* top.h (lim_at_start): Declare.
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2 Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Axis Communications AB.
4 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "symtab.h"
25 #include "inferior.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "value.h"
31 #include "opcode/cris.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34
35 /* To get entry_point_address. */
36 #include "symfile.h"
37
38 #include "solib.h" /* Support for shared libraries. */
39 #include "solib-svr4.h" /* For struct link_map_offsets. */
40 #include "gdb_string.h"
41
42
43 enum cris_num_regs
44 {
45 /* There are no floating point registers. Used in gdbserver low-linux.c. */
46 NUM_FREGS = 0,
47
48 /* There are 16 general registers. */
49 NUM_GENREGS = 16,
50
51 /* There are 16 special registers. */
52 NUM_SPECREGS = 16
53 };
54
55 /* Register numbers of various important registers.
56 DEPRECATED_FP_REGNUM Contains address of executing stack frame.
57 STR_REGNUM Contains the address of structure return values.
58 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
59 ARG1_REGNUM Contains the first parameter to a function.
60 ARG2_REGNUM Contains the second parameter to a function.
61 ARG3_REGNUM Contains the third parameter to a function.
62 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
63 SP_REGNUM Contains address of top of stack.
64 PC_REGNUM Contains address of next instruction.
65 SRP_REGNUM Subroutine return pointer register.
66 BRP_REGNUM Breakpoint return pointer register. */
67
68 /* DEPRECATED_FP_REGNUM = 8, SP_REGNUM = 14, and PC_REGNUM = 15 have
69 been incorporated into the multi-arch framework. */
70
71 enum cris_regnums
72 {
73 /* Enums with respect to the general registers, valid for all
74 CRIS versions. */
75 STR_REGNUM = 9,
76 RET_REGNUM = 10,
77 ARG1_REGNUM = 10,
78 ARG2_REGNUM = 11,
79 ARG3_REGNUM = 12,
80 ARG4_REGNUM = 13,
81
82 /* Enums with respect to the special registers, some of which may not be
83 applicable to all CRIS versions. */
84 P0_REGNUM = 16,
85 VR_REGNUM = 17,
86 P2_REGNUM = 18,
87 P3_REGNUM = 19,
88 P4_REGNUM = 20,
89 CCR_REGNUM = 21,
90 MOF_REGNUM = 23,
91 P8_REGNUM = 24,
92 IBR_REGNUM = 25,
93 IRP_REGNUM = 26,
94 SRP_REGNUM = 27,
95 BAR_REGNUM = 28,
96 DCCR_REGNUM = 29,
97 BRP_REGNUM = 30,
98 USP_REGNUM = 31
99 };
100
101 extern const struct cris_spec_reg cris_spec_regs[];
102
103 /* CRIS version, set via the user command 'set cris-version'. Affects
104 register names and sizes.*/
105 static int usr_cmd_cris_version;
106
107 /* Indicates whether to trust the above variable. */
108 static int usr_cmd_cris_version_valid = 0;
109
110 /* CRIS mode, set via the user command 'set cris-mode'. Affects availability
111 of some registers. */
112 static const char *usr_cmd_cris_mode;
113
114 /* Indicates whether to trust the above variable. */
115 static int usr_cmd_cris_mode_valid = 0;
116
117 static const char CRIS_MODE_USER[] = "CRIS_MODE_USER";
118 static const char CRIS_MODE_SUPERVISOR[] = "CRIS_MODE_SUPERVISOR";
119 static const char *cris_mode_enums[] =
120 {
121 CRIS_MODE_USER,
122 CRIS_MODE_SUPERVISOR,
123 0
124 };
125
126 /* CRIS ABI, set via the user command 'set cris-abi'.
127 There are two flavours:
128 1. Original ABI with 32-bit doubles, where arguments <= 4 bytes are
129 passed by value.
130 2. New ABI with 64-bit doubles, where arguments <= 8 bytes are passed by
131 value. */
132 static const char *usr_cmd_cris_abi;
133
134 /* Indicates whether to trust the above variable. */
135 static int usr_cmd_cris_abi_valid = 0;
136
137 /* These variables are strings instead of enums to make them usable as
138 parameters to add_set_enum_cmd. */
139 static const char CRIS_ABI_ORIGINAL[] = "CRIS_ABI_ORIGINAL";
140 static const char CRIS_ABI_V2[] = "CRIS_ABI_V2";
141 static const char CRIS_ABI_SYMBOL[] = ".$CRIS_ABI_V2";
142 static const char *cris_abi_enums[] =
143 {
144 CRIS_ABI_ORIGINAL,
145 CRIS_ABI_V2,
146 0
147 };
148
149 /* CRIS architecture specific information. */
150 struct gdbarch_tdep
151 {
152 int cris_version;
153 const char *cris_mode;
154 const char *cris_abi;
155 };
156
157 /* Functions for accessing target dependent data. */
158
159 static int
160 cris_version (void)
161 {
162 return (gdbarch_tdep (current_gdbarch)->cris_version);
163 }
164
165 static const char *
166 cris_mode (void)
167 {
168 return (gdbarch_tdep (current_gdbarch)->cris_mode);
169 }
170
171 static const char *
172 cris_abi (void)
173 {
174 return (gdbarch_tdep (current_gdbarch)->cris_abi);
175 }
176
177 /* For saving call-clobbered contents in R9 when returning structs. */
178 static CORE_ADDR struct_return_address;
179
180 struct frame_extra_info
181 {
182 CORE_ADDR return_pc;
183 int leaf_function;
184 };
185
186 /* The instruction environment needed to find single-step breakpoints. */
187 typedef
188 struct instruction_environment
189 {
190 unsigned long reg[NUM_GENREGS];
191 unsigned long preg[NUM_SPECREGS];
192 unsigned long branch_break_address;
193 unsigned long delay_slot_pc;
194 unsigned long prefix_value;
195 int branch_found;
196 int prefix_found;
197 int invalid;
198 int slot_needed;
199 int delay_slot_pc_active;
200 int xflag_found;
201 int disable_interrupt;
202 } inst_env_type;
203
204 /* Save old breakpoints in order to restore the state before a single_step.
205 At most, two breakpoints will have to be remembered. */
206 typedef
207 char binsn_quantum[BREAKPOINT_MAX];
208 static binsn_quantum break_mem[2];
209 static CORE_ADDR next_pc = 0;
210 static CORE_ADDR branch_target_address = 0;
211 static unsigned char branch_break_inserted = 0;
212
213 /* Machine-dependencies in CRIS for opcodes. */
214
215 /* Instruction sizes. */
216 enum cris_instruction_sizes
217 {
218 INST_BYTE_SIZE = 0,
219 INST_WORD_SIZE = 1,
220 INST_DWORD_SIZE = 2
221 };
222
223 /* Addressing modes. */
224 enum cris_addressing_modes
225 {
226 REGISTER_MODE = 1,
227 INDIRECT_MODE = 2,
228 AUTOINC_MODE = 3
229 };
230
231 /* Prefix addressing modes. */
232 enum cris_prefix_addressing_modes
233 {
234 PREFIX_INDEX_MODE = 2,
235 PREFIX_ASSIGN_MODE = 3,
236
237 /* Handle immediate byte offset addressing mode prefix format. */
238 PREFIX_OFFSET_MODE = 2
239 };
240
241 /* Masks for opcodes. */
242 enum cris_opcode_masks
243 {
244 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
245 SIGNED_EXTEND_BIT_MASK = 0x2,
246 SIGNED_BYTE_MASK = 0x80,
247 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
248 SIGNED_WORD_MASK = 0x8000,
249 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
250 SIGNED_DWORD_MASK = 0x80000000,
251 SIGNED_QUICK_VALUE_MASK = 0x20,
252 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
253 };
254
255 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
256 Bit 15 - 12 Operand2
257 11 - 10 Mode
258 9 - 6 Opcode
259 5 - 4 Size
260 3 - 0 Operand1 */
261
262 static int
263 cris_get_operand2 (unsigned short insn)
264 {
265 return ((insn & 0xF000) >> 12);
266 }
267
268 static int
269 cris_get_mode (unsigned short insn)
270 {
271 return ((insn & 0x0C00) >> 10);
272 }
273
274 static int
275 cris_get_opcode (unsigned short insn)
276 {
277 return ((insn & 0x03C0) >> 6);
278 }
279
280 static int
281 cris_get_size (unsigned short insn)
282 {
283 return ((insn & 0x0030) >> 4);
284 }
285
286 static int
287 cris_get_operand1 (unsigned short insn)
288 {
289 return (insn & 0x000F);
290 }
291
292 /* Additional functions in order to handle opcodes. */
293
294 static int
295 cris_get_wide_opcode (unsigned short insn)
296 {
297 return ((insn & 0x03E0) >> 5);
298 }
299
300 static int
301 cris_get_short_size (unsigned short insn)
302 {
303 return ((insn & 0x0010) >> 4);
304 }
305
306 static int
307 cris_get_quick_value (unsigned short insn)
308 {
309 return (insn & 0x003F);
310 }
311
312 static int
313 cris_get_bdap_quick_offset (unsigned short insn)
314 {
315 return (insn & 0x00FF);
316 }
317
318 static int
319 cris_get_branch_short_offset (unsigned short insn)
320 {
321 return (insn & 0x00FF);
322 }
323
324 static int
325 cris_get_asr_shift_steps (unsigned long value)
326 {
327 return (value & 0x3F);
328 }
329
330 static int
331 cris_get_asr_quick_shift_steps (unsigned short insn)
332 {
333 return (insn & 0x1F);
334 }
335
336 static int
337 cris_get_clear_size (unsigned short insn)
338 {
339 return ((insn) & 0xC000);
340 }
341
342 static int
343 cris_is_signed_extend_bit_on (unsigned short insn)
344 {
345 return (((insn) & 0x20) == 0x20);
346 }
347
348 static int
349 cris_is_xflag_bit_on (unsigned short insn)
350 {
351 return (((insn) & 0x1000) == 0x1000);
352 }
353
354 static void
355 cris_set_size_to_dword (unsigned short *insn)
356 {
357 *insn &= 0xFFCF;
358 *insn |= 0x20;
359 }
360
361 static signed char
362 cris_get_signed_offset (unsigned short insn)
363 {
364 return ((signed char) (insn & 0x00FF));
365 }
366
367 /* Calls an op function given the op-type, working on the insn and the
368 inst_env. */
369 static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *);
370
371 static CORE_ADDR cris_skip_prologue_main (CORE_ADDR pc, int frameless_p);
372
373 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
374 struct gdbarch_list *);
375
376 static int cris_delayed_get_disassembler (bfd_vma, disassemble_info *);
377
378 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
379
380 static void cris_version_update (char *ignore_args, int from_tty,
381 struct cmd_list_element *c);
382
383 static void cris_mode_update (char *ignore_args, int from_tty,
384 struct cmd_list_element *c);
385
386 static void cris_abi_update (char *ignore_args, int from_tty,
387 struct cmd_list_element *c);
388
389 static CORE_ADDR bfd_lookup_symbol (bfd *, const char *);
390
391 /* Frames information. The definition of the struct frame_info is
392
393 CORE_ADDR frame
394 CORE_ADDR pc
395 enum frame_type type;
396 CORE_ADDR return_pc
397 int leaf_function
398
399 If the compilation option -fno-omit-frame-pointer is present the
400 variable frame will be set to the content of R8 which is the frame
401 pointer register.
402
403 The variable pc contains the address where execution is performed
404 in the present frame. The innermost frame contains the current content
405 of the register PC. All other frames contain the content of the
406 register PC in the next frame.
407
408 The variable `type' indicates the frame's type: normal, SIGTRAMP
409 (associated with a signal handler), dummy (associated with a dummy
410 frame).
411
412 The variable return_pc contains the address where execution should be
413 resumed when the present frame has finished, the return address.
414
415 The variable leaf_function is 1 if the return address is in the register
416 SRP, and 0 if it is on the stack.
417
418 Prologue instructions C-code.
419 The prologue may consist of (-fno-omit-frame-pointer)
420 1) 2)
421 push srp
422 push r8 push r8
423 move.d sp,r8 move.d sp,r8
424 subq X,sp subq X,sp
425 movem rY,[sp] movem rY,[sp]
426 move.S rZ,[r8-U] move.S rZ,[r8-U]
427
428 where 1 is a non-terminal function, and 2 is a leaf-function.
429
430 Note that this assumption is extremely brittle, and will break at the
431 slightest change in GCC's prologue.
432
433 If local variables are declared or register contents are saved on stack
434 the subq-instruction will be present with X as the number of bytes
435 needed for storage. The reshuffle with respect to r8 may be performed
436 with any size S (b, w, d) and any of the general registers Z={0..13}.
437 The offset U should be representable by a signed 8-bit value in all cases.
438 Thus, the prefix word is assumed to be immediate byte offset mode followed
439 by another word containing the instruction.
440
441 Degenerate cases:
442 3)
443 push r8
444 move.d sp,r8
445 move.d r8,sp
446 pop r8
447
448 Prologue instructions C++-code.
449 Case 1) and 2) in the C-code may be followed by
450
451 move.d r10,rS ; this
452 move.d r11,rT ; P1
453 move.d r12,rU ; P2
454 move.d r13,rV ; P3
455 move.S [r8+U],rZ ; P4
456
457 if any of the call parameters are stored. The host expects these
458 instructions to be executed in order to get the call parameters right. */
459
460 /* Examine the prologue of a function. The variable ip is the address of
461 the first instruction of the prologue. The variable limit is the address
462 of the first instruction after the prologue. The variable fi contains the
463 information in struct frame_info. The variable frameless_p controls whether
464 the entire prologue is examined (0) or just enough instructions to
465 determine that it is a prologue (1). */
466
467 CORE_ADDR
468 cris_examine (CORE_ADDR ip, CORE_ADDR limit, struct frame_info *fi,
469 int frameless_p)
470 {
471 /* Present instruction. */
472 unsigned short insn;
473
474 /* Next instruction, lookahead. */
475 unsigned short insn_next;
476 int regno;
477
478 /* Is there a push fp? */
479 int have_fp;
480
481 /* Number of byte on stack used for local variables and movem. */
482 int val;
483
484 /* Highest register number in a movem. */
485 int regsave;
486
487 /* move.d r<source_register>,rS */
488 short source_register;
489
490 /* This frame is with respect to a leaf until a push srp is found. */
491 get_frame_extra_info (fi)->leaf_function = 1;
492
493 /* This frame is without the FP until a push fp is found. */
494 have_fp = 0;
495
496 /* Assume nothing on stack. */
497 val = 0;
498 regsave = -1;
499
500 /* No information about register contents so far. */
501
502 /* We only want to know the end of the prologue when fi->saved_regs == 0.
503 When the saved registers are allocated full information is required. */
504 if (get_frame_saved_regs (fi))
505 {
506 for (regno = 0; regno < NUM_REGS; regno++)
507 get_frame_saved_regs (fi)[regno] = 0;
508 }
509
510 /* Find the prologue instructions. */
511 do
512 {
513 insn = read_memory_unsigned_integer (ip, sizeof (short));
514 ip += sizeof (short);
515 if (insn == 0xE1FC)
516 {
517 /* push <reg> 32 bit instruction */
518 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
519 ip += sizeof (short);
520 regno = cris_get_operand2 (insn_next);
521
522 /* This check, meant to recognize srp, used to be regno ==
523 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
524 if (insn_next == 0xBE7E)
525 {
526 if (frameless_p)
527 {
528 return ip;
529 }
530 get_frame_extra_info (fi)->leaf_function = 0;
531 }
532 else if (regno == DEPRECATED_FP_REGNUM)
533 {
534 have_fp = 1;
535 }
536 }
537 else if (insn == 0x866E)
538 {
539 /* move.d sp,r8 */
540 if (frameless_p)
541 {
542 return ip;
543 }
544 continue;
545 }
546 else if (cris_get_operand2 (insn) == SP_REGNUM
547 && cris_get_mode (insn) == 0x0000
548 && cris_get_opcode (insn) == 0x000A)
549 {
550 /* subq <val>,sp */
551 val = cris_get_quick_value (insn);
552 }
553 else if (cris_get_mode (insn) == 0x0002
554 && cris_get_opcode (insn) == 0x000F
555 && cris_get_size (insn) == 0x0003
556 && cris_get_operand1 (insn) == SP_REGNUM)
557 {
558 /* movem r<regsave>,[sp] */
559 if (frameless_p)
560 {
561 return ip;
562 }
563 regsave = cris_get_operand2 (insn);
564 }
565 else if (cris_get_operand2 (insn) == SP_REGNUM
566 && ((insn & 0x0F00) >> 8) == 0x0001
567 && (cris_get_signed_offset (insn) < 0))
568 {
569 /* Immediate byte offset addressing prefix word with sp as base
570 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
571 is between 64 and 128.
