2004-06-06 Randolph Chung <tausq@debian.org>
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2
3 Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 Contributed by Axis Communications AB.
6 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "trad-frame.h"
29 #include "dwarf2-frame.h"
30 #include "symtab.h"
31 #include "inferior.h"
32 #include "gdbtypes.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "target.h"
36 #include "value.h"
37 #include "opcode/cris.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "gdb_assert.h"
41
42 /* To get entry_point_address. */
43 #include "objfiles.h"
44
45 #include "solib.h" /* Support for shared libraries. */
46 #include "solib-svr4.h" /* For struct link_map_offsets. */
47 #include "gdb_string.h"
48 #include "dis-asm.h"
49
50
51 enum cris_num_regs
52 {
53 /* There are no floating point registers. Used in gdbserver low-linux.c. */
54 NUM_FREGS = 0,
55
56 /* There are 16 general registers. */
57 NUM_GENREGS = 16,
58
59 /* There are 16 special registers. */
60 NUM_SPECREGS = 16
61 };
62
63 /* Register numbers of various important registers.
64 CRIS_FP_REGNUM Contains address of executing stack frame.
65 STR_REGNUM Contains the address of structure return values.
66 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
67 ARG1_REGNUM Contains the first parameter to a function.
68 ARG2_REGNUM Contains the second parameter to a function.
69 ARG3_REGNUM Contains the third parameter to a function.
70 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
71 SP_REGNUM Contains address of top of stack.
72 PC_REGNUM Contains address of next instruction.
73 SRP_REGNUM Subroutine return pointer register.
74 BRP_REGNUM Breakpoint return pointer register. */
75
76 enum cris_regnums
77 {
78 /* Enums with respect to the general registers, valid for all
79 CRIS versions. */
80 CRIS_FP_REGNUM = 8,
81 STR_REGNUM = 9,
82 RET_REGNUM = 10,
83 ARG1_REGNUM = 10,
84 ARG2_REGNUM = 11,
85 ARG3_REGNUM = 12,
86 ARG4_REGNUM = 13,
87
88 /* Enums with respect to the special registers, some of which may not be
89 applicable to all CRIS versions. */
90 P0_REGNUM = 16,
91 VR_REGNUM = 17,
92 P2_REGNUM = 18,
93 P3_REGNUM = 19,
94 P4_REGNUM = 20,
95 CCR_REGNUM = 21,
96 MOF_REGNUM = 23,
97 P8_REGNUM = 24,
98 IBR_REGNUM = 25,
99 IRP_REGNUM = 26,
100 SRP_REGNUM = 27,
101 BAR_REGNUM = 28,
102 DCCR_REGNUM = 29,
103 BRP_REGNUM = 30,
104 USP_REGNUM = 31
105 };
106
107 extern const struct cris_spec_reg cris_spec_regs[];
108
109 /* CRIS version, set via the user command 'set cris-version'. Affects
110 register names and sizes.*/
111 static int usr_cmd_cris_version;
112
113 /* Indicates whether to trust the above variable. */
114 static int usr_cmd_cris_version_valid = 0;
115
116 /* CRIS mode, set via the user command 'set cris-mode'. Affects availability
117 of some registers. */
118 static const char *usr_cmd_cris_mode;
119
120 /* Indicates whether to trust the above variable. */
121 static int usr_cmd_cris_mode_valid = 0;
122
123 static const char CRIS_MODE_USER[] = "CRIS_MODE_USER";
124 static const char CRIS_MODE_SUPERVISOR[] = "CRIS_MODE_SUPERVISOR";
125 static const char *cris_mode_enums[] =
126 {
127 CRIS_MODE_USER,
128 CRIS_MODE_SUPERVISOR,
129 0
130 };
131
132 /* CRIS architecture specific information. */
133 struct gdbarch_tdep
134 {
135 int cris_version;
136 const char *cris_mode;
137 };
138
139 /* Functions for accessing target dependent data. */
140
141 static int
142 cris_version (void)
143 {
144 return (gdbarch_tdep (current_gdbarch)->cris_version);
145 }
146
147 static const char *
148 cris_mode (void)
149 {
150 return (gdbarch_tdep (current_gdbarch)->cris_mode);
151 }
152
153 struct cris_unwind_cache
154 {
155 /* The previous frame's inner most stack address. Used as this
156 frame ID's stack_addr. */
157 CORE_ADDR prev_sp;
158 /* The frame's base, optionally used by the high-level debug info. */
159 CORE_ADDR base;
160 int size;
161 /* How far the SP and r8 (FP) have been offset from the start of
162 the stack frame (as defined by the previous frame's stack
163 pointer). */
164 LONGEST sp_offset;
165 LONGEST r8_offset;
166 int uses_frame;
167
168 /* From old frame_extra_info struct. */
169 CORE_ADDR return_pc;
170 int leaf_function;
171
172 /* Table indicating the location of each and every register. */
173 struct trad_frame_saved_reg *saved_regs;
174 };
175
176 /* The instruction environment needed to find single-step breakpoints. */
177 typedef
178 struct instruction_environment
179 {
180 unsigned long reg[NUM_GENREGS];
181 unsigned long preg[NUM_SPECREGS];
182 unsigned long branch_break_address;
183 unsigned long delay_slot_pc;
184 unsigned long prefix_value;
185 int branch_found;
186 int prefix_found;
187 int invalid;
188 int slot_needed;
189 int delay_slot_pc_active;
190 int xflag_found;
191 int disable_interrupt;
192 } inst_env_type;
193
194 /* Save old breakpoints in order to restore the state before a single_step.
195 At most, two breakpoints will have to be remembered. */
196 typedef
197 char binsn_quantum[BREAKPOINT_MAX];
198 static binsn_quantum break_mem[2];
199 static CORE_ADDR next_pc = 0;
200 static CORE_ADDR branch_target_address = 0;
201 static unsigned char branch_break_inserted = 0;
202
203 /* Machine-dependencies in CRIS for opcodes. */
204
205 /* Instruction sizes. */
206 enum cris_instruction_sizes
207 {
208 INST_BYTE_SIZE = 0,
209 INST_WORD_SIZE = 1,
210 INST_DWORD_SIZE = 2
211 };
212
213 /* Addressing modes. */
214 enum cris_addressing_modes
215 {
216 REGISTER_MODE = 1,
217 INDIRECT_MODE = 2,
218 AUTOINC_MODE = 3
219 };
220
221 /* Prefix addressing modes. */
222 enum cris_prefix_addressing_modes
223 {
224 PREFIX_INDEX_MODE = 2,
225 PREFIX_ASSIGN_MODE = 3,
226
227 /* Handle immediate byte offset addressing mode prefix format. */
228 PREFIX_OFFSET_MODE = 2
229 };
230
231 /* Masks for opcodes. */
232 enum cris_opcode_masks
233 {
234 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
235 SIGNED_EXTEND_BIT_MASK = 0x2,
236 SIGNED_BYTE_MASK = 0x80,
237 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
238 SIGNED_WORD_MASK = 0x8000,
239 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
240 SIGNED_DWORD_MASK = 0x80000000,
241 SIGNED_QUICK_VALUE_MASK = 0x20,
242 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
243 };
244
245 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
246 Bit 15 - 12 Operand2
247 11 - 10 Mode
248 9 - 6 Opcode
249 5 - 4 Size
250 3 - 0 Operand1 */
251
252 static int
253 cris_get_operand2 (unsigned short insn)
254 {
255 return ((insn & 0xF000) >> 12);
256 }
257
258 static int
259 cris_get_mode (unsigned short insn)
260 {
261 return ((insn & 0x0C00) >> 10);
262 }
263
264 static int
265 cris_get_opcode (unsigned short insn)
266 {
267 return ((insn & 0x03C0) >> 6);
268 }
269
270 static int
271 cris_get_size (unsigned short insn)
272 {
273 return ((insn & 0x0030) >> 4);
274 }
275
276 static int
277 cris_get_operand1 (unsigned short insn)
278 {
279 return (insn & 0x000F);
280 }
281
282 /* Additional functions in order to handle opcodes. */
283
284 static int
285 cris_get_quick_value (unsigned short insn)
286 {
287 return (insn & 0x003F);
288 }
289
290 static int
291 cris_get_bdap_quick_offset (unsigned short insn)
292 {
293 return (insn & 0x00FF);
294 }
295
296 static int
297 cris_get_branch_short_offset (unsigned short insn)
298 {
299 return (insn & 0x00FF);
300 }
301
302 static int
303 cris_get_asr_shift_steps (unsigned long value)
304 {
305 return (value & 0x3F);
306 }
307
308 static int
309 cris_get_clear_size (unsigned short insn)
310 {
311 return ((insn) & 0xC000);
312 }
313
314 static int
315 cris_is_signed_extend_bit_on (unsigned short insn)
316 {
317 return (((insn) & 0x20) == 0x20);
318 }
319
320 static int
321 cris_is_xflag_bit_on (unsigned short insn)
322 {
323 return (((insn) & 0x1000) == 0x1000);
324 }
325
326 static void
327 cris_set_size_to_dword (unsigned short *insn)
328 {
329 *insn &= 0xFFCF;
330 *insn |= 0x20;
331 }
332
333 static signed char
334 cris_get_signed_offset (unsigned short insn)
335 {
336 return ((signed char) (insn & 0x00FF));
337 }
338
339 /* Calls an op function given the op-type, working on the insn and the
340 inst_env. */
341 static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *);
342
343 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
344 struct gdbarch_list *);
345
346 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
347
348 static void cris_version_update (char *ignore_args, int from_tty,
349 struct cmd_list_element *c);
350
351 static void cris_mode_update (char *ignore_args, int from_tty,
352 struct cmd_list_element *c);
353
354 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
355 struct frame_info *next_frame,
356 struct cris_unwind_cache *info);
357
358 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
359 struct frame_info *next_frame);
360
361 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
362 struct frame_info *next_frame);
363
364 /* When arguments must be pushed onto the stack, they go on in reverse
365 order. The below implements a FILO (stack) to do this. */
366
367 /* Borrowed from d10v-tdep.c. */
368
369 struct stack_item
370 {
371 int len;
372 struct stack_item *prev;
373 void *data;
374 };
375
376 static struct stack_item *
377 push_stack_item (struct stack_item *prev, void *contents, int len)
378 {
379 struct stack_item *si;
380 si = xmalloc (sizeof (struct stack_item));
381 si->data = xmalloc (len);
382 si->len = len;
383 si->prev = prev;
384 memcpy (si->data, contents, len);
385 return si;
386 }
387
388 static struct stack_item *
389 pop_stack_item (struct stack_item *si)
390 {
391 struct stack_item *dead = si;
392 si = si->prev;
393 xfree (dead->data);
394 xfree (dead);
395 return si;
396 }
397
398 /* Put here the code to store, into fi->saved_regs, the addresses of
399 the saved registers of frame described by FRAME_INFO. This
400 includes special registers such as pc and fp saved in special ways
401 in the stack frame. sp is even more special: the address we return
402 for it IS the sp for the next frame. */
403
404 struct cris_unwind_cache *
405 cris_frame_unwind_cache (struct frame_info *next_frame,
406 void **this_prologue_cache)
407 {
408 CORE_ADDR pc;
409 struct cris_unwind_cache *info;
410 int i;
411
412 if ((*this_prologue_cache))
413 return (*this_prologue_cache);
414
415 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
416 (*this_prologue_cache) = info;
417 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
418
419 /* Zero all fields. */
420 info->prev_sp = 0;
421 info->base = 0;
422 info->size = 0;
423 info->sp_offset = 0;
424 info->r8_offset = 0;
425 info->uses_frame = 0;
426 info->return_pc = 0;
427 info->leaf_function = 0;
428
429 /* Prologue analysis does the rest... */
430 cris_scan_prologue (frame_func_unwind (next_frame), next_frame, info);
431
432 return info;
433 }
434
435 /* Given a GDB frame, determine the address of the calling function's
436 frame. This will be used to create a new GDB frame struct. */
437
438 static void
439 cris_frame_this_id (struct frame_info *next_frame,
440 void **this_prologue_cache,
441 struct frame_id *this_id)
442 {
443 struct cris_unwind_cache *info
444 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
445 CORE_ADDR base;
446 CORE_ADDR func;
447 struct frame_id id;
448
449 /* The FUNC is easy. */
450 func = frame_func_unwind (next_frame);
451
452 /* Hopefully the prologue analysis either correctly determined the
453 frame's base (which is the SP from the previous frame), or set
454 that base to "NULL". */
455 base = info->prev_sp;
456 if (base == 0)
457 return;
458
459 id = frame_id_build (base, func);
460
461 (*this_id) = id;
462 }
463
464 static void
465 cris_frame_prev_register (struct frame_info *next_frame,
466 void **this_prologue_cache,
467 int regnum, int *optimizedp,
468 enum lval_type *lvalp, CORE_ADDR *addrp,
469 int *realnump, void *bufferp)
470 {
471 struct cris_unwind_cache *info
472 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
473 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
474 optimizedp, lvalp, addrp, realnump, bufferp);
475 }
476
477 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
478 dummy frame. The frame ID's base needs to match the TOS value
479 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
480 breakpoint. */
481
482 static struct frame_id
483 cris_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
484 {
485 return frame_id_build (cris_unwind_sp (gdbarch, next_frame),
486 frame_pc_unwind (next_frame));
487 }
488
489 static CORE_ADDR
490 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
491 {
492 /* Align to the size of an instruction (so that they can safely be
493 pushed onto the stack). */
494 return sp & ~3;
495 }
496
497 static CORE_ADDR
498 cris_push_dummy_code (struct gdbarch *gdbarch,
499 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
500 struct value **args, int nargs,
501 struct type *value_type,
502 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
503 {
504 /* Allocate space sufficient for a breakpoint. */
505 sp = (sp - 4) & ~3;
506 /* Store the address of that breakpoint */
507 *bp_addr = sp;
508 /* CRIS always starts the call at the callee's entry point. */
509 *real_pc = funaddr;
510 return sp;
511 }
512
513 static CORE_ADDR
514 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
515 struct regcache *regcache, CORE_ADDR bp_addr,
516 int nargs, struct value **args, CORE_ADDR sp,
517 int struct_return, CORE_ADDR struct_addr)
518 {
519 int stack_alloc;
520 int stack_offset;
521 int argreg;
522 int argnum;
523
524 CORE_ADDR regval;
525
526 /* The function's arguments and memory allocated by gdb for the arguments to
527 point at reside in separate areas on the stack.
