by the appropriate name. Otherwise, just do
511 nothing. */
512
513 static void
514 get_core_register_section (struct regcache *regcache,
515 const char *name,
516 int which,
517 const char *human_name,
518 int required)
519 {
520 static char *section_name = NULL;
521 struct bfd_section *section;
522 bfd_size_type size;
523 char *contents;
524
525 xfree (section_name);
526
527 if (ptid_get_lwp (inferior_ptid))
528 section_name = xstrprintf ("%s/%ld", name,
529 ptid_get_lwp (inferior_ptid));
530 else
531 section_name = xstrdup (name);
532
533 section = bfd_get_section_by_name (core_bfd, section_name);
534 if (! section)
535 {
536 if (required)
537 warning (_("Couldn't find %s registers in core file."),
538 human_name);
539 return;
540 }
541
542 size = bfd_section_size (core_bfd, section);
543 contents = alloca (size);
544 if (! bfd_get_section_contents (core_bfd, section, contents,
545 (file_ptr) 0, size))
546 {
547 warning (_("Couldn't read %s registers from `%s' section in core file."),
548 human_name, name);
549 return;
550 }
551
552 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
553 {
554 const struct regset *regset;
555
556 regset = gdbarch_regset_from_core_section (core_gdbarch,
557 name, size);
558 if (regset == NULL)
559 {
560 if (required)
561 warning (_("Couldn't recognize %s registers in core file."),
562 human_name);
563 return;
564 }
565
566 regset->supply_regset (regset, regcache, -1, contents, size);
567 return;
568 }
569
570 gdb_assert (core_vec);
571 core_vec->core_read_registers (regcache, contents, size, which,
572 ((CORE_ADDR)
573 bfd_section_vma (core_bfd, section)));
574 }
575
576
577 /* Get the registers out of a core file. This is the machine-
578 independent part. Fetch_core_registers is the machine-dependent
579 part, typically implemented in the xm-file for each
580 architecture. */
581
582 /* We just get all the registers, so we don't use regno. */
583
584 static void
585 get_core_registers (struct target_ops *ops,
586 struct regcache *regcache, int regno)
587 {
588 struct core_regset_section *sect_list;
589 int i;
590
591 if (!(core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
592 && (core_vec == NULL || core_vec->core_read_registers == NULL))
593 {
594 fprintf_filtered (gdb_stderr,
595 "Can't fetch registers from this type of core file\n");
596 return;
597 }
598
599 sect_list = gdbarch_core_regset_sections (get_regcache_arch (regcache));
600 if (sect_list)
601 while (sect_list->sect_name != NULL)
602 {
603 if (strcmp (sect_list->sect_name, ".reg") == 0)
604 get_core_register_section (regcache, sect_list->sect_name,
605 0, sect_list->human_name, 1);
606 else if (strcmp (sect_list->sect_name, ".reg2") == 0)
607 get_core_register_section (regcache, sect_list->sect_name,
608 2, sect_list->human_name, 0);
609 else
610 get_core_register_section (regcache, sect_list->sect_name,
611 3, sect_list->human_name, 0);
612
613 sect_list++;
614 }
615
616 else
617 {
618 get_core_register_section (regcache,
619 ".reg", 0, "general-purpose", 1);
620 get_core_register_section (regcache,
621 ".reg2", 2, "floating-point", 0);
622 }
623
624 /* Mark all registers not found in the core as unavailable. */
625 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
626 if (regcache_register_status (regcache, i) == REG_UNKNOWN)
627 regcache_raw_supply (regcache, i, NULL);
628 }
629
630 static void
631 core_files_info (struct target_ops *t)
632 {
633 print_section_info (core_data, core_bfd);
634 }
635 \f
636 struct spuid_list
637 {
638 gdb_byte *buf;
639 ULONGEST offset;
640 LONGEST len;
641 ULONGEST pos;
642 ULONGEST written;
643 };
644
645 static void
646 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
647 {
648 struct spuid_list *list = list_p;
649 enum bfd_endian byte_order
650 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
651 int fd, pos = 0;
652
653 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
654 if (pos == 0)
655 return;
656
657 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
658 {
659 store_unsigned_integer (list->buf + list->pos - list->offset,
660 4, byte_order, fd);
661 list->written += 4;
