.
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2
3 Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 Contributed by Axis Communications AB.
6 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "value.h"
33 #include "opcode/cris.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "gdb_assert.h"
37
38 /* To get entry_point_address. */
39 #include "symfile.h"
40
41 #include "solib.h" /* Support for shared libraries. */
42 #include "solib-svr4.h" /* For struct link_map_offsets. */
43 #include "gdb_string.h"
44 #include "dis-asm.h"
45
46
47 enum cris_num_regs
48 {
49 /* There are no floating point registers. Used in gdbserver low-linux.c. */
50 NUM_FREGS = 0,
51
52 /* There are 16 general registers. */
53 NUM_GENREGS = 16,
54
55 /* There are 16 special registers. */
56 NUM_SPECREGS = 16
57 };
58
59 /* Register numbers of various important registers.
60 DEPRECATED_FP_REGNUM Contains address of executing stack frame.
61 STR_REGNUM Contains the address of structure return values.
62 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
63 ARG1_REGNUM Contains the first parameter to a function.
64 ARG2_REGNUM Contains the second parameter to a function.
65 ARG3_REGNUM Contains the third parameter to a function.
66 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
67 SP_REGNUM Contains address of top of stack.
68 PC_REGNUM Contains address of next instruction.
69 SRP_REGNUM Subroutine return pointer register.
70 BRP_REGNUM Breakpoint return pointer register. */
71
72 /* DEPRECATED_FP_REGNUM = 8, SP_REGNUM = 14, and PC_REGNUM = 15 have
73 been incorporated into the multi-arch framework. */
74
75 enum cris_regnums
76 {
77 /* Enums with respect to the general registers, valid for all
78 CRIS versions. */
79 STR_REGNUM = 9,
80 RET_REGNUM = 10,
81 ARG1_REGNUM = 10,
82 ARG2_REGNUM = 11,
83 ARG3_REGNUM = 12,
84 ARG4_REGNUM = 13,
85
86 /* Enums with respect to the special registers, some of which may not be
87 applicable to all CRIS versions. */
88 P0_REGNUM = 16,
89 VR_REGNUM = 17,
90 P2_REGNUM = 18,
91 P3_REGNUM = 19,
92 P4_REGNUM = 20,
93 CCR_REGNUM = 21,
94 MOF_REGNUM = 23,
95 P8_REGNUM = 24,
96 IBR_REGNUM = 25,
97 IRP_REGNUM = 26,
98 SRP_REGNUM = 27,
99 BAR_REGNUM = 28,
100 DCCR_REGNUM = 29,
101 BRP_REGNUM = 30,
102 USP_REGNUM = 31
103 };
104
105 extern const struct cris_spec_reg cris_spec_regs[];
106
107 /* CRIS version, set via the user command 'set cris-version'. Affects
108 register names and sizes.*/
109 static int usr_cmd_cris_version;
110
111 /* Indicates whether to trust the above variable. */
112 static int usr_cmd_cris_version_valid = 0;
113
114 /* CRIS mode, set via the user command 'set cris-mode'. Affects availability
115 of some registers. */
116 static const char *usr_cmd_cris_mode;
117
118 /* Indicates whether to trust the above variable. */
119 static int usr_cmd_cris_mode_valid = 0;
120
121 static const char CRIS_MODE_USER[] = "CRIS_MODE_USER";
122 static const char CRIS_MODE_SUPERVISOR[] = "CRIS_MODE_SUPERVISOR";
123 static const char *cris_mode_enums[] =
124 {
125 CRIS_MODE_USER,
126 CRIS_MODE_SUPERVISOR,
127 0
128 };
129
130 /* CRIS ABI, set via the user command 'set cris-abi'.
131 There are two flavours:
132 1. Original ABI with 32-bit doubles, where arguments <= 4 bytes are
133 passed by value.