528 Both frame pointers grow toward higher addresses. */
529 CORE_ADDR fp_arg;
530 CORE_ADDR fp_mem;
531
532 struct stack_item *si = NULL;
533
534 /* Push the return address. */
535 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
536
537 /* Are we returning a value using a structure return or a normal value
538 return? struct_addr is the address of the reserved space for the return
539 structure to be written on the stack. */
540 if (struct_return)
541 {
542 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
543 }
544
545 /* Now load as many as possible of the first arguments into registers,
546 and push the rest onto the stack. */
547 argreg = ARG1_REGNUM;
548 stack_offset = 0;
549
550 for (argnum = 0; argnum < nargs; argnum++)
551 {
552 int len;
553 char *val;
554 int reg_demand;
555 int i;
556
557 len = TYPE_LENGTH (VALUE_TYPE (args[argnum]));
558 val = (char *) VALUE_CONTENTS (args[argnum]);
559
560 /* How may registers worth of storage do we need for this argument? */
561 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
562
563 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
564 {
565 /* Data passed by value. Fits in available register(s). */
566 for (i = 0; i < reg_demand; i++)
567 {
568 regcache_cooked_write_unsigned (regcache, argreg,
569 *(unsigned long *) val);
570 argreg++;
571 val += 4;
572 }
573 }
574 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
575 {
576 /* Data passed by value. Does not fit in available register(s).
577 Use the register(s) first, then the stack. */
578 for (i = 0; i < reg_demand; i++)
579 {
580 if (argreg <= ARG4_REGNUM)
581 {
582 regcache_cooked_write_unsigned (regcache, argreg,
583 *(unsigned long *) val);
584 argreg++;
585 val += 4;
586 }
587 else
588 {
589 /* Push item for later so that pushed arguments
590 come in the right order. */
591 si = push_stack_item (si, val, 4);
592 val += 4;
593 }
594 }
595 }
596 else if (len > (2 * 4))
597 {
598 /* FIXME */
599 internal_error (__FILE__, __LINE__, "We don't do this");
600 }
601 else
602 {
603 /* Data passed by value. No available registers. Put it on
604 the stack. */
605 si = push_stack_item (si, val, len);
606 }
607 }
608
609 while (si)
610 {
611 /* fp_arg must be word-aligned (i.e., don't += len) to match
612 the function prologue. */
613 sp = (sp - si->len) & ~3;
614 write_memory (sp, si->data, si->len);
615 si = pop_stack_item (si);
616 }
617
618 /* Finally, update the SP register. */
619 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
620
621 return sp;
622 }
623
624 static const struct frame_unwind cris_frame_unwind = {
625 NORMAL_FRAME,
626 cris_frame_this_id,
627 cris_frame_prev_register
628 };
629
630 const struct frame_unwind *
631 cris_frame_sniffer (struct frame_info *next_frame)
632 {
633 return &cris_frame_unwind;
634 }
635
636 static CORE_ADDR
637 cris_frame_base_address (struct frame_info *next_frame, void **this_cache)
638 {
639 struct cris_unwind_cache *info
640 = cris_frame_unwind_cache (next_frame, this_cache);
641 return info->base;
642 }
643
644 static const struct frame_base cris_frame_base = {
645 &cris_frame_unwind,
646 cris_frame_base_address,
647 cris_frame_base_address,
648 cris_frame_base_address
649 };
650
651 /* Frames information. The definition of the struct frame_info is
652
653 CORE_ADDR frame
654 CORE_ADDR pc
655 enum frame_type type;
656 CORE_ADDR return_pc
657 int leaf_function
658
659 If the compilation option -fno-omit-frame-pointer is present the
660 variable frame will be set to the content of R8 which is the frame
661 pointer register.
662
663 The variable pc contains the address where execution is performed
664 in the present frame. The innermost frame contains the current content
665 of the register PC. All other frames contain the content of the
666 register PC in the next frame.
667
668 The variable `type' indicates the frame's type: normal, SIGTRAMP
669 (associated with a signal handler), dummy (associated with a dummy
670 frame).
671
672 The variable return_pc contains the address where execution should be
673 resumed when the present frame has finished, the return address.
674
675 The variable leaf_function is 1 if the return address is in the register
676 SRP, and 0 if it is on the stack.
677
678 Prologue instructions C-code.
679 The prologue may consist of (-fno-omit-frame-pointer)
680 1) 2)
681 push srp
682 push r8 push r8
683 move.d sp,r8 move.d sp,r8
684 subq X,sp subq X,sp
685 movem rY,[sp] movem rY,[sp]
686 move.S rZ,[r8-U] move.S rZ,[r8-U]
687
688 where 1 is a non-terminal function, and 2 is a leaf-function.
689
690 Note that this assumption is extremely brittle, and will break at the
691 slightest change in GCC's prologue.
692
693 If local variables are declared or register contents are saved on stack
694 the subq-instruction will be present with X as the number of bytes
695 needed for storage. The reshuffle with respect to r8 may be performed
696 with any size S (b, w, d) and any of the general registers Z={0..13}.
697 The offset U should be representable by a signed 8-bit value in all cases.
698 Thus, the prefix word is assumed to be immediate byte offset mode followed
699 by another word containing the instruction.
700
701 Degenerate cases:
702 3)
703 push r8
704 move.d sp,r8
705 move.d r8,sp
706 pop r8
707
708 Prologue instructions C++-code.
709 Case 1) and 2) in the C-code may be followed by
710
711 move.d r10,rS ; this
712 move.d r11,rT ; P1
713 move.d r12,rU ; P2
714 move.d r13,rV ; P3
715 move.S [r8+U],rZ ; P4
716
717 if any of the call parameters are stored. The host expects these
718 instructions to be executed in order to get the call parameters right. */
719
720 /* Examine the prologue of a function. The variable ip is the address of
721 the first instruction of the prologue. The variable limit is the address
722 of the first instruction after the prologue. The variable fi contains the
723 information in struct frame_info. The variable frameless_p controls whether
724 the entire prologue is examined (0) or just enough instructions to
725 determine that it is a prologue (1). */
726
727 static CORE_ADDR
728 cris_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
729 struct cris_unwind_cache *info)
730 {
731 /* Present instruction. */
732 unsigned short insn;
733
734 /* Next instruction, lookahead. */
735 unsigned short insn_next;
736 int regno;
737
738 /* Is there a push fp? */
739 int have_fp;
740
741 /* Number of byte on stack used for local variables and movem. */
742 int val;
743
744 /* Highest register number in a movem. */
745 int regsave;
746
747 /* move.d r<source_register>,rS */
748 short source_register;
749
750 /* Scan limit. */
751 int limit;
752
753 /* This frame is with respect to a leaf until a push srp is found. */
754 if (info)
755 {
756 info->leaf_function = 1;
757 }
758
759 /* Assume nothing on stack. */
760 val = 0;
761 regsave = -1;
762
763 /* If we were called without a next_frame, that means we were called
764 from cris_skip_prologue which already tried to find the end of the
765 prologue through the symbol information. 64 instructions past current
766 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
767 limit = next_frame ? frame_pc_unwind (next_frame) : pc + 64;
768
769 /* Find the prologue instructions. */
770 while (pc < limit)
771 {
772 insn = read_memory_unsigned_integer (pc, 2);
773 pc += 2;
774 if (insn == 0xE1FC)
775 {
776 /* push <reg> 32 bit instruction */
777 insn_next = read_memory_unsigned_integer (pc, 2);
778 pc += 2;
779 regno = cris_get_operand2 (insn_next);
780 if (info)
781 {
782 info->sp_offset += 4;
783 }
784 /* This check, meant to recognize srp, used to be regno ==
785 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
786 if (insn_next == 0xBE7E)
787 {
788 if (info)
789 {
790 info->leaf_function = 0;
791 }
792 }
793 else if (insn_next == 0x8FEE)
794 {
795 /* push $r8 */
796 if (info)
797 {
798 info->r8_offset = info->sp_offset;
799 }
800 }
801 }
802 else if (insn == 0x866E)
803 {
804 /* move.d sp,r8 */
805 if (info)
806 {
807 info->uses_frame = 1;
808 }
809 continue;
810 }
811 else if (cris_get_operand2 (insn) == SP_REGNUM
812 && cris_get_mode (insn) == 0x0000
813 && cris_get_opcode (insn) == 0x000A)
814 {
815 /* subq <val>,sp */
816 if (info)
817 {
818 info->sp_offset += cris_get_quick_value (insn);
819 }
820 }
821 else if (cris_get_mode (insn) == 0x0002
822 && cris_get_opcode (insn) == 0x000F
823 && cris_get_size (insn) == 0x0003
824 && cris_get_operand1 (insn) == SP_REGNUM)
825 {
826 /* movem r<regsave>,[sp] */
827 regsave = cris_get_operand2 (insn);
828 }
829 else if (cris_get_operand2 (insn) == SP_REGNUM
830 && ((insn & 0x0F00) >> 8) == 0x0001
831 && (cris_get_signed_offset (insn) < 0))
832 {
833 /* Immediate byte offset addressing prefix word with sp as base
834 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
835 is between 64 and 128.
836 movem r<regsave>,[sp=sp-<val>] */
837 if (info)
838 {
839 info->sp_offset += -cris_get_signed_offset (insn);
840 }
841 insn_next = read_memory_unsigned_integer (pc, 2);
842 pc += 2;
843 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
844 && cris_get_opcode (insn_next) == 0x000F
845 && cris_get_size (insn_next) == 0x0003
846 && cris_get_operand1 (insn_next) == SP_REGNUM)
847 {
848 regsave = cris_get_operand2 (insn_next);
849 }
850 else
851 {
852 /* The prologue ended before the limit was reached. */
853 pc -= 4;
854 break;
855 }
856 }
857 else if (cris_get_mode (insn) == 0x0001
858 && cris_get_opcode (insn) == 0x0009
859 && cris_get_size (insn) == 0x0002)
860 {
861 /* move.d r<10..13>,r<0..15> */
862 source_register = cris_get_operand1 (insn);
863
864 /* FIXME? In the glibc solibs, the prologue might contain something
865 like (this example taken from relocate_doit):
866 move.d $pc,$r0
867 sub.d 0xfffef426,$r0
868 which isn't covered by the source_register check below. Question
869 is whether to add a check for this combo, or make better use of
870 the limit variable instead. */
871 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
872 {
873 /* The prologue ended before the limit was reached. */
874 pc -= 2;
875 break;
876 }
877 }
878 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
879 /* The size is a fixed-size. */
880 && ((insn & 0x0F00) >> 8) == 0x0001
881 /* A negative offset. */
882 && (cris_get_signed_offset (insn) < 0))
883 {
884 /* move.S rZ,[r8-U] (?) */
885 insn_next = read_memory_unsigned_integer (pc, 2);
886 pc += 2;
887 regno = cris_get_operand2 (insn_next);
888 if ((regno >= 0 && regno < SP_REGNUM)
889 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
890 && cris_get_opcode (insn_next) == 0x000F)
891 {
892 /* move.S rZ,[r8-U] */
893 continue;
894 }
895 else
896 {
897 /* The prologue ended before the limit was reached. */
898 pc -= 4;
899 break;
900 }
901 }
902 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
903 /* The size is a fixed-size. */
904 && ((insn & 0x0F00) >> 8) == 0x0001
905 /* A positive offset. */
906 && (cris_get_signed_offset (insn) > 0))
907 {
908 /* move.S [r8+U],rZ (?) */
909 insn_next = read_memory_unsigned_integer (pc, 2);
910 pc += 2;
911 regno = cris_get_operand2 (insn_next);
912 if ((regno >= 0 && regno < SP_REGNUM)
913 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
914 && cris_get_opcode (insn_next) == 0x0009
915 && cris_get_operand1 (insn_next) == regno)
916 {
917 /* move.S [r8+U],rZ */
918 continue;
919 }
920 else
921 {
922 /* The prologue ended before the limit was reached. */
923 pc -= 4;
924 break;
925 }
926 }
927 else
928 {
929 /* The prologue ended before the limit was reached. */
930 pc -= 2;
931 break;
932 }
933 }
934
935 /* We only want to know the end of the prologue when next_frame and info
936 are NULL (called from cris_skip_prologue i.e.). */
937 if (next_frame == NULL && info == NULL)
938 {
939 return pc;
940 }
941
942 info->size = info->sp_offset;
943
944 /* Compute the previous frame's stack pointer (which is also the
945 frame's ID's stack address), and this frame's base pointer. */
946 if (info->uses_frame)
947 {
948 ULONGEST this_base;
949 /* The SP was moved to the FP. This indicates that a new frame
950 was created. Get THIS frame's FP value by unwinding it from
951 the next frame. */
952 frame_unwind_unsigned_register (next_frame, CRIS_FP_REGNUM,
953 &this_base);
954 info->base = this_base;
955 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
956
957 /* The FP points at the last saved register. Adjust the FP back
958 to before the first saved register giving the SP. */
959 info->prev_sp = info->base + info->r8_offset;
960 }
961 else
962 {
963 ULONGEST this_base;
964 /* Assume that the FP is this frame's SP but with that pushed
965 stack space added back. */
966 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
967 info->base = this_base;
968 info->prev_sp = info->base + info->size;
969 }
970
971 /* Calculate the addresses for the saved registers on the stack. */
972 /* FIXME: The address calculation should really be done on the fly while
973 we're analyzing the prologue (we only hold one regsave value as it is
974 now). */
975 val = info->sp_offset;
976
977 for (regno = regsave; regno >= 0; regno--)
978 {
979 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
980 val -= 4;
981 }
982
983 /* The previous frame's SP needed to be computed. Save the computed
984 value. */
985 trad_frame_set_value (info->saved_regs, SP_REGNUM, info->prev_sp);
986
987 if (!info->leaf_function)
988 {
989 /* SRP saved on the stack. But where? */
990 if (info->r8_offset == 0)
991 {
992 /* R8 not pushed yet. */
993 info->saved_regs[SRP_REGNUM].addr = info->base;
994 }
995 else
996 {
997 /* R8 pushed, but SP may or may not be moved to R8 yet. */
998 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
999 }
1000 }
1001
1002 /* The PC is found in SRP (the actual register or located on the stack). */
1003 info->saved_regs[PC_REGNUM] = info->saved_regs[SRP_REGNUM];
1004
1005 return pc;
1006 }
1007
1008 /* Advance pc beyond any function entry prologue instructions at pc
1009 to reach some "real" code. */
1010
1011 /* Given a PC value corresponding to the start of a function, return the PC
1012 of the first instruction after the function prologue. */
1013
1014 static CORE_ADDR
1015 cris_skip_prologue (CORE_ADDR pc)
1016 {
1017 CORE_ADDR func_addr, func_end;
1018 struct symtab_and_line sal;
1019 CORE_ADDR pc_after_prologue;
1020
1021 /* If we have line debugging information, then the end of the prologue
1022 should the first assembly instruction of the first source line. */
1023 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1024 {
1025 sal = find_pc_line (func_addr, 0);
1026 if (sal.end > 0 && sal.end < func_end)
1027 return sal.end;
1028 }
1029
1030 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1031 return pc_after_prologue;
1032 }
1033
1034 static CORE_ADDR
1035 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1036 {
1037 ULONGEST pc;
1038 frame_unwind_unsigned_register (next_frame, PC_REGNUM, &pc);
1039 return pc;
1040 }
1041
1042 static CORE_ADDR
1043 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1044 {
1045 ULONGEST sp;
1046 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &sp);
1047 return sp;
1048 }
1049
1050 /* Use the program counter to determine the contents and size of a breakpoint
1051 instruction. It returns a pointer to a string of bytes that encode a
1052 breakpoint instruction, stores the length of the string to *lenptr, and
1053 adjusts pcptr (if necessary) to point to the actual memory location where
1054 the breakpoint should be inserted. */
1055
1056 static const unsigned char *
1057 cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1058 {
1059 static unsigned char break_insn[] = {0x38, 0xe9};
1060 *lenptr = 2;
1061
1062 return break_insn;
1063 }
1064
1065 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1066 0 otherwise. */
1067
1068 static int
1069 cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
1070 {
1071 int version = cris_version ();
1072
1073 switch (spec_reg.applicable_version)
1074 {
1075 case cris_ver_version_all:
1076 return 1;
1077 case cris_ver_warning:
1078 /* Indeterminate/obsolete. */
1079 return 0;
1080 case cris_ver_sim:
1081 /* Simulator only. */
1082 return 0;
1083 case cris_ver_v0_3:
1084 return (version >= 0 && version <= 3);
1085 case cris_ver_v3p:
1086 return (version >= 3);
1087 case cris_ver_v8:
1088 return (version == 8 || version == 9);
1089 case cris_ver_v8p:
1090 return (version >= 8);
1091 case cris_ver_v10p:
1092 return (version >= 10);
1093 default:
1094 /* Invalid cris version. */
1095 return 0;
1096 }
1097 }
1098
1099 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1100 register, -1 for an invalid register. */
1101
1102 static int
1103 cris_register_size (int regno)
1104 {
1105 int i;
1106 int spec_regno;
1107
1108 if (regno >= 0 && regno < NUM_GENREGS)
1109 {
1110 /* General registers (R0 - R15) are 32 bits. */
1111 return 4;
1112 }
1113 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
1114 {
1115 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1116 Adjust regno accordingly. */
1117 spec_regno = regno - NUM_GENREGS;
1118
1119 /* The entries in cris_spec_regs are stored in register number order,
1120 which means we can shortcut into the array when searching it. */
1121 for (i = spec_regno; cris_spec_regs[i].name != NULL; i++)
1122 {
1123 if (cris_spec_regs[i].number == spec_regno
1124 && cris_spec_reg_applicable (cris_spec_regs[i]))
1125 /* Go with the first applicable register. */
1126 return cris_spec_regs[i].reg_size;
1127 }
1128 /* Special register not applicable to this CRIS version. */
1129 return 0;
1130 }
1131 else
1132 {
1133 /* Invalid register. */
1134 return -1;
1135 }
1136 }
1137
1138 /* Nonzero if regno should not be fetched from the target. This is the case
1139 for unimplemented (size 0) and non-existant registers. */
1140
1141 static int
1142 cris_cannot_fetch_register (int regno)
1143 {
1144 return ((regno < 0 || regno >= NUM_REGS)
1145 || (cris_register_size (regno) == 0));
1146 }
1147
1148 /* Nonzero if regno should not be written to the target, for various
1149 reasons. */
1150
1151 static int
1152 cris_cannot_store_register (int regno)
1153 {
1154 /* There are three kinds of registers we refuse to write to.
