* regset.h (struct core_regset_section): Add HUMAN_NAME.
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdb_string.h"
25 #include <errno.h>
26 #include <signal.h>
27 #include <fcntl.h>
28 #ifdef HAVE_SYS_FILE_H
29 #include <sys/file.h> /* needed for F_OK and friends */
30 #endif
31 #include "frame.h" /* required by inferior.h */
32 #include "inferior.h"
33 #include "symtab.h"
34 #include "command.h"
35 #include "bfd.h"
36 #include "target.h"
37 #include "gdbcore.h"
38 #include "gdbthread.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "symfile.h"
42 #include "exec.h"
43 #include "readline/readline.h"
44 #include "gdb_assert.h"
45 #include "exceptions.h"
46 #include "solib.h"
47 #include "filenames.h"
48 #include "progspace.h"
49
50
51 #ifndef O_LARGEFILE
52 #define O_LARGEFILE 0
53 #endif
54
55 /* List of all available core_fns. On gdb startup, each core file
56 register reader calls deprecated_add_core_fns() to register
57 information on each core format it is prepared to read. */
58
59 static struct core_fns *core_file_fns = NULL;
60
61 /* The core_fns for a core file handler that is prepared to read the core
62 file currently open on core_bfd. */
63
64 static struct core_fns *core_vec = NULL;
65
66 /* FIXME: kettenis/20031023: Eventually this variable should
67 disappear. */
68
69 struct gdbarch *core_gdbarch = NULL;
70
71 /* Per-core data. Currently, only the section table. Note that these
72 target sections are *not* mapped in the current address spaces' set
73 of target sections --- those should come only from pure executable
74 or shared library bfds. The core bfd sections are an
75 implementation detail of the core target, just like ptrace is for
76 unix child targets. */
77 static struct target_section_table *core_data;
78
79 /* True if we needed to fake the pid of the loaded core inferior. */
80 static int core_has_fake_pid = 0;
81
82 static void core_files_info (struct target_ops *);
83
84 static struct core_fns *sniff_core_bfd (bfd *);
85
86 static int gdb_check_format (bfd *);
87
88 static void core_open (char *, int);
89
90 static void core_detach (struct target_ops *ops, char *, int);
91
92 static void core_close (int);
93
94 static void core_close_cleanup (void *ignore);
95
96 static void add_to_thread_list (bfd *, asection *, void *);
97
98 static void init_core_ops (void);
99
100 void _initialize_corelow (void);
101
102 struct target_ops core_ops;
103
104 /* An arbitrary identifier for the core inferior. */
105 #define CORELOW_PID 1
106
107 /* Link a new core_fns into the global core_file_fns list. Called on gdb
108 startup by the _initialize routine in each core file register reader, to
109 register information about each format the the reader is prepared to
110 handle. */
111
112 void
113 deprecated_add_core_fns (struct core_fns *cf)
114 {
115 cf->next = core_file_fns;
116 core_file_fns = cf;
117 }
118
119 /* The default function that core file handlers can use to examine a
120 core file BFD and decide whether or not to accept the job of
121 reading the core file. */
122
123 int
124 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
125 {
126 int result;
127
128 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
129 return (result);
130 }
131
132 /* Walk through the list of core functions to find a set that can
133 handle the core file open on ABFD. Default to the first one in the
134 list if nothing matches. Returns pointer to set that is
135 selected. */
136
137 static struct core_fns *
138 sniff_core_bfd (bfd *abfd)
139 {
140 struct core_fns *cf;
141 struct core_fns *yummy = NULL;