572 movem r<regsave>,[sp=sp-<val>] */
573 val = -cris_get_signed_offset (insn);
574 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
575 ip += sizeof (short);
576 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
577 && cris_get_opcode (insn_next) == 0x000F
578 && cris_get_size (insn_next) == 0x0003
579 && cris_get_operand1 (insn_next) == SP_REGNUM)
580 {
581 if (frameless_p)
582 {
583 return ip;
584 }
585 regsave = cris_get_operand2 (insn_next);
586 }
587 else
588 {
589 /* The prologue ended before the limit was reached. */
590 ip -= 2 * sizeof (short);
591 break;
592 }
593 }
594 else if (cris_get_mode (insn) == 0x0001
595 && cris_get_opcode (insn) == 0x0009
596 && cris_get_size (insn) == 0x0002)
597 {
598 /* move.d r<10..13>,r<0..15> */
599 if (frameless_p)
600 {
601 return ip;
602 }
603 source_register = cris_get_operand1 (insn);
604
605 /* FIXME? In the glibc solibs, the prologue might contain something
606 like (this example taken from relocate_doit):
607 move.d $pc,$r0
608 sub.d 0xfffef426,$r0
609 which isn't covered by the source_register check below. Question
610 is whether to add a check for this combo, or make better use of
611 the limit variable instead. */
612 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
613 {
614 /* The prologue ended before the limit was reached. */
615 ip -= sizeof (short);
616 break;
617 }
618 }
619 else if (cris_get_operand2 (insn) == DEPRECATED_FP_REGNUM
620 /* The size is a fixed-size. */
621 && ((insn & 0x0F00) >> 8) == 0x0001
622 /* A negative offset. */
623 && (cris_get_signed_offset (insn) < 0))
624 {
625 /* move.S rZ,[r8-U] (?) */
626 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
627 ip += sizeof (short);
628 regno = cris_get_operand2 (insn_next);
629 if ((regno >= 0 && regno < SP_REGNUM)
630 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
631 && cris_get_opcode (insn_next) == 0x000F)
632 {
633 /* move.S rZ,[r8-U] */
634 continue;
635 }
636 else
637 {
638 /* The prologue ended before the limit was reached. */
639 ip -= 2 * sizeof (short);
640 break;
641 }
642 }
643 else if (cris_get_operand2 (insn) == DEPRECATED_FP_REGNUM
644 /* The size is a fixed-size. */
645 && ((insn & 0x0F00) >> 8) == 0x0001
646 /* A positive offset. */
647 && (cris_get_signed_offset (insn) > 0))
648 {
649 /* move.S [r8+U],rZ (?) */
650 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
651 ip += sizeof (short);
652 regno = cris_get_operand2 (insn_next);
653 if ((regno >= 0 && regno < SP_REGNUM)
654 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
655 && cris_get_opcode (insn_next) == 0x0009
656 && cris_get_operand1 (insn_next) == regno)
657 {
658 /* move.S [r8+U],rZ */
659 continue;
660 }
661 else
662 {
663 /* The prologue ended before the limit was reached. */
664 ip -= 2 * sizeof (short);
665 break;
666 }
667 }
668 else
669 {
670 /* The prologue ended before the limit was reached. */
671 ip -= sizeof (short);
672 break;
673 }
674 }
675 while (ip < limit);
676
677 /* We only want to know the end of the prologue when
678 fi->saved_regs == 0. */
679 if (!get_frame_saved_regs (fi))
680 return ip;
681
682 if (have_fp)
683 {
684 get_frame_saved_regs (fi)[DEPRECATED_FP_REGNUM] = get_frame_base (fi);
685
686 /* Calculate the addresses. */
687 for (regno = regsave; regno >= 0; regno--)
688 {
689 get_frame_saved_regs (fi)[regno] = get_frame_base (fi) - val;
690 val -= 4;
691 }
692 if (get_frame_extra_info (fi)->leaf_function)
693 {
694 /* Set the register SP to contain the stack pointer of
695 the caller. */
696 get_frame_saved_regs (fi)[SP_REGNUM] = get_frame_base (fi) + 4;
697 }
698 else
699 {
700 /* Set the register SP to contain the stack pointer of
701 the caller. */
702 get_frame_saved_regs (fi)[SP_REGNUM] = get_frame_base (fi) + 8;
703
704 /* Set the register SRP to contain the return address of
705 the caller. */
706 get_frame_saved_regs (fi)[SRP_REGNUM] = get_frame_base (fi) + 4;
707 }
708 }
709 return ip;
710 }
711
712 /* Advance pc beyond any function entry prologue instructions at pc
713 to reach some "real" code. */
714
715 CORE_ADDR
716 cris_skip_prologue (CORE_ADDR pc)
717 {
718 return cris_skip_prologue_main (pc, 0);
719 }
720
721 /* As cris_skip_prologue, but stops as soon as it knows that the function
722 has a frame. Its result is equal to its input pc if the function is
723 frameless, unequal otherwise. */
724
725 CORE_ADDR
726 cris_skip_prologue_frameless_p (CORE_ADDR pc)
727 {
728 return cris_skip_prologue_main (pc, 1);
729 }
730
731 /* Given a PC value corresponding to the start of a function, return the PC
732 of the first instruction after the function prologue. */
733
734 CORE_ADDR
735 cris_skip_prologue_main (CORE_ADDR pc, int frameless_p)
736 {
737 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
738 struct frame_info *fi;
739 struct symtab_and_line sal = find_pc_line (pc, 0);
740 int best_limit;
741 CORE_ADDR pc_after_prologue;
742
743 /* frame_info now contains dynamic memory. Since fi is a dummy
744 here, I don't bother allocating memory for saved_regs. */
745 fi = deprecated_frame_xmalloc_with_cleanup (0, sizeof (struct frame_extra_info));
746
747 /* If there is no symbol information then sal.end == 0, and we end up
748 examining only the first instruction in the function prologue.
749 Exaggerating the limit seems to be harmless. */
750 if (sal.end > 0)
751 best_limit = sal.end;
752 else
753 best_limit = pc + 100;
754
755 pc_after_prologue = cris_examine (pc, best_limit, fi, frameless_p);
756 do_cleanups (old_chain);
757 return pc_after_prologue;
758 }
759
760 /* Use the program counter to determine the contents and size of a breakpoint
761 instruction. It returns a pointer to a string of bytes that encode a
762 breakpoint instruction, stores the length of the string to *lenptr, and
763 adjusts pcptr (if necessary) to point to the actual memory location where
764 the breakpoint should be inserted. */
765
766 const unsigned char *
767 cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
768 {
769 static unsigned char break_insn[] = {0x38, 0xe9};
770 *lenptr = 2;
771
772 return break_insn;
773 }
774
775 /* Returns the register SRP (subroutine return pointer) which must contain
776 the content of the register PC after a function call. */
777
778 static CORE_ADDR
779 cris_saved_pc_after_call (struct frame_info *frame)
780 {
781 return read_register (SRP_REGNUM);
782 }
783
784 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
785 0 otherwise. */
786
787 int
788 cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
789 {
790 int version = cris_version ();
791
792 switch (spec_reg.applicable_version)
793 {
794 case cris_ver_version_all:
795 return 1;
796 case cris_ver_warning:
797 /* Indeterminate/obsolete. */
798 return 0;
799 case cris_ver_sim:
800 /* Simulator only. */
801 return 0;
802 case cris_ver_v0_3:
803 return (version >= 0 && version <= 3);
804 case cris_ver_v3p:
805 return (version >= 3);
806 case cris_ver_v8:
807 return (version == 8 || version == 9);
808 case cris_ver_v8p:
809 return (version >= 8);
810 case cris_ver_v10p:
811 return (version >= 10);
812 default:
813 /* Invalid cris version. */
814 return 0;
815 }
816 }
817
818 /* Returns the register size in unit byte. Returns 0 for an unimplemented
819 register, -1 for an invalid register. */
820
821 int
822 cris_register_size (int regno)
823 {
824 int i;
825 int spec_regno;
826
827 if (regno >= 0 && regno < NUM_GENREGS)
828 {
829 /* General registers (R0 - R15) are 32 bits. */
830 return 4;
831 }
832 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
833 {
834 /* Special register (R16 - R31). cris_spec_regs is zero-based.
835 Adjust regno accordingly. */
836 spec_regno = regno - NUM_GENREGS;
837
838 /* The entries in cris_spec_regs are stored in register number order,
839 which means we can shortcut into the array when searching it. */
840 for (i = spec_regno; cris_spec_regs[i].name != NULL; i++)
841 {
842 if (cris_spec_regs[i].number == spec_regno
843 && cris_spec_reg_applicable (cris_spec_regs[i]))
844 /* Go with the first applicable register. */
845 return cris_spec_regs[i].reg_size;
846 }
847 /* Special register not applicable to this CRIS version. */
848 return 0;
849 }
850 else
851 {
852 /* Invalid register. */
853 return -1;
854 }
855 }
856
857 /* Nonzero if regno should not be fetched from the target. This is the case
858 for unimplemented (size 0) and non-existant registers. */
859
860 int
861 cris_cannot_fetch_register (int regno)
862 {
863 return ((regno < 0 || regno >= NUM_REGS)
864 || (cris_register_size (regno) == 0));
865 }
866
867 /* Nonzero if regno should not be written to the target, for various
868 reasons. */
869
870 int
871 cris_cannot_store_register (int regno)
872 {
873 /* There are three kinds of registers we refuse to write to.
874 1. Those that not implemented.
875 2. Those that are read-only (depends on the processor mode).
876 3. Those registers to which a write has no effect.
877 */
878
879 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
880 /* Not implemented. */
881 return 1;
882
883 else if (regno == VR_REGNUM)
884 /* Read-only. */
885 return 1;
886
887 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
888 /* Writing has no effect. */
889 return 1;
890
891 else if (cris_mode () == CRIS_MODE_USER)
892 {
893 if (regno == IBR_REGNUM || regno == BAR_REGNUM || regno == BRP_REGNUM
894 || regno == IRP_REGNUM)
895 /* Read-only in user mode. */
896 return 1;
897 }
898
899 return 0;
900 }
901
902 /* Returns the register offset for the first byte of register regno's space
903 in the saved register state. Returns -1 for an invalid or unimplemented
904 register. */
905
906 int
907 cris_register_offset (int regno)
908 {
909 int i;
910 int reg_size;
911 int offset = 0;
912
913 if (regno >= 0 && regno < NUM_REGS)
914 {
915 /* FIXME: The offsets should be cached and calculated only once,
916 when the architecture being debugged has changed. */
917 for (i = 0; i < regno; i++)
918 offset += cris_register_size (i);
919
920 return offset;
921 }
922 else
923 {
924 /* Invalid register. */
925 return -1;
926 }
927 }
928
929 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
930 of data in register regno. */
931
932 struct type *
933 cris_register_virtual_type (int regno)
934 {
935 if (regno == SP_REGNUM || regno == PC_REGNUM
936 || (regno > P8_REGNUM && regno < USP_REGNUM))
937 {
938 /* SP, PC, IBR, IRP, SRP, BAR, DCCR, BRP */
939 return lookup_pointer_type (builtin_type_void);
940 }
941 else if (regno == P8_REGNUM || regno == USP_REGNUM
942 || (regno >= 0 && regno < SP_REGNUM))
943 {
944 /* R0 - R13, P8, P15 */
945 return builtin_type_unsigned_long;
946 }
947 else if (regno > P3_REGNUM && regno < P8_REGNUM)
948 {
949 /* P4, CCR, DCR0, DCR1 */
950 return builtin_type_unsigned_short;
951 }
952 else if (regno > PC_REGNUM && regno < P4_REGNUM)
953 {
954 /* P0, P1, P2, P3 */
955 return builtin_type_unsigned_char;
956 }
957 else
958 {
959 /* Invalid register. */
960 return builtin_type_void;
961 }
962 }
963
964 /* Stores a function return value of type type, where valbuf is the address
965 of the value to be stored. */
966
967 /* In the original CRIS ABI, R10 is used to store return values. */
968
969 void
970 cris_abi_original_store_return_value (struct type *type, char *valbuf)
971 {
972 int len = TYPE_LENGTH (type);
973
974 if (len <= DEPRECATED_REGISTER_SIZE)
975 deprecated_write_register_bytes (REGISTER_BYTE (RET_REGNUM), valbuf, len);
976 else
977 internal_error (__FILE__, __LINE__, "cris_abi_original_store_return_value: type length too large.");
978 }
979
980 /* In the CRIS ABI V2, R10 and R11 are used to store return values. */
981
982 void
983 cris_abi_v2_store_return_value (struct type *type, char *valbuf)
984 {
985 int len = TYPE_LENGTH (type);
986
987 if (len <= 2 * DEPRECATED_REGISTER_SIZE)
988 {
989 /* Note that this works since R10 and R11 are consecutive registers. */
990 deprecated_write_register_bytes (REGISTER_BYTE (RET_REGNUM), valbuf,
991 len);
992 }
993 else
994 internal_error (__FILE__, __LINE__, "cris_abi_v2_store_return_value: type length too large.");
995 }
996
997 /* Return the name of register regno as a string. Return NULL for an invalid or
998 unimplemented register. */
999
1000 const char *
1001 cris_register_name (int regno)
1002 {
1003 static char *cris_genreg_names[] =
1004 { "r0", "r1", "r2", "r3", \
1005 "r4", "r5", "r6", "r7", \
1006 "r8", "r9", "r10", "r11", \
1007 "r12", "r13", "sp", "pc" };
1008
1009 int i;
1010 int spec_regno;
1011
1012 if (regno >= 0 && regno < NUM_GENREGS)
1013 {
1014 /* General register. */
1015 return cris_genreg_names[regno];
1016 }
1017 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
1018 {
1019 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1020 Adjust regno accordingly. */
1021 spec_regno = regno - NUM_GENREGS;
1022
1023 /* The entries in cris_spec_regs are stored in register number order,
1024 which means we can shortcut into the array when searching it. */
1025 for (i = spec_regno; cris_spec_regs[i].name != NULL; i++)
1026 {
1027 if (cris_spec_regs[i].number == spec_regno
1028 && cris_spec_reg_applicable (cris_spec_regs[i]))
1029 /* Go with the first applicable register. */
1030 return cris_spec_regs[i].name;
1031 }
1032 /* Special register not applicable to this CRIS version. */
1033 return NULL;
1034 }
1035 else
1036 {
1037 /* Invalid register. */
1038 return NULL;
1039 }
1040 }
1041
1042 int
1043 cris_register_bytes_ok (long bytes)
1044 {
1045 return (bytes == DEPRECATED_REGISTER_BYTES);
1046 }
1047
1048 /* Extract from an array regbuf containing the raw register state a function
1049 return value of type type, and copy that, in virtual format, into
1050 valbuf. */
1051
1052 /* In the original CRIS ABI, R10 is used to return values. */
1053
1054 void
1055 cris_abi_original_extract_return_value (struct type *type, char *regbuf,
1056 char *valbuf)
1057 {
1058 int len = TYPE_LENGTH (type);
1059
1060 if (len <= DEPRECATED_REGISTER_SIZE)
1061 memcpy (valbuf, regbuf + REGISTER_BYTE (RET_REGNUM), len);
1062 else
1063 internal_error (__FILE__, __LINE__, "cris_abi_original_extract_return_value: type length too large");
1064 }
1065
1066 /* In the CRIS ABI V2, R10 and R11 are used to store return values. */
1067
1068 void
1069 cris_abi_v2_extract_return_value (struct type *type, char *regbuf,
1070 char *valbuf)
1071 {
1072 int len = TYPE_LENGTH (type);
1073
1074 if (len <= 2 * DEPRECATED_REGISTER_SIZE)
1075 memcpy (valbuf, regbuf + REGISTER_BYTE (RET_REGNUM), len);
1076 else
1077 internal_error (__FILE__, __LINE__, "cris_abi_v2_extract_return_value: type length too large");
1078 }
1079
1080 /* Store the address of the place in which to copy the structure the
1081 subroutine will return. In the CRIS ABI, R9 is used in order to pass
1082 the address of the allocated area where a structure return value must
1083 be stored. R9 is call-clobbered, which means we must save it here for
1084 later use. */
1085
1086 void
1087 cris_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1088 {
1089 write_register (STR_REGNUM, addr);
1090 struct_return_address = addr;
1091 }
1092
1093 /* Extract from regbuf the address where a function should return a
1094 structure value. It's not there in the CRIS ABI, so we must do it another
1095 way. */
1096
1097 CORE_ADDR
1098 cris_extract_struct_value_address (char *regbuf)
1099 {
1100 return struct_return_address;
1101 }
1102
1103 /* Returns 1 if a value of the given type being returned from a function
1104 must have space allocated for it on the stack. gcc_p is true if the
1105 function being considered is known to have been compiled by GCC.