1155 1. Those that not implemented.
1156 2. Those that are read-only (depends on the processor mode).
1157 3. Those registers to which a write has no effect.
1158 */
1159
1160 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
1161 /* Not implemented. */
1162 return 1;
1163
1164 else if (regno == VR_REGNUM)
1165 /* Read-only. */
1166 return 1;
1167
1168 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1169 /* Writing has no effect. */
1170 return 1;
1171
1172 else if (cris_mode () == CRIS_MODE_USER)
1173 {
1174 if (regno == IBR_REGNUM || regno == BAR_REGNUM || regno == BRP_REGNUM
1175 || regno == IRP_REGNUM)
1176 /* Read-only in user mode. */
1177 return 1;
1178 }
1179
1180 return 0;
1181 }
1182
1183 /* Returns the register offset for the first byte of register regno's space
1184 in the saved register state. Returns -1 for an invalid or unimplemented
1185 register. */
1186
1187 static int
1188 cris_register_offset (int regno)
1189 {
1190 int i;
1191 int reg_size;
1192 int offset = 0;
1193
1194 if (regno >= 0 && regno < NUM_REGS)
1195 {
1196 /* FIXME: The offsets should be cached and calculated only once,
1197 when the architecture being debugged has changed. */
1198 for (i = 0; i < regno; i++)
1199 offset += cris_register_size (i);
1200
1201 return offset;
1202 }
1203 else
1204 {
1205 /* Invalid register. */
1206 return -1;
1207 }
1208 }
1209
1210 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1211 of data in register regno. */
1212
1213 static struct type *
1214 cris_register_virtual_type (int regno)
1215 {
1216 if (regno == SP_REGNUM || regno == PC_REGNUM
1217 || (regno > P8_REGNUM && regno < USP_REGNUM))
1218 {
1219 /* SP, PC, IBR, IRP, SRP, BAR, DCCR, BRP */
1220 return lookup_pointer_type (builtin_type_void);
1221 }
1222 else if (regno == P8_REGNUM || regno == USP_REGNUM
1223 || (regno >= 0 && regno < SP_REGNUM))
1224 {
1225 /* R0 - R13, P8, P15 */
1226 return builtin_type_unsigned_long;
1227 }
1228 else if (regno > P3_REGNUM && regno < P8_REGNUM)
1229 {
1230 /* P4, CCR, DCR0, DCR1 */
1231 return builtin_type_unsigned_short;
1232 }
1233 else if (regno > PC_REGNUM && regno < P4_REGNUM)
1234 {
1235 /* P0, P1, P2, P3 */
1236 return builtin_type_unsigned_char;
1237 }
1238 else
1239 {
1240 /* Invalid register. */
1241 return builtin_type_void;
1242 }
1243 }
1244
1245 /* Stores a function return value of type type, where valbuf is the address
1246 of the value to be stored. */
1247
1248 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1249
1250 static void
1251 cris_store_return_value (struct type *type, struct regcache *regcache,
1252 const void *valbuf)
1253 {
1254 ULONGEST val;
1255 int len = TYPE_LENGTH (type);
1256
1257 if (len <= 4)
1258 {
1259 /* Put the return value in R10. */
1260 val = extract_unsigned_integer (valbuf, len);
1261 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1262 }
1263 else if (len <= 8)
1264 {
1265 /* Put the return value in R10 and R11. */
1266 val = extract_unsigned_integer (valbuf, 4);
1267 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1268 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4);
1269 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1270 }
1271 else
1272 error ("cris_store_return_value: type length too large.");
1273 }
1274
1275 /* Return the name of register regno as a string. Return NULL for an invalid or
1276 unimplemented register. */
1277
1278 static const char *
1279 cris_register_name (int regno)
1280 {
1281 static char *cris_genreg_names[] =
1282 { "r0", "r1", "r2", "r3", \
1283 "r4", "r5", "r6", "r7", \
1284 "r8", "r9", "r10", "r11", \
1285 "r12", "r13", "sp", "pc" };
1286
1287 int i;
1288 int spec_regno;
1289
1290 if (regno >= 0 && regno < NUM_GENREGS)
1291 {
1292 /* General register. */
1293 return cris_genreg_names[regno];
1294 }
1295 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
1296 {
1297 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1298 Adjust regno accordingly. */
1299 spec_regno = regno - NUM_GENREGS;
1300
1301 /* The entries in cris_spec_regs are stored in register number order,
1302 which means we can shortcut into the array when searching it. */
1303 for (i = spec_regno; cris_spec_regs[i].name != NULL; i++)
1304 {
1305 if (cris_spec_regs[i].number == spec_regno
1306 && cris_spec_reg_applicable (cris_spec_regs[i]))
1307 /* Go with the first applicable register. */
1308 return cris_spec_regs[i].name;
1309 }
1310 /* Special register not applicable to this CRIS version. */
1311 return NULL;
1312 }
1313 else
1314 {
1315 /* Invalid register. */
1316 return NULL;
1317 }
1318 }
1319
1320 static int
1321 cris_register_bytes_ok (long bytes)
1322 {
1323 return (bytes == DEPRECATED_REGISTER_BYTES);
1324 }
1325
1326 /* Extract from an array regbuf containing the raw register state a function
1327 return value of type type, and copy that, in virtual format, into
1328 valbuf. */
1329
1330 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1331
1332 static void
1333 cris_extract_return_value (struct type *type, struct regcache *regcache,
1334 void *valbuf)
1335 {
1336 ULONGEST val;
1337 int len = TYPE_LENGTH (type);
1338
1339 if (len <= 4)
1340 {
1341 /* Get the return value from R10. */
1342 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1343 store_unsigned_integer (valbuf, len, val);
1344 }
1345 else if (len <= 8)
1346 {
1347 /* Get the return value from R10 and R11. */
1348 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1349 store_unsigned_integer (valbuf, 4, val);
1350 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1351 store_unsigned_integer ((char *)valbuf + 4, len - 4, val);
1352 }
1353 else
1354 error ("cris_extract_return_value: type length too large");
1355 }
1356
1357 /* Handle the CRIS return value convention. */
1358
1359 static enum return_value_convention
1360 cris_return_value (struct gdbarch *gdbarch, struct type *type,
1361 struct regcache *regcache, void *readbuf,
1362 const void *writebuf)
1363 {
1364 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1365 || TYPE_CODE (type) == TYPE_CODE_UNION
1366 || TYPE_LENGTH (type) > 8)
1367 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1368 goes on the stack. */
1369 return RETURN_VALUE_STRUCT_CONVENTION;
1370
1371 if (readbuf)
1372 cris_extract_return_value (type, regcache, readbuf);
1373 if (writebuf)
1374 cris_store_return_value (type, regcache, writebuf);
1375
1376 return RETURN_VALUE_REGISTER_CONVENTION;
1377 }
1378
1379 /* Returns 1 if the given type will be passed by pointer rather than
1380 directly. */
1381
1382 /* In the CRIS ABI, arguments shorter than or equal to 64 bits are passed
1383 by value. */
1384
1385 static int
1386 cris_reg_struct_has_addr (int gcc_p, struct type *type)
1387 {
1388 return (TYPE_LENGTH (type) > 8);
1389 }
1390
1391 /* Calculates a value that measures how good inst_args constraints an
1392 instruction. It stems from cris_constraint, found in cris-dis.c. */
1393
1394 static int
1395 constraint (unsigned int insn, const signed char *inst_args,
1396 inst_env_type *inst_env)
1397 {
1398 int retval = 0;
1399 int tmp, i;
1400
1401 const char *s = inst_args;
1402
1403 for (; *s; s++)
1404 switch (*s)
1405 {
1406 case 'm':
1407 if ((insn & 0x30) == 0x30)
1408 return -1;
1409 break;
1410
1411 case 'S':
1412 /* A prefix operand. */
1413 if (inst_env->prefix_found)
1414 break;
1415 else
1416 return -1;
1417
1418 case 'B':
1419 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1420 valid "push" size. In case of special register, it may be != 4. */
1421 if (inst_env->prefix_found)
1422 break;
1423 else
1424 return -1;
1425
1426 case 'D':
1427 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1428 if (!retval)
1429 return -1;
1430 else
1431 retval += 4;
1432 break;
1433
1434 case 'P':
1435 tmp = (insn >> 0xC) & 0xF;
1436
1437 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1438 {
1439 /* Since we match four bits, we will give a value of
1440 4 - 1 = 3 in a match. If there is a corresponding
1441 exact match of a special register in another pattern, it
1442 will get a value of 4, which will be higher. This should
1443 be correct in that an exact pattern would match better that
1444 a general pattern.
1445 Note that there is a reason for not returning zero; the
1446 pattern for "clear" is partly matched in the bit-pattern
1447 (the two lower bits must be zero), while the bit-pattern
1448 for a move from a special register is matched in the
1449 register constraint.
1450 This also means we will will have a race condition if
1451 there is a partly match in three bits in the bit pattern. */
1452 if (tmp == cris_spec_regs[i].number)
1453 {
1454 retval += 3;
1455 break;
1456 }
1457 }
1458
1459 if (cris_spec_regs[i].name == NULL)
1460 return -1;
1461 break;
1462 }
1463 return retval;
1464 }
1465
1466 /* Returns the number of bits set in the variable value. */
1467
1468 static int
1469 number_of_bits (unsigned int value)
1470 {
1471 int number_of_bits = 0;
1472
1473 while (value != 0)
1474 {
1475 number_of_bits += 1;
1476 value &= (value - 1);
1477 }
1478 return number_of_bits;
1479 }
1480
1481 /* Finds the address that should contain the single step breakpoint(s).