142 int matches = 0;;
143
144 /* Don't sniff if we have support for register sets in CORE_GDBARCH. */
145 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
146 return NULL;
147
148 for (cf = core_file_fns; cf != NULL; cf = cf->next)
149 {
150 if (cf->core_sniffer (cf, abfd))
151 {
152 yummy = cf;
153 matches++;
154 }
155 }
156 if (matches > 1)
157 {
158 warning (_("\"%s\": ambiguous core format, %d handlers match"),
159 bfd_get_filename (abfd), matches);
160 }
161 else if (matches == 0)
162 {
163 warning (_("\"%s\": no core file handler recognizes format, using default"),
164 bfd_get_filename (abfd));
165 }
166 if (yummy == NULL)
167 {
168 yummy = core_file_fns;
169 }
170 return (yummy);
171 }
172
173 /* The default is to reject every core file format we see. Either
174 BFD has to recognize it, or we have to provide a function in the
175 core file handler that recognizes it. */
176
177 int
178 default_check_format (bfd *abfd)
179 {
180 return (0);
181 }
182
183 /* Attempt to recognize core file formats that BFD rejects. */
184
185 static int
186 gdb_check_format (bfd *abfd)
187 {
188 struct core_fns *cf;
189
190 for (cf = core_file_fns; cf != NULL; cf = cf->next)
191 {
192 if (cf->check_format (abfd))
193 {
194 return (1);
195 }
196 }
197 return (0);
198 }
199
200 /* Discard all vestiges of any previous core file and mark data and stack
201 spaces as empty. */
202
203 static void
204 core_close (int quitting)
205 {
206 char *name;
207
208 if (core_bfd)
209 {
210 int pid = ptid_get_pid (inferior_ptid);
211 inferior_ptid = null_ptid; /* Avoid confusion from thread stuff */
212 exit_inferior_silent (pid);
213
214 /* Clear out solib state while the bfd is still open. See
215 comments in clear_solib in solib.c. */
216 clear_solib ();
217
218 xfree (core_data->sections);
219 xfree (core_data);
220 core_data = NULL;
221 core_has_fake_pid = 0;
222
223 name = bfd_get_filename (core_bfd);
224 if (!bfd_close (core_bfd))
225 warning (_("cannot close \"%s\": %s"),
226 name, bfd_errmsg (bfd_get_error ()));
227 xfree (name);
228 core_bfd = NULL;
229 }
230 core_vec = NULL;
231 core_gdbarch = NULL;
232 }
233
234 static void
235 core_close_cleanup (void *ignore)
236 {
237 core_close (0/*ignored*/);
238 }
239
240 /* Look for sections whose names start with `.reg/' so that we can extract the
241 list of threads in a core file. */
242
243 static void
244 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
245 {
246 ptid_t ptid;
247 int core_tid;
248 int pid, lwpid;
249 asection *reg_sect = (asection *) reg_sect_arg;
250
251 if (strncmp (bfd_section_name (abfd, asect), ".reg/", 5) != 0)
252 return;
253
254 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
255
256 if (core_gdbarch
257 && gdbarch_core_reg_section_encodes_pid (core_gdbarch))
258 {
259 uint32_t merged_pid = core_tid;
260 pid = merged_pid & 0xffff;
261 lwpid = merged_pid >> 16;
262
263 /* This can happen on solaris core, for example, if we don't
264 find a NT_PSTATUS note in the core, but do find NT_LWPSTATUS
265 notes. */
266 if (pid == 0)
267 {
268 core_has_fake_pid = 1;
269 pid = CORELOW_PID;
270 }
271 }
272 else
273 {
274 core_has_fake_pid = 1;
275 pid = CORELOW_PID;
276 lwpid = core_tid;
277 }
278
279 if (current_inferior ()->pid == 0)
280 inferior_appeared (current_inferior (), pid);
281
282 ptid = ptid_build (pid, lwpid, 0);
283
284 add_thread (ptid);
285
286 /* Warning, Will Robinson, looking at BFD private data! */
287
288 if (reg_sect != NULL
289 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
290 inferior_ptid = ptid; /* Yes, make it current */
291 }
292