1106 In the CRIS ABI, structure return values are passed to the called
1107 function by reference in register R9 to a caller-allocated area, so
1108 this is always true. */
1109
1110 int
1111 cris_use_struct_convention (int gcc_p, struct type *type)
1112 {
1113 return 1;
1114 }
1115
1116 /* Returns 1 if the given type will be passed by pointer rather than
1117 directly. */
1118
1119 /* In the original CRIS ABI, arguments shorter than or equal to 32 bits are
1120 passed by value. */
1121
1122 int
1123 cris_abi_original_reg_struct_has_addr (int gcc_p, struct type *type)
1124 {
1125 return (TYPE_LENGTH (type) > 4);
1126 }
1127
1128 /* In the CRIS ABI V2, arguments shorter than or equal to 64 bits are passed
1129 by value. */
1130
1131 int
1132 cris_abi_v2_reg_struct_has_addr (int gcc_p, struct type *type)
1133 {
1134 return (TYPE_LENGTH (type) > 8);
1135 }
1136
1137 /* Returns 1 if the function invocation represented by fi does not have a
1138 stack frame associated with it. Otherwise return 0. */
1139
1140 int
1141 cris_frameless_function_invocation (struct frame_info *fi)
1142 {
1143 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1144 return 0;
1145 else
1146 return frameless_look_for_prologue (fi);
1147 }
1148
1149 /* See frame.h. Determines the address of all registers in the
1150 current stack frame storing each in frame->saved_regs. Space for
1151 frame->saved_regs shall be allocated by
1152 DEPRECATED_FRAME_INIT_SAVED_REGS using frame_saved_regs_zalloc. */
1153
1154 void
1155 cris_frame_init_saved_regs (struct frame_info *fi)
1156 {
1157 CORE_ADDR ip;
1158 struct symtab_and_line sal;
1159 int best_limit;
1160 char *dummy_regs = deprecated_generic_find_dummy_frame (get_frame_pc (fi),
1161 get_frame_base (fi));
1162
1163 /* Examine the entire prologue. */
1164 register int frameless_p = 0;
1165
1166 /* Has this frame's registers already been initialized? */
1167 if (get_frame_saved_regs (fi))
1168 return;
1169
1170 frame_saved_regs_zalloc (fi);
1171
1172 if (dummy_regs)
1173 {
1174 /* I don't see this ever happening, considering the context in which
1175 cris_frame_init_saved_regs is called (always when we're not in
1176 a dummy frame). */
1177 memcpy (get_frame_saved_regs (fi), dummy_regs, SIZEOF_FRAME_SAVED_REGS);
1178 }
1179 else
1180 {
1181 ip = get_frame_func (fi);
1182 sal = find_pc_line (ip, 0);
1183
1184 /* If there is no symbol information then sal.end == 0, and we end up
1185 examining only the first instruction in the function prologue.
1186 Exaggerating the limit seems to be harmless. */
1187 if (sal.end > 0)
1188 best_limit = sal.end;
1189 else
1190 best_limit = ip + 100;
1191
1192 cris_examine (ip, best_limit, fi, frameless_p);
1193 }
1194 }
1195
1196 /* Initialises the extra frame information at the creation of a new frame.
1197 The inparameter fromleaf is 0 when the call is from create_new_frame.
1198 When the call is from get_prev_frame_info, fromleaf is determined by
1199 cris_frameless_function_invocation. */
1200
1201 void
1202 cris_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1203 {
1204 if (get_next_frame (fi))
1205 {
1206 /* Called from get_prev_frame. */
1207 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
1208 }
1209
1210 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
1211
1212 get_frame_extra_info (fi)->return_pc = 0;
1213 get_frame_extra_info (fi)->leaf_function = 0;
1214
1215 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1216 get_frame_base (fi),
1217 get_frame_base (fi)))
1218 {
1219 /* We need to setup fi->frame here because call_function_by_hand
1220 gets it wrong by assuming it's always FP. */
1221 deprecated_update_frame_base_hack (fi, deprecated_read_register_dummy (get_frame_pc (fi), get_frame_base (fi), SP_REGNUM));
1222 get_frame_extra_info (fi)->return_pc =
1223 deprecated_read_register_dummy (get_frame_pc (fi),
1224 get_frame_base (fi), PC_REGNUM);
1225
1226 /* FIXME: Is this necessarily true? */
1227 get_frame_extra_info (fi)->leaf_function = 0;
1228 }
1229 else
1230 {
1231 cris_frame_init_saved_regs (fi);
1232
1233 /* Check fromleaf/frameless_function_invocation. (FIXME) */
1234
1235 if (get_frame_saved_regs (fi)[SRP_REGNUM] != 0)
1236 {
1237 /* SRP was saved on the stack; non-leaf function. */
1238 get_frame_extra_info (fi)->return_pc =
1239 read_memory_integer (get_frame_saved_regs (fi)[SRP_REGNUM],
1240 REGISTER_RAW_SIZE (SRP_REGNUM));
1241 }
1242 else
1243 {
1244 /* SRP is still in a register; leaf function. */
1245 get_frame_extra_info (fi)->return_pc = read_register (SRP_REGNUM);
1246 /* FIXME: Should leaf_function be set to 1 here? */
1247 get_frame_extra_info (fi)->leaf_function = 1;
1248 }
1249 }
1250 }
1251
1252 /* Return the content of the frame pointer in the present frame. In other
1253 words, determine the address of the calling function's frame. */
1254
1255 CORE_ADDR
1256 cris_frame_chain (struct frame_info *fi)
1257 {
1258 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1259 get_frame_base (fi),
1260 get_frame_base (fi)))
1261 {
1262 return get_frame_base (fi);
1263 }
1264 else if (!inside_entry_file (get_frame_pc (fi)))
1265 {
1266 return read_memory_unsigned_integer (get_frame_base (fi), 4);
1267 }
1268 else
1269 {
1270 return 0;
1271 }
1272 }
1273
1274 /* Return the saved PC (which equals the return address) of this frame. */
1275
1276 CORE_ADDR
1277 cris_frame_saved_pc (struct frame_info *fi)
1278 {
1279 return get_frame_extra_info (fi)->return_pc;
1280 }
1281
1282 /* Setup the function arguments for calling a function in the inferior. */
1283
1284 CORE_ADDR
1285 cris_abi_original_push_arguments (int nargs, struct value **args,
1286 CORE_ADDR sp, int struct_return,
1287 CORE_ADDR struct_addr)
1288 {
1289 int stack_alloc;
1290 int stack_offset;
1291 int argreg;
1292 int argnum;
1293 struct type *type;
1294 int len;
1295 CORE_ADDR regval;
1296 char *val;
1297
1298 /* Data and parameters reside in different areas on the stack.
1299 Both frame pointers grow toward higher addresses. */
1300 CORE_ADDR fp_params;
1301 CORE_ADDR fp_data;
1302
1303 /* Are we returning a value using a structure return or a normal value
1304 return? struct_addr is the address of the reserved space for the return
1305 structure to be written on the stack. */
1306 if (struct_return)
1307 {
1308 write_register (STR_REGNUM, struct_addr);
1309 }
1310
1311 /* Make sure there's space on the stack. Allocate space for data and a
1312 parameter to refer to that data. */
1313 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1314 stack_alloc += (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + DEPRECATED_REGISTER_SIZE);
1315 sp -= stack_alloc;
1316 /* We may over-allocate a little here, but that won't hurt anything. */
1317
1318 /* Initialize stack frame pointers. */
1319 fp_params = sp;
1320 fp_data = sp + (nargs * DEPRECATED_REGISTER_SIZE);
1321
1322 /* Now load as many as possible of the first arguments into
1323 registers, and push the rest onto the stack. */
1324 argreg = ARG1_REGNUM;
1325 stack_offset = 0;
1326
1327 for (argnum = 0; argnum < nargs; argnum++)
1328 {
1329 type = VALUE_TYPE (args[argnum]);
1330 len = TYPE_LENGTH (type);
1331 val = (char *) VALUE_CONTENTS (args[argnum]);
1332
1333 if (len <= DEPRECATED_REGISTER_SIZE && argreg <= ARG4_REGNUM)
1334 {
1335 /* Data fits in a register; put it in the first available
1336 register. */
1337 write_register (argreg, *(unsigned long *) val);
1338 argreg++;
1339 }
1340 else if (len > DEPRECATED_REGISTER_SIZE && argreg <= ARG4_REGNUM)
1341 {
1342 /* Data does not fit in register; pass it on the stack and
1343 put its address in the first available register. */
1344 write_memory (fp_data, val, len);
1345 write_register (argreg, fp_data);
1346 fp_data += len;
1347 argreg++;
1348 }
1349 else if (len > DEPRECATED_REGISTER_SIZE)
1350 {
1351 /* Data does not fit in register; put both data and
1352 parameter on the stack. */
1353 write_memory (fp_data, val, len);
1354 write_memory (fp_params, (char *) (&fp_data), DEPRECATED_REGISTER_SIZE);
1355 fp_data += len;
1356 fp_params += DEPRECATED_REGISTER_SIZE;
1357 }
1358 else
1359 {
1360 /* Data fits in a register, but we are out of registers;
1361 put the parameter on the stack. */
1362 write_memory (fp_params, val, DEPRECATED_REGISTER_SIZE);
1363 fp_params += DEPRECATED_REGISTER_SIZE;
1364 }
1365 }
1366
1367 return sp;
1368 }
1369
1370 CORE_ADDR
1371 cris_abi_v2_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1372 int struct_return, CORE_ADDR struct_addr)
1373 {
1374 int stack_alloc;
1375 int stack_offset;
1376 int argreg;
1377 int argnum;
1378
1379 CORE_ADDR regval;
1380
1381 /* The function's arguments and memory allocated by gdb for the arguments to
1382 point at reside in separate areas on the stack.
1383 Both frame pointers grow toward higher addresses. */
1384 CORE_ADDR fp_arg;
1385 CORE_ADDR fp_mem;
1386
1387 /* Are we returning a value using a structure return or a normal value
1388 return? struct_addr is the address of the reserved space for the return
1389 structure to be written on the stack. */
1390 if (struct_return)
1391 {
1392 write_register (STR_REGNUM, struct_addr);
1393 }
1394
1395 /* Allocate enough to keep things word-aligned on both parts of the
1396 stack. */
1397 stack_alloc = 0;
1398 for (argnum = 0; argnum < nargs; argnum++)
1399 {
1400 int len;
1401 int reg_demand;
1402
1403 len = TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1404 reg_demand = (len / DEPRECATED_REGISTER_SIZE) + (len % DEPRECATED_REGISTER_SIZE != 0 ? 1 : 0);
1405
1406 /* reg_demand * DEPRECATED_REGISTER_SIZE is the amount of memory
1407 we might need to allocate for this argument. 2 *
1408 DEPRECATED_REGISTER_SIZE is the amount of stack space we
1409 might need to pass the argument itself (either by value or by
1410 reference). */
1411 stack_alloc += (reg_demand * DEPRECATED_REGISTER_SIZE + 2 * DEPRECATED_REGISTER_SIZE);
1412 }
1413 sp -= stack_alloc;
1414 /* We may over-allocate a little here, but that won't hurt anything. */
1415
1416 /* Initialize frame pointers. */
1417 fp_arg = sp;
1418 fp_mem = sp + (nargs * (2 * DEPRECATED_REGISTER_SIZE));
1419
1420 /* Now load as many as possible of the first arguments into registers,
1421 and push the rest onto the stack. */
1422 argreg = ARG1_REGNUM;
1423 stack_offset = 0;
1424
1425 for (argnum = 0; argnum < nargs; argnum++)
1426 {
1427 int len;
1428 char *val;
1429 int reg_demand;
1430 int i;
1431
1432 len = TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1433 val = (char *) VALUE_CONTENTS (args[argnum]);
1434
1435 /* How may registers worth of storage do we need for this argument? */
1436 reg_demand = (len / DEPRECATED_REGISTER_SIZE) + (len % DEPRECATED_REGISTER_SIZE != 0 ? 1 : 0);
1437
1438 if (len <= (2 * DEPRECATED_REGISTER_SIZE)
1439 && (argreg + reg_demand - 1 <= ARG4_REGNUM))
1440 {
1441 /* Data passed by value. Fits in available register(s). */
1442 for (i = 0; i < reg_demand; i++)
1443 {
1444 write_register (argreg, *(unsigned long *) val);
1445 argreg++;
1446 val += DEPRECATED_REGISTER_SIZE;
1447 }
1448 }
1449 else if (len <= (2 * DEPRECATED_REGISTER_SIZE) && argreg <= ARG4_REGNUM)
1450 {
1451 /* Data passed by value. Does not fit in available register(s).
1452 Use the register(s) first, then the stack. */
1453 for (i = 0; i < reg_demand; i++)
1454 {
1455 if (argreg <= ARG4_REGNUM)
1456 {
1457 write_register (argreg, *(unsigned long *) val);
1458 argreg++;
1459 val += DEPRECATED_REGISTER_SIZE;
1460 }
1461 else
1462 {
1463 /* I guess this memory write could write the
1464 remaining data all at once instead of in
1465 DEPRECATED_REGISTER_SIZE chunks. */
1466 write_memory (fp_arg, val, DEPRECATED_REGISTER_SIZE);
1467 fp_arg += DEPRECATED_REGISTER_SIZE;
1468 val += DEPRECATED_REGISTER_SIZE;
1469 }
1470 }
1471 }
1472 else if (len > (2 * DEPRECATED_REGISTER_SIZE))
1473 {
1474 /* Data passed by reference. Put it on the stack. */
1475 write_memory (fp_mem, val, len);
1476 write_memory (fp_arg, (char *) (&fp_mem), DEPRECATED_REGISTER_SIZE);
1477
1478 /* fp_mem need not be word-aligned since it's just a chunk of
1479 memory being pointed at. That is, += len would do. */
1480 fp_mem += reg_demand * DEPRECATED_REGISTER_SIZE;
1481 fp_arg += DEPRECATED_REGISTER_SIZE;
1482 }
1483 else
1484 {
1485 /* Data passed by value. No available registers. Put it on
1486 the stack. */
1487 write_memory (fp_arg, val, len);
1488
1489 /* fp_arg must be word-aligned (i.e., don't += len) to match
1490 the function prologue. */
1491 fp_arg += reg_demand * DEPRECATED_REGISTER_SIZE;
1492 }
1493 }
1494
1495 return sp;
1496 }
1497
1498 /* Never put the return address on the stack. The register SRP is pushed
1499 by the called function unless it is a leaf-function. Due to the BRP
1500 register the PC will change when continue is sent. */
1501
1502 CORE_ADDR
1503 cris_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1504 {
1505 write_register (SRP_REGNUM, CALL_DUMMY_ADDRESS ());
1506 return sp;
1507 }
1508
1509 /* Restore the machine to the state it had before the current frame
1510 was created. Discard the innermost frame from the stack and restore
1511 all saved registers. */
1512
1513 void
1514 cris_pop_frame (void)
1515 {
1516 register struct frame_info *fi = get_current_frame ();
1517 register int regno;
1518 register int stack_offset = 0;
1519
1520 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1521 get_frame_base (fi),
1522 get_frame_base (fi)))
1523 {
1524 /* This happens when we hit a breakpoint set at the entry point,
1525 when returning from a dummy frame. */
1526 generic_pop_dummy_frame ();
1527 }
1528 else
1529 {
1530 cris_frame_init_saved_regs (fi);
1531
1532 /* For each register, the address of where it was saved on entry to
1533 the frame now lies in fi->saved_regs[regno], or zero if it was not
1534 saved. This includes special registers such as PC and FP saved in
1535 special ways in the stack frame. The SP_REGNUM is even more
1536 special, the address here is the SP for the next frame, not the
1537 address where the SP was saved. */
1538
1539 /* Restore general registers R0 - R7. They were pushed on the stack
1540 after SP was saved. */
1541 for (regno = 0; regno < DEPRECATED_FP_REGNUM; regno++)
1542 {
1543 if (get_frame_saved_regs (fi)[regno])
1544 {
1545 write_register (regno,
1546 read_memory_integer (get_frame_saved_regs (fi)[regno], 4));
1547 }
1548 }
1549
1550 if (get_frame_saved_regs (fi)[DEPRECATED_FP_REGNUM])
1551 {
1552 /* Pop the frame pointer (R8). It was pushed before SP
1553 was saved. */
1554 write_register (DEPRECATED_FP_REGNUM,
1555 read_memory_integer (get_frame_saved_regs (fi)[DEPRECATED_FP_REGNUM], 4));
1556 stack_offset += 4;
1557
1558 /* Not a leaf function. */
1559 if (get_frame_saved_regs (fi)[SRP_REGNUM])
1560 {
1561 /* SRP was pushed before SP was saved. */
1562 stack_offset += 4;
1563 }
1564
1565 /* Restore the SP and adjust for R8 and (possibly) SRP. */
1566 write_register (SP_REGNUM, get_frame_saved_regs (fi)[DEPRECATED_FP_REGNUM] + stack_offset);
1567 }
1568 else
1569 {
1570 /* Currently, we can't get the correct info into fi->saved_regs
1571 without a frame pointer. */
1572 }
1573
1574 /* Restore the PC. */
1575 write_register (PC_REGNUM, get_frame_extra_info (fi)->return_pc);
1576 }
1577 flush_cached_frames ();
1578 }
1579
1580 /* Calculates a value that measures how good inst_args constraints an
1581 instruction. It stems from cris_constraint, found in cris-dis.c. */
1582
1583 static int
1584 constraint (unsigned int insn, const signed char *inst_args,
1585 inst_env_type *inst_env)
1586 {
1587 int retval = 0;
1588 int tmp, i;
1589
1590 const char *s = inst_args;
1591
1592 for (; *s; s++)
1593 switch (*s)
1594 {
1595 case 'm':
1596 if ((insn & 0x30) == 0x30)
1597 return -1;
1598 break;
1599
1600 case 'S':
1601 /* A prefix operand. */
1602 if (inst_env->prefix_found)
1603 break;
1604 else
1605 return -1;
1606
1607 case 'B':
1608 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1609 valid "push" size. In case of special register, it may be != 4. */
1610 if (inst_env->prefix_found)
1611 break;
1612 else
1613 return -1;
1614
1615 case 'D':
1616 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1617 if (!retval)
1618 return -1;
1619 else
1620 retval += 4;
1621 break;
1622
1623 case 'P':
1624 tmp = (insn >> 0xC) & 0xF;
1625
1626 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1627 {
1628 /* Since we match four bits, we will give a value of
1629 4 - 1 = 3 in a match. If there is a corresponding
1630 exact match of a special register in another pattern, it
1631 will get a value of 4, which will be higher. This should
1632 be correct in that an exact pattern would match better that
1633 a general pattern.