1482 It stems from code in cris-dis.c. */
1483
1484 static int
1485 find_cris_op (unsigned short insn, inst_env_type *inst_env)
1486 {
1487 int i;
1488 int max_level_of_match = -1;
1489 int max_matched = -1;
1490 int level_of_match;
1491
1492 for (i = 0; cris_opcodes[i].name != NULL; i++)
1493 {
1494 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
1495 && ((cris_opcodes[i].lose & insn) == 0))
1496 {
1497 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1498 if (level_of_match >= 0)
1499 {
1500 level_of_match +=
1501 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1502 if (level_of_match > max_level_of_match)
1503 {
1504 max_matched = i;
1505 max_level_of_match = level_of_match;
1506 if (level_of_match == 16)
1507 {
1508 /* All bits matched, cannot find better. */
1509 break;
1510 }
1511 }
1512 }
1513 }
1514 }
1515 return max_matched;
1516 }
1517
1518 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
1519 actually an internal error. */
1520
1521 static int
1522 find_step_target (inst_env_type *inst_env)
1523 {
1524 int i;
1525 int offset;
1526 unsigned short insn;
1527
1528 /* Create a local register image and set the initial state. */
1529 for (i = 0; i < NUM_GENREGS; i++)
1530 {
1531 inst_env->reg[i] = (unsigned long) read_register (i);
1532 }
1533 offset = NUM_GENREGS;
1534 for (i = 0; i < NUM_SPECREGS; i++)
1535 {
1536 inst_env->preg[i] = (unsigned long) read_register (offset + i);
1537 }
1538 inst_env->branch_found = 0;
1539 inst_env->slot_needed = 0;
1540 inst_env->delay_slot_pc_active = 0;
1541 inst_env->prefix_found = 0;
1542 inst_env->invalid = 0;
1543 inst_env->xflag_found = 0;
1544 inst_env->disable_interrupt = 0;
1545
1546 /* Look for a step target. */
1547 do
1548 {
1549 /* Read an instruction from the client. */
1550 insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2);
1551
1552 /* If the instruction is not in a delay slot the new content of the
1553 PC is [PC] + 2. If the instruction is in a delay slot it is not
1554 that simple. Since a instruction in a delay slot cannot change
1555 the content of the PC, it does not matter what value PC will have.
1556 Just make sure it is a valid instruction. */
1557 if (!inst_env->delay_slot_pc_active)
1558 {
1559 inst_env->reg[PC_REGNUM] += 2;
1560 }
1561 else
1562 {
1563 inst_env->delay_slot_pc_active = 0;
1564 inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc;
1565 }
1566 /* Analyse the present instruction. */
1567 i = find_cris_op (insn, inst_env);
1568 if (i == -1)
1569 {
1570 inst_env->invalid = 1;
1571 }
1572 else
1573 {
1574 cris_gdb_func (cris_opcodes[i].op, insn, inst_env);
1575 }
1576 } while (!inst_env->invalid
1577 && (inst_env->prefix_found || inst_env->xflag_found
1578 || inst_env->slot_needed));
1579 return i;
1580 }
1581
1582 /* There is no hardware single-step support. The function find_step_target
1583 digs through the opcodes in order to find all possible targets.
1584 Either one ordinary target or two targets for branches may be found. */
1585
1586 static void
1587 cris_software_single_step (enum target_signal ignore, int insert_breakpoints)
1588 {
1589 inst_env_type inst_env;
1590
1591 if (insert_breakpoints)
1592 {
1593 /* Analyse the present instruction environment and insert
1594 breakpoints. */
1595 int status = find_step_target (&inst_env);
1596 if (status == -1)
1597 {
1598 /* Could not find a target. FIXME: Should do something. */
1599 }
1600 else
1601 {
1602 /* Insert at most two breakpoints. One for the next PC content
1603 and possibly another one for a branch, jump, etc. */
1604 next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM];
1605 target_insert_breakpoint (next_pc, break_mem[0]);
1606 if (inst_env.branch_found
1607 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
1608 {
1609 branch_target_address =
1610 (CORE_ADDR) inst_env.branch_break_address;
1611 target_insert_breakpoint (branch_target_address, break_mem[1]);
1612 branch_break_inserted = 1;
1613 }
1614 }
1615 }
1616 else
1617 {
1618 /* Remove breakpoints. */
1619 target_remove_breakpoint (next_pc, break_mem[0]);
1620 if (branch_break_inserted)
1621 {
1622 target_remove_breakpoint (branch_target_address, break_mem[1]);
1623 branch_break_inserted = 0;
1624 }
1625 }
1626 }
1627
1628 /* Calculates the prefix value for quick offset addressing mode. */
1629
1630 static void
1631 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
1632 {
1633 /* It's invalid to be in a delay slot. You can't have a prefix to this
1634 instruction (not 100% sure). */
1635 if (inst_env->slot_needed || inst_env->prefix_found)
1636 {
1637 inst_env->invalid = 1;
1638 return;
1639 }
1640
1641 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
1642 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
1643
1644 /* A prefix doesn't change the xflag_found. But the rest of the flags
1645 need updating. */
1646 inst_env->slot_needed = 0;
1647 inst_env->prefix_found = 1;
1648 }
1649
1650 /* Updates the autoincrement register. The size of the increment is derived
1651 from the size of the operation. The PC is always kept aligned on even
1652 word addresses. */
1653
1654 static void
1655 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
1656 {
1657 if (size == INST_BYTE_SIZE)
1658 {
1659 inst_env->reg[cris_get_operand1 (inst)] += 1;
1660
1661 /* The PC must be word aligned, so increase the PC with one
1662 word even if the size is byte. */
1663 if (cris_get_operand1 (inst) == REG_PC)
1664 {
1665 inst_env->reg[REG_PC] += 1;
1666 }
1667 }
1668 else if (size == INST_WORD_SIZE)
1669 {
1670 inst_env->reg[cris_get_operand1 (inst)] += 2;
1671 }
1672 else if (size == INST_DWORD_SIZE)
1673 {
1674 inst_env->reg[cris_get_operand1 (inst)] += 4;
1675 }
1676 else
1677 {
1678 /* Invalid size. */
1679 inst_env->invalid = 1;
1680 }
1681 }
1682
1683 /* Just a forward declaration. */
1684
1685 static unsigned long get_data_from_address (unsigned short *inst,
1686 CORE_ADDR address);
1687
1688 /* Calculates the prefix value for the general case of offset addressing
1689 mode. */
1690
1691 static void
1692 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
1693 {
1694
1695 long offset;
1696
1697 /* It's invalid to be in a delay slot. */
1698 if (inst_env->slot_needed || inst_env->prefix_found)
1699 {
1700 inst_env->invalid = 1;
1701 return;
1702 }
1703
1704 /* The calculation of prefix_value used to be after process_autoincrement,
1705 but that fails for an instruction such as jsr [$r0+12] which is encoded
1706 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
1707 mustn't be incremented until we have read it and what it points at. */
1708 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
1709
1710 /* The offset is an indirection of the contents of the operand1 register. */
1711 inst_env->prefix_value +=
1712 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
1713
1714 if (cris_get_mode (inst) == AUTOINC_MODE)
1715 {
1716 process_autoincrement (cris_get_size (inst), inst, inst_env);
1717 }
1718
1719 /* A prefix doesn't change the xflag_found. But the rest of the flags
1720 need updating. */
1721 inst_env->slot_needed = 0;
1722 inst_env->prefix_found = 1;
1723 }
1724
1725 /* Calculates the prefix value for the index addressing mode. */
1726
1727 static void
1728 biap_prefix (unsigned short inst, inst_env_type *inst_env)
1729 {
1730 /* It's invalid to be in a delay slot. I can't see that it's possible to
1731 have a prefix to this instruction. So I will treat this as invalid. */
1732 if (inst_env->slot_needed || inst_env->prefix_found)
1733 {
1734 inst_env->invalid = 1;
1735 return;
1736 }
1737
1738 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
1739
1740 /* The offset is the operand2 value shifted the size of the instruction
1741 to the left. */
1742 inst_env->prefix_value +=
1743 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
1744
1745 /* If the PC is operand1 (base) the address used is the address after
1746 the main instruction, i.e. address + 2 (the PC is already compensated
1747 for the prefix operation). */
1748 if (cris_get_operand1 (inst) == REG_PC)
1749 {
1750 inst_env->prefix_value += 2;
1751 }
1752
1753 /* A prefix doesn't change the xflag_found. But the rest of the flags
1754 need updating. */
1755 inst_env->slot_needed = 0;
1756 inst_env->xflag_found = 0;
1757 inst_env->prefix_found = 1;
1758 }
1759
1760 /* Calculates the prefix value for the double indirect addressing mode. */
1761
1762 static void
1763 dip_prefix (unsigned short inst, inst_env_type *inst_env)
1764 {
1765
1766 CORE_ADDR address;
1767
1768 /* It's invalid to be in a delay slot. */
1769 if (inst_env->slot_needed || inst_env->prefix_found)
1770 {
1771 inst_env->invalid = 1;
1772 return;
1773 }
1774
1775 /* The prefix value is one dereference of the contents of the operand1
1776 register. */
1777 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
1778 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
1779
1780 /* Check if the mode is autoincrement. */
1781 if (cris_get_mode (inst) == AUTOINC_MODE)
1782 {
1783 inst_env->reg[cris_get_operand1 (inst)] += 4;
1784 }
1785
1786 /* A prefix doesn't change the xflag_found. But the rest of the flags
1787 need updating. */
1788 inst_env->slot_needed = 0;
1789 inst_env->xflag_found = 0;
1790 inst_env->prefix_found = 1;
1791 }
1792
1793 /* Finds the destination for a branch with 8-bits offset. */
1794
1795 static void
1796 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
1797 {
1798
1799 short offset;
1800
1801 /* If we have a prefix or are in a delay slot it's bad. */
1802 if (inst_env->slot_needed || inst_env->prefix_found)
1803 {
1804 inst_env->invalid = 1;
1805 return;
1806 }
1807
1808 /* We have a branch, find out where the branch will land. */
1809 offset = cris_get_branch_short_offset (inst);
1810
1811 /* Check if the offset is signed. */
1812 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
1813 {
1814 offset |= 0xFF00;
1815 }
1816
1817 /* The offset ends with the sign bit, set it to zero. The address
1818 should always be word aligned. */
1819 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
1820
1821 inst_env->branch_found = 1;
1822 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
1823
1824 inst_env->slot_needed = 1;
1825 inst_env->prefix_found = 0;
1826 inst_env->xflag_found = 0;
1827 inst_env->disable_interrupt = 1;
1828 }
1829
1830 /* Finds the destination for a branch with 16-bits offset. */
1831
1832 static void
1833 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
1834 {
1835 short offset;
1836
1837 /* If we have a prefix or is in a delay slot it's bad. */
1838 if (inst_env->slot_needed || inst_env->prefix_found)
1839 {
1840 inst_env->invalid = 1;
1841 return;
1842 }
1843
1844 /* We have a branch, find out the offset for the branch. */
1845 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
1846
1847 /* The instruction is one word longer than normal, so add one word
1848 to the PC. */
1849 inst_env->reg[REG_PC] += 2;
1850
1851 inst_env->branch_found = 1;
1852 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
1853
1854
1855 inst_env->slot_needed = 1;
1856 inst_env->prefix_found = 0;
1857 inst_env->xflag_found = 0;
1858 inst_env->disable_interrupt = 1;
1859 }
1860
1861 /* Handles the ABS instruction. */
1862
1863 static void
1864 abs_op (unsigned short inst, inst_env_type *inst_env)
1865 {
1866
1867 long value;
1868
1869 /* ABS can't have a prefix, so it's bad if it does. */
1870 if (inst_env->prefix_found)
1871 {
1872 inst_env->invalid = 1;
1873 return;
1874 }
1875
1876 /* Check if the operation affects the PC. */
1877 if (cris_get_operand2 (inst) == REG_PC)
1878 {
1879
1880 /* It's invalid to change to the PC if we are in a delay slot. */
1881 if (inst_env->slot_needed)
1882 {
1883 inst_env->invalid = 1;
1884 return;
1885 }
1886
1887 value = (long) inst_env->reg[REG_PC];
1888
1889 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
1890 if (value != SIGNED_DWORD_MASK)
1891 {
1892 value = -value;
1893 inst_env->reg[REG_PC] = (long) value;
1894 }
1895 }
1896
1897 inst_env->slot_needed = 0;
1898 inst_env->prefix_found = 0;
1899 inst_env->xflag_found = 0;
1900 inst_env->disable_interrupt = 0;
1901 }
1902
1903 /* Handles the ADDI instruction. */
1904
1905 static void
1906 addi_op (unsigned short inst, inst_env_type *inst_env)
1907 {
1908 /* It's invalid to have the PC as base register. And ADDI can't have
1909 a prefix. */
1910 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
1911 {
1912 inst_env->invalid = 1;
1913 return;
1914 }
1915
1916 inst_env->slot_needed = 0;
1917 inst_env->prefix_found = 0;
1918 inst_env->xflag_found = 0;
1919 inst_env->disable_interrupt = 0;
1920 }
1921
1922 /* Handles the ASR instruction. */
1923
1924 static void
1925 asr_op (unsigned short inst, inst_env_type *inst_env)
1926 {
1927 int shift_steps;
1928 unsigned long value;
1929 unsigned long signed_extend_mask = 0;
1930
1931 /* ASR can't have a prefix, so check that it doesn't. */
1932 if (inst_env->prefix_found)
1933 {
1934 inst_env->invalid = 1;
1935 return;
1936 }
1937
1938 /* Check if the PC is the target register. */
1939 if (cris_get_operand2 (inst) == REG_PC)
1940 {
1941 /* It's invalid to change the PC in a delay slot. */
1942 if (inst_env->slot_needed)
1943 {
1944 inst_env->invalid = 1;
1945 return;
1946 }
1947 /* Get the number of bits to shift. */
1948 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
1949 value = inst_env->reg[REG_PC];
1950
1951 /* Find out how many bits the operation should apply to. */
1952 if (cris_get_size (inst) == INST_BYTE_SIZE)
1953 {
1954 if (value & SIGNED_BYTE_MASK)
1955 {
1956 signed_extend_mask = 0xFF;
1957 signed_extend_mask = signed_extend_mask >> shift_steps;
1958 signed_extend_mask = ~signed_extend_mask;
1959 }
1960 value = value >> shift_steps;
1961 value |= signed_extend_mask;
1962 value &= 0xFF;
1963 inst_env->reg[REG_PC] &= 0xFFFFFF00;
1964 inst_env->reg[REG_PC] |= value;
1965 }
1966 else if (cris_get_size (inst) == INST_WORD_SIZE)
1967 {
1968 if (value & SIGNED_WORD_MASK)
1969 {
1970 signed_extend_mask = 0xFFFF;
1971 signed_extend_mask = signed_extend_mask >> shift_steps;
1972 signed_extend_mask = ~signed_extend_mask;
1973 }
1974 value = value >> shift_steps;
1975 value |= signed_extend_mask;
1976 value &= 0xFFFF;
1977 inst_env->reg[REG_PC] &= 0xFFFF0000;
1978 inst_env->reg[REG_PC] |= value;
1979 }
1980 else if (cris_get_size (inst) == INST_DWORD_SIZE)