134 2. New ABI with 64-bit doubles, where arguments <= 8 bytes are passed by
135 value. */
136 static const char *usr_cmd_cris_abi;
137
138 /* Indicates whether to trust the above variable. */
139 static int usr_cmd_cris_abi_valid = 0;
140
141 /* These variables are strings instead of enums to make them usable as
142 parameters to add_set_enum_cmd. */
143 static const char CRIS_ABI_ORIGINAL[] = "CRIS_ABI_ORIGINAL";
144 static const char CRIS_ABI_V2[] = "CRIS_ABI_V2";
145 static const char CRIS_ABI_SYMBOL[] = ".$CRIS_ABI_V2";
146 static const char *cris_abi_enums[] =
147 {
148 CRIS_ABI_ORIGINAL,
149 CRIS_ABI_V2,
150 0
151 };
152
153 /* CRIS architecture specific information. */
154 struct gdbarch_tdep
155 {
156 int cris_version;
157 const char *cris_mode;
158 const char *cris_abi;
159 };
160
161 /* Functions for accessing target dependent data. */
162
163 static int
164 cris_version (void)
165 {
166 return (gdbarch_tdep (current_gdbarch)->cris_version);
167 }
168
169 static const char *
170 cris_mode (void)
171 {
172 return (gdbarch_tdep (current_gdbarch)->cris_mode);
173 }
174
175 static const char *
176 cris_abi (void)
177 {
178 return (gdbarch_tdep (current_gdbarch)->cris_abi);
179 }
180
181 struct frame_extra_info
182 {
183 CORE_ADDR return_pc;
184 int leaf_function;
185 };
186
187 /* The instruction environment needed to find single-step breakpoints. */
188 typedef
189 struct instruction_environment
190 {
191 unsigned long reg[NUM_GENREGS];
192 unsigned long preg[NUM_SPECREGS];
193 unsigned long branch_break_address;
194 unsigned long delay_slot_pc;
195 unsigned long prefix_value;
196 int branch_found;
197 int prefix_found;
198 int invalid;
199 int slot_needed;
200 int delay_slot_pc_active;
201 int xflag_found;
202 int disable_interrupt;
203 } inst_env_type;
204
205 /* Save old breakpoints in order to restore the state before a single_step.
206 At most, two breakpoints will have to be remembered. */
207 typedef
208 char binsn_quantum[BREAKPOINT_MAX];
209 static binsn_quantum break_mem[2];
210 static CORE_ADDR next_pc = 0;
211 static CORE_ADDR branch_target_address = 0;
212 static unsigned char branch_break_inserted = 0;
213
214 /* Machine-dependencies in CRIS for opcodes. */
215
216 /* Instruction sizes. */
217 enum cris_instruction_sizes
218 {
219 INST_BYTE_SIZE = 0,
220 INST_WORD_SIZE = 1,
221 INST_DWORD_SIZE = 2
222 };
223
224 /* Addressing modes. */
225 enum cris_addressing_modes
226 {
227 REGISTER_MODE = 1,
228 INDIRECT_MODE = 2,
229 AUTOINC_MODE = 3
230 };
231
232 /* Prefix addressing modes. */
233 enum cris_prefix_addressing_modes
234 {
235 PREFIX_INDEX_MODE = 2,
236 PREFIX_ASSIGN_MODE = 3,
237
238 /* Handle immediate byte offset addressing mode prefix format. */
239 PREFIX_OFFSET_MODE = 2
240 };
241
242 /* Masks for opcodes. */
243 enum cris_opcode_masks
244 {
245 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
246 SIGNED_EXTEND_BIT_MASK = 0x2,
247 SIGNED_BYTE_MASK = 0x80,
248 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
249 SIGNED_WORD_MASK = 0x8000,
250 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
251 SIGNED_DWORD_MASK = 0x80000000,
252 SIGNED_QUICK_VALUE_MASK = 0x20,
253 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
254 };
255
256 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
257 Bit 15 - 12 Operand2
258 11 - 10 Mode
259 9 - 6 Opcode
260 5 - 4 Size
261 3 - 0 Operand1 */
262
263 static int
264 cris_get_operand2 (unsigned short insn)
265 {
266 return ((insn & 0xF000) >> 12);
267 }
268
269 static int
270 cris_get_mode (unsigned short insn)
271 {
272 return ((insn & 0x0C00) >> 10);
273 }
274
275 static int
276 cris_get_opcode (unsigned short insn)
277 {
278 return ((insn & 0x03C0) >> 6);
279 }
280
281 static int
282 cris_get_size (unsigned short insn)