1634 Note that there is a reason for not returning zero; the
1635 pattern for "clear" is partly matched in the bit-pattern
1636 (the two lower bits must be zero), while the bit-pattern
1637 for a move from a special register is matched in the
1638 register constraint.
1639 This also means we will will have a race condition if
1640 there is a partly match in three bits in the bit pattern. */
1641 if (tmp == cris_spec_regs[i].number)
1642 {
1643 retval += 3;
1644 break;
1645 }
1646 }
1647
1648 if (cris_spec_regs[i].name == NULL)
1649 return -1;
1650 break;
1651 }
1652 return retval;
1653 }
1654
1655 /* Returns the number of bits set in the variable value. */
1656
1657 static int
1658 number_of_bits (unsigned int value)
1659 {
1660 int number_of_bits = 0;
1661
1662 while (value != 0)
1663 {
1664 number_of_bits += 1;
1665 value &= (value - 1);
1666 }
1667 return number_of_bits;
1668 }
1669
1670 /* Finds the address that should contain the single step breakpoint(s).
1671 It stems from code in cris-dis.c. */
1672
1673 static int
1674 find_cris_op (unsigned short insn, inst_env_type *inst_env)
1675 {
1676 int i;
1677 int max_level_of_match = -1;
1678 int max_matched = -1;
1679 int level_of_match;
1680
1681 for (i = 0; cris_opcodes[i].name != NULL; i++)
1682 {
1683 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
1684 && ((cris_opcodes[i].lose & insn) == 0))
1685 {
1686 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1687 if (level_of_match >= 0)
1688 {
1689 level_of_match +=
1690 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1691 if (level_of_match > max_level_of_match)
1692 {
1693 max_matched = i;
1694 max_level_of_match = level_of_match;
1695 if (level_of_match == 16)
1696 {
1697 /* All bits matched, cannot find better. */
1698 break;
1699 }
1700 }
1701 }
1702 }
1703 }
1704 return max_matched;
1705 }
1706
1707 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
1708 actually an internal error. */
1709
1710 static int
1711 find_step_target (inst_env_type *inst_env)
1712 {
1713 int i;
1714 int offset;
1715 unsigned short insn;
1716
1717 /* Create a local register image and set the initial state. */
1718 for (i = 0; i < NUM_GENREGS; i++)
1719 {
1720 inst_env->reg[i] = (unsigned long) read_register (i);
1721 }
1722 offset = NUM_GENREGS;
1723 for (i = 0; i < NUM_SPECREGS; i++)
1724 {
1725 inst_env->preg[i] = (unsigned long) read_register (offset + i);
1726 }
1727 inst_env->branch_found = 0;
1728 inst_env->slot_needed = 0;
1729 inst_env->delay_slot_pc_active = 0;
1730 inst_env->prefix_found = 0;
1731 inst_env->invalid = 0;
1732 inst_env->xflag_found = 0;
1733 inst_env->disable_interrupt = 0;
1734
1735 /* Look for a step target. */
1736 do
1737 {
1738 /* Read an instruction from the client. */
1739 insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2);
1740
1741 /* If the instruction is not in a delay slot the new content of the
1742 PC is [PC] + 2. If the instruction is in a delay slot it is not
1743 that simple. Since a instruction in a delay slot cannot change
1744 the content of the PC, it does not matter what value PC will have.
1745 Just make sure it is a valid instruction. */
1746 if (!inst_env->delay_slot_pc_active)
1747 {
1748 inst_env->reg[PC_REGNUM] += 2;
1749 }
1750 else
1751 {
1752 inst_env->delay_slot_pc_active = 0;
1753 inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc;
1754 }
1755 /* Analyse the present instruction. */
1756 i = find_cris_op (insn, inst_env);
1757 if (i == -1)
1758 {
1759 inst_env->invalid = 1;
1760 }
1761 else
1762 {
1763 cris_gdb_func (cris_opcodes[i].op, insn, inst_env);
1764 }
1765 } while (!inst_env->invalid
1766 && (inst_env->prefix_found || inst_env->xflag_found
1767 || inst_env->slot_needed));
1768 return i;
1769 }
1770
1771 /* There is no hardware single-step support. The function find_step_target
1772 digs through the opcodes in order to find all possible targets.
1773 Either one ordinary target or two targets for branches may be found. */
1774
1775 void
1776 cris_software_single_step (enum target_signal ignore, int insert_breakpoints)
1777 {
1778 inst_env_type inst_env;
1779
1780 if (insert_breakpoints)
1781 {
1782 /* Analyse the present instruction environment and insert
1783 breakpoints. */
1784 int status = find_step_target (&inst_env);
1785 if (status == -1)
1786 {
1787 /* Could not find a target. FIXME: Should do something. */
1788 }
1789 else
1790 {
1791 /* Insert at most two breakpoints. One for the next PC content
1792 and possibly another one for a branch, jump, etc. */
1793 next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM];
1794 target_insert_breakpoint (next_pc, break_mem[0]);
1795 if (inst_env.branch_found
1796 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
1797 {
1798 branch_target_address =
1799 (CORE_ADDR) inst_env.branch_break_address;
1800 target_insert_breakpoint (branch_target_address, break_mem[1]);
1801 branch_break_inserted = 1;
1802 }
1803 }
1804 }
1805 else
1806 {
1807 /* Remove breakpoints. */
1808 target_remove_breakpoint (next_pc, break_mem[0]);
1809 if (branch_break_inserted)
1810 {
1811 target_remove_breakpoint (branch_target_address, break_mem[1]);
1812 branch_break_inserted = 0;
1813 }
1814 }
1815 }
1816
1817 /* Calculates the prefix value for quick offset addressing mode. */
1818
1819 void
1820 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
1821 {
1822 /* It's invalid to be in a delay slot. You can't have a prefix to this
1823 instruction (not 100% sure). */
1824 if (inst_env->slot_needed || inst_env->prefix_found)
1825 {
1826 inst_env->invalid = 1;
1827 return;
1828 }
1829
1830 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
1831 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
1832
1833 /* A prefix doesn't change the xflag_found. But the rest of the flags
1834 need updating. */
1835 inst_env->slot_needed = 0;
1836 inst_env->prefix_found = 1;
1837 }
1838
1839 /* Updates the autoincrement register. The size of the increment is derived
1840 from the size of the operation. The PC is always kept aligned on even
1841 word addresses. */
1842
1843 void
1844 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
1845 {
1846 if (size == INST_BYTE_SIZE)
1847 {
1848 inst_env->reg[cris_get_operand1 (inst)] += 1;
1849
1850 /* The PC must be word aligned, so increase the PC with one
1851 word even if the size is byte. */
1852 if (cris_get_operand1 (inst) == REG_PC)
1853 {
1854 inst_env->reg[REG_PC] += 1;
1855 }
1856 }
1857 else if (size == INST_WORD_SIZE)
1858 {
1859 inst_env->reg[cris_get_operand1 (inst)] += 2;
1860 }
1861 else if (size == INST_DWORD_SIZE)
1862 {
1863 inst_env->reg[cris_get_operand1 (inst)] += 4;
1864 }
1865 else
1866 {
1867 /* Invalid size. */
1868 inst_env->invalid = 1;
1869 }
1870 }
1871
1872 /* Just a forward declaration. */
1873
1874 unsigned long get_data_from_address (unsigned short *inst, CORE_ADDR address);
1875
1876 /* Calculates the prefix value for the general case of offset addressing
1877 mode. */
1878
1879 void
1880 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
1881 {
1882
1883 long offset;
1884
1885 /* It's invalid to be in a delay slot. */
1886 if (inst_env->slot_needed || inst_env->prefix_found)
1887 {
1888 inst_env->invalid = 1;
1889 return;
1890 }
1891
1892 /* The calculation of prefix_value used to be after process_autoincrement,
1893 but that fails for an instruction such as jsr [$r0+12] which is encoded
1894 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
1895 mustn't be incremented until we have read it and what it points at. */
1896 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
1897
1898 /* The offset is an indirection of the contents of the operand1 register. */
1899 inst_env->prefix_value +=
1900 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
1901
1902 if (cris_get_mode (inst) == AUTOINC_MODE)
1903 {
1904 process_autoincrement (cris_get_size (inst), inst, inst_env);
1905 }
1906
1907 /* A prefix doesn't change the xflag_found. But the rest of the flags
1908 need updating. */
1909 inst_env->slot_needed = 0;
1910 inst_env->prefix_found = 1;
1911 }
1912
1913 /* Calculates the prefix value for the index addressing mode. */
1914
1915 void
1916 biap_prefix (unsigned short inst, inst_env_type *inst_env)
1917 {
1918 /* It's invalid to be in a delay slot. I can't see that it's possible to
1919 have a prefix to this instruction. So I will treat this as invalid. */
1920 if (inst_env->slot_needed || inst_env->prefix_found)
1921 {
1922 inst_env->invalid = 1;
1923 return;
1924 }
1925
1926 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
1927
1928 /* The offset is the operand2 value shifted the size of the instruction
1929 to the left. */
1930 inst_env->prefix_value +=
1931 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
1932
1933 /* If the PC is operand1 (base) the address used is the address after
1934 the main instruction, i.e. address + 2 (the PC is already compensated
1935 for the prefix operation). */
1936 if (cris_get_operand1 (inst) == REG_PC)
1937 {
1938 inst_env->prefix_value += 2;
1939 }
1940
1941 /* A prefix doesn't change the xflag_found. But the rest of the flags
1942 need updating. */
1943 inst_env->slot_needed = 0;
1944 inst_env->xflag_found = 0;
1945 inst_env->prefix_found = 1;
1946 }
1947
1948 /* Calculates the prefix value for the double indirect addressing mode. */
1949
1950 void
1951 dip_prefix (unsigned short inst, inst_env_type *inst_env)
1952 {
1953
1954 CORE_ADDR address;
1955
1956 /* It's invalid to be in a delay slot. */
1957 if (inst_env->slot_needed || inst_env->prefix_found)
1958 {
1959 inst_env->invalid = 1;
1960 return;
1961 }
1962
1963 /* The prefix value is one dereference of the contents of the operand1
1964 register. */
1965 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
1966 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
1967
1968 /* Check if the mode is autoincrement. */
1969 if (cris_get_mode (inst) == AUTOINC_MODE)
1970 {
1971 inst_env->reg[cris_get_operand1 (inst)] += 4;
1972 }
1973
1974 /* A prefix doesn't change the xflag_found. But the rest of the flags
1975 need updating. */
1976 inst_env->slot_needed = 0;
1977 inst_env->xflag_found = 0;
1978 inst_env->prefix_found = 1;
1979 }
1980
1981 /* Finds the destination for a branch with 8-bits offset. */
1982
1983 void
1984 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
1985 {
1986
1987 short offset;
1988
1989 /* If we have a prefix or are in a delay slot it's bad. */
1990 if (inst_env->slot_needed || inst_env->prefix_found)
1991 {
1992 inst_env->invalid = 1;
1993 return;
1994 }
1995
1996 /* We have a branch, find out where the branch will land. */
1997 offset = cris_get_branch_short_offset (inst);
1998
1999 /* Check if the offset is signed. */
2000 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2001 {
2002 offset |= 0xFF00;
2003 }
2004
2005 /* The offset ends with the sign bit, set it to zero. The address
2006 should always be word aligned. */
2007 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2008
2009 inst_env->branch_found = 1;
2010 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2011
2012 inst_env->slot_needed = 1;
2013 inst_env->prefix_found = 0;
2014 inst_env->xflag_found = 0;
2015 inst_env->disable_interrupt = 1;
2016 }
2017
2018 /* Finds the destination for a branch with 16-bits offset. */
2019
2020 void
2021 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2022 {
2023 short offset;
2024
2025 /* If we have a prefix or is in a delay slot it's bad. */
2026 if (inst_env->slot_needed || inst_env->prefix_found)
2027 {
2028 inst_env->invalid = 1;
2029 return;
2030 }
2031
2032 /* We have a branch, find out the offset for the branch. */
2033 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2034
2035 /* The instruction is one word longer than normal, so add one word
2036 to the PC. */
2037 inst_env->reg[REG_PC] += 2;
2038
2039 inst_env->branch_found = 1;
2040 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2041
2042
2043 inst_env->slot_needed = 1;
2044 inst_env->prefix_found = 0;
2045 inst_env->xflag_found = 0;
2046 inst_env->disable_interrupt = 1;
2047 }
2048
2049 /* Handles the ABS instruction. */
2050
2051 void
2052 abs_op (unsigned short inst, inst_env_type *inst_env)
2053 {
2054
2055 long value;
2056
2057 /* ABS can't have a prefix, so it's bad if it does. */
2058 if (inst_env->prefix_found)
2059 {
2060 inst_env->invalid = 1;
2061 return;
2062 }
2063
2064 /* Check if the operation affects the PC. */
2065 if (cris_get_operand2 (inst) == REG_PC)
2066 {
2067
2068 /* It's invalid to change to the PC if we are in a delay slot. */
2069 if (inst_env->slot_needed)
2070 {
2071 inst_env->invalid = 1;
2072 return;
2073 }
2074
2075 value = (long) inst_env->reg[REG_PC];
2076
2077 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2078 if (value != SIGNED_DWORD_MASK)
2079 {
2080 value = -value;
2081 inst_env->reg[REG_PC] = (long) value;
2082 }
2083 }
2084
2085 inst_env->slot_needed = 0;
2086 inst_env->prefix_found = 0;
2087 inst_env->xflag_found = 0;
2088 inst_env->disable_interrupt = 0;
2089 }
2090
2091 /* Handles the ADDI instruction. */
2092
2093 void
2094 addi_op (unsigned short inst, inst_env_type *inst_env)
2095 {
2096 /* It's invalid to have the PC as base register. And ADDI can't have
2097 a prefix. */
2098 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2099 {
2100 inst_env->invalid = 1;
2101 return;
2102 }
2103
2104 inst_env->slot_needed = 0;
2105 inst_env->prefix_found = 0;
2106 inst_env->xflag_found = 0;
2107 inst_env->disable_interrupt = 0;
2108 }
2109
2110 /* Handles the ASR instruction. */
2111
2112 void
2113 asr_op (unsigned short inst, inst_env_type *inst_env)
2114 {
2115 int shift_steps;
2116 unsigned long value;
2117 unsigned long signed_extend_mask = 0;
2118
2119 /* ASR can't have a prefix, so check that it doesn't. */
2120 if (inst_env->prefix_found)
2121 {
2122 inst_env->invalid = 1;
2123 return;
2124 }
2125
2126 /* Check if the PC is the target register. */
2127 if (cris_get_operand2 (inst) == REG_PC)
2128 {
2129 /* It's invalid to change the PC in a delay slot. */
2130 if (inst_env->slot_needed)
2131 {
2132 inst_env->invalid = 1;
2133 return;
2134 }
2135 /* Get the number of bits to shift. */
2136 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2137 value = inst_env->reg[REG_PC];
2138
2139 /* Find out how many bits the operation should apply to. */
2140 if (cris_get_size (inst) == INST_BYTE_SIZE)
2141 {
2142 if (value & SIGNED_BYTE_MASK)
2143 {
2144 signed_extend_mask = 0xFF;
2145 signed_extend_mask = signed_extend_mask >> shift_steps;
2146 signed_extend_mask = ~signed_extend_mask;
2147 }
2148 value = value >> shift_steps;
2149 value |= signed_extend_mask;
2150 value &= 0xFF;
2151 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2152 inst_env->reg[REG_PC] |= value;
2153 }
2154 else if (cris_get_size (inst) == INST_WORD_SIZE)
2155 {
2156 if (value & SIGNED_WORD_MASK)
2157 {
2158 signed_extend_mask = 0xFFFF;
2159 signed_extend_mask = signed_extend_mask >> shift_steps;
2160 signed_extend_mask = ~signed_extend_mask;
2161 }
2162 value = value >> shift_steps;
2163 value |= signed_extend_mask;
2164 value &= 0xFFFF;
2165 inst_env->reg[REG_PC] &= 0xFFFF0000;
2166 inst_env->reg[REG_PC] |= value;
2167 }
2168 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2169 {
2170 if (value & SIGNED_DWORD_MASK)
2171 {
2172 signed_extend_mask = 0xFFFFFFFF;
2173 signed_extend_mask = signed_extend_mask >> shift_steps;
2174 signed_extend_mask = ~signed_extend_mask;
2175 }
2176 value = value >> shift_steps;
2177 value |= signed_extend_mask;
2178 inst_env->reg[REG_PC] = value;
2179 }
2180 }
2181 inst_env->slot_needed = 0;
2182 inst_env->prefix_found = 0;
2183 inst_env->xflag_found = 0;
2184 inst_env->disable_interrupt = 0;
2185 }
2186
2187 /* Handles the ASRQ instruction. */
2188
2189 void
2190 asrq_op (unsigned short inst, inst_env_type *inst_env)
2191 {
2192
2193 int shift_steps;
2194 unsigned long value;
2195 unsigned long signed_extend_mask = 0;
2196
2197 /* ASRQ can't have a prefix, so check that it doesn't. */
2198 if (inst_env->prefix_found)
2199 {
2200 inst_env->invalid = 1;
2201 return;
2202 }
2203
2204 /* Check if the PC is the target register. */
2205 if (cris_get_operand2 (inst) == REG_PC)
2206 {
2207
2208 /* It's invalid to change the PC in a delay slot. */
2209 if (inst_env->slot_needed)
2210 {
2211 inst_env->invalid = 1;
2212 return;
2213 }
2214 /* The shift size is given as a 5 bit quick value, i.e. we don't
2215 want the the sign bit of the quick value. */
2216 shift_steps = cris_get_asr_shift_steps (inst);