1981 {
1982 if (value & SIGNED_DWORD_MASK)
1983 {
1984 signed_extend_mask = 0xFFFFFFFF;
1985 signed_extend_mask = signed_extend_mask >> shift_steps;
1986 signed_extend_mask = ~signed_extend_mask;
1987 }
1988 value = value >> shift_steps;
1989 value |= signed_extend_mask;
1990 inst_env->reg[REG_PC] = value;
1991 }
1992 }
1993 inst_env->slot_needed = 0;
1994 inst_env->prefix_found = 0;
1995 inst_env->xflag_found = 0;
1996 inst_env->disable_interrupt = 0;
1997 }
1998
1999 /* Handles the ASRQ instruction. */
2000
2001 static void
2002 asrq_op (unsigned short inst, inst_env_type *inst_env)
2003 {
2004
2005 int shift_steps;
2006 unsigned long value;
2007 unsigned long signed_extend_mask = 0;
2008
2009 /* ASRQ can't have a prefix, so check that it doesn't. */
2010 if (inst_env->prefix_found)
2011 {
2012 inst_env->invalid = 1;
2013 return;
2014 }
2015
2016 /* Check if the PC is the target register. */
2017 if (cris_get_operand2 (inst) == REG_PC)
2018 {
2019
2020 /* It's invalid to change the PC in a delay slot. */
2021 if (inst_env->slot_needed)
2022 {
2023 inst_env->invalid = 1;
2024 return;
2025 }
2026 /* The shift size is given as a 5 bit quick value, i.e. we don't
2027 want the the sign bit of the quick value. */
2028 shift_steps = cris_get_asr_shift_steps (inst);
2029 value = inst_env->reg[REG_PC];
2030 if (value & SIGNED_DWORD_MASK)
2031 {
2032 signed_extend_mask = 0xFFFFFFFF;
2033 signed_extend_mask = signed_extend_mask >> shift_steps;
2034 signed_extend_mask = ~signed_extend_mask;
2035 }
2036 value = value >> shift_steps;
2037 value |= signed_extend_mask;
2038 inst_env->reg[REG_PC] = value;
2039 }
2040 inst_env->slot_needed = 0;
2041 inst_env->prefix_found = 0;
2042 inst_env->xflag_found = 0;
2043 inst_env->disable_interrupt = 0;
2044 }
2045
2046 /* Handles the AX, EI and SETF instruction. */
2047
2048 static void
2049 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2050 {
2051 if (inst_env->prefix_found)
2052 {
2053 inst_env->invalid = 1;
2054 return;
2055 }
2056 /* Check if the instruction is setting the X flag. */
2057 if (cris_is_xflag_bit_on (inst))
2058 {
2059 inst_env->xflag_found = 1;
2060 }
2061 else
2062 {
2063 inst_env->xflag_found = 0;
2064 }
2065 inst_env->slot_needed = 0;
2066 inst_env->prefix_found = 0;
2067 inst_env->disable_interrupt = 1;
2068 }
2069
2070 /* Checks if the instruction is in assign mode. If so, it updates the assign
2071 register. Note that check_assign assumes that the caller has checked that
2072 there is a prefix to this instruction. The mode check depends on this. */
2073
2074 static void
2075 check_assign (unsigned short inst, inst_env_type *inst_env)
2076 {
2077 /* Check if it's an assign addressing mode. */
2078 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2079 {
2080 /* Assign the prefix value to operand 1. */
2081 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2082 }
2083 }
2084
2085 /* Handles the 2-operand BOUND instruction. */
2086
2087 static void
2088 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2089 {
2090 /* It's invalid to have the PC as the index operand. */
2091 if (cris_get_operand2 (inst) == REG_PC)
2092 {
2093 inst_env->invalid = 1;
2094 return;
2095 }
2096 /* Check if we have a prefix. */
2097 if (inst_env->prefix_found)
2098 {
2099 check_assign (inst, inst_env);
2100 }
2101 /* Check if this is an autoincrement mode. */
2102 else if (cris_get_mode (inst) == AUTOINC_MODE)
2103 {
2104 /* It's invalid to change the PC in a delay slot. */
2105 if (inst_env->slot_needed)
2106 {
2107 inst_env->invalid = 1;
2108 return;
2109 }
2110 process_autoincrement (cris_get_size (inst), inst, inst_env);
2111 }
2112 inst_env->slot_needed = 0;
2113 inst_env->prefix_found = 0;
2114 inst_env->xflag_found = 0;
2115 inst_env->disable_interrupt = 0;
2116 }
2117
2118 /* Handles the 3-operand BOUND instruction. */
2119
2120 static void
2121 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2122 {
2123 /* It's an error if we haven't got a prefix. And it's also an error
2124 if the PC is the destination register. */
2125 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2126 {
2127 inst_env->invalid = 1;
2128 return;
2129 }
2130 inst_env->slot_needed = 0;
2131 inst_env->prefix_found = 0;
2132 inst_env->xflag_found = 0;
2133 inst_env->disable_interrupt = 0;
2134 }
2135
2136 /* Clears the status flags in inst_env. */
2137
2138 static void
2139 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2140 {
2141 /* It's an error if we have got a prefix. */
2142 if (inst_env->prefix_found)
2143 {
2144 inst_env->invalid = 1;
2145 return;
2146 }
2147
2148 inst_env->slot_needed = 0;
2149 inst_env->prefix_found = 0;
2150 inst_env->xflag_found = 0;
2151 inst_env->disable_interrupt = 0;
2152 }
2153
2154 /* Clears the status flags in inst_env. */
2155
2156 static void
2157 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2158 {
2159 /* It's an error if we have got a prefix. */
2160 if (inst_env->prefix_found)
2161 {
2162 inst_env->invalid = 1;
2163 return;
2164 }
2165
2166 inst_env->slot_needed = 0;
2167 inst_env->prefix_found = 0;
2168 inst_env->xflag_found = 0;
2169 inst_env->disable_interrupt = 1;
2170 }
2171
2172 /* Handles the CLEAR instruction if it's in register mode. */
2173
2174 static void
2175 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2176 {
2177 /* Check if the target is the PC. */
2178 if (cris_get_operand2 (inst) == REG_PC)
2179 {
2180 /* The instruction will clear the instruction's size bits. */
2181 int clear_size = cris_get_clear_size (inst);
2182 if (clear_size == INST_BYTE_SIZE)
2183 {
2184 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2185 }
2186 if (clear_size == INST_WORD_SIZE)
2187 {
2188 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2189 }
2190 if (clear_size == INST_DWORD_SIZE)
2191 {
2192 inst_env->delay_slot_pc = 0x0;
2193 }
2194 /* The jump will be delayed with one delay slot. So we need a delay
2195 slot. */
2196 inst_env->slot_needed = 1;
2197 inst_env->delay_slot_pc_active = 1;
2198 }
2199 else
2200 {
2201 /* The PC will not change => no delay slot. */
2202 inst_env->slot_needed = 0;
2203 }
2204 inst_env->prefix_found = 0;
2205 inst_env->xflag_found = 0;
2206 inst_env->disable_interrupt = 0;
2207 }
2208
2209 /* Handles the TEST instruction if it's in register mode. */
2210
2211 static void
2212 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2213 {
2214 /* It's an error if we have got a prefix. */
2215 if (inst_env->prefix_found)
2216 {
2217 inst_env->invalid = 1;
2218 return;
2219 }
2220 inst_env->slot_needed = 0;
2221 inst_env->prefix_found = 0;
2222 inst_env->xflag_found = 0;
2223 inst_env->disable_interrupt = 0;
2224
2225 }
2226
2227 /* Handles the CLEAR and TEST instruction if the instruction isn't
2228 in register mode. */
2229
2230 static void
2231 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2232 {
2233 /* Check if we are in a prefix mode. */
2234 if (inst_env->prefix_found)
2235 {
2236 /* The only way the PC can change is if this instruction is in
2237 assign addressing mode. */
2238 check_assign (inst, inst_env);
2239 }
2240 /* Indirect mode can't change the PC so just check if the mode is
2241 autoincrement. */
2242 else if (cris_get_mode (inst) == AUTOINC_MODE)
2243 {
2244 process_autoincrement (cris_get_size (inst), inst, inst_env);
2245 }
2246 inst_env->slot_needed = 0;
2247 inst_env->prefix_found = 0;
2248 inst_env->xflag_found = 0;
2249 inst_env->disable_interrupt = 0;
2250 }
2251
2252 /* Checks that the PC isn't the destination register or the instructions has
2253 a prefix. */
2254
2255 static void
2256 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2257 {
2258 /* It's invalid to have the PC as the destination. The instruction can't
2259 have a prefix. */
2260 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2261 {
2262 inst_env->invalid = 1;
2263 return;
2264 }
2265
2266 inst_env->slot_needed = 0;
2267 inst_env->prefix_found = 0;
2268 inst_env->xflag_found = 0;
2269 inst_env->disable_interrupt = 0;
2270 }
2271
2272 /* Checks that the instruction doesn't have a prefix. */
2273
2274 static void
2275 break_op (unsigned short inst, inst_env_type *inst_env)
2276 {
2277 /* The instruction can't have a prefix. */
2278 if (inst_env->prefix_found)
2279 {
2280 inst_env->invalid = 1;
2281 return;
2282 }
2283
2284 inst_env->slot_needed = 0;
2285 inst_env->prefix_found = 0;
2286 inst_env->xflag_found = 0;
2287 inst_env->disable_interrupt = 1;
2288 }
2289
2290 /* Checks that the PC isn't the destination register and that the instruction
2291 doesn't have a prefix. */
2292
2293 static void
2294 scc_op (unsigned short inst, inst_env_type *inst_env)
2295 {
2296 /* It's invalid to have the PC as the destination. The instruction can't
2297 have a prefix. */
2298 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2299 {
2300 inst_env->invalid = 1;
2301 return;
2302 }
2303
2304 inst_env->slot_needed = 0;
2305 inst_env->prefix_found = 0;
2306 inst_env->xflag_found = 0;
2307 inst_env->disable_interrupt = 1;
2308 }
2309
2310 /* Handles the register mode JUMP instruction. */
2311
2312 static void
2313 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2314 {
2315 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2316 you can't have a prefix. */
2317 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2318 {
2319 inst_env->invalid = 1;
2320 return;
2321 }
2322
2323 /* Just change the PC. */
2324 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2325 inst_env->slot_needed = 0;
2326 inst_env->prefix_found = 0;
2327 inst_env->xflag_found = 0;
2328 inst_env->disable_interrupt = 1;
2329 }
2330
2331 /* Handles the JUMP instruction for all modes except register. */
2332
2333 static void
2334 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2335 {
2336 unsigned long newpc;
2337 CORE_ADDR address;
2338
2339 /* It's invalid to do a JUMP in a delay slot. */
2340 if (inst_env->slot_needed)
2341 {
2342 inst_env->invalid = 1;
2343 }
2344 else
2345 {
2346 /* Check if we have a prefix. */
2347 if (inst_env->prefix_found)
2348 {
2349 check_assign (inst, inst_env);
2350
2351 /* Get the new value for the the PC. */
2352 newpc =
2353 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2354 4);
2355 }
2356 else
2357 {
2358 /* Get the new value for the PC. */
2359 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2360 newpc = read_memory_unsigned_integer (address, 4);
2361
2362 /* Check if we should increment a register. */
2363 if (cris_get_mode (inst) == AUTOINC_MODE)
2364 {
2365 inst_env->reg[cris_get_operand1 (inst)] += 4;
2366 }
2367 }
2368 inst_env->reg[REG_PC] = newpc;
2369 }
2370 inst_env->slot_needed = 0;
2371 inst_env->prefix_found = 0;
2372 inst_env->xflag_found = 0;
2373 inst_env->disable_interrupt = 1;
2374 }
2375
2376 /* Handles moves to special registers (aka P-register) for all modes. */
2377
2378 static void
2379 move_to_preg_op (unsigned short inst, inst_env_type *inst_env)
2380 {
2381 if (inst_env->prefix_found)
2382 {
2383 /* The instruction has a prefix that means we are only interested if
2384 the instruction is in assign mode. */
2385 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2386 {
2387 /* The prefix handles the problem if we are in a delay slot. */
2388 if (cris_get_operand1 (inst) == REG_PC)
2389 {
2390 /* Just take care of the assign. */
2391 check_assign (inst, inst_env);
2392 }
2393 }
2394 }
2395 else if (cris_get_mode (inst) == AUTOINC_MODE)
2396 {
2397 /* The instruction doesn't have a prefix, the only case left that we
2398 are interested in is the autoincrement mode. */
2399 if (cris_get_operand1 (inst) == REG_PC)
2400 {
2401 /* If the PC is to be incremented it's invalid to be in a
2402 delay slot. */
2403 if (inst_env->slot_needed)
2404 {
2405 inst_env->invalid = 1;
2406 return;
2407 }
2408
2409 /* The increment depends on the size of the special register. */
2410 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2411 {
2412 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2413 }
2414 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2415 {
2416 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2417 }
2418 else
2419 {
2420 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2421 }
2422 }
2423 }
2424 inst_env->slot_needed = 0;
2425 inst_env->prefix_found = 0;
2426 inst_env->xflag_found = 0;
2427 inst_env->disable_interrupt = 1;
2428 }
2429
2430 /* Handles moves from special registers (aka P-register) for all modes
2431 except register. */
2432
2433 static void
2434 none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2435 {
2436 if (inst_env->prefix_found)
2437 {
2438 /* The instruction has a prefix that means we are only interested if
2439 the instruction is in assign mode. */
2440 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2441 {
2442 /* The prefix handles the problem if we are in a delay slot. */
2443 if (cris_get_operand1 (inst) == REG_PC)
2444 {
2445 /* Just take care of the assign. */
2446 check_assign (inst, inst_env);
2447 }
2448 }
2449 }
2450 /* The instruction doesn't have a prefix, the only case left that we
2451 are interested in is the autoincrement mode. */
2452 else if (cris_get_mode (inst) == AUTOINC_MODE)
2453 {
2454 if (cris_get_operand1 (inst) == REG_PC)
2455 {
2456 /* If the PC is to be incremented it's invalid to be in a
2457 delay slot. */
2458 if (inst_env->slot_needed)
2459 {
2460 inst_env->invalid = 1;
2461 return;
2462 }
2463
2464 /* The increment depends on the size of the special register. */
2465 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2466 {
2467 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2468 }
2469 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2470 {
2471 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2472 }
2473 else
2474 {
2475 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2476 }
2477 }
2478 }
2479 inst_env->slot_needed = 0;
2480 inst_env->prefix_found = 0;
2481 inst_env->xflag_found = 0;
2482 inst_env->disable_interrupt = 1;
2483 }
2484
2485 /* Handles moves from special registers (aka P-register) when the mode
2486 is register. */
2487
2488 static void
2489 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2490 {
2491 /* Register mode move from special register can't have a prefix. */
2492 if (inst_env->prefix_found)
2493 {
2494 inst_env->invalid = 1;
2495 return;
2496 }
2497
2498 if (cris_get_operand1 (inst) == REG_PC)
2499 {
