2003-01-18 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2 Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Axis Communications AB.
4 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "symtab.h"
25 #include "inferior.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "value.h"
31 #include "opcode/cris.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34
35 /* To get entry_point_address. */
36 #include "symfile.h"
37
38 #include "solib.h" /* Support for shared libraries. */
39 #include "solib-svr4.h" /* For struct link_map_offsets. */
40 #include "gdb_string.h"
41
42
43 enum cris_num_regs
44 {
45 /* There are no floating point registers. Used in gdbserver low-linux.c. */
46 NUM_FREGS = 0,
47
48 /* There are 16 general registers. */
49 NUM_GENREGS = 16,
50
51 /* There are 16 special registers. */
52 NUM_SPECREGS = 16
53 };
54
55 /* Register numbers of various important registers.
56 FP_REGNUM Contains address of executing stack frame.
57 STR_REGNUM Contains the address of structure return values.
58 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
59 ARG1_REGNUM Contains the first parameter to a function.
60 ARG2_REGNUM Contains the second parameter to a function.
61 ARG3_REGNUM Contains the third parameter to a function.
62 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
63 SP_REGNUM Contains address of top of stack.
64 PC_REGNUM Contains address of next instruction.
65 SRP_REGNUM Subroutine return pointer register.
66 BRP_REGNUM Breakpoint return pointer register. */
67
68 /* FP_REGNUM = 8, SP_REGNUM = 14, and PC_REGNUM = 15 have been incorporated
69 into the multi-arch framework. */
70
71 enum cris_regnums
72 {
73 /* Enums with respect to the general registers, valid for all
74 CRIS versions. */
75 STR_REGNUM = 9,
76 RET_REGNUM = 10,
77 ARG1_REGNUM = 10,
78 ARG2_REGNUM = 11,
79 ARG3_REGNUM = 12,
80 ARG4_REGNUM = 13,
81
82 /* Enums with respect to the special registers, some of which may not be
83 applicable to all CRIS versions. */
84 P0_REGNUM = 16,
85 VR_REGNUM = 17,
86 P2_REGNUM = 18,
87 P3_REGNUM = 19,
88 P4_REGNUM = 20,
89 CCR_REGNUM = 21,
90 MOF_REGNUM = 23,
91 P8_REGNUM = 24,
92 IBR_REGNUM = 25,
93 IRP_REGNUM = 26,
94 SRP_REGNUM = 27,
95 BAR_REGNUM = 28,
96 DCCR_REGNUM = 29,
97 BRP_REGNUM = 30,
98 USP_REGNUM = 31
99 };
100
101 extern const struct cris_spec_reg cris_spec_regs[];
102
103 /* CRIS version, set via the user command 'set cris-version'. Affects
104 register names and sizes.*/
105 static int usr_cmd_cris_version;
106
107 /* Indicates whether to trust the above variable. */
108 static int usr_cmd_cris_version_valid = 0;
109
110 /* CRIS mode, set via the user command 'set cris-mode'. Affects availability
111 of some registers. */
112 static const char *usr_cmd_cris_mode;
113
114 /* Indicates whether to trust the above variable. */
115 static int usr_cmd_cris_mode_valid = 0;
116
117 static const char CRIS_MODE_USER[] = "CRIS_MODE_USER";
118 static const char CRIS_MODE_SUPERVISOR[] = "CRIS_MODE_SUPERVISOR";
119 static const char *cris_mode_enums[] =
120 {
121 CRIS_MODE_USER,
122 CRIS_MODE_SUPERVISOR,
123 0
124 };
125
126 /* CRIS ABI, set via the user command 'set cris-abi'.
127 There are two flavours:
128 1. Original ABI with 32-bit doubles, where arguments <= 4 bytes are
129 passed by value.
130 2. New ABI with 64-bit doubles, where arguments <= 8 bytes are passed by
131 value. */
132 static const char *usr_cmd_cris_abi;
133
134 /* Indicates whether to trust the above variable. */
135 static int usr_cmd_cris_abi_valid = 0;
136
137 /* These variables are strings instead of enums to make them usable as
138 parameters to add_set_enum_cmd. */
139 static const char CRIS_ABI_ORIGINAL[] = "CRIS_ABI_ORIGINAL";
140 static const char CRIS_ABI_V2[] = "CRIS_ABI_V2";
141 static const char CRIS_ABI_SYMBOL[] = ".$CRIS_ABI_V2";
142 static const char *cris_abi_enums[] =
143 {
144 CRIS_ABI_ORIGINAL,
145 CRIS_ABI_V2,
146 0
147 };
148
149 /* CRIS architecture specific information. */
150 struct gdbarch_tdep
151 {
152 int cris_version;
153 const char *cris_mode;
154 const char *cris_abi;
155 };
156
157 /* Functions for accessing target dependent data. */
158
159 static int
160 cris_version (void)
161 {
162 return (gdbarch_tdep (current_gdbarch)->cris_version);
163 }
164
165 static const char *
166 cris_mode (void)
167 {
168 return (gdbarch_tdep (current_gdbarch)->cris_mode);
169 }
170
171 static const char *
172 cris_abi (void)
173 {
174 return (gdbarch_tdep (current_gdbarch)->cris_abi);
175 }
176
177 /* For saving call-clobbered contents in R9 when returning structs. */
178 static CORE_ADDR struct_return_address;
179
180 struct frame_extra_info
181 {
182 CORE_ADDR return_pc;
183 int leaf_function;
184 };
185
186 /* The instruction environment needed to find single-step breakpoints. */
187 typedef
188 struct instruction_environment
189 {
190 unsigned long reg[NUM_GENREGS];
191 unsigned long preg[NUM_SPECREGS];
192 unsigned long branch_break_address;
193 unsigned long delay_slot_pc;
194 unsigned long prefix_value;
195 int branch_found;
196 int prefix_found;
197 int invalid;
198 int slot_needed;
199 int delay_slot_pc_active;
200 int xflag_found;
201 int disable_interrupt;
202 } inst_env_type;
203
204 /* Save old breakpoints in order to restore the state before a single_step.
205 At most, two breakpoints will have to be remembered. */
206 typedef
207 char binsn_quantum[BREAKPOINT_MAX];
208 static binsn_quantum break_mem[2];
209 static CORE_ADDR next_pc = 0;
210 static CORE_ADDR branch_target_address = 0;
211 static unsigned char branch_break_inserted = 0;
212
213 /* Machine-dependencies in CRIS for opcodes. */
214
215 /* Instruction sizes. */
216 enum cris_instruction_sizes
217 {
218 INST_BYTE_SIZE = 0,
219 INST_WORD_SIZE = 1,
220 INST_DWORD_SIZE = 2
221 };
222
223 /* Addressing modes. */
224 enum cris_addressing_modes
225 {
226 REGISTER_MODE = 1,
227 INDIRECT_MODE = 2,
228 AUTOINC_MODE = 3
229 };
230
231 /* Prefix addressing modes. */
232 enum cris_prefix_addressing_modes
233 {
234 PREFIX_INDEX_MODE = 2,
235 PREFIX_ASSIGN_MODE = 3,
236
237 /* Handle immediate byte offset addressing mode prefix format. */
238 PREFIX_OFFSET_MODE = 2
239 };
240
241 /* Masks for opcodes. */
242 enum cris_opcode_masks
243 {
244 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
245 SIGNED_EXTEND_BIT_MASK = 0x2,
246 SIGNED_BYTE_MASK = 0x80,
247 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
248 SIGNED_WORD_MASK = 0x8000,
249 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
250 SIGNED_DWORD_MASK = 0x80000000,
251 SIGNED_QUICK_VALUE_MASK = 0x20,
252 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
253 };
254
255 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
256 Bit 15 - 12 Operand2
257 11 - 10 Mode
258 9 - 6 Opcode
259 5 - 4 Size
260 3 - 0 Operand1 */
261
262 static int
263 cris_get_operand2 (unsigned short insn)
264 {
265 return ((insn & 0xF000) >> 12);
266 }
267
268 static int
269 cris_get_mode (unsigned short insn)
270 {
271 return ((insn & 0x0C00) >> 10);
272 }
273
274 static int
275 cris_get_opcode (unsigned short insn)
276 {
277 return ((insn & 0x03C0) >> 6);
278 }
279
280 static int
281 cris_get_size (unsigned short insn)
282 {
283 return ((insn & 0x0030) >> 4);
284 }
285
286 static int
287 cris_get_operand1 (unsigned short insn)
288 {
289 return (insn & 0x000F);
290 }
291
292 /* Additional functions in order to handle opcodes. */
293
294 static int
295 cris_get_wide_opcode (unsigned short insn)
296 {
297 return ((insn & 0x03E0) >> 5);
298 }
299
300 static int
301 cris_get_short_size (unsigned short insn)
302 {
303 return ((insn & 0x0010) >> 4);
304 }
305
306 static int
307 cris_get_quick_value (unsigned short insn)
308 {
309 return (insn & 0x003F);
310 }
311
312 static int
313 cris_get_bdap_quick_offset (unsigned short insn)
314 {
315 return (insn & 0x00FF);
316 }
317
318 static int
319 cris_get_branch_short_offset (unsigned short insn)
320 {
321 return (insn & 0x00FF);
322 }
323
324 static int
325 cris_get_asr_shift_steps (unsigned long value)
326 {
327 return (value & 0x3F);
328 }
329
330 static int
331 cris_get_asr_quick_shift_steps (unsigned short insn)
332 {
333 return (insn & 0x1F);
334 }
335
336 static int
337 cris_get_clear_size (unsigned short insn)
338 {
339 return ((insn) & 0xC000);
340 }
341
342 static int
343 cris_is_signed_extend_bit_on (unsigned short insn)
344 {
345 return (((insn) & 0x20) == 0x20);
346 }
347
348 static int
349 cris_is_xflag_bit_on (unsigned short insn)
350 {
351 return (((insn) & 0x1000) == 0x1000);
352 }
353
354 static void
355 cris_set_size_to_dword (unsigned short *insn)
356 {
357 *insn &= 0xFFCF;
358 *insn |= 0x20;
359 }
360
361 static signed char
362 cris_get_signed_offset (unsigned short insn)
363 {
364 return ((signed char) (insn & 0x00FF));
365 }
366
367 /* Calls an op function given the op-type, working on the insn and the
368 inst_env. */
369 static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *);
370
371 static CORE_ADDR cris_skip_prologue_main (CORE_ADDR pc, int frameless_p);
372
373 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
374 struct gdbarch_list *);
375
376 static int cris_delayed_get_disassembler (bfd_vma, disassemble_info *);
377
378 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
379
380 static void cris_version_update (char *ignore_args, int from_tty,
381 struct cmd_list_element *c);
382
383 static void cris_mode_update (char *ignore_args, int from_tty,
384 struct cmd_list_element *c);
385
386 static void cris_abi_update (char *ignore_args, int from_tty,
387 struct cmd_list_element *c);
388
389 static CORE_ADDR bfd_lookup_symbol (bfd *, const char *);
390
391 /* Frames information. The definition of the struct frame_info is
392
393 CORE_ADDR frame
394 CORE_ADDR pc
395 enum frame_type type;
396 CORE_ADDR return_pc
397 int leaf_function
398
399 If the compilation option -fno-omit-frame-pointer is present the
400 variable frame will be set to the content of R8 which is the frame
401 pointer register.
402
403 The variable pc contains the address where execution is performed
404 in the present frame. The innermost frame contains the current content
405 of the register PC. All other frames contain the content of the
406 register PC in the next frame.
407
408 The variable `type' indicates the frame's type: normal, SIGTRAMP
409 (associated with a signal handler), dummy (associated with a dummy
410 frame).
411
412 The variable return_pc contains the address where execution should be
413 resumed when the present frame has finished, the return address.
414
415 The variable leaf_function is 1 if the return address is in the register
416 SRP, and 0 if it is on the stack.
417
418 Prologue instructions C-code.
419 The prologue may consist of (-fno-omit-frame-pointer)
420 1) 2)
421 push srp
422 push r8 push r8
423 move.d sp,r8 move.d sp,r8
424 subq X,sp subq X,sp
425 movem rY,[sp] movem rY,[sp]
426 move.S rZ,[r8-U] move.S rZ,[r8-U]
427
428 where 1 is a non-terminal function, and 2 is a leaf-function.
429
430 Note that this assumption is extremely brittle, and will break at the
431 slightest change in GCC's prologue.
432
433 If local variables are declared or register contents are saved on stack
434 the subq-instruction will be present with X as the number of bytes
435 needed for storage. The reshuffle with respect to r8 may be performed
436 with any size S (b, w, d) and any of the general registers Z={0..13}.
437 The offset U should be representable by a signed 8-bit value in all cases.
438 Thus, the prefix word is assumed to be immediate byte offset mode followed
439 by another word containing the instruction.
440
441 Degenerate cases:
442 3)
443 push r8
444 move.d sp,r8
445 move.d r8,sp
446 pop r8
447
448 Prologue instructions C++-code.
449 Case 1) and 2) in the C-code may be followed by
450
451 move.d r10,rS ; this
452 move.d r11,rT ; P1
453 move.d r12,rU ; P2
454 move.d r13,rV ; P3
455 move.S [r8+U],rZ ; P4
456
457 if any of the call parameters are stored. The host expects these
458 instructions to be executed in order to get the call parameters right. */
459
460 /* Examine the prologue of a function. The variable ip is the address of
461 the first instruction of the prologue. The variable limit is the address
462 of the first instruction after the prologue. The variable fi contains the
463 information in struct frame_info. The variable frameless_p controls whether
464 the entire prologue is examined (0) or just enough instructions to
465 determine that it is a prologue (1). */
466
467 CORE_ADDR
468 cris_examine (CORE_ADDR ip, CORE_ADDR limit, struct frame_info *fi,
469 int frameless_p)
470 {
471 /* Present instruction. */
472 unsigned short insn;
473
474 /* Next instruction, lookahead. */
475 unsigned short insn_next;
476 int regno;
477
478 /* Is there a push fp? */
479 int have_fp;
480
481 /* Number of byte on stack used for local variables and movem. */
482 int val;
483
484 /* Highest register number in a movem. */
485 int regsave;
486
487 /* move.d r<source_register>,rS */
488 short source_register;
489
490 /* This frame is with respect to a leaf until a push srp is found. */
491 get_frame_extra_info (fi)->leaf_function = 1;
492
493 /* This frame is without the FP until a push fp is found. */
494 have_fp = 0;
495
496 /* Assume nothing on stack. */
497 val = 0;
498 regsave = -1;
499
500 /* No information about register contents so far. */
501
502 /* We only want to know the end of the prologue when fi->saved_regs == 0.
503 When the saved registers are allocated full information is required. */
504 if (get_frame_saved_regs (fi))
505 {
506 for (regno = 0; regno < NUM_REGS; regno++)
507 get_frame_saved_regs (fi)[regno] = 0;
508 }
509
510 /* Find the prologue instructions. */
511 do
512 {
513 insn = read_memory_unsigned_integer (ip, sizeof (short));
514 ip += sizeof (short);
515 if (insn == 0xE1FC)
516 {
517 /* push <reg> 32 bit instruction */
518 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
519 ip += sizeof (short);
520 regno = cris_get_operand2 (insn_next);
521
522 /* This check, meant to recognize srp, used to be regno ==
523 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
524 if (insn_next == 0xBE7E)
525 {
526 if (frameless_p)
527 {
528 return ip;
529 }
530 get_frame_extra_info (fi)->leaf_function = 0;
531 }
532 else if (regno == FP_REGNUM)
533 {
534 have_fp = 1;
535 }
536 }
537 else if (insn == 0x866E)
538 {
539 /* move.d sp,r8 */
540 if (frameless_p)
541 {
542 return ip;
543 }
544 continue;
545 }
546 else if (cris_get_operand2 (insn) == SP_REGNUM
547 && cris_get_mode (insn) == 0x0000
548 && cris_get_opcode (insn) == 0x000A)
549 {
550 /* subq <val>,sp */
551 val = cris_get_quick_value (insn);
552 }
553 else if (cris_get_mode (insn) == 0x0002
554 && cris_get_opcode (insn) == 0x000F
555 && cris_get_size (insn) == 0x0003
556 && cris_get_operand1 (insn) == SP_REGNUM)
557 {
558 /* movem r<regsave>,[sp] */
559 if (frameless_p)
560 {
561 return ip;
562 }
563 regsave = cris_get_operand2 (insn);
564 }
565 else if (cris_get_operand2 (insn) == SP_REGNUM
566 && ((insn & 0x0F00) >> 8) == 0x0001
567 && (cris_get_signed_offset (insn) < 0))
568 {
569 /* Immediate byte offset addressing prefix word with sp as base
570 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
571 is between 64 and 128.