283 {
284 return ((insn & 0x0030) >> 4);
285 }
286
287 static int
288 cris_get_operand1 (unsigned short insn)
289 {
290 return (insn & 0x000F);
291 }
292
293 /* Additional functions in order to handle opcodes. */
294
295 static int
296 cris_get_wide_opcode (unsigned short insn)
297 {
298 return ((insn & 0x03E0) >> 5);
299 }
300
301 static int
302 cris_get_short_size (unsigned short insn)
303 {
304 return ((insn & 0x0010) >> 4);
305 }
306
307 static int
308 cris_get_quick_value (unsigned short insn)
309 {
310 return (insn & 0x003F);
311 }
312
313 static int
314 cris_get_bdap_quick_offset (unsigned short insn)
315 {
316 return (insn & 0x00FF);
317 }
318
319 static int
320 cris_get_branch_short_offset (unsigned short insn)
321 {
322 return (insn & 0x00FF);
323 }
324
325 static int
326 cris_get_asr_shift_steps (unsigned long value)
327 {
328 return (value & 0x3F);
329 }
330
331 static int
332 cris_get_asr_quick_shift_steps (unsigned short insn)
333 {
334 return (insn & 0x1F);
335 }
336
337 static int
338 cris_get_clear_size (unsigned short insn)
339 {
340 return ((insn) & 0xC000);
341 }
342
343 static int
344 cris_is_signed_extend_bit_on (unsigned short insn)
345 {
346 return (((insn) & 0x20) == 0x20);
347 }
348
349 static int
350 cris_is_xflag_bit_on (unsigned short insn)
351 {
352 return (((insn) & 0x1000) == 0x1000);
353 }
354
355 static void
356 cris_set_size_to_dword (unsigned short *insn)
357 {
358 *insn &= 0xFFCF;
359 *insn |= 0x20;
360 }
361
362 static signed char
363 cris_get_signed_offset (unsigned short insn)
364 {
365 return ((signed char) (insn & 0x00FF));
366 }
367
368 /* Calls an op function given the op-type, working on the insn and the
369 inst_env. */
370 static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *);
371
372 static CORE_ADDR cris_skip_prologue_main (CORE_ADDR pc, int frameless_p);
373
374 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
375 struct gdbarch_list *);
376
377 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
378
379 static void cris_version_update (char *ignore_args, int from_tty,
380 struct cmd_list_element *c);
381
382 static void cris_mode_update (char *ignore_args, int from_tty,
383 struct cmd_list_element *c);
384
385 static void cris_abi_update (char *ignore_args, int from_tty,
386 struct cmd_list_element *c);
387
388 static CORE_ADDR bfd_lookup_symbol (bfd *, const char *);
389
390 /* Frames information. The definition of the struct frame_info is
391
392 CORE_ADDR frame
393 CORE_ADDR pc
394 enum frame_type type;
395 CORE_ADDR return_pc
396 int leaf_function
397
398 If the compilation option -fno-omit-frame-pointer is present the
399 variable frame will be set to the content of R8 which is the frame
400 pointer register.
401
402 The variable pc contains the address where execution is performed
403 in the present frame. The innermost frame contains the current content
404 of the register PC. All other frames contain the content of the
405 register PC in the next frame.
406
407 The variable `type' indicates the frame's type: normal, SIGTRAMP
408 (associated with a signal handler), dummy (associated with a dummy
409 frame).
410
411 The variable return_pc contains the address where execution should be
412 resumed when the present frame has finished, the return address.
413
414 The variable leaf_function is 1 if the return address is in the register
415 SRP, and 0 if it is on the stack.
416
417 Prologue instructions C-code.
418 The prologue may consist of (-fno-omit-frame-pointer)
419 1) 2)
420 push srp
421 push r8 push r8
422 move.d sp,r8 move.d sp,r8
423 subq X,sp subq X,sp
424 movem rY,[sp] movem rY,[sp]
425 move.S rZ,[r8-U] move.S rZ,[r8-U]
426
427 where 1 is a non-terminal function, and 2 is a leaf-function.