2500 /* It's invalid to change the PC in a delay slot. */
2501 if (inst_env->slot_needed)
2502 {
2503 inst_env->invalid = 1;
2504 return;
2505 }
2506 /* The destination is the PC, the jump will have a delay slot. */
2507 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
2508 inst_env->slot_needed = 1;
2509 inst_env->delay_slot_pc_active = 1;
2510 }
2511 else
2512 {
2513 /* If the destination isn't PC, there will be no jump. */
2514 inst_env->slot_needed = 0;
2515 }
2516 inst_env->prefix_found = 0;
2517 inst_env->xflag_found = 0;
2518 inst_env->disable_interrupt = 1;
2519 }
2520
2521 /* Handles the MOVEM from memory to general register instruction. */
2522
2523 static void
2524 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
2525 {
2526 if (inst_env->prefix_found)
2527 {
2528 /* The prefix handles the problem if we are in a delay slot. Is the
2529 MOVEM instruction going to change the PC? */
2530 if (cris_get_operand2 (inst) >= REG_PC)
2531 {
2532 inst_env->reg[REG_PC] =
2533 read_memory_unsigned_integer (inst_env->prefix_value, 4);
2534 }
2535 /* The assign value is the value after the increment. Normally, the
2536 assign value is the value before the increment. */
2537 if ((cris_get_operand1 (inst) == REG_PC)
2538 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2539 {
2540 inst_env->reg[REG_PC] = inst_env->prefix_value;
2541 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2542 }
2543 }
2544 else
2545 {
2546 /* Is the MOVEM instruction going to change the PC? */
2547 if (cris_get_operand2 (inst) == REG_PC)
2548 {
2549 /* It's invalid to change the PC in a delay slot. */
2550 if (inst_env->slot_needed)
2551 {
2552 inst_env->invalid = 1;
2553 return;
2554 }
2555 inst_env->reg[REG_PC] =
2556 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
2557 4);
2558 }
2559 /* The increment is not depending on the size, instead it's depending
2560 on the number of registers loaded from memory. */
2561 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
2562 {
2563 /* It's invalid to change the PC in a delay slot. */
2564 if (inst_env->slot_needed)
2565 {
2566 inst_env->invalid = 1;
2567 return;
2568 }
2569 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2570 }
2571 }
2572 inst_env->slot_needed = 0;
2573 inst_env->prefix_found = 0;
2574 inst_env->xflag_found = 0;
2575 inst_env->disable_interrupt = 0;
2576 }
2577
2578 /* Handles the MOVEM to memory from general register instruction. */
2579
2580 static void
2581 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
2582 {
2583 if (inst_env->prefix_found)
2584 {
2585 /* The assign value is the value after the increment. Normally, the
2586 assign value is the value before the increment. */
2587 if ((cris_get_operand1 (inst) == REG_PC) &&
2588 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2589 {
2590 /* The prefix handles the problem if we are in a delay slot. */
2591 inst_env->reg[REG_PC] = inst_env->prefix_value;
2592 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2593 }
2594 }
2595 else
2596 {
2597 /* The increment is not depending on the size, instead it's depending
2598 on the number of registers loaded to memory. */
2599 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
2600 {
2601 /* It's invalid to change the PC in a delay slot. */
2602 if (inst_env->slot_needed)
2603 {
2604 inst_env->invalid = 1;
2605 return;
2606 }
2607 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2608 }
2609 }
2610 inst_env->slot_needed = 0;
2611 inst_env->prefix_found = 0;
2612 inst_env->xflag_found = 0;
2613 inst_env->disable_interrupt = 0;
2614 }
2615
2616 /* Handles the intructions that's not yet implemented, by setting
2617 inst_env->invalid to true. */
2618
2619 static void
2620 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
2621 {
2622 inst_env->invalid = 1;
2623 }
2624
2625 /* Handles the XOR instruction. */
2626
2627 static void
2628 xor_op (unsigned short inst, inst_env_type *inst_env)
2629 {
2630 /* XOR can't have a prefix. */
2631 if (inst_env->prefix_found)
2632 {
2633 inst_env->invalid = 1;
2634 return;
2635 }
2636
2637 /* Check if the PC is the target. */
2638 if (cris_get_operand2 (inst) == REG_PC)
2639 {
2640 /* It's invalid to change the PC in a delay slot. */
2641 if (inst_env->slot_needed)
2642 {
2643 inst_env->invalid = 1;
2644 return;
2645 }
2646 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
2647 }
2648 inst_env->slot_needed = 0;
2649 inst_env->prefix_found = 0;
2650 inst_env->xflag_found = 0;
2651 inst_env->disable_interrupt = 0;
2652 }
2653
2654 /* Handles the MULS instruction. */
2655
2656 static void
2657 muls_op (unsigned short inst, inst_env_type *inst_env)
2658 {
2659 /* MULS/U can't have a prefix. */
2660 if (inst_env->prefix_found)
2661 {
2662 inst_env->invalid = 1;
2663 return;
2664 }
2665
2666 /* Consider it invalid if the PC is the target. */
2667 if (cris_get_operand2 (inst) == REG_PC)
2668 {
2669 inst_env->invalid = 1;
2670 return;
2671 }
2672 inst_env->slot_needed = 0;
2673 inst_env->prefix_found = 0;
2674 inst_env->xflag_found = 0;
2675 inst_env->disable_interrupt = 0;
2676 }
2677
2678 /* Handles the MULU instruction. */
2679
2680 static void
2681 mulu_op (unsigned short inst, inst_env_type *inst_env)
2682 {
2683 /* MULS/U can't have a prefix. */
2684 if (inst_env->prefix_found)
2685 {
2686 inst_env->invalid = 1;
2687 return;
2688 }
2689
2690 /* Consider it invalid if the PC is the target. */
2691 if (cris_get_operand2 (inst) == REG_PC)
2692 {
2693 inst_env->invalid = 1;
2694 return;
2695 }
2696 inst_env->slot_needed = 0;
2697 inst_env->prefix_found = 0;
2698 inst_env->xflag_found = 0;
2699 inst_env->disable_interrupt = 0;
2700 }
2701
2702 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
2703 The MOVE instruction is the move from source to register. */
2704
2705 static void
2706 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
2707 unsigned long source1, unsigned long source2)
2708 {
2709 unsigned long pc_mask;
2710 unsigned long operation_mask;
2711
2712 /* Find out how many bits the operation should apply to. */
2713 if (cris_get_size (inst) == INST_BYTE_SIZE)
2714 {
2715 pc_mask = 0xFFFFFF00;
2716 operation_mask = 0xFF;
2717 }
2718 else if (cris_get_size (inst) == INST_WORD_SIZE)
2719 {
2720 pc_mask = 0xFFFF0000;
2721 operation_mask = 0xFFFF;
2722 }
2723 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2724 {
2725 pc_mask = 0x0;
2726 operation_mask = 0xFFFFFFFF;
2727 }
2728 else
2729 {
2730 /* The size is out of range. */
2731 inst_env->invalid = 1;
2732 return;
2733 }
2734
2735 /* The instruction just works on uw_operation_mask bits. */
2736 source2 &= operation_mask;
2737 source1 &= operation_mask;
2738
2739 /* Now calculate the result. The opcode's 3 first bits separates
2740 the different actions. */
2741 switch (cris_get_opcode (inst) & 7)
2742 {
2743 case 0: /* add */
2744 source1 += source2;
2745 break;
2746
2747 case 1: /* move */
2748 source1 = source2;
2749 break;
2750
2751 case 2: /* subtract */
2752 source1 -= source2;
2753 break;
2754
2755 case 3: /* compare */
2756 break;
2757
2758 case 4: /* and */
2759 source1 &= source2;
2760 break;
2761
2762 case 5: /* or */
2763 source1 |= source2;
2764 break;
2765
2766 default:
2767 inst_env->invalid = 1;
2768 return;
2769
2770 break;
2771 }
2772
2773 /* Make sure that the result doesn't contain more than the instruction
2774 size bits. */
2775 source2 &= operation_mask;
2776
2777 /* Calculate the new breakpoint address. */
2778 inst_env->reg[REG_PC] &= pc_mask;
2779 inst_env->reg[REG_PC] |= source1;
2780
2781 }
2782
2783 /* Extends the value from either byte or word size to a dword. If the mode
2784 is zero extend then the value is extended with zero. If instead the mode
2785 is signed extend the sign bit of the value is taken into consideration. */
2786
2787 static unsigned long
2788 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
2789 {
2790 /* The size can be either byte or word, check which one it is.
2791 Don't check the highest bit, it's indicating if it's a zero
2792 or sign extend. */
2793 if (cris_get_size (*inst) & INST_WORD_SIZE)
2794 {
2795 /* Word size. */
2796 value &= 0xFFFF;
2797
2798 /* Check if the instruction is signed extend. If so, check if value has
2799 the sign bit on. */
2800 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
2801 {
2802 value |= SIGNED_WORD_EXTEND_MASK;
2803 }
2804 }
2805 else
2806 {
2807 /* Byte size. */
2808 value &= 0xFF;
2809
2810 /* Check if the instruction is signed extend. If so, check if value has
2811 the sign bit on. */
2812 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
2813 {
2814 value |= SIGNED_BYTE_EXTEND_MASK;
2815 }
2816 }
2817 /* The size should now be dword. */
2818 cris_set_size_to_dword (inst);
2819 return value;
2820 }
2821
2822 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
2823 instruction. The MOVE instruction is the move from source to register. */
2824
2825 static void
2826 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
2827 inst_env_type *inst_env)
2828 {
2829 unsigned long operand1;
2830 unsigned long operand2;
2831
2832 /* It's invalid to have a prefix to the instruction. This is a register
2833 mode instruction and can't have a prefix. */
2834 if (inst_env->prefix_found)
2835 {
2836 inst_env->invalid = 1;
2837 return;
2838 }
2839 /* Check if the instruction has PC as its target. */
2840 if (cris_get_operand2 (inst) == REG_PC)
2841 {
2842 if (inst_env->slot_needed)
2843 {
2844 inst_env->invalid = 1;
2845 return;
2846 }
2847 /* The instruction has the PC as its target register. */
2848 operand1 = inst_env->reg[cris_get_operand1 (inst)];
2849 operand2 = inst_env->reg[REG_PC];
2850
2851 /* Check if it's a extend, signed or zero instruction. */
2852 if (cris_get_opcode (inst) < 4)
2853 {
2854 operand1 = do_sign_or_zero_extend (operand1, &inst);
2855 }
2856 /* Calculate the PC value after the instruction, i.e. where the
2857 breakpoint should be. The order of the udw_operands is vital. */
2858 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
2859 }
2860 inst_env->slot_needed = 0;
2861 inst_env->prefix_found = 0;
2862 inst_env->xflag_found = 0;
2863 inst_env->disable_interrupt = 0;
2864 }
2865
2866 /* Returns the data contained at address. The size of the data is derived from
2867 the size of the operation. If the instruction is a zero or signed
2868 extend instruction, the size field is changed in instruction. */
2869
2870 static unsigned long
2871 get_data_from_address (unsigned short *inst, CORE_ADDR address)
2872 {
2873 int size = cris_get_size (*inst);
2874 unsigned long value;
2875
2876 /* If it's an extend instruction we don't want the signed extend bit,
2877 because it influences the size. */
2878 if (cris_get_opcode (*inst) < 4)
2879 {
2880 size &= ~SIGNED_EXTEND_BIT_MASK;
2881 }
2882 /* Is there a need for checking the size? Size should contain the number of
2883 bytes to read. */
2884 size = 1 << size;
2885 value = read_memory_unsigned_integer (address, size);
2886
2887 /* Check if it's an extend, signed or zero instruction. */
2888 if (cris_get_opcode (*inst) < 4)
2889 {
2890 value = do_sign_or_zero_extend (value, inst);
2891 }
2892 return value;
2893 }
2894
2895 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
2896 instructions. The MOVE instruction is the move from source to register. */
2897
2898 static void
2899 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
2900 inst_env_type *inst_env)
2901 {
2902 unsigned long operand2;
2903 unsigned long operand3;
2904
2905 check_assign (inst, inst_env);
2906 if (cris_get_operand2 (inst) == REG_PC)
2907 {
2908 operand2 = inst_env->reg[REG_PC];
2909
2910 /* Get the value of the third operand. */
2911 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
2912
2913 /* Calculate the PC value after the instruction, i.e. where the
2914 breakpoint should be. The order of the udw_operands is vital. */
2915 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
2916 }
2917 inst_env->slot_needed = 0;
2918 inst_env->prefix_found = 0;
2919 inst_env->xflag_found = 0;
2920 inst_env->disable_interrupt = 0;
2921 }
2922
2923 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
2924 OR instructions. Note that for this to work as expected, the calling
2925 function must have made sure that there is a prefix to this instruction. */
2926
2927 static void
2928 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
2929 inst_env_type *inst_env)
2930 {
2931 unsigned long operand2;
2932 unsigned long operand3;
2933
2934 if (cris_get_operand1 (inst) == REG_PC)
2935 {
2936 /* The PC will be changed by the instruction. */
2937 operand2 = inst_env->reg[cris_get_operand2 (inst)];
2938
2939 /* Get the value of the third operand. */
2940 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
2941
2942 /* Calculate the PC value after the instruction, i.e. where the
2943 breakpoint should be. */
2944 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
2945 }
2946 inst_env->slot_needed = 0;
2947 inst_env->prefix_found = 0;
2948 inst_env->xflag_found = 0;
2949 inst_env->disable_interrupt = 0;
2950 }
2951
2952 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
2953 instructions. The MOVE instruction is the move from source to register. */
2954
2955 static void
2956 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
2957 inst_env_type *inst_env)
2958 {
2959 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
2960 {
2961 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
2962 SUB, AND or OR something weird is going on (if everything works these
2963 instructions should end up in the three operand version). */
2964 inst_env->invalid = 1;
2965 return;
2966 }
2967 else
2968 {
2969 /* three_operand_add_sub_cmp_and_or does the same as we should do here
2970 so use it. */
2971 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
2972 }
2973 inst_env->slot_needed = 0;
2974 inst_env->prefix_found = 0;
2975 inst_env->xflag_found = 0;
2976 inst_env->disable_interrupt = 0;
2977 }
2978
2979 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
2980 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
2981 source to register. */
2982
2983 static void
2984 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
2985 inst_env_type *inst_env)
2986 {
2987 unsigned long operand1;
2988 unsigned long operand2;
2989 unsigned long operand3;
2990 int size;
2991
2992 /* The instruction is either an indirect or autoincrement addressing mode.