572 movem r<regsave>,[sp=sp-<val>] */
573 val = -cris_get_signed_offset (insn);
574 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
575 ip += sizeof (short);
576 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
577 && cris_get_opcode (insn_next) == 0x000F
578 && cris_get_size (insn_next) == 0x0003
579 && cris_get_operand1 (insn_next) == SP_REGNUM)
580 {
581 if (frameless_p)
582 {
583 return ip;
584 }
585 regsave = cris_get_operand2 (insn_next);
586 }
587 else
588 {
589 /* The prologue ended before the limit was reached. */
590 ip -= 2 * sizeof (short);
591 break;
592 }
593 }
594 else if (cris_get_mode (insn) == 0x0001
595 && cris_get_opcode (insn) == 0x0009
596 && cris_get_size (insn) == 0x0002)
597 {
598 /* move.d r<10..13>,r<0..15> */
599 if (frameless_p)
600 {
601 return ip;
602 }
603 source_register = cris_get_operand1 (insn);
604
605 /* FIXME? In the glibc solibs, the prologue might contain something
606 like (this example taken from relocate_doit):
607 move.d $pc,$r0
608 sub.d 0xfffef426,$r0
609 which isn't covered by the source_register check below. Question
610 is whether to add a check for this combo, or make better use of
611 the limit variable instead. */
612 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
613 {
614 /* The prologue ended before the limit was reached. */
615 ip -= sizeof (short);
616 break;
617 }
618 }
619 else if (cris_get_operand2 (insn) == FP_REGNUM
620 /* The size is a fixed-size. */
621 && ((insn & 0x0F00) >> 8) == 0x0001
622 /* A negative offset. */
623 && (cris_get_signed_offset (insn) < 0))
624 {
625 /* move.S rZ,[r8-U] (?) */
626 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
627 ip += sizeof (short);
628 regno = cris_get_operand2 (insn_next);
629 if ((regno >= 0 && regno < SP_REGNUM)
630 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
631 && cris_get_opcode (insn_next) == 0x000F)
632 {
633 /* move.S rZ,[r8-U] */
634 continue;
635 }
636 else
637 {
638 /* The prologue ended before the limit was reached. */
639 ip -= 2 * sizeof (short);
640 break;
641 }
642 }
643 else if (cris_get_operand2 (insn) == FP_REGNUM
644 /* The size is a fixed-size. */
645 && ((insn & 0x0F00) >> 8) == 0x0001
646 /* A positive offset. */
647 && (cris_get_signed_offset (insn) > 0))
648 {
649 /* move.S [r8+U],rZ (?) */
650 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
651 ip += sizeof (short);
652 regno = cris_get_operand2 (insn_next);
653 if ((regno >= 0 && regno < SP_REGNUM)
654 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
655 && cris_get_opcode (insn_next) == 0x0009
656 && cris_get_operand1 (insn_next) == regno)
657 {
658 /* move.S [r8+U],rZ */
659 continue;
660 }
661 else
662 {
663 /* The prologue ended before the limit was reached. */
664 ip -= 2 * sizeof (short);
665 break;
666 }
667 }
668 else
669 {
670 /* The prologue ended before the limit was reached. */
671 ip -= sizeof (short);
672 break;
673 }
674 }
675 while (ip < limit);
676
677 /* We only want to know the end of the prologue when
678 fi->saved_regs == 0. */
679 if (!get_frame_saved_regs (fi))
680 return ip;
681
682 if (have_fp)
683 {
684 get_frame_saved_regs (fi)[FP_REGNUM] = get_frame_base (fi);
685
686 /* Calculate the addresses. */
687 for (regno = regsave; regno >= 0; regno--)
688 {
689 get_frame_saved_regs (fi)[regno] = get_frame_base (fi) - val;
690 val -= 4;
691 }
692 if (get_frame_extra_info (fi)->leaf_function)
693 {
694 /* Set the register SP to contain the stack pointer of
695 the caller. */
696 get_frame_saved_regs (fi)[SP_REGNUM] = get_frame_base (fi) + 4;
697 }
698 else
699 {
700 /* Set the register SP to contain the stack pointer of
701 the caller. */
702 get_frame_saved_regs (fi)[SP_REGNUM] = get_frame_base (fi) + 8;
703
704 /* Set the register SRP to contain the return address of
705 the caller. */
706 get_frame_saved_regs (fi)[SRP_REGNUM] = get_frame_base (fi) + 4;
707 }
708 }
709 return ip;
710 }
711
712 /* Advance pc beyond any function entry prologue instructions at pc
713 to reach some "real" code. */
714
715 CORE_ADDR
716 cris_skip_prologue (CORE_ADDR pc)
717 {
718 return cris_skip_prologue_main (pc, 0);
719 }
720
721 /* As cris_skip_prologue, but stops as soon as it knows that the function
722 has a frame. Its result is equal to its input pc if the function is
723 frameless, unequal otherwise. */
724
725 CORE_ADDR
726 cris_skip_prologue_frameless_p (CORE_ADDR pc)
727 {
728 return cris_skip_prologue_main (pc, 1);
729 }
730
731 /* Given a PC value corresponding to the start of a function, return the PC
732 of the first instruction after the function prologue. */
733
734 CORE_ADDR
735 cris_skip_prologue_main (CORE_ADDR pc, int frameless_p)
736 {
737 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
738 struct frame_info *fi;
739 struct symtab_and_line sal = find_pc_line (pc, 0);
740 int best_limit;
741 CORE_ADDR pc_after_prologue;
742
743 /* frame_info now contains dynamic memory. Since fi is a dummy
744 here, I don't bother allocating memory for saved_regs. */
745 fi = deprecated_frame_xmalloc_with_cleanup (0, sizeof (struct frame_extra_info));
746
747 /* If there is no symbol information then sal.end == 0, and we end up
748 examining only the first instruction in the function prologue.
749 Exaggerating the limit seems to be harmless. */
750 if (sal.end > 0)
751 best_limit = sal.end;
752 else
753 best_limit = pc + 100;
754
755 pc_after_prologue = cris_examine (pc, best_limit, fi, frameless_p);
756 do_cleanups (old_chain);
757 return pc_after_prologue;
758 }
759
760 /* Use the program counter to determine the contents and size of a breakpoint
761 instruction. It returns a pointer to a string of bytes that encode a
762 breakpoint instruction, stores the length of the string to *lenptr, and
763 adjusts pcptr (if necessary) to point to the actual memory location where
764 the breakpoint should be inserted. */
765
766 const unsigned char *
767 cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
768 {
769 static unsigned char break_insn[] = {0x38, 0xe9};
770 *lenptr = 2;
771
772 return break_insn;
773 }
774
775 /* Returns the register SRP (subroutine return pointer) which must contain
776 the content of the register PC after a function call. */
777
778 static CORE_ADDR
779 cris_saved_pc_after_call (struct frame_info *frame)
780 {
781 return read_register (SRP_REGNUM);
782 }
783
784 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
785 0 otherwise. */
786
787 int
788 cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
789 {
790 int version = cris_version ();
791
792 switch (spec_reg.applicable_version)
793 {
794 case cris_ver_version_all:
795 return 1;
796 case cris_ver_warning:
797 /* Indeterminate/obsolete. */
798 return 0;
799 case cris_ver_sim:
800 /* Simulator only. */
801 return 0;
802 case cris_ver_v0_3:
803 return (version >= 0 && version <= 3);
804 case cris_ver_v3p:
805 return (version >= 3);
806 case cris_ver_v8:
807 return (version == 8 || version == 9);
808 case cris_ver_v8p:
809 return (version >= 8);
810 case cris_ver_v10p:
811 return (version >= 10);
812 default:
813 /* Invalid cris version. */
814 return 0;
815 }
816 }
817
818 /* Returns the register size in unit byte. Returns 0 for an unimplemented
819 register, -1 for an invalid register. */
820
821 int
822 cris_register_size (int regno)
823 {
824 int i;
825 int spec_regno;
826
827 if (regno >= 0 && regno < NUM_GENREGS)
828 {
829 /* General registers (R0 - R15) are 32 bits. */
830 return 4;
831 }
832 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
833 {
834 /* Special register (R16 - R31). cris_spec_regs is zero-based.
835 Adjust regno accordingly. */
836 spec_regno = regno - NUM_GENREGS;
837
838 /* The entries in cris_spec_regs are stored in register number order,
839 which means we can shortcut into the array when searching it. */
840 for (i = spec_regno; cris_spec_regs[i].name != NULL; i++)
841 {
842 if (cris_spec_regs[i].number == spec_regno
843 && cris_spec_reg_applicable (cris_spec_regs[i]))
844 /* Go with the first applicable register. */
845 return cris_spec_regs[i].reg_size;
846 }
847 /* Special register not applicable to this CRIS version. */
848 return 0;
849 }
850 else
851 {
852 /* Invalid register. */
853 return -1;
854 }
855 }
856
857 /* Nonzero if regno should not be fetched from the target. This is the case
858 for unimplemented (size 0) and non-existant registers. */
859
860 int
861 cris_cannot_fetch_register (int regno)
862 {
863 return ((regno < 0 || regno >= NUM_REGS)
864 || (cris_register_size (regno) == 0));
865 }
866
867 /* Nonzero if regno should not be written to the target, for various
868 reasons. */
869
870 int
871 cris_cannot_store_register (int regno)
872 {
873 /* There are three kinds of registers we refuse to write to.
874 1. Those that not implemented.
875 2. Those that are read-only (depends on the processor mode).
876 3. Those registers to which a write has no effect.
877 */
878
879 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
880 /* Not implemented. */
881 return 1;
882
883 else if (regno == VR_REGNUM)
884 /* Read-only. */
885 return 1;
886
887 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
888 /* Writing has no effect. */
889 return 1;
890
891 else if (cris_mode () == CRIS_MODE_USER)
892 {
893 if (regno == IBR_REGNUM || regno == BAR_REGNUM || regno == BRP_REGNUM
894 || regno == IRP_REGNUM)
895 /* Read-only in user mode. */
896 return 1;
897 }
898
899 return 0;
900 }
901
902 /* Returns the register offset for the first byte of register regno's space
903 in the saved register state. Returns -1 for an invalid or unimplemented
904 register. */
905
906 int
907 cris_register_offset (int regno)
908 {
909 int i;
910 int reg_size;
911 int offset = 0;
912
913 if (regno >= 0 && regno < NUM_REGS)
914 {
915 /* FIXME: The offsets should be cached and calculated only once,
916 when the architecture being debugged has changed. */
917 for (i = 0; i < regno; i++)
918 offset += cris_register_size (i);
919
920 return offset;
921 }
922 else
923 {
924 /* Invalid register. */
925 return -1;
926 }
927 }
928
929 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
930 of data in register regno. */
931
932 struct type *
933 cris_register_virtual_type (int regno)
934 {
935 if (regno == SP_REGNUM || regno == PC_REGNUM
936 || (regno > P8_REGNUM && regno < USP_REGNUM))
937 {
938 /* SP, PC, IBR, IRP, SRP, BAR, DCCR, BRP */
939 return lookup_pointer_type (builtin_type_void);
940 }
941 else if (regno == P8_REGNUM || regno == USP_REGNUM
942 || (regno >= 0 && regno < SP_REGNUM))
943 {
944 /* R0 - R13, P8, P15 */
945 return builtin_type_unsigned_long;
946 }
947 else if (regno > P3_REGNUM && regno < P8_REGNUM)
948 {
949 /* P4, CCR, DCR0, DCR1 */
950 return builtin_type_unsigned_short;
951 }
952 else if (regno > PC_REGNUM && regno < P4_REGNUM)
953 {
954 /* P0, P1, P2, P3 */
955 return builtin_type_unsigned_char;
956 }
957 else
958 {
959 /* Invalid register. */
960 return builtin_type_void;
961 }
962 }
963
964 /* Stores a function return value of type type, where valbuf is the address
965 of the value to be stored. */
966
967 /* In the original CRIS ABI, R10 is used to store return values. */
968
969 void
970 cris_abi_original_store_return_value (struct type *type, char *valbuf)
971 {
972 int len = TYPE_LENGTH (type);
973
974 if (len <= REGISTER_SIZE)
975 deprecated_write_register_bytes (REGISTER_BYTE (RET_REGNUM), valbuf, len);
976 else
977 internal_error (__FILE__, __LINE__, "cris_abi_original_store_return_value: type length too large.");
978 }
979
980 /* In the CRIS ABI V2, R10 and R11 are used to store return values. */
981
982 void
983 cris_abi_v2_store_return_value (struct type *type, char *valbuf)
984 {
985 int len = TYPE_LENGTH (type);
986
987 if (len <= 2 * REGISTER_SIZE)
988 {
989 /* Note that this works since R10 and R11 are consecutive registers. */
990 deprecated_write_register_bytes (REGISTER_BYTE (RET_REGNUM), valbuf,
991 len);
992 }
993 else
994 internal_error (__FILE__, __LINE__, "cris_abi_v2_store_return_value: type length too large.");
995 }
996
997 /* Return the name of register regno as a string. Return NULL for an invalid or
998 unimplemented register. */
999
1000 const char *
1001 cris_register_name (int regno)
1002 {
1003 static char *cris_genreg_names[] =
1004 { "r0", "r1", "r2", "r3", \
1005 "r4", "r5", "r6", "r7", \
1006 "r8", "r9", "r10", "r11", \
1007 "r12", "r13", "sp", "pc" };
1008
1009 int i;
1010 int spec_regno;
1011
1012 if (regno >= 0 && regno < NUM_GENREGS)
1013 {
1014 /* General register. */
1015 return cris_genreg_names[regno];
1016 }
1017 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
1018 {
1019 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1020 Adjust regno accordingly. */
1021 spec_regno = regno - NUM_GENREGS;
1022
1023 /* The entries in cris_spec_regs are stored in register number order,
1024 which means we can shortcut into the array when searching it. */
1025 for (i = spec_regno; cris_spec_regs[i].name != NULL; i++)
1026 {
1027 if (cris_spec_regs[i].number == spec_regno
1028 && cris_spec_reg_applicable (cris_spec_regs[i]))
1029 /* Go with the first applicable register. */
1030 return cris_spec_regs[i].name;
1031 }
1032 /* Special register not applicable to this CRIS version. */
1033 return NULL;
1034 }
1035 else
1036 {
1037 /* Invalid register. */
1038 return NULL;
1039 }
1040 }
1041
1042 int
1043 cris_register_bytes_ok (long bytes)
1044 {
1045 return (bytes == REGISTER_BYTES);
1046 }
1047
1048 /* Extract from an array regbuf containing the raw register state a function
1049 return value of type type, and copy that, in virtual format, into
1050 valbuf. */
1051
1052 /* In the original CRIS ABI, R10 is used to return values. */
1053
1054 void
1055 cris_abi_original_extract_return_value (struct type *type, char *regbuf,
1056 char *valbuf)
1057 {
1058 int len = TYPE_LENGTH (type);
1059
1060 if (len <= REGISTER_SIZE)
1061 memcpy (valbuf, regbuf + REGISTER_BYTE (RET_REGNUM), len);
1062 else
1063 internal_error (__FILE__, __LINE__, "cris_abi_original_extract_return_value: type length too large");
1064 }
1065
1066 /* In the CRIS ABI V2, R10 and R11 are used to store return values. */
1067
1068 void
1069 cris_abi_v2_extract_return_value (struct type *type, char *regbuf,
1070 char *valbuf)
1071 {
1072 int len = TYPE_LENGTH (type);
1073
1074 if (len <= 2 * REGISTER_SIZE)
1075 memcpy (valbuf, regbuf + REGISTER_BYTE (RET_REGNUM), len);
1076 else
1077 internal_error (__FILE__, __LINE__, "cris_abi_v2_extract_return_value: type length too large");
1078 }
1079
1080 /* Store the address of the place in which to copy the structure the
1081 subroutine will return. In the CRIS ABI, R9 is used in order to pass
1082 the address of the allocated area where a structure return value must
1083 be stored. R9 is call-clobbered, which means we must save it here for
1084 later use. */
1085
1086 void
1087 cris_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1088 {
1089 write_register (STR_REGNUM, addr);
1090 struct_return_address = addr;
1091 }
1092
1093 /* Extract from regbuf the address where a function should return a
1094 structure value. It's not there in the CRIS ABI, so we must do it another
1095 way. */
1096
1097 CORE_ADDR
1098 cris_extract_struct_value_address (char *regbuf)
1099 {
1100 return struct_return_address;
1101 }
1102
1103 /* Returns 1 if a value of the given type being returned from a function
1104 must have space allocated for it on the stack. gcc_p is true if the
1105 function being considered is known to have been compiled by GCC.