2217 value = inst_env->reg[REG_PC];
2218 if (value & SIGNED_DWORD_MASK)
2219 {
2220 signed_extend_mask = 0xFFFFFFFF;
2221 signed_extend_mask = signed_extend_mask >> shift_steps;
2222 signed_extend_mask = ~signed_extend_mask;
2223 }
2224 value = value >> shift_steps;
2225 value |= signed_extend_mask;
2226 inst_env->reg[REG_PC] = value;
2227 }
2228 inst_env->slot_needed = 0;
2229 inst_env->prefix_found = 0;
2230 inst_env->xflag_found = 0;
2231 inst_env->disable_interrupt = 0;
2232 }
2233
2234 /* Handles the AX, EI and SETF instruction. */
2235
2236 void
2237 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2238 {
2239 if (inst_env->prefix_found)
2240 {
2241 inst_env->invalid = 1;
2242 return;
2243 }
2244 /* Check if the instruction is setting the X flag. */
2245 if (cris_is_xflag_bit_on (inst))
2246 {
2247 inst_env->xflag_found = 1;
2248 }
2249 else
2250 {
2251 inst_env->xflag_found = 0;
2252 }
2253 inst_env->slot_needed = 0;
2254 inst_env->prefix_found = 0;
2255 inst_env->disable_interrupt = 1;
2256 }
2257
2258 /* Checks if the instruction is in assign mode. If so, it updates the assign
2259 register. Note that check_assign assumes that the caller has checked that
2260 there is a prefix to this instruction. The mode check depends on this. */
2261
2262 void
2263 check_assign (unsigned short inst, inst_env_type *inst_env)
2264 {
2265 /* Check if it's an assign addressing mode. */
2266 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2267 {
2268 /* Assign the prefix value to operand 1. */
2269 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2270 }
2271 }
2272
2273 /* Handles the 2-operand BOUND instruction. */
2274
2275 void
2276 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2277 {
2278 /* It's invalid to have the PC as the index operand. */
2279 if (cris_get_operand2 (inst) == REG_PC)
2280 {
2281 inst_env->invalid = 1;
2282 return;
2283 }
2284 /* Check if we have a prefix. */
2285 if (inst_env->prefix_found)
2286 {
2287 check_assign (inst, inst_env);
2288 }
2289 /* Check if this is an autoincrement mode. */
2290 else if (cris_get_mode (inst) == AUTOINC_MODE)
2291 {
2292 /* It's invalid to change the PC in a delay slot. */
2293 if (inst_env->slot_needed)
2294 {
2295 inst_env->invalid = 1;
2296 return;
2297 }
2298 process_autoincrement (cris_get_size (inst), inst, inst_env);
2299 }
2300 inst_env->slot_needed = 0;
2301 inst_env->prefix_found = 0;
2302 inst_env->xflag_found = 0;
2303 inst_env->disable_interrupt = 0;
2304 }
2305
2306 /* Handles the 3-operand BOUND instruction. */
2307
2308 void
2309 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2310 {
2311 /* It's an error if we haven't got a prefix. And it's also an error
2312 if the PC is the destination register. */
2313 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2314 {
2315 inst_env->invalid = 1;
2316 return;
2317 }
2318 inst_env->slot_needed = 0;
2319 inst_env->prefix_found = 0;
2320 inst_env->xflag_found = 0;
2321 inst_env->disable_interrupt = 0;
2322 }
2323
2324 /* Clears the status flags in inst_env. */
2325
2326 void
2327 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2328 {
2329 /* It's an error if we have got a prefix. */
2330 if (inst_env->prefix_found)
2331 {
2332 inst_env->invalid = 1;
2333 return;
2334 }
2335
2336 inst_env->slot_needed = 0;
2337 inst_env->prefix_found = 0;
2338 inst_env->xflag_found = 0;
2339 inst_env->disable_interrupt = 0;
2340 }
2341
2342 /* Clears the status flags in inst_env. */
2343
2344 void
2345 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2346 {
2347 /* It's an error if we have got a prefix. */
2348 if (inst_env->prefix_found)
2349 {
2350 inst_env->invalid = 1;
2351 return;
2352 }
2353
2354 inst_env->slot_needed = 0;
2355 inst_env->prefix_found = 0;
2356 inst_env->xflag_found = 0;
2357 inst_env->disable_interrupt = 1;
2358 }
2359
2360 /* Handles the CLEAR instruction if it's in register mode. */
2361
2362 void
2363 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2364 {
2365 /* Check if the target is the PC. */
2366 if (cris_get_operand2 (inst) == REG_PC)
2367 {
2368 /* The instruction will clear the instruction's size bits. */
2369 int clear_size = cris_get_clear_size (inst);
2370 if (clear_size == INST_BYTE_SIZE)
2371 {
2372 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2373 }
2374 if (clear_size == INST_WORD_SIZE)
2375 {
2376 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2377 }
2378 if (clear_size == INST_DWORD_SIZE)
2379 {
2380 inst_env->delay_slot_pc = 0x0;
2381 }
2382 /* The jump will be delayed with one delay slot. So we need a delay
2383 slot. */
2384 inst_env->slot_needed = 1;
2385 inst_env->delay_slot_pc_active = 1;
2386 }
2387 else
2388 {
2389 /* The PC will not change => no delay slot. */
2390 inst_env->slot_needed = 0;
2391 }
2392 inst_env->prefix_found = 0;
2393 inst_env->xflag_found = 0;
2394 inst_env->disable_interrupt = 0;
2395 }
2396
2397 /* Handles the TEST instruction if it's in register mode. */
2398
2399 void
2400 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2401 {
2402 /* It's an error if we have got a prefix. */
2403 if (inst_env->prefix_found)
2404 {
2405 inst_env->invalid = 1;
2406 return;
2407 }
2408 inst_env->slot_needed = 0;
2409 inst_env->prefix_found = 0;
2410 inst_env->xflag_found = 0;
2411 inst_env->disable_interrupt = 0;
2412
2413 }
2414
2415 /* Handles the CLEAR and TEST instruction if the instruction isn't
2416 in register mode. */
2417
2418 void
2419 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2420 {
2421 /* Check if we are in a prefix mode. */
2422 if (inst_env->prefix_found)
2423 {
2424 /* The only way the PC can change is if this instruction is in
2425 assign addressing mode. */
2426 check_assign (inst, inst_env);
2427 }
2428 /* Indirect mode can't change the PC so just check if the mode is
2429 autoincrement. */
2430 else if (cris_get_mode (inst) == AUTOINC_MODE)
2431 {
2432 process_autoincrement (cris_get_size (inst), inst, inst_env);
2433 }
2434 inst_env->slot_needed = 0;
2435 inst_env->prefix_found = 0;
2436 inst_env->xflag_found = 0;
2437 inst_env->disable_interrupt = 0;
2438 }
2439
2440 /* Checks that the PC isn't the destination register or the instructions has
2441 a prefix. */
2442
2443 void
2444 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2445 {
2446 /* It's invalid to have the PC as the destination. The instruction can't
2447 have a prefix. */
2448 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2449 {
2450 inst_env->invalid = 1;
2451 return;
2452 }
2453
2454 inst_env->slot_needed = 0;
2455 inst_env->prefix_found = 0;
2456 inst_env->xflag_found = 0;
2457 inst_env->disable_interrupt = 0;
2458 }
2459
2460 /* Checks that the instruction doesn't have a prefix. */
2461
2462 void
2463 break_op (unsigned short inst, inst_env_type *inst_env)
2464 {
2465 /* The instruction can't have a prefix. */
2466 if (inst_env->prefix_found)
2467 {
2468 inst_env->invalid = 1;
2469 return;
2470 }
2471
2472 inst_env->slot_needed = 0;
2473 inst_env->prefix_found = 0;
2474 inst_env->xflag_found = 0;
2475 inst_env->disable_interrupt = 1;
2476 }
2477
2478 /* Checks that the PC isn't the destination register and that the instruction
2479 doesn't have a prefix. */
2480
2481 void
2482 scc_op (unsigned short inst, inst_env_type *inst_env)
2483 {
2484 /* It's invalid to have the PC as the destination. The instruction can't
2485 have a prefix. */
2486 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2487 {
2488 inst_env->invalid = 1;
2489 return;
2490 }
2491
2492 inst_env->slot_needed = 0;
2493 inst_env->prefix_found = 0;
2494 inst_env->xflag_found = 0;
2495 inst_env->disable_interrupt = 1;
2496 }
2497
2498 /* Handles the register mode JUMP instruction. */
2499
2500 void
2501 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2502 {
2503 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2504 you can't have a prefix. */
2505 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2506 {
2507 inst_env->invalid = 1;
2508 return;
2509 }
2510
2511 /* Just change the PC. */
2512 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2513 inst_env->slot_needed = 0;
2514 inst_env->prefix_found = 0;
2515 inst_env->xflag_found = 0;
2516 inst_env->disable_interrupt = 1;
2517 }
2518
2519 /* Handles the JUMP instruction for all modes except register. */
2520
2521 void none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2522 {
2523 unsigned long newpc;
2524 CORE_ADDR address;
2525
2526 /* It's invalid to do a JUMP in a delay slot. */
2527 if (inst_env->slot_needed)
2528 {
2529 inst_env->invalid = 1;
2530 }
2531 else
2532 {
2533 /* Check if we have a prefix. */
2534 if (inst_env->prefix_found)
2535 {
2536 check_assign (inst, inst_env);
2537
2538 /* Get the new value for the the PC. */
2539 newpc =
2540 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2541 4);
2542 }
2543 else
2544 {
2545 /* Get the new value for the PC. */
2546 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2547 newpc = read_memory_unsigned_integer (address, 4);
2548
2549 /* Check if we should increment a register. */
2550 if (cris_get_mode (inst) == AUTOINC_MODE)
2551 {
2552 inst_env->reg[cris_get_operand1 (inst)] += 4;
2553 }
2554 }
2555 inst_env->reg[REG_PC] = newpc;
2556 }
2557 inst_env->slot_needed = 0;
2558 inst_env->prefix_found = 0;
2559 inst_env->xflag_found = 0;
2560 inst_env->disable_interrupt = 1;
2561 }
2562
2563 /* Handles moves to special registers (aka P-register) for all modes. */
2564
2565 void
2566 move_to_preg_op (unsigned short inst, inst_env_type *inst_env)
2567 {
2568 if (inst_env->prefix_found)
2569 {
2570 /* The instruction has a prefix that means we are only interested if
2571 the instruction is in assign mode. */
2572 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2573 {
2574 /* The prefix handles the problem if we are in a delay slot. */
2575 if (cris_get_operand1 (inst) == REG_PC)
2576 {
2577 /* Just take care of the assign. */
2578 check_assign (inst, inst_env);
2579 }
2580 }
2581 }
2582 else if (cris_get_mode (inst) == AUTOINC_MODE)
2583 {
2584 /* The instruction doesn't have a prefix, the only case left that we
2585 are interested in is the autoincrement mode. */
2586 if (cris_get_operand1 (inst) == REG_PC)
2587 {
2588 /* If the PC is to be incremented it's invalid to be in a
2589 delay slot. */
2590 if (inst_env->slot_needed)
2591 {
2592 inst_env->invalid = 1;
2593 return;
2594 }
2595
2596 /* The increment depends on the size of the special register. */
2597 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2598 {
2599 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2600 }
2601 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2602 {
2603 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2604 }
2605 else
2606 {
2607 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2608 }
2609 }
2610 }
2611 inst_env->slot_needed = 0;
2612 inst_env->prefix_found = 0;
2613 inst_env->xflag_found = 0;
2614 inst_env->disable_interrupt = 1;
2615 }
2616
2617 /* Handles moves from special registers (aka P-register) for all modes
2618 except register. */
2619
2620 void
2621 none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2622 {
2623 if (inst_env->prefix_found)
2624 {
2625 /* The instruction has a prefix that means we are only interested if
2626 the instruction is in assign mode. */
2627 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2628 {
2629 /* The prefix handles the problem if we are in a delay slot. */
2630 if (cris_get_operand1 (inst) == REG_PC)
2631 {
2632 /* Just take care of the assign. */
2633 check_assign (inst, inst_env);
2634 }
2635 }
2636 }
2637 /* The instruction doesn't have a prefix, the only case left that we
2638 are interested in is the autoincrement mode. */
2639 else if (cris_get_mode (inst) == AUTOINC_MODE)
2640 {
2641 if (cris_get_operand1 (inst) == REG_PC)
2642 {
2643 /* If the PC is to be incremented it's invalid to be in a
2644 delay slot. */
2645 if (inst_env->slot_needed)
2646 {
2647 inst_env->invalid = 1;
2648 return;
2649 }
2650
2651 /* The increment depends on the size of the special register. */
2652 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2653 {
2654 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2655 }
2656 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2657 {
2658 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2659 }
2660 else
2661 {
2662 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2663 }
2664 }
2665 }
2666 inst_env->slot_needed = 0;
2667 inst_env->prefix_found = 0;
2668 inst_env->xflag_found = 0;
2669 inst_env->disable_interrupt = 1;
2670 }
2671
2672 /* Handles moves from special registers (aka P-register) when the mode
2673 is register. */
2674
2675 void
2676 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2677 {
2678 /* Register mode move from special register can't have a prefix. */
2679 if (inst_env->prefix_found)
2680 {
2681 inst_env->invalid = 1;
2682 return;
2683 }
2684
2685 if (cris_get_operand1 (inst) == REG_PC)
2686 {
2687 /* It's invalid to change the PC in a delay slot. */
2688 if (inst_env->slot_needed)
2689 {
2690 inst_env->invalid = 1;
2691 return;
2692 }
2693 /* The destination is the PC, the jump will have a delay slot. */
2694 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
2695 inst_env->slot_needed = 1;
2696 inst_env->delay_slot_pc_active = 1;
2697 }
2698 else
2699 {
2700 /* If the destination isn't PC, there will be no jump. */
2701 inst_env->slot_needed = 0;
2702 }
2703 inst_env->prefix_found = 0;
2704 inst_env->xflag_found = 0;
2705 inst_env->disable_interrupt = 1;
2706 }
2707
2708 /* Handles the MOVEM from memory to general register instruction. */
2709
2710 void
2711 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
2712 {
2713 if (inst_env->prefix_found)
2714 {
2715 /* The prefix handles the problem if we are in a delay slot. Is the
2716 MOVEM instruction going to change the PC? */
2717 if (cris_get_operand2 (inst) >= REG_PC)
2718 {
2719 inst_env->reg[REG_PC] =
2720 read_memory_unsigned_integer (inst_env->prefix_value, 4);
2721 }
2722 /* The assign value is the value after the increment. Normally, the
2723 assign value is the value before the increment. */
2724 if ((cris_get_operand1 (inst) == REG_PC)
2725 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2726 {
2727 inst_env->reg[REG_PC] = inst_env->prefix_value;
2728 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2729 }
2730 }
2731 else
2732 {
2733 /* Is the MOVEM instruction going to change the PC? */
2734 if (cris_get_operand2 (inst) == REG_PC)
2735 {
2736 /* It's invalid to change the PC in a delay slot. */
2737 if (inst_env->slot_needed)
2738 {
2739 inst_env->invalid = 1;
2740 return;
2741 }
2742 inst_env->reg[REG_PC] =
2743 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
2744 4);
2745 }
2746 /* The increment is not depending on the size, instead it's depending
2747 on the number of registers loaded from memory. */
2748 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
2749 {
2750 /* It's invalid to change the PC in a delay slot. */
2751 if (inst_env->slot_needed)
2752 {
2753 inst_env->invalid = 1;
2754 return;
2755 }
2756 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2757 }
2758 }
2759 inst_env->slot_needed = 0;
2760 inst_env->prefix_found = 0;
2761 inst_env->xflag_found = 0;
2762 inst_env->disable_interrupt = 0;
2763 }
2764
2765 /* Handles the MOVEM to memory from general register instruction. */
2766
2767 void
2768 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
2769 {
2770 if (inst_env->prefix_found)
2771 {
2772 /* The assign value is the value after the increment. Normally, the
2773 assign value is the value before the increment. */
2774 if ((cris_get_operand1 (inst) == REG_PC) &&
2775 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2776 {
2777 /* The prefix handles the problem if we are in a delay slot. */
2778 inst_env->reg[REG_PC] = inst_env->prefix_value;
2779 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2780 }
2781 }
2782 else
2783 {
2784 /* The increment is not depending on the size, instead it's depending
2785 on the number of registers loaded to memory. */
2786 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
2787 {
2788 /* It's invalid to change the PC in a delay slot. */
2789 if (inst_env->slot_needed)
2790 {
2791 inst_env->invalid = 1;
2792 return;
2793 }
2794 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2795 }
2796 }
2797 inst_env->slot_needed = 0;
2798 inst_env->prefix_found = 0;
2799 inst_env->xflag_found = 0;
2800 inst_env->disable_interrupt = 0;
2801 }
2802
2803 /* Handles the pop instruction to a general register.