428
429 Note that this assumption is extremely brittle, and will break at the
430 slightest change in GCC's prologue.
431
432 If local variables are declared or register contents are saved on stack
433 the subq-instruction will be present with X as the number of bytes
434 needed for storage. The reshuffle with respect to r8 may be performed
435 with any size S (b, w, d) and any of the general registers Z={0..13}.
436 The offset U should be representable by a signed 8-bit value in all cases.
437 Thus, the prefix word is assumed to be immediate byte offset mode followed
438 by another word containing the instruction.
439
440 Degenerate cases:
441 3)
442 push r8
443 move.d sp,r8
444 move.d r8,sp
445 pop r8
446
447 Prologue instructions C++-code.
448 Case 1) and 2) in the C-code may be followed by
449
450 move.d r10,rS ; this
451 move.d r11,rT ; P1
452 move.d r12,rU ; P2
453 move.d r13,rV ; P3
454 move.S [r8+U],rZ ; P4
455
456 if any of the call parameters are stored. The host expects these
457 instructions to be executed in order to get the call parameters right. */
458
459 /* Examine the prologue of a function. The variable ip is the address of
460 the first instruction of the prologue. The variable limit is the address
461 of the first instruction after the prologue. The variable fi contains the
462 information in struct frame_info. The variable frameless_p controls whether
463 the entire prologue is examined (0) or just enough instructions to
464 determine that it is a prologue (1). */
465
466 static CORE_ADDR
467 cris_examine (CORE_ADDR ip, CORE_ADDR limit, struct frame_info *fi,
468 int frameless_p)
469 {
470 /* Present instruction. */
471 unsigned short insn;
472
473 /* Next instruction, lookahead. */
474 unsigned short insn_next;
475 int regno;
476
477 /* Is there a push fp? */
478 int have_fp;
479
480 /* Number of byte on stack used for local variables and movem. */
481 int val;
482
483 /* Highest register number in a movem. */
484 int regsave;
485
486 /* move.d r<source_register>,rS */
487 short source_register;
488
489 /* This frame is with respect to a leaf until a push srp is found. */
490 get_frame_extra_info (fi)->leaf_function = 1;
491
492 /* This frame is without the FP until a push fp is found. */
493 have_fp = 0;
494
495 /* Assume nothing on stack. */
496 val = 0;
497 regsave = -1;
498
499 /* No information about register contents so far. */
500
501 /* We only want to know the end of the prologue when fi->saved_regs == 0.
502 When the saved registers are allocated full information is required. */
503 if (deprecated_get_frame_saved_regs (fi))
504 {
505 for (regno = 0; regno < NUM_REGS; regno++)
506 deprecated_get_frame_saved_regs (fi)[regno] = 0;
507 }
508
509 /* Find the prologue instructions. */
510 do
511 {
512 insn = read_memory_unsigned_integer (ip, sizeof (short));
513 ip += sizeof (short);
514 if (insn == 0xE1FC)
515 {
516 /* push <reg> 32 bit instruction */
517 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
518 ip += sizeof (short);
519 regno = cris_get_operand2 (insn_next);
520
521 /* This check, meant to recognize srp, used to be regno ==
522 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
523 if (insn_next == 0xBE7E)
524 {
525 if (frameless_p)
526 {
527 return ip;
528 }
529 get_frame_extra_info (fi)->leaf_function = 0;
530 }
531 else if (regno == DEPRECATED_FP_REGNUM)
532 {
533 have_fp = 1;
534 }
535 }
536 else if (insn == 0x866E)
537 {
538 /* move.d sp,r8 */
539 if (frameless_p)
540 {
541 return ip;
542 }
543 continue;
544 }
545 else if (cris_get_operand2 (insn) == SP_REGNUM
546 && cris_get_mode (insn) == 0x0000
547 && cris_get_opcode (insn) == 0x000A)
548 {
549 /* subq <val>,sp */
550 val = cris_get_quick_value (insn);
551 }
552 else if (cris_get_mode (insn) == 0x0002
553 && cris_get_opcode (insn) == 0x000F
554 && cris_get_size (insn) == 0x0003
555 && cris_get_operand1 (insn) == SP_REGNUM)
556 {
557 /* movem r<regsave>,[sp] */
558 if (frameless_p)
559 {
560 return ip;
561 }
562 regsave = cris_get_operand2 (insn);
563 }
564 else if (cris_get_operand2 (insn) == SP_REGNUM
565 && ((insn & 0x0F00) >> 8) == 0x0001
566 && (cris_get_signed_offset (insn) < 0))
567 {
568 /* Immediate byte offset addressing prefix word with sp as base
569 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
570 is between 64 and 128.