1106 In the CRIS ABI, structure return values are passed to the called
1107 function by reference in register R9 to a caller-allocated area, so
1108 this is always true. */
1109
1110 int
1111 cris_use_struct_convention (int gcc_p, struct type *type)
1112 {
1113 return 1;
1114 }
1115
1116 /* Returns 1 if the given type will be passed by pointer rather than
1117 directly. */
1118
1119 /* In the original CRIS ABI, arguments shorter than or equal to 32 bits are
1120 passed by value. */
1121
1122 int
1123 cris_abi_original_reg_struct_has_addr (int gcc_p, struct type *type)
1124 {
1125 return (TYPE_LENGTH (type) > 4);
1126 }
1127
1128 /* In the CRIS ABI V2, arguments shorter than or equal to 64 bits are passed
1129 by value. */
1130
1131 int
1132 cris_abi_v2_reg_struct_has_addr (int gcc_p, struct type *type)
1133 {
1134 return (TYPE_LENGTH (type) > 8);
1135 }
1136
1137 /* Returns 1 if the function invocation represented by fi does not have a
1138 stack frame associated with it. Otherwise return 0. */
1139
1140 int
1141 cris_frameless_function_invocation (struct frame_info *fi)
1142 {
1143 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1144 return 0;
1145 else
1146 return frameless_look_for_prologue (fi);
1147 }
1148
1149 /* See frame.h. Determines the address of all registers in the current stack
1150 frame storing each in frame->saved_regs. Space for frame->saved_regs shall
1151 be allocated by FRAME_INIT_SAVED_REGS using frame_saved_regs_zalloc. */
1152
1153 void
1154 cris_frame_init_saved_regs (struct frame_info *fi)
1155 {
1156 CORE_ADDR ip;
1157 struct symtab_and_line sal;
1158 int best_limit;
1159 char *dummy_regs = deprecated_generic_find_dummy_frame (get_frame_pc (fi),
1160 get_frame_base (fi));
1161
1162 /* Examine the entire prologue. */
1163 register int frameless_p = 0;
1164
1165 /* Has this frame's registers already been initialized? */
1166 if (get_frame_saved_regs (fi))
1167 return;
1168
1169 frame_saved_regs_zalloc (fi);
1170
1171 if (dummy_regs)
1172 {
1173 /* I don't see this ever happening, considering the context in which
1174 cris_frame_init_saved_regs is called (always when we're not in
1175 a dummy frame). */
1176 memcpy (get_frame_saved_regs (fi), dummy_regs, SIZEOF_FRAME_SAVED_REGS);
1177 }
1178 else
1179 {
1180 ip = get_pc_function_start (get_frame_pc (fi));
1181 sal = find_pc_line (ip, 0);
1182
1183 /* If there is no symbol information then sal.end == 0, and we end up
1184 examining only the first instruction in the function prologue.
1185 Exaggerating the limit seems to be harmless. */
1186 if (sal.end > 0)
1187 best_limit = sal.end;
1188 else
1189 best_limit = ip + 100;
1190
1191 cris_examine (ip, best_limit, fi, frameless_p);
1192 }
1193 }
1194
1195 /* Initialises the extra frame information at the creation of a new frame.
1196 The inparameter fromleaf is 0 when the call is from create_new_frame.
1197 When the call is from get_prev_frame_info, fromleaf is determined by
1198 cris_frameless_function_invocation. */
1199
1200 void
1201 cris_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1202 {
1203 if (get_next_frame (fi))
1204 {
1205 /* Called from get_prev_frame. */
1206 deprecated_update_frame_pc_hack (fi, FRAME_SAVED_PC (get_next_frame (fi)));
1207 }
1208
1209 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
1210
1211 get_frame_extra_info (fi)->return_pc = 0;
1212 get_frame_extra_info (fi)->leaf_function = 0;
1213
1214 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1215 get_frame_base (fi),
1216 get_frame_base (fi)))
1217 {
1218 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
1219 by assuming it's always FP. */
1220 deprecated_update_frame_base_hack (fi, deprecated_read_register_dummy (get_frame_pc (fi), get_frame_base (fi), SP_REGNUM));
1221 get_frame_extra_info (fi)->return_pc =
1222 deprecated_read_register_dummy (get_frame_pc (fi),
1223 get_frame_base (fi), PC_REGNUM);
1224
1225 /* FIXME: Is this necessarily true? */
1226 get_frame_extra_info (fi)->leaf_function = 0;
1227 }
1228 else
1229 {
1230 cris_frame_init_saved_regs (fi);
1231
1232 /* Check fromleaf/frameless_function_invocation. (FIXME) */
1233
1234 if (get_frame_saved_regs (fi)[SRP_REGNUM] != 0)
1235 {
1236 /* SRP was saved on the stack; non-leaf function. */
1237 get_frame_extra_info (fi)->return_pc =
1238 read_memory_integer (get_frame_saved_regs (fi)[SRP_REGNUM],
1239 REGISTER_RAW_SIZE (SRP_REGNUM));
1240 }
1241 else
1242 {
1243 /* SRP is still in a register; leaf function. */
1244 get_frame_extra_info (fi)->return_pc = read_register (SRP_REGNUM);
1245 /* FIXME: Should leaf_function be set to 1 here? */
1246 get_frame_extra_info (fi)->leaf_function = 1;
1247 }
1248 }
1249 }
1250
1251 /* Return the content of the frame pointer in the present frame. In other
1252 words, determine the address of the calling function's frame. */
1253
1254 CORE_ADDR
1255 cris_frame_chain (struct frame_info *fi)
1256 {
1257 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1258 get_frame_base (fi),
1259 get_frame_base (fi)))
1260 {
1261 return get_frame_base (fi);
1262 }
1263 else if (!inside_entry_file (get_frame_pc (fi)))
1264 {
1265 return read_memory_unsigned_integer (get_frame_base (fi), 4);
1266 }
1267 else
1268 {
1269 return 0;
1270 }
1271 }
1272
1273 /* Return the saved PC (which equals the return address) of this frame. */
1274
1275 CORE_ADDR
1276 cris_frame_saved_pc (struct frame_info *fi)
1277 {
1278 return get_frame_extra_info (fi)->return_pc;
1279 }
1280
1281 /* Setup the function arguments for calling a function in the inferior. */
1282
1283 CORE_ADDR
1284 cris_abi_original_push_arguments (int nargs, struct value **args,
1285 CORE_ADDR sp, int struct_return,
1286 CORE_ADDR struct_addr)
1287 {
1288 int stack_alloc;
1289 int stack_offset;
1290 int argreg;
1291 int argnum;
1292 struct type *type;
1293 int len;
1294 CORE_ADDR regval;
1295 char *val;
1296
1297 /* Data and parameters reside in different areas on the stack.
1298 Both frame pointers grow toward higher addresses. */
1299 CORE_ADDR fp_params;
1300 CORE_ADDR fp_data;
1301
1302 /* Are we returning a value using a structure return or a normal value
1303 return? struct_addr is the address of the reserved space for the return
1304 structure to be written on the stack. */
1305 if (struct_return)
1306 {
1307 write_register (STR_REGNUM, struct_addr);
1308 }
1309
1310 /* Make sure there's space on the stack. Allocate space for data and a
1311 parameter to refer to that data. */
1312 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1313 stack_alloc += (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + REGISTER_SIZE);
1314 sp -= stack_alloc;
1315 /* We may over-allocate a little here, but that won't hurt anything. */
1316
1317 /* Initialize stack frame pointers. */
1318 fp_params = sp;
1319 fp_data = sp + (nargs * REGISTER_SIZE);
1320
1321 /* Now load as many as possible of the first arguments into
1322 registers, and push the rest onto the stack. */
1323 argreg = ARG1_REGNUM;
1324 stack_offset = 0;
1325
1326 for (argnum = 0; argnum < nargs; argnum++)
1327 {
1328 type = VALUE_TYPE (args[argnum]);
1329 len = TYPE_LENGTH (type);
1330 val = (char *) VALUE_CONTENTS (args[argnum]);
1331
1332 if (len <= REGISTER_SIZE && argreg <= ARG4_REGNUM)
1333 {
1334 /* Data fits in a register; put it in the first available
1335 register. */
1336 write_register (argreg, *(unsigned long *) val);
1337 argreg++;
1338 }
1339 else if (len > REGISTER_SIZE && argreg <= ARG4_REGNUM)
1340 {
1341 /* Data does not fit in register; pass it on the stack and
1342 put its address in the first available register. */
1343 write_memory (fp_data, val, len);
1344 write_register (argreg, fp_data);
1345 fp_data += len;
1346 argreg++;
1347 }
1348 else if (len > REGISTER_SIZE)
1349 {
1350 /* Data does not fit in register; put both data and
1351 parameter on the stack. */
1352 write_memory (fp_data, val, len);
1353 write_memory (fp_params, (char *) (&fp_data), REGISTER_SIZE);
1354 fp_data += len;
1355 fp_params += REGISTER_SIZE;
1356 }
1357 else
1358 {
1359 /* Data fits in a register, but we are out of registers;
1360 put the parameter on the stack. */
1361 write_memory (fp_params, val, REGISTER_SIZE);
1362 fp_params += REGISTER_SIZE;
1363 }
1364 }
1365
1366 return sp;
1367 }
1368
1369 CORE_ADDR
1370 cris_abi_v2_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1371 int struct_return, CORE_ADDR struct_addr)
1372 {
1373 int stack_alloc;
1374 int stack_offset;
1375 int argreg;
1376 int argnum;
1377
1378 CORE_ADDR regval;
1379
1380 /* The function's arguments and memory allocated by gdb for the arguments to
1381 point at reside in separate areas on the stack.
1382 Both frame pointers grow toward higher addresses. */
1383 CORE_ADDR fp_arg;
1384 CORE_ADDR fp_mem;
1385
1386 /* Are we returning a value using a structure return or a normal value
1387 return? struct_addr is the address of the reserved space for the return
1388 structure to be written on the stack. */
1389 if (struct_return)
1390 {
1391 write_register (STR_REGNUM, struct_addr);
1392 }
1393
1394 /* Allocate enough to keep things word-aligned on both parts of the
1395 stack. */
1396 stack_alloc = 0;
1397 for (argnum = 0; argnum < nargs; argnum++)
1398 {
1399 int len;
1400 int reg_demand;
1401
1402 len = TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1403 reg_demand = (len / REGISTER_SIZE) + (len % REGISTER_SIZE != 0 ? 1 : 0);
1404
1405 /* reg_demand * REGISTER_SIZE is the amount of memory we might need to
1406 allocate for this argument. 2 * REGISTER_SIZE is the amount of stack
1407 space we might need to pass the argument itself (either by value or by
1408 reference). */
1409 stack_alloc += (reg_demand * REGISTER_SIZE + 2 * REGISTER_SIZE);
1410 }
1411 sp -= stack_alloc;
1412 /* We may over-allocate a little here, but that won't hurt anything. */
1413
1414 /* Initialize frame pointers. */
1415 fp_arg = sp;
1416 fp_mem = sp + (nargs * (2 * REGISTER_SIZE));
1417
1418 /* Now load as many as possible of the first arguments into registers,
1419 and push the rest onto the stack. */
1420 argreg = ARG1_REGNUM;
1421 stack_offset = 0;
1422
1423 for (argnum = 0; argnum < nargs; argnum++)
1424 {
1425 int len;
1426 char *val;
1427 int reg_demand;
1428 int i;
1429
1430 len = TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1431 val = (char *) VALUE_CONTENTS (args[argnum]);
1432
1433 /* How may registers worth of storage do we need for this argument? */
1434 reg_demand = (len / REGISTER_SIZE) + (len % REGISTER_SIZE != 0 ? 1 : 0);
1435
1436 if (len <= (2 * REGISTER_SIZE)
1437 && (argreg + reg_demand - 1 <= ARG4_REGNUM))
1438 {
1439 /* Data passed by value. Fits in available register(s). */
1440 for (i = 0; i < reg_demand; i++)
1441 {
1442 write_register (argreg, *(unsigned long *) val);
1443 argreg++;
1444 val += REGISTER_SIZE;
1445 }
1446 }
1447 else if (len <= (2 * REGISTER_SIZE) && argreg <= ARG4_REGNUM)
1448 {
1449 /* Data passed by value. Does not fit in available register(s).
1450 Use the register(s) first, then the stack. */
1451 for (i = 0; i < reg_demand; i++)
1452 {
1453 if (argreg <= ARG4_REGNUM)
1454 {
1455 write_register (argreg, *(unsigned long *) val);
1456 argreg++;
1457 val += REGISTER_SIZE;
1458 }
1459 else
1460 {
1461 /* I guess this memory write could write the remaining data
1462 all at once instead of in REGISTER_SIZE chunks. */
1463 write_memory (fp_arg, val, REGISTER_SIZE);
1464 fp_arg += REGISTER_SIZE;
1465 val += REGISTER_SIZE;
1466 }
1467 }
1468 }
1469 else if (len > (2 * REGISTER_SIZE))
1470 {
1471 /* Data passed by reference. Put it on the stack. */
1472 write_memory (fp_mem, val, len);
1473 write_memory (fp_arg, (char *) (&fp_mem), REGISTER_SIZE);
1474
1475 /* fp_mem need not be word-aligned since it's just a chunk of
1476 memory being pointed at. That is, += len would do. */
1477 fp_mem += reg_demand * REGISTER_SIZE;
1478 fp_arg += REGISTER_SIZE;
1479 }
1480 else
1481 {
1482 /* Data passed by value. No available registers. Put it on
1483 the stack. */
1484 write_memory (fp_arg, val, len);
1485
1486 /* fp_arg must be word-aligned (i.e., don't += len) to match
1487 the function prologue. */
1488 fp_arg += reg_demand * REGISTER_SIZE;
1489 }
1490 }
1491
1492 return sp;
1493 }
1494
1495 /* Never put the return address on the stack. The register SRP is pushed
1496 by the called function unless it is a leaf-function. Due to the BRP
1497 register the PC will change when continue is sent. */
1498
1499 CORE_ADDR
1500 cris_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1501 {
1502 write_register (SRP_REGNUM, CALL_DUMMY_ADDRESS ());
1503 return sp;
1504 }
1505
1506 /* Restore the machine to the state it had before the current frame
1507 was created. Discard the innermost frame from the stack and restore
1508 all saved registers. */
1509
1510 void
1511 cris_pop_frame (void)
1512 {
1513 register struct frame_info *fi = get_current_frame ();
1514 register int regno;
1515 register int stack_offset = 0;
1516
1517 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1518 get_frame_base (fi),
1519 get_frame_base (fi)))
1520 {
1521 /* This happens when we hit a breakpoint set at the entry point,
1522 when returning from a dummy frame. */
1523 generic_pop_dummy_frame ();
1524 }
1525 else
1526 {
1527 cris_frame_init_saved_regs (fi);
1528
1529 /* For each register, the address of where it was saved on entry to
1530 the frame now lies in fi->saved_regs[regno], or zero if it was not
1531 saved. This includes special registers such as PC and FP saved in
1532 special ways in the stack frame. The SP_REGNUM is even more
1533 special, the address here is the SP for the next frame, not the
1534 address where the SP was saved. */
1535
1536 /* Restore general registers R0 - R7. They were pushed on the stack
1537 after SP was saved. */
1538 for (regno = 0; regno < FP_REGNUM; regno++)
1539 {
1540 if (get_frame_saved_regs (fi)[regno])
1541 {
1542 write_register (regno,
1543 read_memory_integer (get_frame_saved_regs (fi)[regno], 4));
1544 }
1545 }
1546
1547 if (get_frame_saved_regs (fi)[FP_REGNUM])
1548 {
1549 /* Pop the frame pointer (R8). It was pushed before SP
1550 was saved. */
1551 write_register (FP_REGNUM,
1552 read_memory_integer (get_frame_saved_regs (fi)[FP_REGNUM], 4));
1553 stack_offset += 4;
1554
1555 /* Not a leaf function. */
1556 if (get_frame_saved_regs (fi)[SRP_REGNUM])
1557 {
1558 /* SRP was pushed before SP was saved. */
1559 stack_offset += 4;
1560 }
1561
1562 /* Restore the SP and adjust for R8 and (possibly) SRP. */
1563 write_register (SP_REGNUM, get_frame_saved_regs (fi)[FP_REGNUM] + stack_offset);
1564 }
1565 else
1566 {
1567 /* Currently, we can't get the correct info into fi->saved_regs
1568 without a frame pointer. */
1569 }
1570
1571 /* Restore the PC. */
1572 write_register (PC_REGNUM, get_frame_extra_info (fi)->return_pc);
1573 }
1574 flush_cached_frames ();
1575 }
1576
1577 /* Calculates a value that measures how good inst_args constraints an
1578 instruction. It stems from cris_constraint, found in cris-dis.c. */
1579
1580 static int
1581 constraint (unsigned int insn, const signed char *inst_args,
1582 inst_env_type *inst_env)
1583 {
1584 int retval = 0;
1585 int tmp, i;
1586
1587 const char *s = inst_args;
1588
1589 for (; *s; s++)
1590 switch (*s)
1591 {
1592 case 'm':
1593 if ((insn & 0x30) == 0x30)
1594 return -1;
1595 break;
1596
1597 case 'S':
1598 /* A prefix operand. */
1599 if (inst_env->prefix_found)
1600 break;
1601 else
1602 return -1;
1603
1604 case 'B':
1605 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1606 valid "push" size. In case of special register, it may be != 4. */
1607 if (inst_env->prefix_found)
1608 break;
1609 else
1610 return -1;
1611
1612 case 'D':
1613 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1614 if (!retval)
1615 return -1;
1616 else
1617 retval += 4;
1618 break;
1619
1620 case 'P':
1621 tmp = (insn >> 0xC) & 0xF;
1622
1623 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1624 {
1625 /* Since we match four bits, we will give a value of
1626 4 - 1 = 3 in a match. If there is a corresponding
1627 exact match of a special register in another pattern, it
1628 will get a value of 4, which will be higher. This should
1629 be correct in that an exact pattern would match better that
1630 a general pattern.