2804 POP is a assembler macro for MOVE.D [SP+], Rd. */
2805
2806 void
2807 reg_pop_op (unsigned short inst, inst_env_type *inst_env)
2808 {
2809 /* POP can't have a prefix. */
2810 if (inst_env->prefix_found)
2811 {
2812 inst_env->invalid = 1;
2813 return;
2814 }
2815 if (cris_get_operand2 (inst) == REG_PC)
2816 {
2817 /* It's invalid to change the PC in a delay slot. */
2818 if (inst_env->slot_needed)
2819 {
2820 inst_env->invalid = 1;
2821 return;
2822 }
2823 inst_env->reg[REG_PC] =
2824 read_memory_unsigned_integer (inst_env->reg[REG_SP], 4);
2825 }
2826 inst_env->slot_needed = 0;
2827 inst_env->prefix_found = 0;
2828 inst_env->xflag_found = 0;
2829 inst_env->disable_interrupt = 0;
2830 }
2831
2832 /* Handles moves from register to memory. */
2833
2834 void
2835 move_reg_to_mem_index_inc_op (unsigned short inst, inst_env_type *inst_env)
2836 {
2837 /* Check if we have a prefix. */
2838 if (inst_env->prefix_found)
2839 {
2840 /* The only thing that can change the PC is an assign. */
2841 check_assign (inst, inst_env);
2842 }
2843 else if ((cris_get_operand1 (inst) == REG_PC)
2844 && (cris_get_mode (inst) == AUTOINC_MODE))
2845 {
2846 /* It's invalid to change the PC in a delay slot. */
2847 if (inst_env->slot_needed)
2848 {
2849 inst_env->invalid = 1;
2850 return;
2851 }
2852 process_autoincrement (cris_get_size (inst), inst, inst_env);
2853 }
2854 inst_env->slot_needed = 0;
2855 inst_env->prefix_found = 0;
2856 inst_env->xflag_found = 0;
2857 inst_env->disable_interrupt = 0;
2858 }
2859
2860 /* Handles the intructions that's not yet implemented, by setting
2861 inst_env->invalid to true. */
2862
2863 void
2864 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
2865 {
2866 inst_env->invalid = 1;
2867 }
2868
2869 /* Handles the XOR instruction. */
2870
2871 void
2872 xor_op (unsigned short inst, inst_env_type *inst_env)
2873 {
2874 /* XOR can't have a prefix. */
2875 if (inst_env->prefix_found)
2876 {
2877 inst_env->invalid = 1;
2878 return;
2879 }
2880
2881 /* Check if the PC is the target. */
2882 if (cris_get_operand2 (inst) == REG_PC)
2883 {
2884 /* It's invalid to change the PC in a delay slot. */
2885 if (inst_env->slot_needed)
2886 {
2887 inst_env->invalid = 1;
2888 return;
2889 }
2890 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
2891 }
2892 inst_env->slot_needed = 0;
2893 inst_env->prefix_found = 0;
2894 inst_env->xflag_found = 0;
2895 inst_env->disable_interrupt = 0;
2896 }
2897
2898 /* Handles the MULS instruction. */
2899
2900 void
2901 muls_op (unsigned short inst, inst_env_type *inst_env)
2902 {
2903 /* MULS/U can't have a prefix. */
2904 if (inst_env->prefix_found)
2905 {
2906 inst_env->invalid = 1;
2907 return;
2908 }
2909
2910 /* Consider it invalid if the PC is the target. */
2911 if (cris_get_operand2 (inst) == REG_PC)
2912 {
2913 inst_env->invalid = 1;
2914 return;
2915 }
2916 inst_env->slot_needed = 0;
2917 inst_env->prefix_found = 0;
2918 inst_env->xflag_found = 0;
2919 inst_env->disable_interrupt = 0;
2920 }
2921
2922 /* Handles the MULU instruction. */
2923
2924 void
2925 mulu_op (unsigned short inst, inst_env_type *inst_env)
2926 {
2927 /* MULS/U can't have a prefix. */
2928 if (inst_env->prefix_found)
2929 {
2930 inst_env->invalid = 1;
2931 return;
2932 }
2933
2934 /* Consider it invalid if the PC is the target. */
2935 if (cris_get_operand2 (inst) == REG_PC)
2936 {
2937 inst_env->invalid = 1;
2938 return;
2939 }
2940 inst_env->slot_needed = 0;
2941 inst_env->prefix_found = 0;
2942 inst_env->xflag_found = 0;
2943 inst_env->disable_interrupt = 0;
2944 }
2945
2946 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
2947 The MOVE instruction is the move from source to register. */
2948
2949 void
2950 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
2951 unsigned long source1, unsigned long source2)
2952 {
2953 unsigned long pc_mask;
2954 unsigned long operation_mask;
2955
2956 /* Find out how many bits the operation should apply to. */
2957 if (cris_get_size (inst) == INST_BYTE_SIZE)
2958 {
2959 pc_mask = 0xFFFFFF00;
2960 operation_mask = 0xFF;
2961 }
2962 else if (cris_get_size (inst) == INST_WORD_SIZE)
2963 {
2964 pc_mask = 0xFFFF0000;
2965 operation_mask = 0xFFFF;
2966 }
2967 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2968 {
2969 pc_mask = 0x0;
2970 operation_mask = 0xFFFFFFFF;
2971 }
2972 else
2973 {
2974 /* The size is out of range. */
2975 inst_env->invalid = 1;
2976 return;
2977 }
2978
2979 /* The instruction just works on uw_operation_mask bits. */
2980 source2 &= operation_mask;
2981 source1 &= operation_mask;
2982
2983 /* Now calculate the result. The opcode's 3 first bits separates
2984 the different actions. */
2985 switch (cris_get_opcode (inst) & 7)
2986 {
2987 case 0: /* add */
2988 source1 += source2;
2989 break;
2990
2991 case 1: /* move */
2992 source1 = source2;
2993 break;
2994
2995 case 2: /* subtract */
2996 source1 -= source2;
2997 break;
2998
2999 case 3: /* compare */
3000 break;
3001
3002 case 4: /* and */
3003 source1 &= source2;
3004 break;
3005
3006 case 5: /* or */
3007 source1 |= source2;
3008 break;
3009
3010 default:
3011 inst_env->invalid = 1;
3012 return;
3013
3014 break;
3015 }
3016
3017 /* Make sure that the result doesn't contain more than the instruction
3018 size bits. */
3019 source2 &= operation_mask;
3020
3021 /* Calculate the new breakpoint address. */
3022 inst_env->reg[REG_PC] &= pc_mask;
3023 inst_env->reg[REG_PC] |= source1;
3024
3025 }
3026
3027 /* Extends the value from either byte or word size to a dword. If the mode
3028 is zero extend then the value is extended with zero. If instead the mode
3029 is signed extend the sign bit of the value is taken into consideration. */
3030
3031 unsigned long
3032 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3033 {
3034 /* The size can be either byte or word, check which one it is.
3035 Don't check the highest bit, it's indicating if it's a zero
3036 or sign extend. */
3037 if (cris_get_size (*inst) & INST_WORD_SIZE)
3038 {
3039 /* Word size. */
3040 value &= 0xFFFF;
3041
3042 /* Check if the instruction is signed extend. If so, check if value has
3043 the sign bit on. */
3044 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3045 {
3046 value |= SIGNED_WORD_EXTEND_MASK;
3047 }
3048 }
3049 else
3050 {
3051 /* Byte size. */
3052 value &= 0xFF;
3053
3054 /* Check if the instruction is signed extend. If so, check if value has
3055 the sign bit on. */
3056 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3057 {
3058 value |= SIGNED_BYTE_EXTEND_MASK;
3059 }
3060 }
3061 /* The size should now be dword. */
3062 cris_set_size_to_dword (inst);
3063 return value;
3064 }
3065
3066 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3067 instruction. The MOVE instruction is the move from source to register. */
3068
3069 void
3070 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3071 inst_env_type *inst_env)
3072 {
3073 unsigned long operand1;
3074 unsigned long operand2;
3075
3076 /* It's invalid to have a prefix to the instruction. This is a register
3077 mode instruction and can't have a prefix. */
3078 if (inst_env->prefix_found)
3079 {
3080 inst_env->invalid = 1;
3081 return;
3082 }
3083 /* Check if the instruction has PC as its target. */
3084 if (cris_get_operand2 (inst) == REG_PC)
3085 {
3086 if (inst_env->slot_needed)
3087 {
3088 inst_env->invalid = 1;
3089 return;
3090 }
3091 /* The instruction has the PC as its target register. */
3092 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3093 operand2 = inst_env->reg[REG_PC];
3094
3095 /* Check if it's a extend, signed or zero instruction. */
3096 if (cris_get_opcode (inst) < 4)
3097 {
3098 operand1 = do_sign_or_zero_extend (operand1, &inst);
3099 }
3100 /* Calculate the PC value after the instruction, i.e. where the
3101 breakpoint should be. The order of the udw_operands is vital. */
3102 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3103 }
3104 inst_env->slot_needed = 0;
3105 inst_env->prefix_found = 0;
3106 inst_env->xflag_found = 0;
3107 inst_env->disable_interrupt = 0;
3108 }
3109
3110 /* Returns the data contained at address. The size of the data is derived from
3111 the size of the operation. If the instruction is a zero or signed
3112 extend instruction, the size field is changed in instruction. */
3113
3114 unsigned long
3115 get_data_from_address (unsigned short *inst, CORE_ADDR address)
3116 {
3117 int size = cris_get_size (*inst);
3118 unsigned long value;
3119
3120 /* If it's an extend instruction we don't want the signed extend bit,
3121 because it influences the size. */
3122 if (cris_get_opcode (*inst) < 4)
3123 {
3124 size &= ~SIGNED_EXTEND_BIT_MASK;
3125 }
3126 /* Is there a need for checking the size? Size should contain the number of
3127 bytes to read. */
3128 size = 1 << size;
3129 value = read_memory_unsigned_integer (address, size);
3130
3131 /* Check if it's an extend, signed or zero instruction. */
3132 if (cris_get_opcode (*inst) < 4)
3133 {
3134 value = do_sign_or_zero_extend (value, inst);
3135 }
3136 return value;
3137 }
3138
3139 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3140 instructions. The MOVE instruction is the move from source to register. */
3141
3142 void
3143 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3144 inst_env_type *inst_env)
3145 {
3146 unsigned long operand2;
3147 unsigned long operand3;
3148
3149 check_assign (inst, inst_env);
3150 if (cris_get_operand2 (inst) == REG_PC)
3151 {
3152 operand2 = inst_env->reg[REG_PC];
3153
3154 /* Get the value of the third operand. */
3155 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3156
3157 /* Calculate the PC value after the instruction, i.e. where the
3158 breakpoint should be. The order of the udw_operands is vital. */
3159 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3160 }
3161 inst_env->slot_needed = 0;
3162 inst_env->prefix_found = 0;
3163 inst_env->xflag_found = 0;
3164 inst_env->disable_interrupt = 0;
3165 }
3166
3167 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3168 OR instructions. Note that for this to work as expected, the calling
3169 function must have made sure that there is a prefix to this instruction. */
3170
3171 void
3172 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3173 inst_env_type *inst_env)
3174 {
3175 unsigned long operand2;
3176 unsigned long operand3;
3177
3178 if (cris_get_operand1 (inst) == REG_PC)
3179 {
3180 /* The PC will be changed by the instruction. */
3181 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3182
3183 /* Get the value of the third operand. */
3184 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3185
3186 /* Calculate the PC value after the instruction, i.e. where the
3187 breakpoint should be. */
3188 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3189 }
3190 inst_env->slot_needed = 0;
3191 inst_env->prefix_found = 0;
3192 inst_env->xflag_found = 0;
3193 inst_env->disable_interrupt = 0;
3194 }
3195
3196 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3197 instructions. The MOVE instruction is the move from source to register. */
3198
3199 void
3200 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3201 inst_env_type *inst_env)
3202 {
3203 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3204 {
3205 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3206 SUB, AND or OR something weird is going on (if everything works these
3207 instructions should end up in the three operand version). */
3208 inst_env->invalid = 1;
3209 return;
3210 }
3211 else
3212 {
3213 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3214 so use it. */
3215 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3216 }
3217 inst_env->slot_needed = 0;
3218 inst_env->prefix_found = 0;
3219 inst_env->xflag_found = 0;
3220 inst_env->disable_interrupt = 0;
3221 }
3222
3223 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3224 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3225 source to register. */
3226
3227 void
3228 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3229 inst_env_type *inst_env)
3230 {
3231 unsigned long operand1;
3232 unsigned long operand2;
3233 unsigned long operand3;
3234 int size;
3235
3236 /* The instruction is either an indirect or autoincrement addressing mode.