293 /* This routine opens and sets up the core file bfd. */
294
295 static void
296 core_open (char *filename, int from_tty)
297 {
298 const char *p;
299 int siggy;
300 struct cleanup *old_chain;
301 char *temp;
302 bfd *temp_bfd;
303 int scratch_chan;
304 int flags;
305
306 target_preopen (from_tty);
307 if (!filename)
308 {
309 if (core_bfd)
310 error (_("No core file specified. (Use `detach' to stop debugging a core file.)"));
311 else
312 error (_("No core file specified."));
313 }
314
315 filename = tilde_expand (filename);
316 if (!IS_ABSOLUTE_PATH(filename))
317 {
318 temp = concat (current_directory, "/", filename, (char *)NULL);
319 xfree (filename);
320 filename = temp;
321 }
322
323 old_chain = make_cleanup (xfree, filename);
324
325 flags = O_BINARY | O_LARGEFILE;
326 if (write_files)
327 flags |= O_RDWR;
328 else
329 flags |= O_RDONLY;
330 scratch_chan = open (filename, flags, 0);
331 if (scratch_chan < 0)
332 perror_with_name (filename);
333
334 temp_bfd = bfd_fopen (filename, gnutarget,
335 write_files ? FOPEN_RUB : FOPEN_RB,
336 scratch_chan);
337 if (temp_bfd == NULL)
338 perror_with_name (filename);
339
340 if (!bfd_check_format (temp_bfd, bfd_core)
341 && !gdb_check_format (temp_bfd))
342 {
343 /* Do it after the err msg */
344 /* FIXME: should be checking for errors from bfd_close (for one thing,
345 on error it does not free all the storage associated with the
346 bfd). */
347 make_cleanup_bfd_close (temp_bfd);
348 error (_("\"%s\" is not a core dump: %s"),
349 filename, bfd_errmsg (bfd_get_error ()));
350 }
351
352 /* Looks semi-reasonable. Toss the old core file and work on the new. */
353
354 discard_cleanups (old_chain); /* Don't free filename any more */
355 unpush_target (&core_ops);
356 core_bfd = temp_bfd;
357 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
358
359 /* FIXME: kettenis/20031023: This is very dangerous. The
360 CORE_GDBARCH that results from this call may very well be
361 different from CURRENT_GDBARCH. However, its methods may only
362 work if it is selected as the current architecture, because they
363 rely on swapped data (see gdbarch.c). We should get rid of that
364 swapped data. */
365 core_gdbarch = gdbarch_from_bfd (core_bfd);
366
367 /* Find a suitable core file handler to munch on core_bfd */
368 core_vec = sniff_core_bfd (core_bfd);
369
370 validate_files ();
371
372 core_data = XZALLOC (struct target_section_table);
373
374 /* Find the data section */
375 if (build_section_table (core_bfd,
376 &core_data->sections, &core_data->sections_end))
377 error (_("\"%s\": Can't find sections: %s"),
378 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
379
380 /* If we have no exec file, try to set the architecture from the
381 core file. We don't do this unconditionally since an exec file
382 typically contains more information that helps us determine the
383 architecture than a core file. */
384 if (!exec_bfd)
385 set_gdbarch_from_file (core_bfd);
386
387 push_target (&core_ops);
388 discard_cleanups (old_chain);
389
390 /* Do this before acknowledging the inferior, so if
391 post_create_inferior throws (can happen easilly if you're loading
392 a core file with the wrong exec), we aren't left with threads
393 from the previous inferior. */
394 init_thread_list ();
395
396 inferior_ptid = null_ptid;
397 core_has_fake_pid = 0;
398
399 /* Need to flush the register cache (and the frame cache) from a
400 previous debug session. If inferior_ptid ends up the same as the
401 last debug session --- e.g., b foo; run; gcore core1; step; gcore
402 core2; core core1; core core2 --- then there's potential for