1631 Note that there is a reason for not returning zero; the
1632 pattern for "clear" is partly matched in the bit-pattern
1633 (the two lower bits must be zero), while the bit-pattern
1634 for a move from a special register is matched in the
1635 register constraint.
1636 This also means we will will have a race condition if
1637 there is a partly match in three bits in the bit pattern. */
1638 if (tmp == cris_spec_regs[i].number)
1639 {
1640 retval += 3;
1641 break;
1642 }
1643 }
1644
1645 if (cris_spec_regs[i].name == NULL)
1646 return -1;
1647 break;
1648 }
1649 return retval;
1650 }
1651
1652 /* Returns the number of bits set in the variable value. */
1653
1654 static int
1655 number_of_bits (unsigned int value)
1656 {
1657 int number_of_bits = 0;
1658
1659 while (value != 0)
1660 {
1661 number_of_bits += 1;
1662 value &= (value - 1);
1663 }
1664 return number_of_bits;
1665 }
1666
1667 /* Finds the address that should contain the single step breakpoint(s).
1668 It stems from code in cris-dis.c. */
1669
1670 static int
1671 find_cris_op (unsigned short insn, inst_env_type *inst_env)
1672 {
1673 int i;
1674 int max_level_of_match = -1;
1675 int max_matched = -1;
1676 int level_of_match;
1677
1678 for (i = 0; cris_opcodes[i].name != NULL; i++)
1679 {
1680 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
1681 && ((cris_opcodes[i].lose & insn) == 0))
1682 {
1683 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1684 if (level_of_match >= 0)
1685 {
1686 level_of_match +=
1687 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1688 if (level_of_match > max_level_of_match)
1689 {
1690 max_matched = i;
1691 max_level_of_match = level_of_match;
1692 if (level_of_match == 16)
1693 {
1694 /* All bits matched, cannot find better. */
1695 break;
1696 }
1697 }
1698 }
1699 }
1700 }
1701 return max_matched;
1702 }
1703
1704 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
1705 actually an internal error. */
1706
1707 static int
1708 find_step_target (inst_env_type *inst_env)
1709 {
1710 int i;
1711 int offset;
1712 unsigned short insn;
1713
1714 /* Create a local register image and set the initial state. */
1715 for (i = 0; i < NUM_GENREGS; i++)
1716 {
1717 inst_env->reg[i] = (unsigned long) read_register (i);
1718 }
1719 offset = NUM_GENREGS;
1720 for (i = 0; i < NUM_SPECREGS; i++)
1721 {
1722 inst_env->preg[i] = (unsigned long) read_register (offset + i);
1723 }
1724 inst_env->branch_found = 0;
1725 inst_env->slot_needed = 0;
1726 inst_env->delay_slot_pc_active = 0;
1727 inst_env->prefix_found = 0;
1728 inst_env->invalid = 0;
1729 inst_env->xflag_found = 0;
1730 inst_env->disable_interrupt = 0;
1731
1732 /* Look for a step target. */
1733 do
1734 {
1735 /* Read an instruction from the client. */
1736 insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2);
1737
1738 /* If the instruction is not in a delay slot the new content of the
1739 PC is [PC] + 2. If the instruction is in a delay slot it is not
1740 that simple. Since a instruction in a delay slot cannot change
1741 the content of the PC, it does not matter what value PC will have.
1742 Just make sure it is a valid instruction. */
1743 if (!inst_env->delay_slot_pc_active)
1744 {
1745 inst_env->reg[PC_REGNUM] += 2;
1746 }
1747 else
1748 {
1749 inst_env->delay_slot_pc_active = 0;
1750 inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc;
1751 }
1752 /* Analyse the present instruction. */
1753 i = find_cris_op (insn, inst_env);
1754 if (i == -1)
1755 {
1756 inst_env->invalid = 1;
1757 }
1758 else
1759 {
1760 cris_gdb_func (cris_opcodes[i].op, insn, inst_env);
1761 }
1762 } while (!inst_env->invalid
1763 && (inst_env->prefix_found || inst_env->xflag_found
1764 || inst_env->slot_needed));
1765 return i;
1766 }
1767
1768 /* There is no hardware single-step support. The function find_step_target
1769 digs through the opcodes in order to find all possible targets.
1770 Either one ordinary target or two targets for branches may be found. */
1771
1772 void
1773 cris_software_single_step (enum target_signal ignore, int insert_breakpoints)
1774 {
1775 inst_env_type inst_env;
1776
1777 if (insert_breakpoints)
1778 {
1779 /* Analyse the present instruction environment and insert
1780 breakpoints. */
1781 int status = find_step_target (&inst_env);
1782 if (status == -1)
1783 {
1784 /* Could not find a target. FIXME: Should do something. */
1785 }
1786 else
1787 {
1788 /* Insert at most two breakpoints. One for the next PC content
1789 and possibly another one for a branch, jump, etc. */
1790 next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM];
1791 target_insert_breakpoint (next_pc, break_mem[0]);
1792 if (inst_env.branch_found
1793 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
1794 {
1795 branch_target_address =
1796 (CORE_ADDR) inst_env.branch_break_address;
1797 target_insert_breakpoint (branch_target_address, break_mem[1]);
1798 branch_break_inserted = 1;
1799 }
1800 }
1801 }
1802 else
1803 {
1804 /* Remove breakpoints. */
1805 target_remove_breakpoint (next_pc, break_mem[0]);
1806 if (branch_break_inserted)
1807 {
1808 target_remove_breakpoint (branch_target_address, break_mem[1]);
1809 branch_break_inserted = 0;
1810 }
1811 }
1812 }
1813
1814 /* Calculates the prefix value for quick offset addressing mode. */
1815
1816 void
1817 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
1818 {
1819 /* It's invalid to be in a delay slot. You can't have a prefix to this
1820 instruction (not 100% sure). */
1821 if (inst_env->slot_needed || inst_env->prefix_found)
1822 {
1823 inst_env->invalid = 1;
1824 return;
1825 }
1826
1827 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
1828 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
1829
1830 /* A prefix doesn't change the xflag_found. But the rest of the flags
1831 need updating. */
1832 inst_env->slot_needed = 0;
1833 inst_env->prefix_found = 1;
1834 }
1835
1836 /* Updates the autoincrement register. The size of the increment is derived
1837 from the size of the operation. The PC is always kept aligned on even
1838 word addresses. */
1839
1840 void
1841 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
1842 {
1843 if (size == INST_BYTE_SIZE)
1844 {
1845 inst_env->reg[cris_get_operand1 (inst)] += 1;
1846
1847 /* The PC must be word aligned, so increase the PC with one
1848 word even if the size is byte. */
1849 if (cris_get_operand1 (inst) == REG_PC)
1850 {
1851 inst_env->reg[REG_PC] += 1;
1852 }
1853 }
1854 else if (size == INST_WORD_SIZE)
1855 {
1856 inst_env->reg[cris_get_operand1 (inst)] += 2;
1857 }
1858 else if (size == INST_DWORD_SIZE)
1859 {
1860 inst_env->reg[cris_get_operand1 (inst)] += 4;
1861 }
1862 else
1863 {
1864 /* Invalid size. */
1865 inst_env->invalid = 1;
1866 }
1867 }
1868
1869 /* Just a forward declaration. */
1870
1871 unsigned long
1872 get_data_from_address (unsigned short *inst, CORE_ADDR address);
1873
1874 /* Calculates the prefix value for the general case of offset addressing
1875 mode. */
1876
1877 void
1878 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
1879 {
1880
1881 long offset;
1882
1883 /* It's invalid to be in a delay slot. */
1884 if (inst_env->slot_needed || inst_env->prefix_found)
1885 {
1886 inst_env->invalid = 1;
1887 return;
1888 }
1889
1890 /* The calculation of prefix_value used to be after process_autoincrement,
1891 but that fails for an instruction such as jsr [$r0+12] which is encoded
1892 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
1893 mustn't be incremented until we have read it and what it points at. */
1894 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
1895
1896 /* The offset is an indirection of the contents of the operand1 register. */
1897 inst_env->prefix_value +=
1898 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
1899
1900 if (cris_get_mode (inst) == AUTOINC_MODE)
1901 {
1902 process_autoincrement (cris_get_size (inst), inst, inst_env);
1903 }
1904
1905 /* A prefix doesn't change the xflag_found. But the rest of the flags
1906 need updating. */
1907 inst_env->slot_needed = 0;
1908 inst_env->prefix_found = 1;
1909 }
1910
1911 /* Calculates the prefix value for the index addressing mode. */
1912
1913 void
1914 biap_prefix (unsigned short inst, inst_env_type *inst_env)
1915 {
1916 /* It's invalid to be in a delay slot. I can't see that it's possible to
1917 have a prefix to this instruction. So I will treat this as invalid. */
1918 if (inst_env->slot_needed || inst_env->prefix_found)
1919 {
1920 inst_env->invalid = 1;
1921 return;
1922 }
1923
1924 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
1925
1926 /* The offset is the operand2 value shifted the size of the instruction
1927 to the left. */
1928 inst_env->prefix_value +=
1929 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
1930
1931 /* If the PC is operand1 (base) the address used is the address after
1932 the main instruction, i.e. address + 2 (the PC is already compensated
1933 for the prefix operation). */
1934 if (cris_get_operand1 (inst) == REG_PC)
1935 {
1936 inst_env->prefix_value += 2;
1937 }
1938
1939 /* A prefix doesn't change the xflag_found. But the rest of the flags
1940 need updating. */
1941 inst_env->slot_needed = 0;
1942 inst_env->xflag_found = 0;
1943 inst_env->prefix_found = 1;
1944 }
1945
1946 /* Calculates the prefix value for the double indirect addressing mode. */
1947
1948 void
1949 dip_prefix (unsigned short inst, inst_env_type *inst_env)
1950 {
1951
1952 CORE_ADDR address;
1953
1954 /* It's invalid to be in a delay slot. */
1955 if (inst_env->slot_needed || inst_env->prefix_found)
1956 {
1957 inst_env->invalid = 1;
1958 return;
1959 }
1960
1961 /* The prefix value is one dereference of the contents of the operand1
1962 register. */
1963 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
1964 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
1965
1966 /* Check if the mode is autoincrement. */
1967 if (cris_get_mode (inst) == AUTOINC_MODE)
1968 {
1969 inst_env->reg[cris_get_operand1 (inst)] += 4;
1970 }
1971
1972 /* A prefix doesn't change the xflag_found. But the rest of the flags
1973 need updating. */
1974 inst_env->slot_needed = 0;
1975 inst_env->xflag_found = 0;
1976 inst_env->prefix_found = 1;
1977 }
1978
1979 /* Finds the destination for a branch with 8-bits offset. */
1980
1981 void
1982 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
1983 {
1984
1985 short offset;
1986
1987 /* If we have a prefix or are in a delay slot it's bad. */
1988 if (inst_env->slot_needed || inst_env->prefix_found)
1989 {
1990 inst_env->invalid = 1;
1991 return;
1992 }
1993
1994 /* We have a branch, find out where the branch will land. */
1995 offset = cris_get_branch_short_offset (inst);
1996
1997 /* Check if the offset is signed. */
1998 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
1999 {
2000 offset |= 0xFF00;
2001 }
2002
2003 /* The offset ends with the sign bit, set it to zero. The address
2004 should always be word aligned. */
2005 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2006
2007 inst_env->branch_found = 1;
2008 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2009
2010 inst_env->slot_needed = 1;
2011 inst_env->prefix_found = 0;
2012 inst_env->xflag_found = 0;
2013 inst_env->disable_interrupt = 1;
2014 }
2015
2016 /* Finds the destination for a branch with 16-bits offset. */
2017
2018 void
2019 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2020 {
2021 short offset;
2022
2023 /* If we have a prefix or is in a delay slot it's bad. */
2024 if (inst_env->slot_needed || inst_env->prefix_found)
2025 {
2026 inst_env->invalid = 1;
2027 return;
2028 }
2029
2030 /* We have a branch, find out the offset for the branch. */
2031 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2032
2033 /* The instruction is one word longer than normal, so add one word
2034 to the PC. */
2035 inst_env->reg[REG_PC] += 2;
2036
2037 inst_env->branch_found = 1;
2038 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2039
2040
2041 inst_env->slot_needed = 1;
2042 inst_env->prefix_found = 0;
2043 inst_env->xflag_found = 0;
2044 inst_env->disable_interrupt = 1;
2045 }
2046
2047 /* Handles the ABS instruction. */
2048
2049 void
2050 abs_op (unsigned short inst, inst_env_type *inst_env)
2051 {
2052
2053 long value;
2054
2055 /* ABS can't have a prefix, so it's bad if it does. */
2056 if (inst_env->prefix_found)
2057 {
2058 inst_env->invalid = 1;
2059 return;
2060 }
2061
2062 /* Check if the operation affects the PC. */
2063 if (cris_get_operand2 (inst) == REG_PC)
2064 {
2065
2066 /* It's invalid to change to the PC if we are in a delay slot. */
2067 if (inst_env->slot_needed)
2068 {
2069 inst_env->invalid = 1;
2070 return;
2071 }
2072
2073 value = (long) inst_env->reg[REG_PC];
2074
2075 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2076 if (value != SIGNED_DWORD_MASK)
2077 {
2078 value = -value;
2079 inst_env->reg[REG_PC] = (long) value;
2080 }
2081 }
2082
2083 inst_env->slot_needed = 0;
2084 inst_env->prefix_found = 0;
2085 inst_env->xflag_found = 0;
2086 inst_env->disable_interrupt = 0;
2087 }
2088
2089 /* Handles the ADDI instruction. */
2090
2091 void
2092 addi_op (unsigned short inst, inst_env_type *inst_env)
2093 {
2094 /* It's invalid to have the PC as base register. And ADDI can't have
2095 a prefix. */
2096 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2097 {
2098 inst_env->invalid = 1;
2099 return;
2100 }
2101
2102 inst_env->slot_needed = 0;
2103 inst_env->prefix_found = 0;
2104 inst_env->xflag_found = 0;
2105 inst_env->disable_interrupt = 0;
2106 }
2107
2108 /* Handles the ASR instruction. */
2109
2110 void
2111 asr_op (unsigned short inst, inst_env_type *inst_env)
2112 {
2113 int shift_steps;
2114 unsigned long value;
2115 unsigned long signed_extend_mask = 0;
2116
2117 /* ASR can't have a prefix, so check that it doesn't. */
2118 if (inst_env->prefix_found)
2119 {
2120 inst_env->invalid = 1;
2121 return;
2122 }
2123
2124 /* Check if the PC is the target register. */
2125 if (cris_get_operand2 (inst) == REG_PC)
2126 {
2127 /* It's invalid to change the PC in a delay slot. */
2128 if (inst_env->slot_needed)
2129 {
2130 inst_env->invalid = 1;
2131 return;
2132 }
2133 /* Get the number of bits to shift. */
2134 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2135 value = inst_env->reg[REG_PC];
2136
2137 /* Find out how many bits the operation should apply to. */
2138 if (cris_get_size (inst) == INST_BYTE_SIZE)
2139 {
2140 if (value & SIGNED_BYTE_MASK)
2141 {
2142 signed_extend_mask = 0xFF;
2143 signed_extend_mask = signed_extend_mask >> shift_steps;
2144 signed_extend_mask = ~signed_extend_mask;
2145 }
2146 value = value >> shift_steps;
2147 value |= signed_extend_mask;
2148 value &= 0xFF;
2149 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2150 inst_env->reg[REG_PC] |= value;
2151 }
2152 else if (cris_get_size (inst) == INST_WORD_SIZE)
2153 {
2154 if (value & SIGNED_WORD_MASK)
2155 {
2156 signed_extend_mask = 0xFFFF;
2157 signed_extend_mask = signed_extend_mask >> shift_steps;
2158 signed_extend_mask = ~signed_extend_mask;
2159 }
2160 value = value >> shift_steps;
2161 value |= signed_extend_mask;
2162 value &= 0xFFFF;
2163 inst_env->reg[REG_PC] &= 0xFFFF0000;
2164 inst_env->reg[REG_PC] |= value;
2165 }
2166 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2167 {
2168 if (value & SIGNED_DWORD_MASK)
2169 {
2170 signed_extend_mask = 0xFFFFFFFF;
2171 signed_extend_mask = signed_extend_mask >> shift_steps;
2172 signed_extend_mask = ~signed_extend_mask;
2173 }
2174 value = value >> shift_steps;
2175 value |= signed_extend_mask;
2176 inst_env->reg[REG_PC] = value;
2177 }
2178 }
2179 inst_env->slot_needed = 0;
2180 inst_env->prefix_found = 0;
2181 inst_env->xflag_found = 0;
2182 inst_env->disable_interrupt = 0;
2183 }
2184
2185 /* Handles the ASRQ instruction. */
2186
2187 void
2188 asrq_op (unsigned short inst, inst_env_type *inst_env)
2189 {
2190
2191 int shift_steps;
2192 unsigned long value;
2193 unsigned long signed_extend_mask = 0;
2194
2195 /* ASRQ can't have a prefix, so check that it doesn't. */
2196 if (inst_env->prefix_found)
2197 {
2198 inst_env->invalid = 1;
2199 return;
2200 }
2201
2202 /* Check if the PC is the target register. */
2203 if (cris_get_operand2 (inst) == REG_PC)
2204 {
2205
2206 /* It's invalid to change the PC in a delay slot. */
2207 if (inst_env->slot_needed)
2208 {
2209 inst_env->invalid = 1;
2210 return;
2211 }
2212 /* The shift size is given as a 5 bit quick value, i.e. we don't
2213 want the the sign bit of the quick value. */
2214 shift_steps = cris_get_asr_shift_steps (inst);