662 }
663 list->pos += 4;
664 }
665
666 static LONGEST
667 core_xfer_partial (struct target_ops *ops, enum target_object object,
668 const char *annex, gdb_byte *readbuf,
669 const gdb_byte *writebuf, ULONGEST offset,
670 LONGEST len)
671 {
672 switch (object)
673 {
674 case TARGET_OBJECT_MEMORY:
675 return section_table_xfer_memory_partial (readbuf, writebuf,
676 offset, len,
677 core_data->sections,
678 core_data->sections_end,
679 NULL);
680
681 case TARGET_OBJECT_AUXV:
682 if (readbuf)
683 {
684 /* When the aux vector is stored in core file, BFD
685 represents this with a fake section called ".auxv". */
686
687 struct bfd_section *section;
688 bfd_size_type size;
689
690 section = bfd_get_section_by_name (core_bfd, ".auxv");
691 if (section == NULL)
692 return -1;
693
694 size = bfd_section_size (core_bfd, section);
695 if (offset >= size)
696 return 0;
697 size -= offset;
698 if (size > len)
699 size = len;
700 if (size > 0
701 && !bfd_get_section_contents (core_bfd, section, readbuf,
702 (file_ptr) offset, size))
703 {
704 warning (_("Couldn't read NT_AUXV note in core file."));
705 return -1;
706 }
707
708 return size;
709 }
710 return -1;
711
712 case TARGET_OBJECT_WCOOKIE:
713 if (readbuf)
714 {
715 /* When the StackGhost cookie is stored in core file, BFD
716 represents this with a fake section called
717 ".wcookie". */
718
719 struct bfd_section *section;
720 bfd_size_type size;
721
722 section = bfd_get_section_by_name (core_bfd, ".wcookie");
723 if (section == NULL)
724 return -1;
725
726 size = bfd_section_size (core_bfd, section);
727 if (offset >= size)
728 return 0;
729 size -= offset;
730 if (size > len)
731 size = len;
732 if (size > 0
733 && !bfd_get_section_contents (core_bfd, section, readbuf,
734 (file_ptr) offset, size))
735 {
736 warning (_("Couldn't read StackGhost cookie in core file."));
737 return -1;
738 }
739
740 return size;
741 }
742 return -1;
743
744 case TARGET_OBJECT_LIBRARIES:
745 if (core_gdbarch
746 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
747 {
748 if (writebuf)
749 return -1;
750 return
751 gdbarch_core_xfer_shared_libraries (core_gdbarch,
752 readbuf, offset, len);
753 }
754 /* FALL THROUGH */
755
756 case TARGET_OBJECT_SPU:
757 if (readbuf && annex)
758 {
759 /* When the SPU contexts are stored in a core file, BFD
760 represents this with a fake section called
761 "SPU/<annex>". */
762
763 struct bfd_section *section;
764 bfd_size_type size;
765 char sectionstr[100];
766
767 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
768
769 section = bfd_get_section_by_name (core_bfd, sectionstr);
770 if (section == NULL)
771 return -1;
772
773 size = bfd_section_size (core_bfd, section);
774 if (offset >= size)
775 return 0;
776 size -= offset;
777 if (size > len)
778 size = len;
779 if (size > 0
780 && !bfd_get_section_contents (core_bfd, section, readbuf,
781 (file_ptr) offset, size))
782 {
783 warning (_("Couldn't read SPU section in core file."));
784 return -1;
785 }
786
787 return size;
788 }
789 else if (readbuf)
790 {
791 /* NULL annex requests list of all present spuids. */
792 struct spuid_list list;
793
794 list.buf = readbuf;
795 list.offset = offset;
796 list.len = len;
797 list.pos = 0;
798 list.written = 0;
799 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
800 return list.written;
801 }
802 return -1;
803
804 default:
805 if (ops->beneath != NULL)
806 return ops->beneath->to_xfer_partial (ops->beneath, object,
807 annex, readbuf,
808 writebuf, offset, len);
809 return -1;
810 }
811 }
812
813 \f
814 /* If mourn is being called in all the right places, this could be say
815 `gdb internal error' (since generic_mourn calls
816 breakpoint_init_inferior). */
817
818 static int
819 ignore (struct gdbarch *gdbarch, struct bp_target_info *bp_tgt)
820 {
821 return 0;
822 }
823
824
825 /* Okay, let's be honest: threads gleaned from a core file aren't
826 exactly lively, are they? On the other hand, if we don't claim
827 that each & every one is alive, then we don't get any of them
828 to appear in an "info thread" command, which is quite a useful
829 behaviour.