571 movem r<regsave>,[sp=sp-<val>] */
572 val = -cris_get_signed_offset (insn);
573 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
574 ip += sizeof (short);
575 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
576 && cris_get_opcode (insn_next) == 0x000F
577 && cris_get_size (insn_next) == 0x0003
578 && cris_get_operand1 (insn_next) == SP_REGNUM)
579 {
580 if (frameless_p)
581 {
582 return ip;
583 }
584 regsave = cris_get_operand2 (insn_next);
585 }
586 else
587 {
588 /* The prologue ended before the limit was reached. */
589 ip -= 2 * sizeof (short);
590 break;
591 }
592 }
593 else if (cris_get_mode (insn) == 0x0001
594 && cris_get_opcode (insn) == 0x0009
595 && cris_get_size (insn) == 0x0002)
596 {
597 /* move.d r<10..13>,r<0..15> */
598 if (frameless_p)
599 {
600 return ip;
601 }
602 source_register = cris_get_operand1 (insn);
603
604 /* FIXME? In the glibc solibs, the prologue might contain something
605 like (this example taken from relocate_doit):
606 move.d $pc,$r0
607 sub.d 0xfffef426,$r0
608 which isn't covered by the source_register check below. Question
609 is whether to add a check for this combo, or make better use of
610 the limit variable instead. */
611 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
612 {
613 /* The prologue ended before the limit was reached. */
614 ip -= sizeof (short);
615 break;
616 }
617 }
618 else if (cris_get_operand2 (insn) == DEPRECATED_FP_REGNUM
619 /* The size is a fixed-size. */
620 && ((insn & 0x0F00) >> 8) == 0x0001
621 /* A negative offset. */
622 && (cris_get_signed_offset (insn) < 0))
623 {
624 /* move.S rZ,[r8-U] (?) */
625 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
626 ip += sizeof (short);
627 regno = cris_get_operand2 (insn_next);
628 if ((regno >= 0 && regno < SP_REGNUM)
629 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
630 && cris_get_opcode (insn_next) == 0x000F)
631 {
632 /* move.S rZ,[r8-U] */
633 continue;
634 }
635 else
636 {
637 /* The prologue ended before the limit was reached. */
638 ip -= 2 * sizeof (short);
639 break;
640 }
641 }
642 else if (cris_get_operand2 (insn) == DEPRECATED_FP_REGNUM
643 /* The size is a fixed-size. */
644 && ((insn & 0x0F00) >> 8) == 0x0001
645 /* A positive offset. */
646 && (cris_get_signed_offset (insn) > 0))
647 {
648 /* move.S [r8+U],rZ (?) */
649 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
650 ip += sizeof (short);
651 regno = cris_get_operand2 (insn_next);
652 if ((regno >= 0 && regno < SP_REGNUM)
653 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
654 && cris_get_opcode (insn_next) == 0x0009
655 && cris_get_operand1 (insn_next) == regno)
656 {
657 /* move.S [r8+U],rZ */
658 continue;
659 }
660 else
661 {
662 /* The prologue ended before the limit was reached. */
663 ip -= 2 * sizeof (short);
664 break;
665 }
666 }
667 else
668 {
669 /* The prologue ended before the limit was reached. */
670 ip -= sizeof (short);
671 break;
672 }
673 }
674 while (ip < limit);
675
676 /* We only want to know the end of the prologue when
677 fi->saved_regs == 0. */
678 if (!deprecated_get_frame_saved_regs (fi))
679 return ip;
680
681 if (have_fp)
682 {
683 deprecated_get_frame_saved_regs (fi)[DEPRECATED_FP_REGNUM] = get_frame_base (fi);
684
685 /* Calculate the addresses. */
686 for (regno = regsave; regno >= 0; regno--)
687 {
688 deprecated_get_frame_saved_regs (fi)[regno] = get_frame_base (fi) - val;
689 val -= 4;
690 }
691 if (get_frame_extra_info (fi)->leaf_function)
692 {
693 /* Set the register SP to contain the stack pointer of
694 the caller. */
695 deprecated_get_frame_saved_regs (fi)[SP_REGNUM] = get_frame_base (fi) + 4;
696 }
697 else
698 {
699 /* Set the register SP to contain the stack pointer of
700 the caller. */
701 deprecated_get_frame_saved_regs (fi)[SP_REGNUM] = get_frame_base (fi) + 8;
702
703 /* Set the register SRP to contain the return address of