2215 value = inst_env->reg[REG_PC];
2216 if (value & SIGNED_DWORD_MASK)
2217 {
2218 signed_extend_mask = 0xFFFFFFFF;
2219 signed_extend_mask = signed_extend_mask >> shift_steps;
2220 signed_extend_mask = ~signed_extend_mask;
2221 }
2222 value = value >> shift_steps;
2223 value |= signed_extend_mask;
2224 inst_env->reg[REG_PC] = value;
2225 }
2226 inst_env->slot_needed = 0;
2227 inst_env->prefix_found = 0;
2228 inst_env->xflag_found = 0;
2229 inst_env->disable_interrupt = 0;
2230 }
2231
2232 /* Handles the AX, EI and SETF instruction. */
2233
2234 void
2235 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2236 {
2237 if (inst_env->prefix_found)
2238 {
2239 inst_env->invalid = 1;
2240 return;
2241 }
2242 /* Check if the instruction is setting the X flag. */
2243 if (cris_is_xflag_bit_on (inst))
2244 {
2245 inst_env->xflag_found = 1;
2246 }
2247 else
2248 {
2249 inst_env->xflag_found = 0;
2250 }
2251 inst_env->slot_needed = 0;
2252 inst_env->prefix_found = 0;
2253 inst_env->disable_interrupt = 1;
2254 }
2255
2256 /* Checks if the instruction is in assign mode. If so, it updates the assign
2257 register. Note that check_assign assumes that the caller has checked that
2258 there is a prefix to this instruction. The mode check depends on this. */
2259
2260 void
2261 check_assign (unsigned short inst, inst_env_type *inst_env)
2262 {
2263 /* Check if it's an assign addressing mode. */
2264 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2265 {
2266 /* Assign the prefix value to operand 1. */
2267 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2268 }
2269 }
2270
2271 /* Handles the 2-operand BOUND instruction. */
2272
2273 void
2274 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2275 {
2276 /* It's invalid to have the PC as the index operand. */
2277 if (cris_get_operand2 (inst) == REG_PC)
2278 {
2279 inst_env->invalid = 1;
2280 return;
2281 }
2282 /* Check if we have a prefix. */
2283 if (inst_env->prefix_found)
2284 {
2285 check_assign (inst, inst_env);
2286 }
2287 /* Check if this is an autoincrement mode. */
2288 else if (cris_get_mode (inst) == AUTOINC_MODE)
2289 {
2290 /* It's invalid to change the PC in a delay slot. */
2291 if (inst_env->slot_needed)
2292 {
2293 inst_env->invalid = 1;
2294 return;
2295 }
2296 process_autoincrement (cris_get_size (inst), inst, inst_env);
2297 }
2298 inst_env->slot_needed = 0;
2299 inst_env->prefix_found = 0;
2300 inst_env->xflag_found = 0;
2301 inst_env->disable_interrupt = 0;
2302 }
2303
2304 /* Handles the 3-operand BOUND instruction. */
2305
2306 void
2307 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2308 {
2309 /* It's an error if we haven't got a prefix. And it's also an error
2310 if the PC is the destination register. */
2311 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2312 {
2313 inst_env->invalid = 1;
2314 return;
2315 }
2316 inst_env->slot_needed = 0;
2317 inst_env->prefix_found = 0;
2318 inst_env->xflag_found = 0;
2319 inst_env->disable_interrupt = 0;
2320 }
2321
2322 /* Clears the status flags in inst_env. */
2323
2324 void
2325 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2326 {
2327 /* It's an error if we have got a prefix. */
2328 if (inst_env->prefix_found)
2329 {
2330 inst_env->invalid = 1;
2331 return;
2332 }
2333
2334 inst_env->slot_needed = 0;
2335 inst_env->prefix_found = 0;
2336 inst_env->xflag_found = 0;
2337 inst_env->disable_interrupt = 0;
2338 }
2339
2340 /* Clears the status flags in inst_env. */
2341
2342 void
2343 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2344 {
2345 /* It's an error if we have got a prefix. */
2346 if (inst_env->prefix_found)
2347 {
2348 inst_env->invalid = 1;
2349 return;
2350 }
2351
2352 inst_env->slot_needed = 0;
2353 inst_env->prefix_found = 0;
2354 inst_env->xflag_found = 0;
2355 inst_env->disable_interrupt = 1;
2356 }
2357
2358 /* Handles the CLEAR instruction if it's in register mode. */
2359
2360 void
2361 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2362 {
2363 /* Check if the target is the PC. */
2364 if (cris_get_operand2 (inst) == REG_PC)
2365 {
2366 /* The instruction will clear the instruction's size bits. */
2367 int clear_size = cris_get_clear_size (inst);
2368 if (clear_size == INST_BYTE_SIZE)
2369 {
2370 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2371 }
2372 if (clear_size == INST_WORD_SIZE)
2373 {
2374 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2375 }
2376 if (clear_size == INST_DWORD_SIZE)
2377 {
2378 inst_env->delay_slot_pc = 0x0;
2379 }
2380 /* The jump will be delayed with one delay slot. So we need a delay
2381 slot. */
2382 inst_env->slot_needed = 1;
2383 inst_env->delay_slot_pc_active = 1;
2384 }
2385 else
2386 {
2387 /* The PC will not change => no delay slot. */
2388 inst_env->slot_needed = 0;
2389 }
2390 inst_env->prefix_found = 0;
2391 inst_env->xflag_found = 0;
2392 inst_env->disable_interrupt = 0;
2393 }
2394
2395 /* Handles the TEST instruction if it's in register mode. */
2396
2397 void
2398 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2399 {
2400 /* It's an error if we have got a prefix. */
2401 if (inst_env->prefix_found)
2402 {
2403 inst_env->invalid = 1;
2404 return;
2405 }
2406 inst_env->slot_needed = 0;
2407 inst_env->prefix_found = 0;
2408 inst_env->xflag_found = 0;
2409 inst_env->disable_interrupt = 0;
2410
2411 }
2412
2413 /* Handles the CLEAR and TEST instruction if the instruction isn't
2414 in register mode. */
2415
2416 void
2417 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2418 {
2419 /* Check if we are in a prefix mode. */
2420 if (inst_env->prefix_found)
2421 {
2422 /* The only way the PC can change is if this instruction is in
2423 assign addressing mode. */
2424 check_assign (inst, inst_env);
2425 }
2426 /* Indirect mode can't change the PC so just check if the mode is
2427 autoincrement. */
2428 else if (cris_get_mode (inst) == AUTOINC_MODE)
2429 {
2430 process_autoincrement (cris_get_size (inst), inst, inst_env);
2431 }
2432 inst_env->slot_needed = 0;
2433 inst_env->prefix_found = 0;
2434 inst_env->xflag_found = 0;
2435 inst_env->disable_interrupt = 0;
2436 }
2437
2438 /* Checks that the PC isn't the destination register or the instructions has
2439 a prefix. */
2440
2441 void
2442 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2443 {
2444 /* It's invalid to have the PC as the destination. The instruction can't
2445 have a prefix. */
2446 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2447 {
2448 inst_env->invalid = 1;
2449 return;
2450 }
2451
2452 inst_env->slot_needed = 0;
2453 inst_env->prefix_found = 0;
2454 inst_env->xflag_found = 0;
2455 inst_env->disable_interrupt = 0;
2456 }
2457
2458 /* Checks that the instruction doesn't have a prefix. */
2459
2460 void
2461 break_op (unsigned short inst, inst_env_type *inst_env)
2462 {
2463 /* The instruction can't have a prefix. */
2464 if (inst_env->prefix_found)
2465 {
2466 inst_env->invalid = 1;
2467 return;
2468 }
2469
2470 inst_env->slot_needed = 0;
2471 inst_env->prefix_found = 0;
2472 inst_env->xflag_found = 0;
2473 inst_env->disable_interrupt = 1;
2474 }
2475
2476 /* Checks that the PC isn't the destination register and that the instruction
2477 doesn't have a prefix. */
2478
2479 void
2480 scc_op (unsigned short inst, inst_env_type *inst_env)
2481 {
2482 /* It's invalid to have the PC as the destination. The instruction can't
2483 have a prefix. */
2484 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2485 {
2486 inst_env->invalid = 1;
2487 return;
2488 }
2489
2490 inst_env->slot_needed = 0;
2491 inst_env->prefix_found = 0;
2492 inst_env->xflag_found = 0;
2493 inst_env->disable_interrupt = 1;
2494 }
2495
2496 /* Handles the register mode JUMP instruction. */
2497
2498 void
2499 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2500 {
2501 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2502 you can't have a prefix. */
2503 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2504 {
2505 inst_env->invalid = 1;
2506 return;
2507 }
2508
2509 /* Just change the PC. */
2510 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2511 inst_env->slot_needed = 0;
2512 inst_env->prefix_found = 0;
2513 inst_env->xflag_found = 0;
2514 inst_env->disable_interrupt = 1;
2515 }
2516
2517 /* Handles the JUMP instruction for all modes except register. */
2518
2519 void none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2520 {
2521 unsigned long newpc;
2522 CORE_ADDR address;
2523
2524 /* It's invalid to do a JUMP in a delay slot. */
2525 if (inst_env->slot_needed)
2526 {
2527 inst_env->invalid = 1;
2528 }
2529 else
2530 {
2531 /* Check if we have a prefix. */
2532 if (inst_env->prefix_found)
2533 {
2534 check_assign (inst, inst_env);
2535
2536 /* Get the new value for the the PC. */
2537 newpc =
2538 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2539 4);
2540 }
2541 else
2542 {
2543 /* Get the new value for the PC. */
2544 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2545 newpc = read_memory_unsigned_integer (address, 4);
2546
2547 /* Check if we should increment a register. */
2548 if (cris_get_mode (inst) == AUTOINC_MODE)
2549 {
2550 inst_env->reg[cris_get_operand1 (inst)] += 4;
2551 }
2552 }
2553 inst_env->reg[REG_PC] = newpc;
2554 }
2555 inst_env->slot_needed = 0;
2556 inst_env->prefix_found = 0;
2557 inst_env->xflag_found = 0;
2558 inst_env->disable_interrupt = 1;
2559 }
2560
2561 /* Handles moves to special registers (aka P-register) for all modes. */
2562
2563 void
2564 move_to_preg_op (unsigned short inst, inst_env_type *inst_env)
2565 {
2566 if (inst_env->prefix_found)
2567 {
2568 /* The instruction has a prefix that means we are only interested if
2569 the instruction is in assign mode. */
2570 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2571 {
2572 /* The prefix handles the problem if we are in a delay slot. */
2573 if (cris_get_operand1 (inst) == REG_PC)
2574 {
2575 /* Just take care of the assign. */
2576 check_assign (inst, inst_env);
2577 }
2578 }
2579 }
2580 else if (cris_get_mode (inst) == AUTOINC_MODE)
2581 {
2582 /* The instruction doesn't have a prefix, the only case left that we
2583 are interested in is the autoincrement mode. */
2584 if (cris_get_operand1 (inst) == REG_PC)
2585 {
2586 /* If the PC is to be incremented it's invalid to be in a
2587 delay slot. */
2588 if (inst_env->slot_needed)
2589 {
2590 inst_env->invalid = 1;
2591 return;
2592 }
2593
2594 /* The increment depends on the size of the special register. */
2595 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2596 {
2597 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2598 }
2599 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2600 {
2601 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2602 }
2603 else
2604 {
2605 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2606 }
2607 }
2608 }
2609 inst_env->slot_needed = 0;
2610 inst_env->prefix_found = 0;
2611 inst_env->xflag_found = 0;
2612 inst_env->disable_interrupt = 1;
2613 }
2614
2615 /* Handles moves from special registers (aka P-register) for all modes
2616 except register. */
2617
2618 void
2619 none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2620 {
2621 if (inst_env->prefix_found)
2622 {
2623 /* The instruction has a prefix that means we are only interested if
2624 the instruction is in assign mode. */
2625 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2626 {
2627 /* The prefix handles the problem if we are in a delay slot. */
2628 if (cris_get_operand1 (inst) == REG_PC)
2629 {
2630 /* Just take care of the assign. */
2631 check_assign (inst, inst_env);
2632 }
2633 }
2634 }
2635 /* The instruction doesn't have a prefix, the only case left that we
2636 are interested in is the autoincrement mode. */
2637 else if (cris_get_mode (inst) == AUTOINC_MODE)
2638 {
2639 if (cris_get_operand1 (inst) == REG_PC)
2640 {
2641 /* If the PC is to be incremented it's invalid to be in a
2642 delay slot. */
2643 if (inst_env->slot_needed)
2644 {
2645 inst_env->invalid = 1;
2646 return;
2647 }
2648
2649 /* The increment depends on the size of the special register. */
2650 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2651 {
2652 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2653 }
2654 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2655 {
2656 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2657 }
2658 else
2659 {
2660 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2661 }
2662 }
2663 }
2664 inst_env->slot_needed = 0;
2665 inst_env->prefix_found = 0;
2666 inst_env->xflag_found = 0;
2667 inst_env->disable_interrupt = 1;
2668 }
2669
2670 /* Handles moves from special registers (aka P-register) when the mode
2671 is register. */
2672
2673 void
2674 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2675 {
2676 /* Register mode move from special register can't have a prefix. */
2677 if (inst_env->prefix_found)
2678 {
2679 inst_env->invalid = 1;
2680 return;
2681 }
2682
2683 if (cris_get_operand1 (inst) == REG_PC)
2684 {
2685 /* It's invalid to change the PC in a delay slot. */
2686 if (inst_env->slot_needed)
2687 {
2688 inst_env->invalid = 1;
2689 return;
2690 }
2691 /* The destination is the PC, the jump will have a delay slot. */
2692 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
2693 inst_env->slot_needed = 1;
2694 inst_env->delay_slot_pc_active = 1;
2695 }
2696 else
2697 {
2698 /* If the destination isn't PC, there will be no jump. */
2699 inst_env->slot_needed = 0;
2700 }
2701 inst_env->prefix_found = 0;
2702 inst_env->xflag_found = 0;
2703 inst_env->disable_interrupt = 1;
2704 }
2705
2706 /* Handles the MOVEM from memory to general register instruction. */
2707
2708 void
2709 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
2710 {
2711 if (inst_env->prefix_found)
2712 {
2713 /* The prefix handles the problem if we are in a delay slot. Is the
2714 MOVEM instruction going to change the PC? */
2715 if (cris_get_operand2 (inst) >= REG_PC)
2716 {
2717 inst_env->reg[REG_PC] =
2718 read_memory_unsigned_integer (inst_env->prefix_value, 4);
2719 }
2720 /* The assign value is the value after the increment. Normally, the
2721 assign value is the value before the increment. */
2722 if ((cris_get_operand1 (inst) == REG_PC)
2723 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2724 {
2725 inst_env->reg[REG_PC] = inst_env->prefix_value;
2726 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2727 }
2728 }
2729 else
2730 {
2731 /* Is the MOVEM instruction going to change the PC? */
2732 if (cris_get_operand2 (inst) == REG_PC)
2733 {
2734 /* It's invalid to change the PC in a delay slot. */
2735 if (inst_env->slot_needed)
2736 {
2737 inst_env->invalid = 1;
2738 return;
2739 }
2740 inst_env->reg[REG_PC] =
2741 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
2742 4);
2743 }
2744 /* The increment is not depending on the size, instead it's depending
2745 on the number of registers loaded from memory. */
2746 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
2747 {
2748 /* It's invalid to change the PC in a delay slot. */
2749 if (inst_env->slot_needed)
2750 {
2751 inst_env->invalid = 1;
2752 return;
2753 }
2754 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2755 }
2756 }
2757 inst_env->slot_needed = 0;
2758 inst_env->prefix_found = 0;
2759 inst_env->xflag_found = 0;
2760 inst_env->disable_interrupt = 0;
2761 }
2762
2763 /* Handles the MOVEM to memory from general register instruction. */
2764
2765 void
2766 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
2767 {
2768 if (inst_env->prefix_found)
2769 {
2770 /* The assign value is the value after the increment. Normally, the
2771 assign value is the value before the increment. */
2772 if ((cris_get_operand1 (inst) == REG_PC) &&
2773 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2774 {
2775 /* The prefix handles the problem if we are in a delay slot. */
2776 inst_env->reg[REG_PC] = inst_env->prefix_value;
2777 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2778 }
2779 }
2780 else
2781 {
2782 /* The increment is not depending on the size, instead it's depending
2783 on the number of registers loaded to memory. */
2784 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
2785 {
2786 /* It's invalid to change the PC in a delay slot. */
2787 if (inst_env->slot_needed)
2788 {
2789 inst_env->invalid = 1;
2790 return;
2791 }
2792 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2793 }
2794 }
2795 inst_env->slot_needed = 0;
2796 inst_env->prefix_found = 0;
2797 inst_env->xflag_found = 0;
2798 inst_env->disable_interrupt = 0;
2799 }
2800
2801 /* Handles the pop instruction to a general register.