403 get_current_regcache to return the cached regcache of the
404 previous session, and the frame cache being stale. */
405 registers_changed ();
406
407 /* Build up thread list from BFD sections, and possibly set the
408 current thread to the .reg/NN section matching the .reg
409 section. */
410 bfd_map_over_sections (core_bfd, add_to_thread_list,
411 bfd_get_section_by_name (core_bfd, ".reg"));
412
413 if (ptid_equal (inferior_ptid, null_ptid))
414 {
415 /* Either we found no .reg/NN section, and hence we have a
416 non-threaded core (single-threaded, from gdb's perspective),
417 or for some reason add_to_thread_list couldn't determine
418 which was the "main" thread. The latter case shouldn't
419 usually happen, but we're dealing with input here, which can
420 always be broken in different ways. */
421 struct thread_info *thread = first_thread_of_process (-1);
422 if (thread == NULL)
423 {
424 inferior_appeared (current_inferior (), CORELOW_PID);
425 inferior_ptid = pid_to_ptid (CORELOW_PID);
426 add_thread_silent (inferior_ptid);
427 }
428 else
429 switch_to_thread (thread->ptid);
430 }
431
432 post_create_inferior (&core_ops, from_tty);
433
434 /* Now go through the target stack looking for threads since there
435 may be a thread_stratum target loaded on top of target core by
436 now. The layer above should claim threads found in the BFD
437 sections. */
438 target_find_new_threads ();
439
440 p = bfd_core_file_failing_command (core_bfd);
441 if (p)
442 printf_filtered (_("Core was generated by `%s'.\n"), p);
443
444 siggy = bfd_core_file_failing_signal (core_bfd);
445 if (siggy > 0)
446 /* NOTE: target_signal_from_host() converts a target signal value
447 into gdb's internal signal value. Unfortunately gdb's internal
448 value is called ``target_signal'' and this function got the
449 name ..._from_host(). */
450 printf_filtered (_("Program terminated with signal %d, %s.\n"), siggy,
451 target_signal_to_string (
452 (core_gdbarch != NULL) ?
453 gdbarch_target_signal_from_host (core_gdbarch, siggy)
454 : siggy));
455
456 /* Fetch all registers from core file. */
457 target_fetch_registers (get_current_regcache (), -1);
458
459 /* Now, set up the frame cache, and print the top of stack. */
460 reinit_frame_cache ();
461 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC);
462 }
463
464 static void
465 core_detach (struct target_ops *ops, char *args, int from_tty)
466 {
467 if (args)
468 error (_("Too many arguments"));
469 unpush_target (ops);
470 reinit_frame_cache ();
471 if (from_tty)
472 printf_filtered (_("No core file now.\n"));
473 }
474
475 #ifdef DEPRECATED_IBM6000_TARGET
476
477 /* Resize the core memory's section table, by NUM_ADDED. Returns a
478 pointer into the first new slot. This will not be necessary when
479 the rs6000 target is converted to use the standard solib
480 framework. */
481
482 struct target_section *
483 deprecated_core_resize_section_table (int num_added)
484 {
485 int old_count;
486
487 old_count = resize_section_table (core_data, num_added);
488 return core_data->sections + old_count;
489 }
490
491 #endif
492
493 /* Try to retrieve registers from a section in core_bfd, and supply
494 them to core_vec->core_read_registers, as the register set numbered
495 WHICH.
496
497 If inferior_ptid's lwp member is zero, do the single-threaded
498 thing: look for a section named NAME. If inferior_ptid's lwp
499 member is non-zero, do the multi-threaded thing: look for a section
500 named "NAME/LWP", where LWP is the shortest ASCII decimal
501 representation of inferior_ptid's lwp member.