3237 Check if the destination register is the PC. */
3238 if (cris_get_operand2 (inst) == REG_PC)
3239 {
3240 /* Must be done here, get_data_from_address may change the size
3241 field. */
3242 size = cris_get_size (inst);
3243 operand2 = inst_env->reg[REG_PC];
3244
3245 /* Get the value of the third operand, i.e. the indirect operand. */
3246 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3247 operand3 = get_data_from_address (&inst, operand1);
3248
3249 /* Calculate the PC value after the instruction, i.e. where the
3250 breakpoint should be. The order of the udw_operands is vital. */
3251 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3252 }
3253 /* If this is an autoincrement addressing mode, check if the increment
3254 changes the PC. */
3255 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3256 {
3257 /* Get the size field. */
3258 size = cris_get_size (inst);
3259
3260 /* If it's an extend instruction we don't want the signed extend bit,
3261 because it influences the size. */
3262 if (cris_get_opcode (inst) < 4)
3263 {
3264 size &= ~SIGNED_EXTEND_BIT_MASK;
3265 }
3266 process_autoincrement (size, inst, inst_env);
3267 }
3268 inst_env->slot_needed = 0;
3269 inst_env->prefix_found = 0;
3270 inst_env->xflag_found = 0;
3271 inst_env->disable_interrupt = 0;
3272 }
3273
3274 /* Handles the two-operand addressing mode, all modes except register, for
3275 the ADD, SUB CMP, AND and OR instruction. */
3276
3277 void
3278 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3279 inst_env_type *inst_env)
3280 {
3281 if (inst_env->prefix_found)
3282 {
3283 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3284 {
3285 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3286 }
3287 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3288 {
3289 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3290 }
3291 else
3292 {
3293 /* The mode is invalid for a prefixed base instruction. */
3294 inst_env->invalid = 1;
3295 return;
3296 }
3297 }
3298 else
3299 {
3300 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3301 }
3302 }
3303
3304 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3305
3306 void
3307 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3308 {
3309 unsigned long operand1;
3310 unsigned long operand2;
3311
3312 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3313 instruction and can't have a prefix. */
3314 if (inst_env->prefix_found)
3315 {
3316 inst_env->invalid = 1;
3317 return;
3318 }
3319
3320 /* Check if the instruction has PC as its target. */
3321 if (cris_get_operand2 (inst) == REG_PC)
3322 {
3323 if (inst_env->slot_needed)
3324 {
3325 inst_env->invalid = 1;
3326 return;
3327 }
3328 operand1 = cris_get_quick_value (inst);
3329 operand2 = inst_env->reg[REG_PC];
3330
3331 /* The size should now be dword. */
3332 cris_set_size_to_dword (&inst);
3333
3334 /* Calculate the PC value after the instruction, i.e. where the
3335 breakpoint should be. */
3336 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3337 }
3338 inst_env->slot_needed = 0;
3339 inst_env->prefix_found = 0;
3340 inst_env->xflag_found = 0;
3341 inst_env->disable_interrupt = 0;
3342 }
3343
3344 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3345
3346 void
3347 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3348 {
3349 unsigned long operand1;
3350 unsigned long operand2;
3351
3352 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3353 instruction and can't have a prefix. */
3354 if (inst_env->prefix_found)
3355 {
3356 inst_env->invalid = 1;
3357 return;
3358 }
3359 /* Check if the instruction has PC as its target. */
3360 if (cris_get_operand2 (inst) == REG_PC)
3361 {
3362 if (inst_env->slot_needed)
3363 {
3364 inst_env->invalid = 1;
3365 return;
3366 }
3367 /* The instruction has the PC as its target register. */
3368 operand1 = cris_get_quick_value (inst);
3369 operand2 = inst_env->reg[REG_PC];
3370
3371 /* The quick value is signed, so check if we must do a signed extend. */
3372 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3373 {
3374 /* sign extend */
3375 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3376 }
3377 /* The size should now be dword. */
3378 cris_set_size_to_dword (&inst);
3379
3380 /* Calculate the PC value after the instruction, i.e. where the
3381 breakpoint should be. */
3382 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3383 }
3384 inst_env->slot_needed = 0;
3385 inst_env->prefix_found = 0;
3386 inst_env->xflag_found = 0;
3387 inst_env->disable_interrupt = 0;
3388 }
3389
3390 /* Translate op_type to a function and call it. */
3391
3392 static void cris_gdb_func (enum cris_op_type op_type, unsigned short inst,
3393 inst_env_type *inst_env)
3394 {
3395 switch (op_type)
3396 {
3397 case cris_not_implemented_op:
3398 not_implemented_op (inst, inst_env);
3399 break;
3400
3401 case cris_abs_op:
3402 abs_op (inst, inst_env);
3403 break;
3404
3405 case cris_addi_op:
3406 addi_op (inst, inst_env);
3407 break;
3408
3409 case cris_asr_op:
3410 asr_op (inst, inst_env);
3411 break;
3412
3413 case cris_asrq_op:
3414 asrq_op (inst, inst_env);
3415 break;
3416
3417 case cris_ax_ei_setf_op:
3418 ax_ei_setf_op (inst, inst_env);
3419 break;
3420
3421 case cris_bdap_prefix:
3422 bdap_prefix (inst, inst_env);
3423 break;
3424
3425 case cris_biap_prefix:
3426 biap_prefix (inst, inst_env);
3427 break;
3428
3429 case cris_break_op:
3430 break_op (inst, inst_env);
3431 break;
3432
3433 case cris_btst_nop_op:
3434 btst_nop_op (inst, inst_env);
3435 break;
3436
3437 case cris_clearf_di_op:
3438 clearf_di_op (inst, inst_env);
3439 break;
3440
3441 case cris_dip_prefix:
3442 dip_prefix (inst, inst_env);
3443 break;
3444
3445 case cris_dstep_logshift_mstep_neg_not_op:
3446 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3447 break;
3448
3449 case cris_eight_bit_offset_branch_op:
3450 eight_bit_offset_branch_op (inst, inst_env);
3451 break;
3452
3453 case cris_move_mem_to_reg_movem_op:
3454 move_mem_to_reg_movem_op (inst, inst_env);
3455 break;
3456
3457 case cris_move_reg_to_mem_movem_op:
3458 move_reg_to_mem_movem_op (inst, inst_env);
3459 break;
3460
3461 case cris_move_to_preg_op:
3462 move_to_preg_op (inst, inst_env);
3463 break;
3464
3465 case cris_muls_op:
3466 muls_op (inst, inst_env);
3467 break;
3468
3469 case cris_mulu_op:
3470 mulu_op (inst, inst_env);
3471 break;
3472
3473 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3474 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3475 break;
3476
3477 case cris_none_reg_mode_clear_test_op:
3478 none_reg_mode_clear_test_op (inst, inst_env);
3479 break;
3480
3481 case cris_none_reg_mode_jump_op:
3482 none_reg_mode_jump_op (inst, inst_env);
3483 break;
3484
3485 case cris_none_reg_mode_move_from_preg_op:
3486 none_reg_mode_move_from_preg_op (inst, inst_env);
3487 break;
3488
3489 case cris_quick_mode_add_sub_op:
3490 quick_mode_add_sub_op (inst, inst_env);
3491 break;
3492
3493 case cris_quick_mode_and_cmp_move_or_op:
3494 quick_mode_and_cmp_move_or_op (inst, inst_env);
3495 break;
3496
3497 case cris_quick_mode_bdap_prefix:
3498 quick_mode_bdap_prefix (inst, inst_env);
3499 break;
3500
3501 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3502 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3503 break;
3504
3505 case cris_reg_mode_clear_op:
3506 reg_mode_clear_op (inst, inst_env);
3507 break;
3508
3509 case cris_reg_mode_jump_op:
3510 reg_mode_jump_op (inst, inst_env);
3511 break;
3512
3513 case cris_reg_mode_move_from_preg_op:
3514 reg_mode_move_from_preg_op (inst, inst_env);
3515 break;
3516
3517 case cris_reg_mode_test_op:
3518 reg_mode_test_op (inst, inst_env);
3519 break;
3520
3521 case cris_scc_op:
3522 scc_op (inst, inst_env);
3523 break;
3524
3525 case cris_sixteen_bit_offset_branch_op:
3526 sixteen_bit_offset_branch_op (inst, inst_env);
3527 break;
3528
3529 case cris_three_operand_add_sub_cmp_and_or_op:
3530 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3531 break;
3532
3533 case cris_three_operand_bound_op:
3534 three_operand_bound_op (inst, inst_env);
3535 break;
3536
3537 case cris_two_operand_bound_op:
3538 two_operand_bound_op (inst, inst_env);
3539 break;
3540
3541 case cris_xor_op:
3542 xor_op (inst, inst_env);
3543 break;
3544 }
3545 }
3546
3547 /* This wrapper is to avoid cris_get_assembler being called before
3548 exec_bfd has been set. */
3549
3550 static int
3551 cris_delayed_get_disassembler (bfd_vma addr, disassemble_info *info)
3552 {
3553 deprecated_tm_print_insn = cris_get_disassembler (exec_bfd);
3554 return TARGET_PRINT_INSN (addr, info);
3555 }
3556
3557 /* Copied from <asm/elf.h>. */
3558 typedef unsigned long elf_greg_t;
3559
3560 /* Same as user_regs_struct struct in <asm/user.h>. */
3561 typedef elf_greg_t elf_gregset_t[35];
3562
3563 /* Unpack an elf_gregset_t into GDB's register cache. */
3564
3565 void
3566 supply_gregset (elf_gregset_t *gregsetp)
3567 {
3568 int i;
3569 elf_greg_t *regp = *gregsetp;
3570 static char zerobuf[4] = {0};
3571
3572 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3573 knows about the actual size of each register so that's no problem. */
3574 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3575 {
3576 supply_register (i, (char *)&regp[i]);
3577 }
3578 }
3579
3580 /* Use a local version of this function to get the correct types for
3581 regsets, until multi-arch core support is ready. */
3582
3583 static void
3584 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
3585 int which, CORE_ADDR reg_addr)
3586 {
3587 elf_gregset_t gregset;
3588
3589 switch (which)
3590 {
3591 case 0:
3592 if (core_reg_size != sizeof (gregset))
3593 {
3594 warning ("wrong size gregset struct in core file");
3595 }
3596 else
3597 {
3598 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3599 supply_gregset (&gregset);
3600 }
3601
3602 default:
3603 /* We've covered all the kinds of registers we know about here,
3604 so this must be something we wouldn't know what to do with
3605 anyway. Just ignore it. */
3606 break;
3607 }
3608 }
3609
3610 static struct core_fns cris_elf_core_fns =
3611 {
3612 bfd_target_elf_flavour, /* core_flavour */
3613 default_check_format, /* check_format */
3614 default_core_sniffer, /* core_sniffer */
3615 fetch_core_registers, /* core_read_registers */
3616 NULL /* next */
3617 };
3618
3619 /* Fetch (and possibly build) an appropriate link_map_offsets
3620 structure for native GNU/Linux CRIS targets using the struct
3621 offsets defined in link.h (but without actual reference to that
3622 file).
3623
3624 This makes it possible to access GNU/Linux CRIS shared libraries
3625 from a GDB that was not built on an GNU/Linux CRIS host (for cross
3626 debugging).
3627
3628 See gdb/solib-svr4.h for an explanation of these fields. */
3629
3630 struct link_map_offsets *
3631 cris_linux_svr4_fetch_link_map_offsets (void)
3632 {
3633 static struct link_map_offsets lmo;
3634 static struct link_map_offsets *lmp = NULL;
3635
3636 if (lmp == NULL)
3637 {
3638 lmp = &lmo;
3639
3640 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
3641 this is all we need. */
3642 lmo.r_map_offset = 4;
3643 lmo.r_map_size = 4;
3644
3645 lmo.link_map_size = 20;
3646
3647 lmo.l_addr_offset = 0;
3648 lmo.l_addr_size = 4;
3649
3650 lmo.l_name_offset = 4;
3651 lmo.l_name_size = 4;
3652
3653 lmo.l_next_offset = 12;
3654 lmo.l_next_size = 4;
3655
3656 lmo.l_prev_offset = 16;
3657 lmo.l_prev_size = 4;
3658 }
3659
3660 return lmp;
3661 }
3662
3663 static void
3664 cris_fpless_backtrace (char *noargs, int from_tty)
3665 {
3666 /* Points at the instruction after the jsr (except when in innermost frame
3667 where it points at the original pc). */
3668 CORE_ADDR pc = 0;
3669
3670 /* Temporary variable, used for parsing from the start of the function that
3671 the pc is in, up to the pc. */
3672 CORE_ADDR tmp_pc = 0;
3673 CORE_ADDR sp = 0;
3674
3675 /* Information about current frame. */
3676 struct symtab_and_line sal;
3677 char* func_name;
3678
3679 /* Present instruction. */
3680 unsigned short insn;
3681
3682 /* Next instruction, lookahead. */
3683 unsigned short insn_next;
3684
3685 /* This is to store the offset between sp at start of function and until we
3686 reach push srp (if any). */
3687 int sp_add_later = 0;
3688 int push_srp_found = 0;
3689
3690 int val = 0;
3691
3692 /* Frame counter. */
3693 int frame = 0;
3694
3695 /* For the innermost frame, we want to look at srp in case it's a leaf
3696 function (since there's no push srp in that case). */
3697 int innermost_frame = 1;
3698
3699 deprecated_read_register_gen (PC_REGNUM, (char *) &pc);
3700 deprecated_read_register_gen (SP_REGNUM, (char *) &sp);
3701
3702 /* We make an explicit return when we can't find an outer frame. */
3703 while (1)
3704 {
3705 /* Get file name and line number. */
3706 sal = find_pc_line (pc, 0);
3707
3708 /* Get function name. */
3709 find_pc_partial_function (pc, &func_name, (CORE_ADDR *) NULL,
3710 (CORE_ADDR *) NULL);
3711
3712 /* Print information about current frame. */
3713 printf_unfiltered ("#%i 0x%08lx in %s", frame++, pc, func_name);
3714 if (sal.symtab)
3715 {
3716 printf_unfiltered (" at %s:%i", sal.symtab->filename, sal.line);
3717 }
3718 printf_unfiltered ("\n");
3719
3720 /* Get the start address of this function. */
3721 tmp_pc = get_pc_function_start (pc);
3722
3723 /* Mini parser, only meant to find push sp and sub ...,sp from the start
3724 of the function, up to the pc. */
3725 while (tmp_pc < pc)
3726 {
3727 insn = read_memory_unsigned_integer (tmp_pc, sizeof (short));
3728 tmp_pc += sizeof (short);
3729 if (insn == 0xE1FC)
3730 {
3731 /* push <reg> 32 bit instruction */
3732 insn_next = read_memory_unsigned_integer (tmp_pc,
3733 sizeof (short));
3734 tmp_pc += sizeof (short);
3735
3736 /* Recognize srp. */
3737 if (insn_next == 0xBE7E)
3738 {
3739 /* For subsequent (not this one though) push or sub which
3740 affects sp, adjust sp immediately. */
3741 push_srp_found = 1;
3742
3743 /* Note: this will break if we ever encounter a
3744 push vr (1 byte) or push ccr (2 bytes). */
3745 sp_add_later += 4;
3746 }
3747 else
3748 {
3749 /* Some other register was pushed. */
3750 if (push_srp_found)
3751 {
3752 sp += 4;
3753 }
3754 else
3755 {
3756 sp_add_later += 4;
3757 }
3758 }
3759 }
3760 else if (cris_get_operand2 (insn) == SP_REGNUM
3761 && cris_get_mode (insn) == 0x0000
3762 && cris_get_opcode (insn) == 0x000A)
3763 {
3764 /* subq <val>,sp */
3765 val = cris_get_quick_value (insn);
3766
3767 if (push_srp_found)
3768 {
3769 sp += val;
3770 }
3771 else
3772 {
3773 sp_add_later += val;
3774 }
3775
3776 }
3777 else if (cris_get_operand2 (insn) == SP_REGNUM
3778 /* Autoincrement addressing mode. */
3779 && cris_get_mode (insn) == 0x0003
3780 /* Opcode. */
3781 && ((insn) & 0x03E0) >> 5 == 0x0004)
3782 {
3783 /* subu <val>,sp */
3784 val = get_data_from_address (&insn, tmp_pc);
3785
3786 if (push_srp_found)
3787 {
3788 sp += val;
3789 }
3790 else
3791 {
3792 sp_add_later += val;
3793 }
3794 }
3795 else if (cris_get_operand2 (insn) == SP_REGNUM
3796 && ((insn & 0x0F00) >> 8) == 0x0001
3797 && (cris_get_signed_offset (insn) < 0))
3798 {
3799 /* Immediate byte offset addressing prefix word with sp as base
3800 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
3801 is between 64 and 128.
3802 movem r<regsave>,[sp=sp-<val>] */
3803 val = -cris_get_signed_offset (insn);
3804 insn_next = read_memory_unsigned_integer (tmp_pc,
3805 sizeof (short));
3806 tmp_pc += sizeof (short);
3807
3808 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
3809 && cris_get_opcode (insn_next) == 0x000F
3810 && cris_get_size (insn_next) == 0x0003
3811 && cris_get_operand1 (insn_next) == SP_REGNUM)
3812 {
3813 if (push_srp_found)
3814 {
3815 sp += val;
3816 }
3817 else
3818 {
3819 sp_add_later += val;
3820 }
3821 }
3822 }
3823 }
3824
3825 if (push_srp_found)
3826 {
3827 /* Reset flag. */
3828 push_srp_found = 0;
3829
3830 /* sp should now point at where srp is stored on the stack. Update
3831 the pc to the srp. */
3832 pc = read_memory_unsigned_integer (sp, 4);
3833 }
3834 else if (innermost_frame)
3835 {
3836 /* We couldn't find a push srp in the prologue, so this must be
3837 a leaf function, and thus we use the srp register directly.