2802 POP is a assembler macro for MOVE.D [SP+], Rd. */
2803
2804 void
2805 reg_pop_op (unsigned short inst, inst_env_type *inst_env)
2806 {
2807 /* POP can't have a prefix. */
2808 if (inst_env->prefix_found)
2809 {
2810 inst_env->invalid = 1;
2811 return;
2812 }
2813 if (cris_get_operand2 (inst) == REG_PC)
2814 {
2815 /* It's invalid to change the PC in a delay slot. */
2816 if (inst_env->slot_needed)
2817 {
2818 inst_env->invalid = 1;
2819 return;
2820 }
2821 inst_env->reg[REG_PC] =
2822 read_memory_unsigned_integer (inst_env->reg[REG_SP], 4);
2823 }
2824 inst_env->slot_needed = 0;
2825 inst_env->prefix_found = 0;
2826 inst_env->xflag_found = 0;
2827 inst_env->disable_interrupt = 0;
2828 }
2829
2830 /* Handles moves from register to memory. */
2831
2832 void
2833 move_reg_to_mem_index_inc_op (unsigned short inst, inst_env_type *inst_env)
2834 {
2835 /* Check if we have a prefix. */
2836 if (inst_env->prefix_found)
2837 {
2838 /* The only thing that can change the PC is an assign. */
2839 check_assign (inst, inst_env);
2840 }
2841 else if ((cris_get_operand1 (inst) == REG_PC)
2842 && (cris_get_mode (inst) == AUTOINC_MODE))
2843 {
2844 /* It's invalid to change the PC in a delay slot. */
2845 if (inst_env->slot_needed)
2846 {
2847 inst_env->invalid = 1;
2848 return;
2849 }
2850 process_autoincrement (cris_get_size (inst), inst, inst_env);
2851 }
2852 inst_env->slot_needed = 0;
2853 inst_env->prefix_found = 0;
2854 inst_env->xflag_found = 0;
2855 inst_env->disable_interrupt = 0;
2856 }
2857
2858 /* Handles the intructions that's not yet implemented, by setting
2859 inst_env->invalid to true. */
2860
2861 void
2862 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
2863 {
2864 inst_env->invalid = 1;
2865 }
2866
2867 /* Handles the XOR instruction. */
2868
2869 void
2870 xor_op (unsigned short inst, inst_env_type *inst_env)
2871 {
2872 /* XOR can't have a prefix. */
2873 if (inst_env->prefix_found)
2874 {
2875 inst_env->invalid = 1;
2876 return;
2877 }
2878
2879 /* Check if the PC is the target. */
2880 if (cris_get_operand2 (inst) == REG_PC)
2881 {
2882 /* It's invalid to change the PC in a delay slot. */
2883 if (inst_env->slot_needed)
2884 {
2885 inst_env->invalid = 1;
2886 return;
2887 }
2888 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
2889 }
2890 inst_env->slot_needed = 0;
2891 inst_env->prefix_found = 0;
2892 inst_env->xflag_found = 0;
2893 inst_env->disable_interrupt = 0;
2894 }
2895
2896 /* Handles the MULS instruction. */
2897
2898 void
2899 muls_op (unsigned short inst, inst_env_type *inst_env)
2900 {
2901 /* MULS/U can't have a prefix. */
2902 if (inst_env->prefix_found)
2903 {
2904 inst_env->invalid = 1;
2905 return;
2906 }
2907
2908 /* Consider it invalid if the PC is the target. */
2909 if (cris_get_operand2 (inst) == REG_PC)
2910 {
2911 inst_env->invalid = 1;
2912 return;
2913 }
2914 inst_env->slot_needed = 0;
2915 inst_env->prefix_found = 0;
2916 inst_env->xflag_found = 0;
2917 inst_env->disable_interrupt = 0;
2918 }
2919
2920 /* Handles the MULU instruction. */
2921
2922 void
2923 mulu_op (unsigned short inst, inst_env_type *inst_env)
2924 {
2925 /* MULS/U can't have a prefix. */
2926 if (inst_env->prefix_found)
2927 {
2928 inst_env->invalid = 1;
2929 return;
2930 }
2931
2932 /* Consider it invalid if the PC is the target. */
2933 if (cris_get_operand2 (inst) == REG_PC)
2934 {
2935 inst_env->invalid = 1;
2936 return;
2937 }
2938 inst_env->slot_needed = 0;
2939 inst_env->prefix_found = 0;
2940 inst_env->xflag_found = 0;
2941 inst_env->disable_interrupt = 0;
2942 }
2943
2944 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
2945 The MOVE instruction is the move from source to register. */
2946
2947 void
2948 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
2949 unsigned long source1, unsigned long source2)
2950 {
2951 unsigned long pc_mask;
2952 unsigned long operation_mask;
2953
2954 /* Find out how many bits the operation should apply to. */
2955 if (cris_get_size (inst) == INST_BYTE_SIZE)
2956 {
2957 pc_mask = 0xFFFFFF00;
2958 operation_mask = 0xFF;
2959 }
2960 else if (cris_get_size (inst) == INST_WORD_SIZE)
2961 {
2962 pc_mask = 0xFFFF0000;
2963 operation_mask = 0xFFFF;
2964 }
2965 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2966 {
2967 pc_mask = 0x0;
2968 operation_mask = 0xFFFFFFFF;
2969 }
2970 else
2971 {
2972 /* The size is out of range. */
2973 inst_env->invalid = 1;
2974 return;
2975 }
2976
2977 /* The instruction just works on uw_operation_mask bits. */
2978 source2 &= operation_mask;
2979 source1 &= operation_mask;
2980
2981 /* Now calculate the result. The opcode's 3 first bits separates
2982 the different actions. */
2983 switch (cris_get_opcode (inst) & 7)
2984 {
2985 case 0: /* add */
2986 source1 += source2;
2987 break;
2988
2989 case 1: /* move */
2990 source1 = source2;
2991 break;
2992
2993 case 2: /* subtract */
2994 source1 -= source2;
2995 break;
2996
2997 case 3: /* compare */
2998 break;
2999
3000 case 4: /* and */
3001 source1 &= source2;
3002 break;
3003
3004 case 5: /* or */
3005 source1 |= source2;
3006 break;
3007
3008 default:
3009 inst_env->invalid = 1;
3010 return;
3011
3012 break;
3013 }
3014
3015 /* Make sure that the result doesn't contain more than the instruction
3016 size bits. */
3017 source2 &= operation_mask;
3018
3019 /* Calculate the new breakpoint address. */
3020 inst_env->reg[REG_PC] &= pc_mask;
3021 inst_env->reg[REG_PC] |= source1;
3022
3023 }
3024
3025 /* Extends the value from either byte or word size to a dword. If the mode
3026 is zero extend then the value is extended with zero. If instead the mode
3027 is signed extend the sign bit of the value is taken into consideration. */
3028
3029 unsigned long
3030 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3031 {
3032 /* The size can be either byte or word, check which one it is.
3033 Don't check the highest bit, it's indicating if it's a zero
3034 or sign extend. */
3035 if (cris_get_size (*inst) & INST_WORD_SIZE)
3036 {
3037 /* Word size. */
3038 value &= 0xFFFF;
3039
3040 /* Check if the instruction is signed extend. If so, check if value has
3041 the sign bit on. */
3042 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3043 {
3044 value |= SIGNED_WORD_EXTEND_MASK;
3045 }
3046 }
3047 else
3048 {
3049 /* Byte size. */
3050 value &= 0xFF;
3051
3052 /* Check if the instruction is signed extend. If so, check if value has
3053 the sign bit on. */
3054 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3055 {
3056 value |= SIGNED_BYTE_EXTEND_MASK;
3057 }
3058 }
3059 /* The size should now be dword. */
3060 cris_set_size_to_dword (inst);
3061 return value;
3062 }
3063
3064 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3065 instruction. The MOVE instruction is the move from source to register. */
3066
3067 void
3068 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3069 inst_env_type *inst_env)
3070 {
3071 unsigned long operand1;
3072 unsigned long operand2;
3073
3074 /* It's invalid to have a prefix to the instruction. This is a register
3075 mode instruction and can't have a prefix. */
3076 if (inst_env->prefix_found)
3077 {
3078 inst_env->invalid = 1;
3079 return;
3080 }
3081 /* Check if the instruction has PC as its target. */
3082 if (cris_get_operand2 (inst) == REG_PC)
3083 {
3084 if (inst_env->slot_needed)
3085 {
3086 inst_env->invalid = 1;
3087 return;
3088 }
3089 /* The instruction has the PC as its target register. */
3090 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3091 operand2 = inst_env->reg[REG_PC];
3092
3093 /* Check if it's a extend, signed or zero instruction. */
3094 if (cris_get_opcode (inst) < 4)
3095 {
3096 operand1 = do_sign_or_zero_extend (operand1, &inst);
3097 }
3098 /* Calculate the PC value after the instruction, i.e. where the
3099 breakpoint should be. The order of the udw_operands is vital. */
3100 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3101 }
3102 inst_env->slot_needed = 0;
3103 inst_env->prefix_found = 0;
3104 inst_env->xflag_found = 0;
3105 inst_env->disable_interrupt = 0;
3106 }
3107
3108 /* Returns the data contained at address. The size of the data is derived from
3109 the size of the operation. If the instruction is a zero or signed
3110 extend instruction, the size field is changed in instruction. */
3111
3112 unsigned long
3113 get_data_from_address (unsigned short *inst, CORE_ADDR address)
3114 {
3115 int size = cris_get_size (*inst);
3116 unsigned long value;
3117
3118 /* If it's an extend instruction we don't want the signed extend bit,
3119 because it influences the size. */
3120 if (cris_get_opcode (*inst) < 4)
3121 {
3122 size &= ~SIGNED_EXTEND_BIT_MASK;
3123 }
3124 /* Is there a need for checking the size? Size should contain the number of
3125 bytes to read. */
3126 size = 1 << size;
3127 value = read_memory_unsigned_integer (address, size);
3128
3129 /* Check if it's an extend, signed or zero instruction. */
3130 if (cris_get_opcode (*inst) < 4)
3131 {
3132 value = do_sign_or_zero_extend (value, inst);
3133 }
3134 return value;
3135 }
3136
3137 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3138 instructions. The MOVE instruction is the move from source to register. */
3139
3140 void
3141 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3142 inst_env_type *inst_env)
3143 {
3144 unsigned long operand2;
3145 unsigned long operand3;
3146
3147 check_assign (inst, inst_env);
3148 if (cris_get_operand2 (inst) == REG_PC)
3149 {
3150 operand2 = inst_env->reg[REG_PC];
3151
3152 /* Get the value of the third operand. */
3153 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3154
3155 /* Calculate the PC value after the instruction, i.e. where the
3156 breakpoint should be. The order of the udw_operands is vital. */
3157 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3158 }
3159 inst_env->slot_needed = 0;
3160 inst_env->prefix_found = 0;
3161 inst_env->xflag_found = 0;
3162 inst_env->disable_interrupt = 0;
3163 }
3164
3165 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3166 OR instructions. Note that for this to work as expected, the calling
3167 function must have made sure that there is a prefix to this instruction. */
3168
3169 void
3170 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3171 inst_env_type *inst_env)
3172 {
3173 unsigned long operand2;
3174 unsigned long operand3;
3175
3176 if (cris_get_operand1 (inst) == REG_PC)
3177 {
3178 /* The PC will be changed by the instruction. */
3179 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3180
3181 /* Get the value of the third operand. */
3182 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3183
3184 /* Calculate the PC value after the instruction, i.e. where the
3185 breakpoint should be. */
3186 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3187 }
3188 inst_env->slot_needed = 0;
3189 inst_env->prefix_found = 0;
3190 inst_env->xflag_found = 0;
3191 inst_env->disable_interrupt = 0;
3192 }
3193
3194 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3195 instructions. The MOVE instruction is the move from source to register. */
3196
3197 void
3198 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3199 inst_env_type *inst_env)
3200 {
3201 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3202 {
3203 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3204 SUB, AND or OR something weird is going on (if everything works these
3205 instructions should end up in the three operand version). */
3206 inst_env->invalid = 1;
3207 return;
3208 }
3209 else
3210 {
3211 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3212 so use it. */
3213 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3214 }
3215 inst_env->slot_needed = 0;
3216 inst_env->prefix_found = 0;
3217 inst_env->xflag_found = 0;
3218 inst_env->disable_interrupt = 0;
3219 }
3220
3221 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3222 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3223 source to register. */
3224
3225 void
3226 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3227 inst_env_type *inst_env)
3228 {
3229 unsigned long operand1;
3230 unsigned long operand2;
3231 unsigned long operand3;
3232 int size;
3233
3234 /* The instruction is either an indirect or autoincrement addressing mode.