502
503 HUMAN_NAME is a human-readable name for the kind of registers the
504 NAME section contains, for use in error messages.
505
506 If REQUIRED is non-zero, print an error if the core file doesn't
507 have a section by the appropriate name. Otherwise, just do nothing. */
508
509 static void
510 get_core_register_section (struct regcache *regcache,
511 const char *name,
512 int which,
513 const char *human_name,
514 int required)
515 {
516 static char *section_name = NULL;
517 struct bfd_section *section;
518 bfd_size_type size;
519 char *contents;
520
521 xfree (section_name);
522
523 if (core_gdbarch
524 && gdbarch_core_reg_section_encodes_pid (core_gdbarch))
525 {
526 uint32_t merged_pid;
527 int pid = ptid_get_pid (inferior_ptid);
528
529 if (core_has_fake_pid)
530 pid = 0;
531
532 merged_pid = ptid_get_lwp (inferior_ptid);
533 merged_pid = merged_pid << 16 | pid;
534
535 section_name = xstrprintf ("%s/%s", name, plongest (merged_pid));
536 }
537 else if (ptid_get_lwp (inferior_ptid))
538 section_name = xstrprintf ("%s/%ld", name, ptid_get_lwp (inferior_ptid));
539 else
540 section_name = xstrdup (name);
541
542 section = bfd_get_section_by_name (core_bfd, section_name);
543 if (! section)
544 {
545 if (required)
546 warning (_("Couldn't find %s registers in core file."), human_name);
547 return;
548 }
549
550 size = bfd_section_size (core_bfd, section);
551 contents = alloca (size);
552 if (! bfd_get_section_contents (core_bfd, section, contents,
553 (file_ptr) 0, size))
554 {
555 warning (_("Couldn't read %s registers from `%s' section in core file."),
556 human_name, name);
557 return;
558 }
559
560 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
561 {
562 const struct regset *regset;
563
564 regset = gdbarch_regset_from_core_section (core_gdbarch, name, size);
565 if (regset == NULL)
566 {
567 if (required)
568 warning (_("Couldn't recognize %s registers in core file."),
569 human_name);
570 return;
571 }
572
573 regset->supply_regset (regset, regcache, -1, contents, size);
574 return;
575 }
576
577 gdb_assert (core_vec);
578 core_vec->core_read_registers (regcache, contents, size, which,
579 ((CORE_ADDR)
580 bfd_section_vma (core_bfd, section)));
581 }
582
583
584 /* Get the registers out of a core file. This is the machine-
585 independent part. Fetch_core_registers is the machine-dependent
586 part, typically implemented in the xm-file for each architecture. */
587
588 /* We just get all the registers, so we don't use regno. */
589
590 static void
591 get_core_registers (struct target_ops *ops,
592 struct regcache *regcache, int regno)
593 {
594 struct core_regset_section *sect_list;
595 int i;
596
597 if (!(core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
598 && (core_vec == NULL || core_vec->core_read_registers == NULL))
599 {
600 fprintf_filtered (gdb_stderr,
601 "Can't fetch registers from this type of core file\n");
602 return;
603 }
604
605 sect_list = gdbarch_core_regset_sections (get_regcache_arch (regcache));
606 if (sect_list)
607 while (sect_list->sect_name != NULL)
608 {
609 if (strcmp (sect_list->sect_name, ".reg") == 0)
610 get_core_register_section (regcache, sect_list->sect_name,
611 0, sect_list->human_name, 1);
612 else if (strcmp (sect_list->sect_name, ".reg2") == 0)
613 get_core_register_section (regcache, sect_list->sect_name,
614 2, sect_list->human_name, 0);
615 else
616 get_core_register_section (regcache, sect_list->sect_name,
617 3, sect_list->human_name, 0);
618
619 sect_list++;
620 }
621
622 else
623 {
624 get_core_register_section (regcache,
625 ".reg", 0, "general-purpose", 1);
626 get_core_register_section (regcache,
627 ".reg2", 2, "floating-point", 0);
628 }
629
630 /* Supply dummy value for all registers not found in the core. */
631 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
632 if (!regcache_valid_p (regcache, i))
633 regcache_raw_supply (regcache, i, NULL);
634 }
635
636 static void
637 core_files_info (struct target_ops *t)
638 {
639 print_section_info (core_data, core_bfd);
640 }
641 \f
642 struct spuid_list
643 {
644 gdb_byte *buf;
645 ULONGEST offset;
646 LONGEST len;
647 ULONGEST pos;
648 ULONGEST written;
649 };
650
651 static void
652 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
653 {
654 struct spuid_list *list = list_p;
655 enum bfd_endian byte_order
656 = bfd_big_endian (abfd)? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