704 the caller. */
705 deprecated_get_frame_saved_regs (fi)[SRP_REGNUM] = get_frame_base (fi) + 4;
706 }
707 }
708 return ip;
709 }
710
711 /* Advance pc beyond any function entry prologue instructions at pc
712 to reach some "real" code. */
713
714 static CORE_ADDR
715 cris_skip_prologue (CORE_ADDR pc)
716 {
717 return cris_skip_prologue_main (pc, 0);
718 }
719
720 /* As cris_skip_prologue, but stops as soon as it knows that the function
721 has a frame. Its result is equal to its input pc if the function is
722 frameless, unequal otherwise. */
723
724 static CORE_ADDR
725 cris_skip_prologue_frameless_p (CORE_ADDR pc)
726 {
727 return cris_skip_prologue_main (pc, 1);
728 }
729
730 /* Given a PC value corresponding to the start of a function, return the PC
731 of the first instruction after the function prologue. */
732
733 static CORE_ADDR
734 cris_skip_prologue_main (CORE_ADDR pc, int frameless_p)
735 {
736 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
737 struct frame_info *fi;
738 struct symtab_and_line sal = find_pc_line (pc, 0);
739 int best_limit;
740 CORE_ADDR pc_after_prologue;
741
742 /* frame_info now contains dynamic memory. Since fi is a dummy
743 here, I don't bother allocating memory for saved_regs. */
744 fi = deprecated_frame_xmalloc_with_cleanup (0, sizeof (struct frame_extra_info));
745
746 /* If there is no symbol information then sal.end == 0, and we end up
747 examining only the first instruction in the function prologue.
748 Exaggerating the limit seems to be harmless. */
749 if (sal.end > 0)
750 best_limit = sal.end;
751 else
752 best_limit = pc + 100;
753
754 pc_after_prologue = cris_examine (pc, best_limit, fi, frameless_p);
755 do_cleanups (old_chain);
756 return pc_after_prologue;
757 }
758
759 /* Use the program counter to determine the contents and size of a breakpoint
760 instruction. It returns a pointer to a string of bytes that encode a
761 breakpoint instruction, stores the length of the string to *lenptr, and
762 adjusts pcptr (if necessary) to point to the actual memory location where
763 the breakpoint should be inserted. */
764
765 static const unsigned char *
766 cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
767 {
768 static unsigned char break_insn[] = {0x38, 0xe9};
769 *lenptr = 2;
770
771 return break_insn;
772 }
773
774 /* Returns the register SRP (subroutine return pointer) which must contain
775 the content of the register PC after a function call. */
776
777 static CORE_ADDR
778 cris_saved_pc_after_call (struct frame_info *frame)
779 {
780 return read_register (SRP_REGNUM);
781 }
782
783 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
784 0 otherwise. */
785
786 static int
787 cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
788 {
789 int version = cris_version ();
790
791 switch (spec_reg.applicable_version)
792 {
793 case cris_ver_version_all:
794 return 1;
795 case cris_ver_warning:
796 /* Indeterminate/obsolete. */
797 return 0;
798 case cris_ver_sim:
799 /* Simulator only. */
800 return 0;
801 case cris_ver_v0_3:
802 return (version >= 0 && version <= 3);
803 case cris_ver_v3p:
804 return (version >= 3);
805 case cris_ver_v8:
806 return (version == 8 || version == 9);
807 case cris_ver_v8p:
808 return (version >= 8);
809 case cris_ver_v10p:
810 return (version >= 10);
811 default:
812 /* Invalid cris version. */
813 return 0;
814 }
815 }
816
817 /* Returns the register size in unit byte. Returns 0 for an unimplemented
818 register, -1 for an invalid register. */
819
820 static int
821 cris_register_size (int regno)
822 {
823 int i;
824 int spec_regno;
825
826 if (regno >= 0 && regno < NUM_GENREGS)
827 {
828 /* General registers (R0 - R15) are 32 bits. */
829 return 4;
830 }
831 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
832 {
833 /* Special register (R16 - R31). cris_spec_regs is zero-based.