3235 Check if the destination register is the PC. */
3236 if (cris_get_operand2 (inst) == REG_PC)
3237 {
3238 /* Must be done here, get_data_from_address may change the size
3239 field. */
3240 size = cris_get_size (inst);
3241 operand2 = inst_env->reg[REG_PC];
3242
3243 /* Get the value of the third operand, i.e. the indirect operand. */
3244 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3245 operand3 = get_data_from_address (&inst, operand1);
3246
3247 /* Calculate the PC value after the instruction, i.e. where the
3248 breakpoint should be. The order of the udw_operands is vital. */
3249 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3250 }
3251 /* If this is an autoincrement addressing mode, check if the increment
3252 changes the PC. */
3253 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3254 {
3255 /* Get the size field. */
3256 size = cris_get_size (inst);
3257
3258 /* If it's an extend instruction we don't want the signed extend bit,
3259 because it influences the size. */
3260 if (cris_get_opcode (inst) < 4)
3261 {
3262 size &= ~SIGNED_EXTEND_BIT_MASK;
3263 }
3264 process_autoincrement (size, inst, inst_env);
3265 }
3266 inst_env->slot_needed = 0;
3267 inst_env->prefix_found = 0;
3268 inst_env->xflag_found = 0;
3269 inst_env->disable_interrupt = 0;
3270 }
3271
3272 /* Handles the two-operand addressing mode, all modes except register, for
3273 the ADD, SUB CMP, AND and OR instruction. */
3274
3275 void
3276 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3277 inst_env_type *inst_env)
3278 {
3279 if (inst_env->prefix_found)
3280 {
3281 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3282 {
3283 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3284 }
3285 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3286 {
3287 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3288 }
3289 else
3290 {
3291 /* The mode is invalid for a prefixed base instruction. */
3292 inst_env->invalid = 1;
3293 return;
3294 }
3295 }
3296 else
3297 {
3298 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3299 }
3300 }
3301
3302 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3303
3304 void
3305 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3306 {
3307 unsigned long operand1;
3308 unsigned long operand2;
3309
3310 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3311 instruction and can't have a prefix. */
3312 if (inst_env->prefix_found)
3313 {
3314 inst_env->invalid = 1;
3315 return;
3316 }
3317
3318 /* Check if the instruction has PC as its target. */
3319 if (cris_get_operand2 (inst) == REG_PC)
3320 {
3321 if (inst_env->slot_needed)
3322 {
3323 inst_env->invalid = 1;
3324 return;
3325 }
3326 operand1 = cris_get_quick_value (inst);
3327 operand2 = inst_env->reg[REG_PC];
3328
3329 /* The size should now be dword. */
3330 cris_set_size_to_dword (&inst);
3331
3332 /* Calculate the PC value after the instruction, i.e. where the
3333 breakpoint should be. */
3334 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3335 }
3336 inst_env->slot_needed = 0;
3337 inst_env->prefix_found = 0;
3338 inst_env->xflag_found = 0;
3339 inst_env->disable_interrupt = 0;
3340 }
3341
3342 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3343
3344 void
3345 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3346 {
3347 unsigned long operand1;
3348 unsigned long operand2;
3349
3350 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3351 instruction and can't have a prefix. */
3352 if (inst_env->prefix_found)
3353 {
3354 inst_env->invalid = 1;
3355 return;
3356 }
3357 /* Check if the instruction has PC as its target. */
3358 if (cris_get_operand2 (inst) == REG_PC)
3359 {
3360 if (inst_env->slot_needed)
3361 {
3362 inst_env->invalid = 1;
3363 return;
3364 }
3365 /* The instruction has the PC as its target register. */
3366 operand1 = cris_get_quick_value (inst);
3367 operand2 = inst_env->reg[REG_PC];
3368
3369 /* The quick value is signed, so check if we must do a signed extend. */
3370 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3371 {
3372 /* sign extend */
3373 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3374 }
3375 /* The size should now be dword. */
3376 cris_set_size_to_dword (&inst);
3377
3378 /* Calculate the PC value after the instruction, i.e. where the
3379 breakpoint should be. */
3380 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3381 }
3382 inst_env->slot_needed = 0;
3383 inst_env->prefix_found = 0;
3384 inst_env->xflag_found = 0;
3385 inst_env->disable_interrupt = 0;
3386 }
3387
3388 /* Translate op_type to a function and call it. */
3389
3390 static void cris_gdb_func (enum cris_op_type op_type, unsigned short inst,
3391 inst_env_type *inst_env)
3392 {
3393 switch (op_type)
3394 {
3395 case cris_not_implemented_op:
3396 not_implemented_op (inst, inst_env);
3397 break;
3398
3399 case cris_abs_op:
3400 abs_op (inst, inst_env);
3401 break;
3402
3403 case cris_addi_op:
3404 addi_op (inst, inst_env);
3405 break;
3406
3407 case cris_asr_op:
3408 asr_op (inst, inst_env);
3409 break;
3410
3411 case cris_asrq_op:
3412 asrq_op (inst, inst_env);
3413 break;
3414
3415 case cris_ax_ei_setf_op:
3416 ax_ei_setf_op (inst, inst_env);
3417 break;
3418
3419 case cris_bdap_prefix:
3420 bdap_prefix (inst, inst_env);
3421 break;
3422
3423 case cris_biap_prefix:
3424 biap_prefix (inst, inst_env);
3425 break;
3426
3427 case cris_break_op:
3428 break_op (inst, inst_env);
3429 break;
3430
3431 case cris_btst_nop_op:
3432 btst_nop_op (inst, inst_env);
3433 break;
3434
3435 case cris_clearf_di_op:
3436 clearf_di_op (inst, inst_env);
3437 break;
3438
3439 case cris_dip_prefix:
3440 dip_prefix (inst, inst_env);
3441 break;
3442
3443 case cris_dstep_logshift_mstep_neg_not_op:
3444 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3445 break;
3446
3447 case cris_eight_bit_offset_branch_op:
3448 eight_bit_offset_branch_op (inst, inst_env);
3449 break;
3450
3451 case cris_move_mem_to_reg_movem_op:
3452 move_mem_to_reg_movem_op (inst, inst_env);
3453 break;
3454
3455 case cris_move_reg_to_mem_movem_op:
3456 move_reg_to_mem_movem_op (inst, inst_env);
3457 break;
3458
3459 case cris_move_to_preg_op:
3460 move_to_preg_op (inst, inst_env);
3461 break;
3462
3463 case cris_muls_op:
3464 muls_op (inst, inst_env);
3465 break;
3466
3467 case cris_mulu_op:
3468 mulu_op (inst, inst_env);
3469 break;
3470
3471 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3472 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3473 break;
3474
3475 case cris_none_reg_mode_clear_test_op:
3476 none_reg_mode_clear_test_op (inst, inst_env);
3477 break;
3478
3479 case cris_none_reg_mode_jump_op:
3480 none_reg_mode_jump_op (inst, inst_env);
3481 break;
3482
3483 case cris_none_reg_mode_move_from_preg_op:
3484 none_reg_mode_move_from_preg_op (inst, inst_env);
3485 break;
3486
3487 case cris_quick_mode_add_sub_op:
3488 quick_mode_add_sub_op (inst, inst_env);
3489 break;
3490
3491 case cris_quick_mode_and_cmp_move_or_op:
3492 quick_mode_and_cmp_move_or_op (inst, inst_env);
3493 break;
3494
3495 case cris_quick_mode_bdap_prefix:
3496 quick_mode_bdap_prefix (inst, inst_env);
3497 break;
3498
3499 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3500 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3501 break;
3502
3503 case cris_reg_mode_clear_op:
3504 reg_mode_clear_op (inst, inst_env);
3505 break;
3506
3507 case cris_reg_mode_jump_op:
3508 reg_mode_jump_op (inst, inst_env);
3509 break;
3510
3511 case cris_reg_mode_move_from_preg_op:
3512 reg_mode_move_from_preg_op (inst, inst_env);
3513 break;
3514
3515 case cris_reg_mode_test_op:
3516 reg_mode_test_op (inst, inst_env);
3517 break;
3518
3519 case cris_scc_op:
3520 scc_op (inst, inst_env);
3521 break;
3522
3523 case cris_sixteen_bit_offset_branch_op:
3524 sixteen_bit_offset_branch_op (inst, inst_env);
3525 break;
3526
3527 case cris_three_operand_add_sub_cmp_and_or_op:
3528 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3529 break;
3530
3531 case cris_three_operand_bound_op:
3532 three_operand_bound_op (inst, inst_env);
3533 break;
3534
3535 case cris_two_operand_bound_op:
3536 two_operand_bound_op (inst, inst_env);
3537 break;
3538
3539 case cris_xor_op:
3540 xor_op (inst, inst_env);
3541 break;
3542 }
3543 }
3544
3545 /* This wrapper is to avoid cris_get_assembler being called before
3546 exec_bfd has been set. */
3547
3548 static int
3549 cris_delayed_get_disassembler (bfd_vma addr, disassemble_info *info)
3550 {
3551 tm_print_insn = cris_get_disassembler (exec_bfd);
3552 return TARGET_PRINT_INSN (addr, info);
3553 }
3554
3555 /* Copied from <asm/elf.h>. */
3556 typedef unsigned long elf_greg_t;
3557
3558 /* Same as user_regs_struct struct in <asm/user.h>. */
3559 typedef elf_greg_t elf_gregset_t[35];
3560
3561 /* Unpack an elf_gregset_t into GDB's register cache. */
3562
3563 void
3564 supply_gregset (elf_gregset_t *gregsetp)
3565 {
3566 int i;
3567 elf_greg_t *regp = *gregsetp;
3568 static char zerobuf[4] = {0};
3569
3570 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3571 knows about the actual size of each register so that's no problem. */
3572 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3573 {
3574 supply_register (i, (char *)&regp[i]);
3575 }
3576 }
3577
3578 /* Use a local version of this function to get the correct types for
3579 regsets, until multi-arch core support is ready. */
3580
3581 static void
3582 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
3583 int which, CORE_ADDR reg_addr)
3584 {
3585 elf_gregset_t gregset;
3586
3587 switch (which)
3588 {
3589 case 0:
3590 if (core_reg_size != sizeof (gregset))
3591 {
3592 warning ("wrong size gregset struct in core file");
3593 }
3594 else
3595 {
3596 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3597 supply_gregset (&gregset);
3598 }
3599
3600 default:
3601 /* We've covered all the kinds of registers we know about here,
3602 so this must be something we wouldn't know what to do with
3603 anyway. Just ignore it. */
3604 break;
3605 }
3606 }
3607
3608 static struct core_fns cris_elf_core_fns =
3609 {
3610 bfd_target_elf_flavour, /* core_flavour */
3611 default_check_format, /* check_format */
3612 default_core_sniffer, /* core_sniffer */
3613 fetch_core_registers, /* core_read_registers */
3614 NULL /* next */
3615 };
3616
3617 /* Fetch (and possibly build) an appropriate link_map_offsets
3618 structure for native GNU/Linux CRIS targets using the struct
3619 offsets defined in link.h (but without actual reference to that
3620 file).
3621
3622 This makes it possible to access GNU/Linux CRIS shared libraries
3623 from a GDB that was not built on an GNU/Linux CRIS host (for cross
3624 debugging).
3625
3626 See gdb/solib-svr4.h for an explanation of these fields. */
3627
3628 struct link_map_offsets *
3629 cris_linux_svr4_fetch_link_map_offsets (void)
3630 {
3631 static struct link_map_offsets lmo;
3632 static struct link_map_offsets *lmp = NULL;
3633
3634 if (lmp == NULL)
3635 {
3636 lmp = &lmo;
3637
3638 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
3639 this is all we need. */
3640 lmo.r_map_offset = 4;
3641 lmo.r_map_size = 4;
3642
3643 lmo.link_map_size = 20;
3644
3645 lmo.l_addr_offset = 0;
3646 lmo.l_addr_size = 4;
3647
3648 lmo.l_name_offset = 4;
3649 lmo.l_name_size = 4;
3650
3651 lmo.l_next_offset = 12;
3652 lmo.l_next_size = 4;
3653
3654 lmo.l_prev_offset = 16;
3655 lmo.l_prev_size = 4;
3656 }
3657
3658 return lmp;
3659 }
3660
3661 static void
3662 cris_fpless_backtrace (char *noargs, int from_tty)
3663 {
3664 /* Points at the instruction after the jsr (except when in innermost frame
3665 where it points at the original pc). */
3666 CORE_ADDR pc = 0;
3667
3668 /* Temporary variable, used for parsing from the start of the function that
3669 the pc is in, up to the pc. */
3670 CORE_ADDR tmp_pc = 0;
3671 CORE_ADDR sp = 0;
3672
3673 /* Information about current frame. */
3674 struct symtab_and_line sal;
3675 char* func_name;
3676
3677 /* Present instruction. */
3678 unsigned short insn;
3679
3680 /* Next instruction, lookahead. */
3681 unsigned short insn_next;
3682
3683 /* This is to store the offset between sp at start of function and until we
3684 reach push srp (if any). */
3685 int sp_add_later = 0;
3686 int push_srp_found = 0;
3687
3688 int val = 0;
3689
3690 /* Frame counter. */
3691 int frame = 0;
3692
3693 /* For the innermost frame, we want to look at srp in case it's a leaf
3694 function (since there's no push srp in that case). */
3695 int innermost_frame = 1;
3696
3697 deprecated_read_register_gen (PC_REGNUM, (char *) &pc);
3698 deprecated_read_register_gen (SP_REGNUM, (char *) &sp);
3699
3700 /* We make an explicit return when we can't find an outer frame. */
3701 while (1)
3702 {
3703 /* Get file name and line number. */
3704 sal = find_pc_line (pc, 0);
3705
3706 /* Get function name. */
3707 find_pc_partial_function (pc, &func_name, (CORE_ADDR *) NULL,
3708 (CORE_ADDR *) NULL);
3709
3710 /* Print information about current frame. */
3711 printf_unfiltered ("#%i 0x%08lx in %s", frame++, pc, func_name);
3712 if (sal.symtab)
3713 {
3714 printf_unfiltered (" at %s:%i", sal.symtab->filename, sal.line);
3715 }
3716 printf_unfiltered ("\n");
3717
3718 /* Get the start address of this function. */
3719 tmp_pc = get_pc_function_start (pc);
3720
3721 /* Mini parser, only meant to find push sp and sub ...,sp from the start
3722 of the function, up to the pc. */
3723 while (tmp_pc < pc)
3724 {
3725 insn = read_memory_unsigned_integer (tmp_pc, sizeof (short));
3726 tmp_pc += sizeof (short);
3727 if (insn == 0xE1FC)
3728 {
3729 /* push <reg> 32 bit instruction */
3730 insn_next = read_memory_unsigned_integer (tmp_pc,
3731 sizeof (short));
3732 tmp_pc += sizeof (short);
3733
3734 /* Recognize srp. */
3735 if (insn_next == 0xBE7E)
3736 {
3737 /* For subsequent (not this one though) push or sub which
3738 affects sp, adjust sp immediately. */
3739 push_srp_found = 1;
3740
3741 /* Note: this will break if we ever encounter a
3742 push vr (1 byte) or push ccr (2 bytes). */
3743 sp_add_later += 4;
3744 }
3745 else
3746 {
3747 /* Some other register was pushed. */
3748 if (push_srp_found)
3749 {
3750 sp += 4;
3751 }
3752 else
3753 {
3754 sp_add_later += 4;
3755 }
3756 }
3757 }
3758 else if (cris_get_operand2 (insn) == SP_REGNUM
3759 && cris_get_mode (insn) == 0x0000
3760 && cris_get_opcode (insn) == 0x000A)
3761 {
3762 /* subq <val>,sp */
3763 val = cris_get_quick_value (insn);
3764
3765 if (push_srp_found)
3766 {
3767 sp += val;
3768 }
3769 else
3770 {
3771 sp_add_later += val;
3772 }
3773
3774 }
3775 else if (cris_get_operand2 (insn) == SP_REGNUM
3776 /* Autoincrement addressing mode. */
3777 && cris_get_mode (insn) == 0x0003
3778 /* Opcode. */
3779 && ((insn) & 0x03E0) >> 5 == 0x0004)
3780 {
3781 /* subu <val>,sp */
3782 val = get_data_from_address (&insn, tmp_pc);
3783
3784 if (push_srp_found)
3785 {
3786 sp += val;
3787 }
3788 else
3789 {
3790 sp_add_later += val;
3791 }
3792 }
3793 else if (cris_get_operand2 (insn) == SP_REGNUM
3794 && ((insn & 0x0F00) >> 8) == 0x0001
3795 && (cris_get_signed_offset (insn) < 0))
3796 {
3797 /* Immediate byte offset addressing prefix word with sp as base
3798 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
3799 is between 64 and 128.
3800 movem r<regsave>,[sp=sp-<val>] */
3801 val = -cris_get_signed_offset (insn);
3802 insn_next = read_memory_unsigned_integer (tmp_pc,
3803 sizeof (short));
3804 tmp_pc += sizeof (short);
3805
3806 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
3807 && cris_get_opcode (insn_next) == 0x000F
3808 && cris_get_size (insn_next) == 0x0003
3809 && cris_get_operand1 (insn_next) == SP_REGNUM)
3810 {
3811 if (push_srp_found)
3812 {
3813 sp += val;
3814 }
3815 else
3816 {
3817 sp_add_later += val;
3818 }
3819 }
3820 }
3821 }
3822
3823 if (push_srp_found)
3824 {
3825 /* Reset flag. */
3826 push_srp_found = 0;
3827
3828 /* sp should now point at where srp is stored on the stack. Update
3829 the pc to the srp. */
3830 pc = read_memory_unsigned_integer (sp, 4);
3831 }
3832 else if (innermost_frame)
3833 {
3834 /* We couldn't find a push srp in the prologue, so this must be
3835 a leaf function, and thus we use the srp register directly.
3836 This should happen at most once, for the innermost function. */
3837 deprecated_read_register_gen (SRP_REGNUM, (char *) &pc);
3838 }
3839 else
3840 {
3841 /* Couldn't find an outer frame. */
3842 return;
3843 }
3844
3845 /* Reset flag. (In case the innermost frame wasn't a leaf, we don't
3846 want to look at the srp register later either). */
3847 innermost_frame = 0;
3848
3849 /* Now, add the offset for everything up to, and including push srp,
3850 that was held back during the prologue parsing. */
3851 sp += sp_add_later;
3852 sp_add_later = 0;
3853 }
3854 }
3855
3856 void
3857 _initialize_cris_tdep (void)
3858 {
3859 struct cmd_list_element *c;
3860
3861 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3862
3863 /* Used in disassembly. */
3864 tm_print_insn = cris_delayed_get_disassembler;
3865
3866 /* CRIS-specific user-commands. */
3867 c = add_set_cmd ("cris-version", class_support, var_integer,
3868 (char *) &usr_cmd_cris_version,
3869 "Set the current CRIS version.", &setlist);
3870 set_cmd_sfunc (c, cris_version_update);
3871 add_show_from_set (c, &showlist);
3872
3873 c = add_set_enum_cmd ("cris-mode", class_support, cris_mode_enums,
3874 &usr_cmd_cris_mode,
3875 "Set the current CRIS mode.", &setlist);
3876 set_cmd_sfunc (c, cris_mode_update);
3877 add_show_from_set (c, &showlist);
3878
3879 c = add_set_enum_cmd ("cris-abi", class_support, cris_abi_enums,
3880 &usr_cmd_cris_abi,
3881 "Set the current CRIS ABI version.", &setlist);
3882 set_cmd_sfunc (c, cris_abi_update);
3883 add_show_from_set (c, &showlist);
3884
3885 c = add_cmd ("cris-fpless-backtrace", class_support, cris_fpless_backtrace,
3886 "Display call chain using the subroutine return pointer.\n"
3887 "Note that this displays the address after the jump to the "
3888 "subroutine.", &cmdlist);
3889
3890 add_core_fns (&cris_elf_core_fns);
3891
3892 }
3893
3894 /* Prints out all target specific values. */
3895
3896 static void
3897 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3898 {
3899 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3900 if (tdep != NULL)
3901 {
3902 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3903 tdep->cris_version);
3904 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3905 tdep->cris_mode);
3906 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_abi = %s\n",
3907 tdep->cris_abi);
3908
3909 }
3910 }
3911
3912 static void
3913 cris_version_update (char *ignore_args, int from_tty,
3914 struct cmd_list_element *c)
3915 {
3916 struct gdbarch_info info;
3917
3918 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3919 the set command passed as a parameter. The clone operation will
3920 include (BUG?) any ``set'' command callback, if present.