657 int fd, pos = 0;
658
659 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
660 if (pos == 0)
661 return;
662
663 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
664 {
665 store_unsigned_integer (list->buf + list->pos - list->offset,
666 4, byte_order, fd);
667 list->written += 4;
668 }
669 list->pos += 4;
670 }
671
672 static LONGEST
673 core_xfer_partial (struct target_ops *ops, enum target_object object,
674 const char *annex, gdb_byte *readbuf,
675 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
676 {
677 switch (object)
678 {
679 case TARGET_OBJECT_MEMORY:
680 return section_table_xfer_memory_partial (readbuf, writebuf,
681 offset, len,
682 core_data->sections,
683 core_data->sections_end,
684 NULL);
685
686 case TARGET_OBJECT_AUXV:
687 if (readbuf)
688 {
689 /* When the aux vector is stored in core file, BFD
690 represents this with a fake section called ".auxv". */
691
692 struct bfd_section *section;
693 bfd_size_type size;
694 char *contents;
695
696 section = bfd_get_section_by_name (core_bfd, ".auxv");
697 if (section == NULL)
698 return -1;
699
700 size = bfd_section_size (core_bfd, section);
701 if (offset >= size)
702 return 0;
703 size -= offset;
704 if (size > len)
705 size = len;
706 if (size > 0
707 && !bfd_get_section_contents (core_bfd, section, readbuf,
708 (file_ptr) offset, size))
709 {
710 warning (_("Couldn't read NT_AUXV note in core file."));
711 return -1;
712 }
713
714 return size;
715 }
716 return -1;
717
718 case TARGET_OBJECT_WCOOKIE:
719 if (readbuf)
720 {
721 /* When the StackGhost cookie is stored in core file, BFD
722 represents this with a fake section called ".wcookie". */
723
724 struct bfd_section *section;
725 bfd_size_type size;
726 char *contents;
727
728 section = bfd_get_section_by_name (core_bfd, ".wcookie");
729 if (section == NULL)
730 return -1;
731
732 size = bfd_section_size (core_bfd, section);
733 if (offset >= size)
734 return 0;
735 size -= offset;
736 if (size > len)
737 size = len;
738 if (size > 0
739 && !bfd_get_section_contents (core_bfd, section, readbuf,
740 (file_ptr) offset, size))
741 {
742 warning (_("Couldn't read StackGhost cookie in core file."));
743 return -1;
744 }
745
746 return size;
747 }
748 return -1;
749
750 case TARGET_OBJECT_LIBRARIES:
751 if (core_gdbarch
752 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
753 {
754 if (writebuf)
755 return -1;
756 return
757 gdbarch_core_xfer_shared_libraries (core_gdbarch,
758 readbuf, offset, len);
759 }
760 /* FALL THROUGH */
761
762 case TARGET_OBJECT_SPU:
763 if (readbuf && annex)
764 {
765 /* When the SPU contexts are stored in a core file, BFD
766 represents this with a fake section called "SPU/<annex>". */
767
768 struct bfd_section *section;
769 bfd_size_type size;
770 char *contents;
771
772 char sectionstr[100];
773 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
774
775 section = bfd_get_section_by_name (core_bfd, sectionstr);
776 if (section == NULL)
777 return -1;
778
779 size = bfd_section_size (core_bfd, section);
780 if (offset >= size)
781 return 0;
782 size -= offset;
783 if (size > len)
784 size = len;
785 if (size > 0
786 && !bfd_get_section_contents (core_bfd, section, readbuf,
787 (file_ptr) offset, size))
788 {
789 warning (_("Couldn't read SPU section in core file."));
790 return -1;
791 }
792
793 return size;
794 }
795 else if (readbuf)
796 {
797 /* NULL annex requests list of all present spuids. */
798 struct spuid_list list;
799 list.buf = readbuf;
800 list.offset = offset;
801 list.len = len;
802 list.pos = 0;
803 list.written = 0;
804 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
805 return list.written;
806 }
807 return -1;
808
809 default:
810 if (ops->beneath != NULL)
811 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
812 readbuf, writebuf, offset, len);
813 return -1;
814 }
815 }
816
817 \f
818 /* If mourn is being called in all the right places, this could be say
819 `gdb internal error' (since generic_mourn calls breakpoint_init_inferior). */
820
821 static int
822 ignore (struct gdbarch *gdbarch, struct bp_target_info *bp_tgt)
823 {
824 return 0;
825 }
826
827
828 /* Okay, let's be honest: threads gleaned from a core file aren't
829 exactly lively, are they? On the other hand, if we don't claim
830 that each & every one is alive, then we don't get any of them
831 to appear in an "info thread" command, which is quite a useful
832 behaviour.