2993 Check if the destination register is the PC. */
2994 if (cris_get_operand2 (inst) == REG_PC)
2995 {
2996 /* Must be done here, get_data_from_address may change the size
2997 field. */
2998 size = cris_get_size (inst);
2999 operand2 = inst_env->reg[REG_PC];
3000
3001 /* Get the value of the third operand, i.e. the indirect operand. */
3002 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3003 operand3 = get_data_from_address (&inst, operand1);
3004
3005 /* Calculate the PC value after the instruction, i.e. where the
3006 breakpoint should be. The order of the udw_operands is vital. */
3007 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3008 }
3009 /* If this is an autoincrement addressing mode, check if the increment
3010 changes the PC. */
3011 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3012 {
3013 /* Get the size field. */
3014 size = cris_get_size (inst);
3015
3016 /* If it's an extend instruction we don't want the signed extend bit,
3017 because it influences the size. */
3018 if (cris_get_opcode (inst) < 4)
3019 {
3020 size &= ~SIGNED_EXTEND_BIT_MASK;
3021 }
3022 process_autoincrement (size, inst, inst_env);
3023 }
3024 inst_env->slot_needed = 0;
3025 inst_env->prefix_found = 0;
3026 inst_env->xflag_found = 0;
3027 inst_env->disable_interrupt = 0;
3028 }
3029
3030 /* Handles the two-operand addressing mode, all modes except register, for
3031 the ADD, SUB CMP, AND and OR instruction. */
3032
3033 static void
3034 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3035 inst_env_type *inst_env)
3036 {
3037 if (inst_env->prefix_found)
3038 {
3039 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3040 {
3041 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3042 }
3043 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3044 {
3045 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3046 }
3047 else
3048 {
3049 /* The mode is invalid for a prefixed base instruction. */
3050 inst_env->invalid = 1;
3051 return;
3052 }
3053 }
3054 else
3055 {
3056 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3057 }
3058 }
3059
3060 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3061
3062 static void
3063 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3064 {
3065 unsigned long operand1;
3066 unsigned long operand2;
3067
3068 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3069 instruction and can't have a prefix. */
3070 if (inst_env->prefix_found)
3071 {
3072 inst_env->invalid = 1;
3073 return;
3074 }
3075
3076 /* Check if the instruction has PC as its target. */
3077 if (cris_get_operand2 (inst) == REG_PC)
3078 {
3079 if (inst_env->slot_needed)
3080 {
3081 inst_env->invalid = 1;
3082 return;
3083 }
3084 operand1 = cris_get_quick_value (inst);
3085 operand2 = inst_env->reg[REG_PC];
3086
3087 /* The size should now be dword. */
3088 cris_set_size_to_dword (&inst);
3089
3090 /* Calculate the PC value after the instruction, i.e. where the
3091 breakpoint should be. */
3092 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3093 }
3094 inst_env->slot_needed = 0;
3095 inst_env->prefix_found = 0;
3096 inst_env->xflag_found = 0;
3097 inst_env->disable_interrupt = 0;
3098 }
3099
3100 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3101
3102 static void
3103 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3104 {
3105 unsigned long operand1;
3106 unsigned long operand2;
3107
3108 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3109 instruction and can't have a prefix. */
3110 if (inst_env->prefix_found)
3111 {
3112 inst_env->invalid = 1;
3113 return;
3114 }
3115 /* Check if the instruction has PC as its target. */
3116 if (cris_get_operand2 (inst) == REG_PC)
3117 {
3118 if (inst_env->slot_needed)
3119 {
3120 inst_env->invalid = 1;
3121 return;
3122 }
3123 /* The instruction has the PC as its target register. */
3124 operand1 = cris_get_quick_value (inst);
3125 operand2 = inst_env->reg[REG_PC];
3126
3127 /* The quick value is signed, so check if we must do a signed extend. */
3128 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3129 {
3130 /* sign extend */
3131 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3132 }
3133 /* The size should now be dword. */
3134 cris_set_size_to_dword (&inst);
3135
3136 /* Calculate the PC value after the instruction, i.e. where the
3137 breakpoint should be. */
3138 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3139 }
3140 inst_env->slot_needed = 0;
3141 inst_env->prefix_found = 0;
3142 inst_env->xflag_found = 0;
3143 inst_env->disable_interrupt = 0;
3144 }
3145
3146 /* Translate op_type to a function and call it. */
3147
3148 static void
3149 cris_gdb_func (enum cris_op_type op_type, unsigned short inst,
3150 inst_env_type *inst_env)
3151 {
3152 switch (op_type)
3153 {
3154 case cris_not_implemented_op:
3155 not_implemented_op (inst, inst_env);
3156 break;
3157
3158 case cris_abs_op:
3159 abs_op (inst, inst_env);
3160 break;
3161
3162 case cris_addi_op:
3163 addi_op (inst, inst_env);
3164 break;
3165
3166 case cris_asr_op:
3167 asr_op (inst, inst_env);
3168 break;
3169
3170 case cris_asrq_op:
3171 asrq_op (inst, inst_env);
3172 break;
3173
3174 case cris_ax_ei_setf_op:
3175 ax_ei_setf_op (inst, inst_env);
3176 break;
3177
3178 case cris_bdap_prefix:
3179 bdap_prefix (inst, inst_env);
3180 break;
3181
3182 case cris_biap_prefix:
3183 biap_prefix (inst, inst_env);
3184 break;
3185
3186 case cris_break_op:
3187 break_op (inst, inst_env);
3188 break;
3189
3190 case cris_btst_nop_op:
3191 btst_nop_op (inst, inst_env);
3192 break;
3193
3194 case cris_clearf_di_op:
3195 clearf_di_op (inst, inst_env);
3196 break;
3197
3198 case cris_dip_prefix:
3199 dip_prefix (inst, inst_env);
3200 break;
3201
3202 case cris_dstep_logshift_mstep_neg_not_op:
3203 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3204 break;
3205
3206 case cris_eight_bit_offset_branch_op:
3207 eight_bit_offset_branch_op (inst, inst_env);
3208 break;
3209
3210 case cris_move_mem_to_reg_movem_op:
3211 move_mem_to_reg_movem_op (inst, inst_env);
3212 break;
3213
3214 case cris_move_reg_to_mem_movem_op:
3215 move_reg_to_mem_movem_op (inst, inst_env);
3216 break;
3217
3218 case cris_move_to_preg_op:
3219 move_to_preg_op (inst, inst_env);
3220 break;
3221
3222 case cris_muls_op:
3223 muls_op (inst, inst_env);
3224 break;
3225
3226 case cris_mulu_op:
3227 mulu_op (inst, inst_env);
3228 break;
3229
3230 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3231 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3232 break;
3233
3234 case cris_none_reg_mode_clear_test_op:
3235 none_reg_mode_clear_test_op (inst, inst_env);
3236 break;
3237
3238 case cris_none_reg_mode_jump_op:
3239 none_reg_mode_jump_op (inst, inst_env);
3240 break;
3241
3242 case cris_none_reg_mode_move_from_preg_op:
3243 none_reg_mode_move_from_preg_op (inst, inst_env);
3244 break;
3245
3246 case cris_quick_mode_add_sub_op:
3247 quick_mode_add_sub_op (inst, inst_env);
3248 break;
3249
3250 case cris_quick_mode_and_cmp_move_or_op:
3251 quick_mode_and_cmp_move_or_op (inst, inst_env);
3252 break;
3253
3254 case cris_quick_mode_bdap_prefix:
3255 quick_mode_bdap_prefix (inst, inst_env);
3256 break;
3257
3258 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3259 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3260 break;
3261
3262 case cris_reg_mode_clear_op:
3263 reg_mode_clear_op (inst, inst_env);
3264 break;
3265
3266 case cris_reg_mode_jump_op:
3267 reg_mode_jump_op (inst, inst_env);
3268 break;
3269
3270 case cris_reg_mode_move_from_preg_op:
3271 reg_mode_move_from_preg_op (inst, inst_env);
3272 break;
3273
3274 case cris_reg_mode_test_op:
3275 reg_mode_test_op (inst, inst_env);
3276 break;
3277
3278 case cris_scc_op:
3279 scc_op (inst, inst_env);
3280 break;
3281
3282 case cris_sixteen_bit_offset_branch_op:
3283 sixteen_bit_offset_branch_op (inst, inst_env);
3284 break;
3285
3286 case cris_three_operand_add_sub_cmp_and_or_op:
3287 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3288 break;
3289
3290 case cris_three_operand_bound_op:
3291 three_operand_bound_op (inst, inst_env);
3292 break;
3293
3294 case cris_two_operand_bound_op:
3295 two_operand_bound_op (inst, inst_env);
3296 break;
3297
3298 case cris_xor_op:
3299 xor_op (inst, inst_env);
3300 break;
3301 }
3302 }
3303
3304 /* This wrapper is to avoid cris_get_assembler being called before
3305 exec_bfd has been set. */
3306
3307 static int
3308 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3309 {
3310 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3311 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3312 disassembler, even when there is no BFD. Does something like
3313 "gdb; target remote; disassmeble *0x123" work? */
3314 gdb_assert (exec_bfd != NULL);
3315 print_insn = cris_get_disassembler (exec_bfd);
3316 gdb_assert (print_insn != NULL);
3317 return print_insn (addr, info);
3318 }
3319
3320 /* Copied from <asm/elf.h>. */
3321 typedef unsigned long elf_greg_t;
3322
3323 /* Same as user_regs_struct struct in <asm/user.h>. */
3324 typedef elf_greg_t elf_gregset_t[35];
3325
3326 /* Unpack an elf_gregset_t into GDB's register cache. */
3327
3328 static void
3329 supply_gregset (elf_gregset_t *gregsetp)
3330 {
3331 int i;
3332 elf_greg_t *regp = *gregsetp;
3333 static char zerobuf[4] = {0};
3334
3335 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3336 knows about the actual size of each register so that's no problem. */
3337 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3338 {
3339 supply_register (i, (char *)&regp[i]);
3340 }
3341 }
3342
3343 /* Use a local version of this function to get the correct types for
3344 regsets, until multi-arch core support is ready. */
3345
3346 static void
3347 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
3348 int which, CORE_ADDR reg_addr)
3349 {
3350 elf_gregset_t gregset;
3351
3352 switch (which)
3353 {
3354 case 0:
3355 if (core_reg_size != sizeof (gregset))
3356 {
3357 warning ("wrong size gregset struct in core file");
3358 }
3359 else
3360 {
3361 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3362 supply_gregset (&gregset);
3363 }
3364
3365 default:
3366 /* We've covered all the kinds of registers we know about here,
3367 so this must be something we wouldn't know what to do with
3368 anyway. Just ignore it. */
3369 break;
3370 }
3371 }
3372
3373 static struct core_fns cris_elf_core_fns =
3374 {
3375 bfd_target_elf_flavour, /* core_flavour */
3376 default_check_format, /* check_format */
3377 default_core_sniffer, /* core_sniffer */
3378 fetch_core_registers, /* core_read_registers */
3379 NULL /* next */
3380 };
3381
3382 /* Fetch (and possibly build) an appropriate link_map_offsets
3383 structure for native GNU/Linux CRIS targets using the struct
3384 offsets defined in link.h (but without actual reference to that
3385 file).
3386
3387 This makes it possible to access GNU/Linux CRIS shared libraries
3388 from a GDB that was not built on an GNU/Linux CRIS host (for cross
3389 debugging).