3921 Commands like ``info set'' call all the ``show'' command
3922 callbacks. Unfortunatly, for ``show'' commands cloned from
3923 ``set'', this includes callbacks belonging to ``set'' commands.
3924 Making this worse, this only occures if add_show_from_set() is
3925 called after add_cmd_sfunc() (BUG?). */
3926
3927 /* From here on, trust the user's CRIS version setting. */
3928 if (cmd_type (c) == set_cmd)
3929 {
3930 usr_cmd_cris_version_valid = 1;
3931
3932 /* Update the current architecture, if needed. */
3933 gdbarch_info_init (&info);
3934 if (!gdbarch_update_p (info))
3935 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3936 }
3937 }
3938
3939 static void
3940 cris_mode_update (char *ignore_args, int from_tty,
3941 struct cmd_list_element *c)
3942 {
3943 struct gdbarch_info info;
3944
3945 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3946 the set command passed as a parameter. The clone operation will
3947 include (BUG?) any ``set'' command callback, if present.
3948 Commands like ``info set'' call all the ``show'' command
3949 callbacks. Unfortunatly, for ``show'' commands cloned from
3950 ``set'', this includes callbacks belonging to ``set'' commands.
3951 Making this worse, this only occures if add_show_from_set() is
3952 called after add_cmd_sfunc() (BUG?). */
3953
3954 /* From here on, trust the user's CRIS mode setting. */
3955 if (cmd_type (c) == set_cmd)
3956 {
3957 usr_cmd_cris_mode_valid = 1;
3958
3959 /* Update the current architecture, if needed. */
3960 gdbarch_info_init (&info);
3961 if (!gdbarch_update_p (info))
3962 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3963 }
3964 }
3965
3966 static void
3967 cris_abi_update (char *ignore_args, int from_tty,
3968 struct cmd_list_element *c)
3969 {
3970 struct gdbarch_info info;
3971
3972 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3973 the set command passed as a parameter. The clone operation will
3974 include (BUG?) any ``set'' command callback, if present.
3975 Commands like ``info set'' call all the ``show'' command
3976 callbacks. Unfortunatly, for ``show'' commands cloned from
3977 ``set'', this includes callbacks belonging to ``set'' commands.
3978 Making this worse, this only occures if add_show_from_set() is
3979 called after add_cmd_sfunc() (BUG?). */
3980
3981 /* From here on, trust the user's CRIS ABI setting. */
3982 if (cmd_type (c) == set_cmd)
3983 {
3984 usr_cmd_cris_abi_valid = 1;
3985
3986 /* Update the current architecture, if needed. */
3987 gdbarch_info_init (&info);
3988 if (!gdbarch_update_p (info))
3989 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3990 }
3991 }
3992
3993 /* Copied from pa64solib.c, with a couple of minor changes. */
3994
3995 static CORE_ADDR
3996 bfd_lookup_symbol (bfd *abfd, const char *symname)
3997 {
3998 unsigned int storage_needed;
3999 asymbol *sym;
4000 asymbol **symbol_table;
4001 unsigned int number_of_symbols;
4002 unsigned int i;
4003 struct cleanup *back_to;
4004 CORE_ADDR symaddr = 0;
4005
4006 storage_needed = bfd_get_symtab_upper_bound (abfd);
4007
4008 if (storage_needed > 0)
4009 {
4010 symbol_table = (asymbol **) xmalloc (storage_needed);
4011 back_to = make_cleanup (free, symbol_table);
4012 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
4013
4014 for (i = 0; i < number_of_symbols; i++)
4015 {
4016 sym = *symbol_table++;
4017 if (!strcmp (sym->name, symname))
4018 {
4019 /* Bfd symbols are section relative. */
4020 symaddr = sym->value + sym->section->vma;
4021 break;
4022 }
4023 }
4024 do_cleanups (back_to);
4025 }
4026 return (symaddr);
4027 }
4028
4029 static struct gdbarch *
4030 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4031 {
4032 struct gdbarch *gdbarch;
4033 struct gdbarch_tdep *tdep;
4034 int cris_version;
4035 const char *cris_mode;
4036 const char *cris_abi;
4037 CORE_ADDR cris_abi_sym = 0;
4038 int register_bytes;
4039
4040 if (usr_cmd_cris_version_valid)
4041 {
4042 /* Trust the user's CRIS version setting. */
4043 cris_version = usr_cmd_cris_version;
4044 }
4045 else
4046 {
4047 /* Assume it's CRIS version 10. */
4048 cris_version = 10;
4049 }
4050
4051 if (usr_cmd_cris_mode_valid)
4052 {
4053 /* Trust the user's CRIS mode setting. */
4054 cris_mode = usr_cmd_cris_mode;
4055 }
4056 else if (cris_version == 10)
4057 {
4058 /* Assume CRIS version 10 is in user mode. */
4059 cris_mode = CRIS_MODE_USER;
4060 }
4061 else
4062 {
4063 /* Strictly speaking, older CRIS version don't have a supervisor mode,
4064 but we regard its only mode as supervisor mode. */
4065 cris_mode = CRIS_MODE_SUPERVISOR;
4066 }
4067
4068 if (usr_cmd_cris_abi_valid)
4069 {
4070 /* Trust the user's ABI setting. */
4071 cris_abi = usr_cmd_cris_abi;
4072 }
4073 else if (info.abfd)
4074 {
4075 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4076 {
4077 /* An elf target uses the new ABI. */
4078 cris_abi = CRIS_ABI_V2;
4079 }
4080 else if (bfd_get_flavour (info.abfd) == bfd_target_aout_flavour)
4081 {
4082 /* An a.out target may use either ABI. Look for hints in the
4083 symbol table. */
4084 cris_abi_sym = bfd_lookup_symbol (info.abfd, CRIS_ABI_SYMBOL);
4085 cris_abi = cris_abi_sym ? CRIS_ABI_V2 : CRIS_ABI_ORIGINAL;
4086 }
4087 else
4088 {
4089 /* Unknown bfd flavour. Assume it's the new ABI. */
4090 cris_abi = CRIS_ABI_V2;
4091 }
4092 }
4093 else if (arches != NULL)
4094 {
4095 /* No bfd available. Stick with the ABI from the most recently
4096 selected architecture of this same family (the head of arches
4097 always points to this). (This is to avoid changing the ABI
4098 when the user updates the architecture with the 'set
4099 cris-version' command.) */
4100 cris_abi = gdbarch_tdep (arches->gdbarch)->cris_abi;
4101 }
4102 else
4103 {
4104 /* No bfd, and no previously selected architecture available.
4105 Assume it's the new ABI. */
4106 cris_abi = CRIS_ABI_V2;
4107 }
4108
4109 /* Make the current settings visible to the user. */
4110 usr_cmd_cris_version = cris_version;
4111 usr_cmd_cris_mode = cris_mode;
4112 usr_cmd_cris_abi = cris_abi;
4113
4114 /* Find a candidate among the list of pre-declared architectures. Both
4115 CRIS version and ABI must match. */
4116 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4117 arches != NULL;
4118 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4119 {
4120 if ((gdbarch_tdep (arches->gdbarch)->cris_version == cris_version)
4121 && (gdbarch_tdep (arches->gdbarch)->cris_mode == cris_mode)
4122 && (gdbarch_tdep (arches->gdbarch)->cris_abi == cris_abi))
4123 return arches->gdbarch;
4124 }
4125
4126 /* No matching architecture was found. Create a new one. */
4127 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4128 gdbarch = gdbarch_alloc (&info, tdep);
4129
4130 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
4131 ready to unwind the PC first (see frame.c:get_prev_frame()). */
4132 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
4133
4134 tdep->cris_version = cris_version;
4135 tdep->cris_mode = cris_mode;
4136 tdep->cris_abi = cris_abi;
4137
4138 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4139 switch (info.byte_order)
4140 {
4141 case BFD_ENDIAN_LITTLE:
4142 /* Ok. */
4143 break;
4144
4145 case BFD_ENDIAN_BIG:
4146 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: big endian byte order in info");
4147 break;
4148
4149 default:
4150 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown byte order in info");
4151 }
4152
4153 /* Initialize the ABI dependent things. */
4154 if (tdep->cris_abi == CRIS_ABI_ORIGINAL)
4155 {
4156 set_gdbarch_double_bit (gdbarch, 32);
4157 set_gdbarch_push_arguments (gdbarch, cris_abi_original_push_arguments);
4158 set_gdbarch_deprecated_store_return_value (gdbarch,
4159 cris_abi_original_store_return_value);
4160 set_gdbarch_deprecated_extract_return_value
4161 (gdbarch, cris_abi_original_extract_return_value);
4162 set_gdbarch_reg_struct_has_addr
4163 (gdbarch, cris_abi_original_reg_struct_has_addr);
4164 }
4165 else if (tdep->cris_abi == CRIS_ABI_V2)
4166 {
4167 set_gdbarch_double_bit (gdbarch, 64);
4168 set_gdbarch_push_arguments (gdbarch, cris_abi_v2_push_arguments);
4169 set_gdbarch_deprecated_store_return_value (gdbarch, cris_abi_v2_store_return_value);
4170 set_gdbarch_deprecated_extract_return_value
4171 (gdbarch, cris_abi_v2_extract_return_value);
4172 set_gdbarch_reg_struct_has_addr (gdbarch,
4173 cris_abi_v2_reg_struct_has_addr);
4174 }
4175 else
4176 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown CRIS ABI");
4177
4178 /* The default definition of a long double is 2 * TARGET_DOUBLE_BIT,
4179 which means we have to set this explicitly. */
4180 set_gdbarch_long_double_bit (gdbarch, 64);
4181
4182 /* There are 32 registers (some of which may not be implemented). */
4183 set_gdbarch_num_regs (gdbarch, 32);
4184 set_gdbarch_sp_regnum (gdbarch, 14);
4185 set_gdbarch_fp_regnum (gdbarch, 8);
4186 set_gdbarch_pc_regnum (gdbarch, 15);
4187
4188 set_gdbarch_register_name (gdbarch, cris_register_name);
4189
4190 /* Length of ordinary registers used in push_word and a few other places.
4191 REGISTER_RAW_SIZE is the real way to know how big a register is. */
4192 set_gdbarch_register_size (gdbarch, 4);
4193
4194 /* NEW */
4195 set_gdbarch_register_bytes_ok (gdbarch, cris_register_bytes_ok);
4196 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4197
4198
4199 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4200 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4201
4202
4203 /* The total amount of space needed to store (in an array called registers)
4204 GDB's copy of the machine's register state. Note: We can not use
4205 cris_register_size at this point, since it relies on current_gdbarch
4206 being set. */
4207 switch (tdep->cris_version)
4208 {
4209 case 0:
4210 case 1:
4211 case 2:
4212 case 3:
4213 /* Support for these may be added later. */
4214 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unsupported CRIS version");
4215 break;
4216
4217 case 8:
4218 case 9:
4219 /* CRIS v8 and v9, a.k.a. ETRAX 100. General registers R0 - R15
4220 (32 bits), special registers P0 - P1 (8 bits), P4 - P5 (16 bits),
4221 and P8 - P14 (32 bits). */
4222 register_bytes = (16 * 4) + (2 * 1) + (2 * 2) + (7 * 4);
4223 break;
4224
4225 case 10:
4226 case 11:
4227 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4228 P7 (32 bits), and P15 (32 bits) have been implemented. */
4229 register_bytes = (16 * 4) + (2 * 1) + (2 * 2) + (9 * 4);
4230 break;
4231
4232 default:
4233 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown CRIS version");
4234 }
4235
4236 set_gdbarch_register_bytes (gdbarch, register_bytes);
4237
4238 /* Returns the register offset for the first byte of register regno's space
4239 in the saved register state. */
4240 set_gdbarch_register_byte (gdbarch, cris_register_offset);
4241
4242 /* The length of the registers in the actual machine representation. */
4243 set_gdbarch_register_raw_size (gdbarch, cris_register_size);
4244
4245 /* The largest value REGISTER_RAW_SIZE can have. */
4246 set_gdbarch_max_register_raw_size (gdbarch, 32);
4247
4248 /* The length of the registers in the program's representation. */
4249 set_gdbarch_register_virtual_size (gdbarch, cris_register_size);
4250
4251 /* The largest value REGISTER_VIRTUAL_SIZE can have. */
4252 set_gdbarch_max_register_virtual_size (gdbarch, 32);
4253
4254 set_gdbarch_register_virtual_type (gdbarch, cris_register_virtual_type);
4255
4256 /* Use generic dummy frames. */
4257
4258 /* Where to execute the call in the memory segments. */
4259 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
4260
4261 /* Start execution at the beginning of dummy. */
4262 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
4263 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
4264
4265 /* Set to 1 since call_dummy_breakpoint_offset was defined. */
4266 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
4267
4268 /* Read all about dummy frames in blockframe.c. */
4269 set_gdbarch_call_dummy_length (gdbarch, 0);
4270 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
4271
4272 /* Defined to 1 to indicate that the target supports inferior function
4273 calls. */
4274 set_gdbarch_call_dummy_p (gdbarch, 1);
4275 set_gdbarch_call_dummy_words (gdbarch, 0);
4276 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
4277
4278 /* No stack adjustment needed when peforming an inferior function call. */
4279 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
4280 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
4281
4282 set_gdbarch_get_saved_register (gdbarch, deprecated_generic_get_saved_register);
4283
4284 /* No register requires conversion from raw format to virtual format. */
4285 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
4286
4287 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
4288 set_gdbarch_push_return_address (gdbarch, cris_push_return_address);
4289 set_gdbarch_pop_frame (gdbarch, cris_pop_frame);
4290
4291 set_gdbarch_store_struct_return (gdbarch, cris_store_struct_return);
4292 set_gdbarch_deprecated_extract_struct_value_address
4293 (gdbarch, cris_extract_struct_value_address);
4294 set_gdbarch_use_struct_convention (gdbarch, cris_use_struct_convention);
4295
4296 set_gdbarch_frame_init_saved_regs (gdbarch, cris_frame_init_saved_regs);
4297 set_gdbarch_init_extra_frame_info (gdbarch, cris_init_extra_frame_info);
4298 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4299 set_gdbarch_prologue_frameless_p (gdbarch, generic_prologue_frameless_p);
4300
4301 /* The stack grows downward. */
4302 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4303
4304 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4305
4306 /* The PC must not be decremented after a breakpoint. (The breakpoint
4307 handler takes care of that.) */
4308 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4309
4310 /* Offset from address of function to start of its code. */
4311 set_gdbarch_function_start_offset (gdbarch, 0);
4312
4313 /* The number of bytes at the start of arglist that are not really args,
4314 0 in the CRIS ABI. */
4315 set_gdbarch_frame_args_skip (gdbarch, 0);
4316 set_gdbarch_frameless_function_invocation
4317 (gdbarch, cris_frameless_function_invocation);
4318 set_gdbarch_frame_chain (gdbarch, cris_frame_chain);
4319
4320 set_gdbarch_frame_saved_pc (gdbarch, cris_frame_saved_pc);
4321 set_gdbarch_saved_pc_after_call (gdbarch, cris_saved_pc_after_call);
4322
4323 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
4324
4325 /* No extra stack alignment needed. Set to 1 by default. */
4326 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
4327
4328 /* Helpful for backtracing and returning in a call dummy. */
4329 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
4330
4331 /* Use target_specific function to define link map offsets. */
4332 set_solib_svr4_fetch_link_map_offsets
4333 (gdbarch, cris_linux_svr4_fetch_link_map_offsets);
4334
4335 return gdbarch;
4336 }
This page took 0.122893 seconds and 4 git commands to generate.