833 */
834 static int
835 core_thread_alive (struct target_ops *ops, ptid_t ptid)
836 {
837 return 1;
838 }
839
840 /* Ask the current architecture what it knows about this core file.
841 That will be used, in turn, to pick a better architecture. This
842 wrapper could be avoided if targets got a chance to specialize
843 core_ops. */
844
845 static const struct target_desc *
846 core_read_description (struct target_ops *target)
847 {
848 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
849 return gdbarch_core_read_description (core_gdbarch, target, core_bfd);
850
851 return NULL;
852 }
853
854 static char *
855 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
856 {
857 static char buf[64];
858
859 if (core_gdbarch
860 && gdbarch_core_pid_to_str_p (core_gdbarch))
861 {
862 char *ret = gdbarch_core_pid_to_str (core_gdbarch, ptid);
863 if (ret != NULL)
864 return ret;
865 }
866
867 if (ptid_get_lwp (ptid) == 0)
868 xsnprintf (buf, sizeof buf, "<main task>");
869 else
870 xsnprintf (buf, sizeof buf, "Thread %ld", ptid_get_lwp (ptid));
871
872 return buf;
873 }
874
875 static int
876 core_has_memory (struct target_ops *ops)
877 {
878 return (core_bfd != NULL);
879 }
880
881 static int
882 core_has_stack (struct target_ops *ops)
883 {
884 return (core_bfd != NULL);
885 }
886
887 static int
888 core_has_registers (struct target_ops *ops)
889 {
890 return (core_bfd != NULL);
891 }
892
893 /* Fill in core_ops with its defined operations and properties. */
894
895 static void
896 init_core_ops (void)
897 {
898 core_ops.to_shortname = "core";
899 core_ops.to_longname = "Local core dump file";
900 core_ops.to_doc =
901 "Use a core file as a target. Specify the filename of the core file.";
902 core_ops.to_open = core_open;
903 core_ops.to_close = core_close;
904 core_ops.to_attach = find_default_attach;
905 core_ops.to_detach = core_detach;
906 core_ops.to_fetch_registers = get_core_registers;
907 core_ops.to_xfer_partial = core_xfer_partial;
908 core_ops.to_files_info = core_files_info;
909 core_ops.to_insert_breakpoint = ignore;
910 core_ops.to_remove_breakpoint = ignore;
911 core_ops.to_create_inferior = find_default_create_inferior;
912 core_ops.to_thread_alive = core_thread_alive;
913 core_ops.to_read_description = core_read_description;
914 core_ops.to_pid_to_str = core_pid_to_str;
915 core_ops.to_stratum = core_stratum;
916 core_ops.to_has_memory = core_has_memory;
917 core_ops.to_has_stack = core_has_stack;
918 core_ops.to_has_registers = core_has_registers;
919 core_ops.to_magic = OPS_MAGIC;
920 }
921
922 void
923 _initialize_corelow (void)
924 {
925 init_core_ops ();
926
927 add_target (&core_ops);
928 }
This page took 0.075223 seconds and 5 git commands to generate.