830 */
831 static int
832 core_thread_alive (struct target_ops *ops, ptid_t ptid)
833 {
834 return 1;
835 }
836
837 /* Ask the current architecture what it knows about this core file.
838 That will be used, in turn, to pick a better architecture. This
839 wrapper could be avoided if targets got a chance to specialize
840 core_ops. */
841
842 static const struct target_desc *
843 core_read_description (struct target_ops *target)
844 {
845 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
846 return gdbarch_core_read_description (core_gdbarch,
847 target, core_bfd);
848
849 return NULL;
850 }
851
852 static char *
853 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
854 {
855 static char buf[64];
856 struct inferior *inf;
857 int pid;
858
859 /* The preferred way is to have a gdbarch/OS specific
860 implementation. */
861 if (core_gdbarch
862 && gdbarch_core_pid_to_str_p (core_gdbarch))
863 return gdbarch_core_pid_to_str (core_gdbarch, ptid);
864
865 /* Otherwise, if we don't have one, we'll just fallback to
866 "process", with normal_pid_to_str. */
867
868 /* Try the LWPID field first. */
869 pid = ptid_get_lwp (ptid);
870 if (pid != 0)
871 return normal_pid_to_str (pid_to_ptid (pid));
872
873 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
874 only if it isn't a fake PID. */
875 inf = find_inferior_pid (ptid_get_pid (ptid));
876 if (inf != NULL && !inf->fake_pid_p)
877 return normal_pid_to_str (ptid);
878
879 /* No luck. We simply don't have a valid PID to print. */
880 xsnprintf (buf, sizeof buf, "<main task>");
881 return buf;
882 }
883
884 static int
885 core_has_memory (struct target_ops *ops)
886 {
887 return (core_bfd != NULL);
888 }
889
890 static int
891 core_has_stack (struct target_ops *ops)
892 {
893 return (core_bfd != NULL);
894 }
895
896 static int
897 core_has_registers (struct target_ops *ops)
898 {
899 return (core_bfd != NULL);
900 }
901
902 /* Fill in core_ops with its defined operations and properties. */
903
904 static void
905 init_core_ops (void)
906 {
907 core_ops.to_shortname = "core";
908 core_ops.to_longname = "Local core dump file";
909 core_ops.to_doc =
910 "Use a core file as a target. Specify the filename of the core file.";
911 core_ops.to_open = core_open;
912 core_ops.to_close = core_close;
913 core_ops.to_attach = find_default_attach;
914 core_ops.to_detach = core_detach;
915 core_ops.to_fetch_registers = get_core_registers;
916 core_ops.to_xfer_partial = core_xfer_partial;
917 core_ops.to_files_info = core_files_info;
918 core_ops.to_insert_breakpoint = ignore;
919 core_ops.to_remove_breakpoint = ignore;
920 core_ops.to_create_inferior = find_default_create_inferior;
921 core_ops.to_thread_alive = core_thread_alive;
922 core_ops.to_read_description = core_read_description;
923 core_ops.to_pid_to_str = core_pid_to_str;
924 core_ops.to_stratum = process_stratum;
925 core_ops.to_has_memory = core_has_memory;
926 core_ops.to_has_stack = core_has_stack;
927 core_ops.to_has_registers = core_has_registers;
928 core_ops.to_magic = OPS_MAGIC;
929
930 if (core_target)
931 internal_error (__FILE__, __LINE__,
932 _("init_core_ops: core target already exists (\"%s\")."),
933 core_target->to_longname);
934 core_target = &core_ops;
935 }
936
937 void
938 _initialize_corelow (void)
939 {
940 init_core_ops ();
941
942 add_target (&core_ops);
943 }
This page took 0.06494 seconds and 4 git commands to generate.