3390
3391 See gdb/solib-svr4.h for an explanation of these fields. */
3392
3393 static struct link_map_offsets *
3394 cris_linux_svr4_fetch_link_map_offsets (void)
3395 {
3396 static struct link_map_offsets lmo;
3397 static struct link_map_offsets *lmp = NULL;
3398
3399 if (lmp == NULL)
3400 {
3401 lmp = &lmo;
3402
3403 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
3404 this is all we need. */
3405 lmo.r_map_offset = 4;
3406 lmo.r_map_size = 4;
3407
3408 lmo.link_map_size = 20;
3409
3410 lmo.l_addr_offset = 0;
3411 lmo.l_addr_size = 4;
3412
3413 lmo.l_name_offset = 4;
3414 lmo.l_name_size = 4;
3415
3416 lmo.l_next_offset = 12;
3417 lmo.l_next_size = 4;
3418
3419 lmo.l_prev_offset = 16;
3420 lmo.l_prev_size = 4;
3421 }
3422
3423 return lmp;
3424 }
3425
3426 static void
3427 cris_fpless_backtrace (char *noargs, int from_tty)
3428 {
3429 /* Points at the instruction after the jsr (except when in innermost frame
3430 where it points at the original pc). */
3431 CORE_ADDR pc = 0;
3432
3433 /* Temporary variable, used for parsing from the start of the function that
3434 the pc is in, up to the pc. */
3435 CORE_ADDR tmp_pc = 0;
3436 CORE_ADDR sp = 0;
3437
3438 /* Information about current frame. */
3439 struct symtab_and_line sal;
3440 char* func_name;
3441
3442 /* Present instruction. */
3443 unsigned short insn;
3444
3445 /* Next instruction, lookahead. */
3446 unsigned short insn_next;
3447
3448 /* This is to store the offset between sp at start of function and until we
3449 reach push srp (if any). */
3450 int sp_add_later = 0;
3451 int push_srp_found = 0;
3452
3453 int val = 0;
3454
3455 /* Frame counter. */
3456 int frame = 0;
3457
3458 /* For the innermost frame, we want to look at srp in case it's a leaf
3459 function (since there's no push srp in that case). */
3460 int innermost_frame = 1;
3461
3462 deprecated_read_register_gen (PC_REGNUM, (char *) &pc);
3463 deprecated_read_register_gen (SP_REGNUM, (char *) &sp);
3464
3465 /* We make an explicit return when we can't find an outer frame. */
3466 while (1)
3467 {
3468 /* Get file name and line number. */
3469 sal = find_pc_line (pc, 0);
3470
3471 /* Get function name. */
3472 find_pc_partial_function (pc, &func_name, (CORE_ADDR *) NULL,
3473 (CORE_ADDR *) NULL);
3474
3475 /* Print information about current frame. */
3476 printf_unfiltered ("#%i 0x%08lx in %s", frame++, pc, func_name);
3477 if (sal.symtab)
3478 {
3479 printf_unfiltered (" at %s:%i", sal.symtab->filename, sal.line);
3480 }
3481 printf_unfiltered ("\n");
3482
3483 /* Get the start address of this function. */
3484 tmp_pc = get_pc_function_start (pc);
3485
3486 /* Mini parser, only meant to find push sp and sub ...,sp from the start
3487 of the function, up to the pc. */
3488 while (tmp_pc < pc)
3489 {
3490 insn = read_memory_unsigned_integer (tmp_pc, sizeof (short));
3491 tmp_pc += sizeof (short);
3492 if (insn == 0xE1FC)
3493 {
3494 /* push <reg> 32 bit instruction */
3495 insn_next = read_memory_unsigned_integer (tmp_pc,
3496 sizeof (short));
3497 tmp_pc += sizeof (short);
3498
3499 /* Recognize srp. */
3500 if (insn_next == 0xBE7E)
3501 {
3502 /* For subsequent (not this one though) push or sub which
3503 affects sp, adjust sp immediately. */
3504 push_srp_found = 1;
3505
3506 /* Note: this will break if we ever encounter a
3507 push vr (1 byte) or push ccr (2 bytes). */
3508 sp_add_later += 4;
3509 }
3510 else
3511 {
3512 /* Some other register was pushed. */
3513 if (push_srp_found)
3514 {
3515 sp += 4;
3516 }
3517 else
3518 {
3519 sp_add_later += 4;
3520 }
3521 }
3522 }
3523 else if (cris_get_operand2 (insn) == SP_REGNUM
3524 && cris_get_mode (insn) == 0x0000
3525 && cris_get_opcode (insn) == 0x000A)
3526 {
3527 /* subq <val>,sp */
3528 val = cris_get_quick_value (insn);
3529
3530 if (push_srp_found)
3531 {
3532 sp += val;
3533 }
3534 else
3535 {
3536 sp_add_later += val;
3537 }
3538
3539 }
3540 else if (cris_get_operand2 (insn) == SP_REGNUM
3541 /* Autoincrement addressing mode. */
3542 && cris_get_mode (insn) == 0x0003
3543 /* Opcode. */
3544 && ((insn) & 0x03E0) >> 5 == 0x0004)
3545 {
3546 /* subu <val>,sp */
3547 val = get_data_from_address (&insn, tmp_pc);
3548
3549 if (push_srp_found)
3550 {
3551 sp += val;
3552 }
3553 else
3554 {
3555 sp_add_later += val;
3556 }
3557 }
3558 else if (cris_get_operand2 (insn) == SP_REGNUM
3559 && ((insn & 0x0F00) >> 8) == 0x0001
3560 && (cris_get_signed_offset (insn) < 0))
3561 {
3562 /* Immediate byte offset addressing prefix word with sp as base
3563 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
3564 is between 64 and 128.
3565 movem r<regsave>,[sp=sp-<val>] */
3566 val = -cris_get_signed_offset (insn);
3567 insn_next = read_memory_unsigned_integer (tmp_pc,
3568 sizeof (short));
3569 tmp_pc += sizeof (short);
3570
3571 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
3572 && cris_get_opcode (insn_next) == 0x000F
3573 && cris_get_size (insn_next) == 0x0003
3574 && cris_get_operand1 (insn_next) == SP_REGNUM)
3575 {
3576 if (push_srp_found)
3577 {
3578 sp += val;
3579 }
3580 else
3581 {
3582 sp_add_later += val;
3583 }
3584 }
3585 }
3586 }
3587
3588 if (push_srp_found)
3589 {
3590 /* Reset flag. */
3591 push_srp_found = 0;
3592
3593 /* sp should now point at where srp is stored on the stack. Update
3594 the pc to the srp. */
3595 pc = read_memory_unsigned_integer (sp, 4);
3596 }
3597 else if (innermost_frame)
3598 {
3599 /* We couldn't find a push srp in the prologue, so this must be
3600 a leaf function, and thus we use the srp register directly.
3601 This should happen at most once, for the innermost function. */
3602 deprecated_read_register_gen (SRP_REGNUM, (char *) &pc);
3603 }
3604 else
3605 {
3606 /* Couldn't find an outer frame. */
3607 return;
3608 }
3609
3610 /* Reset flag. (In case the innermost frame wasn't a leaf, we don't
3611 want to look at the srp register later either). */
3612 innermost_frame = 0;
3613
3614 /* Now, add the offset for everything up to, and including push srp,
3615 that was held back during the prologue parsing. */
3616 sp += sp_add_later;
3617 sp_add_later = 0;
3618 }
3619 }
3620
3621 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3622
3623 void
3624 _initialize_cris_tdep (void)
3625 {
3626 struct cmd_list_element *c;
3627
3628 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3629
3630 /* CRIS-specific user-commands. */
3631 c = add_set_cmd ("cris-version", class_support, var_integer,
3632 (char *) &usr_cmd_cris_version,
3633 "Set the current CRIS version.", &setlist);
3634 set_cmd_sfunc (c, cris_version_update);
3635 add_show_from_set (c, &showlist);
3636
3637 c = add_set_enum_cmd ("cris-mode", class_support, cris_mode_enums,
3638 &usr_cmd_cris_mode,
3639 "Set the current CRIS mode.", &setlist);
3640 set_cmd_sfunc (c, cris_mode_update);
3641 add_show_from_set (c, &showlist);
3642
3643 c = add_cmd ("cris-fpless-backtrace", class_support, cris_fpless_backtrace,
3644 "Display call chain using the subroutine return pointer.\n"
3645 "Note that this displays the address after the jump to the "
3646 "subroutine.", &cmdlist);
3647
3648 deprecated_add_core_fns (&cris_elf_core_fns);
3649
3650 }
3651
3652 /* Prints out all target specific values. */
3653
3654 static void
3655 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3656 {
3657 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3658 if (tdep != NULL)
3659 {
3660 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3661 tdep->cris_version);
3662 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3663 tdep->cris_mode);
3664 }
3665 }
3666
3667 static void
3668 cris_version_update (char *ignore_args, int from_tty,
3669 struct cmd_list_element *c)
3670 {
3671 struct gdbarch_info info;
3672
3673 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3674 the set command passed as a parameter. The clone operation will
3675 include (BUG?) any ``set'' command callback, if present.
3676 Commands like ``info set'' call all the ``show'' command
3677 callbacks. Unfortunately, for ``show'' commands cloned from
3678 ``set'', this includes callbacks belonging to ``set'' commands.
3679 Making this worse, this only occures if add_show_from_set() is
3680 called after add_cmd_sfunc() (BUG?). */
3681
3682 /* From here on, trust the user's CRIS version setting. */
3683 if (cmd_type (c) == set_cmd)
3684 {
3685 usr_cmd_cris_version_valid = 1;
3686
3687 /* Update the current architecture, if needed. */
3688 gdbarch_info_init (&info);
3689 if (!gdbarch_update_p (info))
3690 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3691 }
3692 }
3693
3694 static void
3695 cris_mode_update (char *ignore_args, int from_tty,
3696 struct cmd_list_element *c)
3697 {
3698 struct gdbarch_info info;
3699
3700 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3701 the set command passed as a parameter. The clone operation will
3702 include (BUG?) any ``set'' command callback, if present.
3703 Commands like ``info set'' call all the ``show'' command
3704 callbacks. Unfortunately, for ``show'' commands cloned from
3705 ``set'', this includes callbacks belonging to ``set'' commands.
3706 Making this worse, this only occures if add_show_from_set() is
3707 called after add_cmd_sfunc() (BUG?). */
3708
3709 /* From here on, trust the user's CRIS mode setting. */
3710 if (cmd_type (c) == set_cmd)
3711 {
3712 usr_cmd_cris_mode_valid = 1;
3713
3714 /* Update the current architecture, if needed. */
3715 gdbarch_info_init (&info);
3716 if (!gdbarch_update_p (info))
3717 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3718 }
3719 }
3720
3721 static struct gdbarch *
3722 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3723 {
3724 struct gdbarch *gdbarch;
3725 struct gdbarch_tdep *tdep;
3726 int cris_version;
3727 const char *cris_mode;
3728 int register_bytes;
3729
3730 if (usr_cmd_cris_version_valid)
3731 {
3732 /* Trust the user's CRIS version setting. */
3733 cris_version = usr_cmd_cris_version;
3734 }
3735 else
3736 {
3737 /* Assume it's CRIS version 10. */
3738 cris_version = 10;
3739 }
3740
3741 if (usr_cmd_cris_mode_valid)
3742 {
3743 /* Trust the user's CRIS mode setting. */
3744 cris_mode = usr_cmd_cris_mode;
3745 }
3746 else if (cris_version == 10)
3747 {
3748 /* Assume CRIS version 10 is in user mode. */
3749 cris_mode = CRIS_MODE_USER;
3750 }
3751 else
3752 {
3753 /* Strictly speaking, older CRIS version don't have a supervisor mode,
3754 but we regard its only mode as supervisor mode. */
3755 cris_mode = CRIS_MODE_SUPERVISOR;
3756 }
3757
3758 /* Make the current settings visible to the user. */
3759 usr_cmd_cris_version = cris_version;
3760 usr_cmd_cris_mode = cris_mode;
3761
3762 /* Find a candidate among the list of pre-declared architectures. Both
3763 CRIS version and ABI must match. */
3764 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3765 arches != NULL;
3766 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3767 {
3768 if ((gdbarch_tdep (arches->gdbarch)->cris_version == cris_version)
3769 && (gdbarch_tdep (arches->gdbarch)->cris_mode == cris_mode))
3770 return arches->gdbarch;
3771 }
3772
3773 /* No matching architecture was found. Create a new one. */
3774 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
3775 gdbarch = gdbarch_alloc (&info, tdep);
3776
3777 tdep->cris_version = cris_version;
3778 tdep->cris_mode = cris_mode;
3779
3780 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
3781 switch (info.byte_order)
3782 {
3783 case BFD_ENDIAN_LITTLE:
3784 /* Ok. */
3785 break;
3786
3787 case BFD_ENDIAN_BIG:
3788 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: big endian byte order in info");
3789 break;
3790
3791 default:
3792 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown byte order in info");
3793 }
3794
3795 set_gdbarch_return_value (gdbarch, cris_return_value);
3796 set_gdbarch_deprecated_reg_struct_has_addr (gdbarch,
3797 cris_reg_struct_has_addr);
3798 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
3799
3800 /* There are 32 registers (some of which may not be implemented). */
3801 set_gdbarch_num_regs (gdbarch, 32);
3802 set_gdbarch_sp_regnum (gdbarch, 14);
3803 set_gdbarch_pc_regnum (gdbarch, 15);
3804 set_gdbarch_register_name (gdbarch, cris_register_name);
3805
3806 /* Length of ordinary registers used in push_word and a few other
3807 places. DEPRECATED_REGISTER_RAW_SIZE is the real way to know how
3808 big a register is. */
3809 set_gdbarch_deprecated_register_size (gdbarch, 4);
3810 set_gdbarch_double_bit (gdbarch, 64);
3811 /* The default definition of a long double is 2 * TARGET_DOUBLE_BIT,
3812 which means we have to set this explicitly. */
3813 set_gdbarch_long_double_bit (gdbarch, 64);
3814 set_gdbarch_register_bytes_ok (gdbarch, cris_register_bytes_ok);
3815 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
3816 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
3817
3818 /* The total amount of space needed to store (in an array called registers)
3819 GDB's copy of the machine's register state. Note: We can not use
3820 cris_register_size at this point, since it relies on current_gdbarch
3821 being set. */
3822 switch (tdep->cris_version)
3823 {
3824 case 0:
3825 case 1:
3826 case 2:
3827 case 3:
3828 /* Support for these may be added later. */
3829 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unsupported CRIS version");
3830 break;
3831
3832 case 8:
3833 case 9:
3834 /* CRIS v8 and v9, a.k.a. ETRAX 100. General registers R0 - R15
3835 (32 bits), special registers P0 - P1 (8 bits), P4 - P5 (16 bits),
3836 and P8 - P14 (32 bits). */
3837 register_bytes = (16 * 4) + (2 * 1) + (2 * 2) + (7 * 4);
3838 break;
3839
3840 case 10:
3841 case 11:
3842 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
3843 P7 (32 bits), and P15 (32 bits) have been implemented. */
3844 register_bytes = (16 * 4) + (2 * 1) + (2 * 2) + (9 * 4);
3845 break;
3846
3847 default:
3848 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown CRIS version");
3849 }
3850
3851 set_gdbarch_deprecated_register_bytes (gdbarch, register_bytes);
3852
3853 /* Returns the register offset for the first byte of register regno's space
3854 in the saved register state. */
3855 set_gdbarch_deprecated_register_byte (gdbarch, cris_register_offset);
3856
3857 /* The length of the registers in the actual machine representation. */
3858 set_gdbarch_deprecated_register_raw_size (gdbarch, cris_register_size);
3859
3860 /* The largest value DEPRECATED_REGISTER_RAW_SIZE can have. */
3861 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 32);
3862
3863 /* The length of the registers in the program's representation. */
3864 set_gdbarch_deprecated_register_virtual_size (gdbarch, cris_register_size);
3865
3866 /* The largest value DEPRECATED_REGISTER_VIRTUAL_SIZE can have. */
3867 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 32);
3868
3869 set_gdbarch_deprecated_register_virtual_type (gdbarch, cris_register_virtual_type);
3870
3871 /* Dummy frame functions. */
3872 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
3873 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
3874 set_gdbarch_frame_align (gdbarch, cris_frame_align);
3875
3876 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
3877 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
3878
3879 /* The stack grows downward. */
3880 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3881
3882 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
3883
3884 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
3885 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
3886 set_gdbarch_unwind_dummy_id (gdbarch, cris_unwind_dummy_id);
3887
3888 /* FIXME: Hook in the DWARF CFI frame unwinder.
3889 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3890 */
3891 frame_unwind_append_sniffer (gdbarch, cris_frame_sniffer);
3892 frame_base_set_default (gdbarch, &cris_frame_base);
3893
3894 /* Use target_specific function to define link map offsets. */
3895 set_solib_svr4_fetch_link_map_offsets
3896 (gdbarch, cris_linux_svr4_fetch_link_map_offsets);
3897
3898 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3899 disassembler, even when there is no BFD. Does something like
3900 "gdb; target remote; disassmeble *0x123" work? */
3901 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
3902
3903 return gdbarch;
3904 }
This page took 0.110995 seconds and 4 git commands to generate.