3838 This should happen at most once, for the innermost function. */
3839 deprecated_read_register_gen (SRP_REGNUM, (char *) &pc);
3840 }
3841 else
3842 {
3843 /* Couldn't find an outer frame. */
3844 return;
3845 }
3846
3847 /* Reset flag. (In case the innermost frame wasn't a leaf, we don't
3848 want to look at the srp register later either). */
3849 innermost_frame = 0;
3850
3851 /* Now, add the offset for everything up to, and including push srp,
3852 that was held back during the prologue parsing. */
3853 sp += sp_add_later;
3854 sp_add_later = 0;
3855 }
3856 }
3857
3858 void
3859 _initialize_cris_tdep (void)
3860 {
3861 struct cmd_list_element *c;
3862
3863 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3864
3865 /* Used in disassembly. */
3866 deprecated_tm_print_insn = cris_delayed_get_disassembler;
3867
3868 /* CRIS-specific user-commands. */
3869 c = add_set_cmd ("cris-version", class_support, var_integer,
3870 (char *) &usr_cmd_cris_version,
3871 "Set the current CRIS version.", &setlist);
3872 set_cmd_sfunc (c, cris_version_update);
3873 add_show_from_set (c, &showlist);
3874
3875 c = add_set_enum_cmd ("cris-mode", class_support, cris_mode_enums,
3876 &usr_cmd_cris_mode,
3877 "Set the current CRIS mode.", &setlist);
3878 set_cmd_sfunc (c, cris_mode_update);
3879 add_show_from_set (c, &showlist);
3880
3881 c = add_set_enum_cmd ("cris-abi", class_support, cris_abi_enums,
3882 &usr_cmd_cris_abi,
3883 "Set the current CRIS ABI version.", &setlist);
3884 set_cmd_sfunc (c, cris_abi_update);
3885 add_show_from_set (c, &showlist);
3886
3887 c = add_cmd ("cris-fpless-backtrace", class_support, cris_fpless_backtrace,
3888 "Display call chain using the subroutine return pointer.\n"
3889 "Note that this displays the address after the jump to the "
3890 "subroutine.", &cmdlist);
3891
3892 add_core_fns (&cris_elf_core_fns);
3893
3894 }
3895
3896 /* Prints out all target specific values. */
3897
3898 static void
3899 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3900 {
3901 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3902 if (tdep != NULL)
3903 {
3904 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3905 tdep->cris_version);
3906 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3907 tdep->cris_mode);
3908 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_abi = %s\n",
3909 tdep->cris_abi);
3910
3911 }
3912 }
3913
3914 static void
3915 cris_version_update (char *ignore_args, int from_tty,
3916 struct cmd_list_element *c)
3917 {
3918 struct gdbarch_info info;
3919
3920 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3921 the set command passed as a parameter. The clone operation will
3922 include (BUG?) any ``set'' command callback, if present.
3923 Commands like ``info set'' call all the ``show'' command
3924 callbacks. Unfortunatly, for ``show'' commands cloned from
3925 ``set'', this includes callbacks belonging to ``set'' commands.
3926 Making this worse, this only occures if add_show_from_set() is
3927 called after add_cmd_sfunc() (BUG?). */
3928
3929 /* From here on, trust the user's CRIS version setting. */
3930 if (cmd_type (c) == set_cmd)
3931 {
3932 usr_cmd_cris_version_valid = 1;
3933
3934 /* Update the current architecture, if needed. */
3935 gdbarch_info_init (&info);
3936 if (!gdbarch_update_p (info))
3937 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3938 }
3939 }
3940
3941 static void
3942 cris_mode_update (char *ignore_args, int from_tty,
3943 struct cmd_list_element *c)
3944 {
3945 struct gdbarch_info info;
3946
3947 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3948 the set command passed as a parameter. The clone operation will
3949 include (BUG?) any ``set'' command callback, if present.
3950 Commands like ``info set'' call all the ``show'' command
3951 callbacks. Unfortunatly, for ``show'' commands cloned from
3952 ``set'', this includes callbacks belonging to ``set'' commands.
3953 Making this worse, this only occures if add_show_from_set() is
3954 called after add_cmd_sfunc() (BUG?). */
3955
3956 /* From here on, trust the user's CRIS mode setting. */
3957 if (cmd_type (c) == set_cmd)
3958 {
3959 usr_cmd_cris_mode_valid = 1;
3960
3961 /* Update the current architecture, if needed. */
3962 gdbarch_info_init (&info);
3963 if (!gdbarch_update_p (info))
3964 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3965 }
3966 }
3967
3968 static void
3969 cris_abi_update (char *ignore_args, int from_tty,
3970 struct cmd_list_element *c)
3971 {
3972 struct gdbarch_info info;
3973
3974 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3975 the set command passed as a parameter. The clone operation will
3976 include (BUG?) any ``set'' command callback, if present.
3977 Commands like ``info set'' call all the ``show'' command
3978 callbacks. Unfortunatly, for ``show'' commands cloned from
3979 ``set'', this includes callbacks belonging to ``set'' commands.
3980 Making this worse, this only occures if add_show_from_set() is
3981 called after add_cmd_sfunc() (BUG?). */
3982
3983 /* From here on, trust the user's CRIS ABI setting. */
3984 if (cmd_type (c) == set_cmd)
3985 {
3986 usr_cmd_cris_abi_valid = 1;
3987
3988 /* Update the current architecture, if needed. */
3989 gdbarch_info_init (&info);
3990 if (!gdbarch_update_p (info))
3991 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3992 }
3993 }
3994
3995 /* Copied from pa64solib.c, with a couple of minor changes. */
3996
3997 static CORE_ADDR
3998 bfd_lookup_symbol (bfd *abfd, const char *symname)
3999 {
4000 unsigned int storage_needed;
4001 asymbol *sym;
4002 asymbol **symbol_table;
4003 unsigned int number_of_symbols;
4004 unsigned int i;
4005 struct cleanup *back_to;
4006 CORE_ADDR symaddr = 0;
4007
4008 storage_needed = bfd_get_symtab_upper_bound (abfd);
4009
4010 if (storage_needed > 0)
4011 {
4012 symbol_table = (asymbol **) xmalloc (storage_needed);
4013 back_to = make_cleanup (free, symbol_table);
4014 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
4015
4016 for (i = 0; i < number_of_symbols; i++)
4017 {
4018 sym = *symbol_table++;
4019 if (!strcmp (sym->name, symname))
4020 {
4021 /* Bfd symbols are section relative. */
4022 symaddr = sym->value + sym->section->vma;
4023 break;
4024 }
4025 }
4026 do_cleanups (back_to);
4027 }
4028 return (symaddr);
4029 }
4030
4031 static struct gdbarch *
4032 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4033 {
4034 struct gdbarch *gdbarch;
4035 struct gdbarch_tdep *tdep;
4036 int cris_version;
4037 const char *cris_mode;
4038 const char *cris_abi;
4039 CORE_ADDR cris_abi_sym = 0;
4040 int register_bytes;
4041
4042 if (usr_cmd_cris_version_valid)
4043 {
4044 /* Trust the user's CRIS version setting. */
4045 cris_version = usr_cmd_cris_version;
4046 }
4047 else
4048 {
4049 /* Assume it's CRIS version 10. */
4050 cris_version = 10;
4051 }
4052
4053 if (usr_cmd_cris_mode_valid)
4054 {
4055 /* Trust the user's CRIS mode setting. */
4056 cris_mode = usr_cmd_cris_mode;
4057 }
4058 else if (cris_version == 10)
4059 {
4060 /* Assume CRIS version 10 is in user mode. */
4061 cris_mode = CRIS_MODE_USER;
4062 }
4063 else
4064 {
4065 /* Strictly speaking, older CRIS version don't have a supervisor mode,
4066 but we regard its only mode as supervisor mode. */
4067 cris_mode = CRIS_MODE_SUPERVISOR;
4068 }
4069
4070 if (usr_cmd_cris_abi_valid)
4071 {
4072 /* Trust the user's ABI setting. */
4073 cris_abi = usr_cmd_cris_abi;
4074 }
4075 else if (info.abfd)
4076 {
4077 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4078 {
4079 /* An elf target uses the new ABI. */
4080 cris_abi = CRIS_ABI_V2;
4081 }
4082 else if (bfd_get_flavour (info.abfd) == bfd_target_aout_flavour)
4083 {
4084 /* An a.out target may use either ABI. Look for hints in the
4085 symbol table. */
4086 cris_abi_sym = bfd_lookup_symbol (info.abfd, CRIS_ABI_SYMBOL);
4087 cris_abi = cris_abi_sym ? CRIS_ABI_V2 : CRIS_ABI_ORIGINAL;
4088 }
4089 else
4090 {
4091 /* Unknown bfd flavour. Assume it's the new ABI. */
4092 cris_abi = CRIS_ABI_V2;
4093 }
4094 }
4095 else if (arches != NULL)
4096 {
4097 /* No bfd available. Stick with the ABI from the most recently
4098 selected architecture of this same family (the head of arches
4099 always points to this). (This is to avoid changing the ABI
4100 when the user updates the architecture with the 'set
4101 cris-version' command.) */
4102 cris_abi = gdbarch_tdep (arches->gdbarch)->cris_abi;
4103 }
4104 else
4105 {
4106 /* No bfd, and no previously selected architecture available.
4107 Assume it's the new ABI. */
4108 cris_abi = CRIS_ABI_V2;
4109 }
4110
4111 /* Make the current settings visible to the user. */
4112 usr_cmd_cris_version = cris_version;
4113 usr_cmd_cris_mode = cris_mode;
4114 usr_cmd_cris_abi = cris_abi;
4115
4116 /* Find a candidate among the list of pre-declared architectures. Both
4117 CRIS version and ABI must match. */
4118 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4119 arches != NULL;
4120 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4121 {
4122 if ((gdbarch_tdep (arches->gdbarch)->cris_version == cris_version)
4123 && (gdbarch_tdep (arches->gdbarch)->cris_mode == cris_mode)
4124 && (gdbarch_tdep (arches->gdbarch)->cris_abi == cris_abi))
4125 return arches->gdbarch;
4126 }
4127
4128 /* No matching architecture was found. Create a new one. */
4129 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4130 gdbarch = gdbarch_alloc (&info, tdep);
4131
4132 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
4133 ready to unwind the PC first (see frame.c:get_prev_frame()). */
4134 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
4135
4136 tdep->cris_version = cris_version;
4137 tdep->cris_mode = cris_mode;
4138 tdep->cris_abi = cris_abi;
4139
4140 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4141 switch (info.byte_order)
4142 {
4143 case BFD_ENDIAN_LITTLE:
4144 /* Ok. */
4145 break;
4146
4147 case BFD_ENDIAN_BIG:
4148 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: big endian byte order in info");
4149 break;
4150
4151 default:
4152 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown byte order in info");
4153 }
4154
4155 /* Initialize the ABI dependent things. */
4156 if (tdep->cris_abi == CRIS_ABI_ORIGINAL)
4157 {
4158 set_gdbarch_double_bit (gdbarch, 32);
4159 set_gdbarch_deprecated_push_arguments (gdbarch, cris_abi_original_push_arguments);
4160 set_gdbarch_deprecated_store_return_value (gdbarch,
4161 cris_abi_original_store_return_value);
4162 set_gdbarch_deprecated_extract_return_value
4163 (gdbarch, cris_abi_original_extract_return_value);
4164 set_gdbarch_reg_struct_has_addr
4165 (gdbarch, cris_abi_original_reg_struct_has_addr);
4166 }
4167 else if (tdep->cris_abi == CRIS_ABI_V2)
4168 {
4169 set_gdbarch_double_bit (gdbarch, 64);
4170 set_gdbarch_deprecated_push_arguments (gdbarch, cris_abi_v2_push_arguments);
4171 set_gdbarch_deprecated_store_return_value (gdbarch, cris_abi_v2_store_return_value);
4172 set_gdbarch_deprecated_extract_return_value
4173 (gdbarch, cris_abi_v2_extract_return_value);
4174 set_gdbarch_reg_struct_has_addr (gdbarch,
4175 cris_abi_v2_reg_struct_has_addr);
4176 }
4177 else
4178 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown CRIS ABI");
4179
4180 /* The default definition of a long double is 2 * TARGET_DOUBLE_BIT,
4181 which means we have to set this explicitly. */
4182 set_gdbarch_long_double_bit (gdbarch, 64);
4183
4184 /* There are 32 registers (some of which may not be implemented). */
4185 set_gdbarch_num_regs (gdbarch, 32);
4186 set_gdbarch_sp_regnum (gdbarch, 14);
4187 set_gdbarch_deprecated_fp_regnum (gdbarch, 8);
4188 set_gdbarch_pc_regnum (gdbarch, 15);
4189
4190 set_gdbarch_register_name (gdbarch, cris_register_name);
4191
4192 /* Length of ordinary registers used in push_word and a few other places.
4193 REGISTER_RAW_SIZE is the real way to know how big a register is. */
4194 set_gdbarch_deprecated_register_size (gdbarch, 4);
4195
4196 /* NEW */
4197 set_gdbarch_register_bytes_ok (gdbarch, cris_register_bytes_ok);
4198 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4199
4200
4201 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4202 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4203
4204
4205 /* The total amount of space needed to store (in an array called registers)
4206 GDB's copy of the machine's register state. Note: We can not use
4207 cris_register_size at this point, since it relies on current_gdbarch
4208 being set. */
4209 switch (tdep->cris_version)
4210 {
4211 case 0:
4212 case 1:
4213 case 2:
4214 case 3:
4215 /* Support for these may be added later. */
4216 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unsupported CRIS version");
4217 break;
4218
4219 case 8:
4220 case 9:
4221 /* CRIS v8 and v9, a.k.a. ETRAX 100. General registers R0 - R15
4222 (32 bits), special registers P0 - P1 (8 bits), P4 - P5 (16 bits),
4223 and P8 - P14 (32 bits). */
4224 register_bytes = (16 * 4) + (2 * 1) + (2 * 2) + (7 * 4);
4225 break;
4226
4227 case 10:
4228 case 11:
4229 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4230 P7 (32 bits), and P15 (32 bits) have been implemented. */
4231 register_bytes = (16 * 4) + (2 * 1) + (2 * 2) + (9 * 4);
4232 break;
4233
4234 default:
4235 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown CRIS version");
4236 }
4237
4238 set_gdbarch_deprecated_register_bytes (gdbarch, register_bytes);
4239
4240 /* Returns the register offset for the first byte of register regno's space
4241 in the saved register state. */
4242 set_gdbarch_register_byte (gdbarch, cris_register_offset);
4243
4244 /* The length of the registers in the actual machine representation. */
4245 set_gdbarch_register_raw_size (gdbarch, cris_register_size);
4246
4247 /* The largest value REGISTER_RAW_SIZE can have. */
4248 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 32);
4249
4250 /* The length of the registers in the program's representation. */
4251 set_gdbarch_register_virtual_size (gdbarch, cris_register_size);
4252
4253 /* The largest value REGISTER_VIRTUAL_SIZE can have. */
4254 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 32);
4255
4256 set_gdbarch_register_virtual_type (gdbarch, cris_register_virtual_type);
4257
4258 /* Use generic dummy frames. */
4259
4260 /* Read all about dummy frames in blockframe.c. */
4261 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
4262
4263 /* Defined to 1 to indicate that the target supports inferior function
4264 calls. */
4265 set_gdbarch_deprecated_call_dummy_words (gdbarch, 0);
4266 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, 0);
4267
4268 set_gdbarch_deprecated_get_saved_register (gdbarch, deprecated_generic_get_saved_register);
4269
4270 /* No register requires conversion from raw format to virtual format. */
4271 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
4272
4273 set_gdbarch_deprecated_push_return_address (gdbarch, cris_push_return_address);
4274 set_gdbarch_deprecated_pop_frame (gdbarch, cris_pop_frame);
4275
4276 set_gdbarch_deprecated_store_struct_return (gdbarch, cris_store_struct_return);
4277 set_gdbarch_deprecated_extract_struct_value_address
4278 (gdbarch, cris_extract_struct_value_address);
4279 set_gdbarch_use_struct_convention (gdbarch, cris_use_struct_convention);
4280
4281 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, cris_frame_init_saved_regs);
4282 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, cris_init_extra_frame_info);
4283 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4284 set_gdbarch_prologue_frameless_p (gdbarch, generic_prologue_frameless_p);
4285
4286 /* The stack grows downward. */
4287 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4288
4289 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4290
4291 /* The PC must not be decremented after a breakpoint. (The breakpoint
4292 handler takes care of that.) */
4293 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4294
4295 /* Offset from address of function to start of its code. */
4296 set_gdbarch_function_start_offset (gdbarch, 0);
4297
4298 /* The number of bytes at the start of arglist that are not really args,
4299 0 in the CRIS ABI. */
4300 set_gdbarch_frame_args_skip (gdbarch, 0);
4301 set_gdbarch_frameless_function_invocation
4302 (gdbarch, cris_frameless_function_invocation);
4303 set_gdbarch_deprecated_frame_chain (gdbarch, cris_frame_chain);
4304
4305 set_gdbarch_deprecated_frame_saved_pc (gdbarch, cris_frame_saved_pc);
4306 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, cris_saved_pc_after_call);
4307
4308 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
4309
4310 /* Helpful for backtracing and returning in a call dummy. */
4311 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
4312
4313 /* Should be using push_dummy_call. */
4314 set_gdbarch_deprecated_dummy_write_sp (gdbarch, generic_target_write_sp);
4315
4316 /* Use target_specific function to define link map offsets. */
4317 set_solib_svr4_fetch_link_map_offsets
4318 (gdbarch, cris_linux_svr4_fetch_link_map_offsets);
4319
4320 return gdbarch;
4321 }
This page took 0.1646 seconds and 4 git commands to generate.