834 Adjust regno accordingly. */
835 spec_regno = regno - NUM_GENREGS;
836
837 /* The entries in cris_spec_regs are stored in register number order,
838 which means we can shortcut into the array when searching it. */
839 for (i = spec_regno; cris_spec_regs[i].name != NULL; i++)
840 {
841 if (cris_spec_regs[i].number == spec_regno
842 && cris_spec_reg_applicable (cris_spec_regs[i]))
843 /* Go with the first applicable register. */
844 return cris_spec_regs[i].reg_size;
845 }
846 /* Special register not applicable to this CRIS version. */
847 return 0;
848 }
849 else
850 {
851 /* Invalid register. */
852 return -1;
853 }
854 }
855
856 /* Nonzero if regno should not be fetched from the target. This is the case
857 for unimplemented (size 0) and non-existant registers. */
858
859 static int
860 cris_cannot_fetch_register (int regno)
861 {
862 return ((regno < 0 || regno >= NUM_REGS)
863 || (cris_register_size (regno) == 0));
864 }
865
866 /* Nonzero if regno should not be written to the target, for various
867 reasons. */
868
869 static int
870 cris_cannot_store_register (int regno)
871 {
872 /* There are three kinds of registers we refuse to write to.
873 1. Those that not implemented.
874 2. Those that are read-only (depends on the processor mode).
875 3. Those registers to which a write has no effect.
876 */
877
878 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
879 /* Not implemented. */
880 return 1;
881
882 else if (regno == VR_REGNUM)
883 /* Read-only. */
884 return 1;
885
886 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
887 /* Writing has no effect. */
888 return 1;
889
890 else if (cris_mode () == CRIS_MODE_USER)
891 {
892 if (regno == IBR_REGNUM || regno == BAR_REGNUM || regno == BRP_REGNUM
893 || regno == IRP_REGNUM)
894 /* Read-only in user mode. */
895 return 1;
896 }
897
898 return 0;
899 }
900
901 /* Returns the register offset for the first byte of register regno's space
902 in the saved register state. Returns -1 for an invalid or unimplemented
903 register. */
904
905 static int
906 cris_register_offset (int regno)
907 {
908 int i;
909 int reg_size;
910 int offset = 0;
911
912 if (regno >= 0 && regno < NUM_REGS)
913 {
914 /* FIXME: The offsets should be cached and calculated only once,
915 when the architecture being debugged has changed. */
916 for (i = 0; i < regno; i++)
917 offset += cris_register_size (i);
918
919 return offset;
920 }
921 else
922 {
923 /* Invalid register. */
924 return -1;
925 }
926 }
927
928 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
929 of data in register regno. */
930
931 static struct type *
932 cris_register_virtual_type (int regno)
933 {
934 if (regno == SP_REGNUM || regno == PC_REGNUM
935 || (regno > P8_REGNUM && regno < USP_REGNUM))
936 {
937 /* SP, PC, IBR, IRP, SRP, BAR, DCCR, BRP */
938 return lookup_pointer_type (builtin_type_void);
939 }
940 else if (regno == P8_REGNUM || regno == USP_REGNUM
941 || (regno >= 0 && regno < SP_REGNUM))
942 {
943 /* R0 - R13, P8, P15 */
944 return builtin_type_unsigned_long;
945 }
946 else if (regno > P3_REGNUM && regno < P8_REGNUM)
947 {
948 /* P4, CCR, DCR0, DCR1 */
949 return builtin_type_unsigned_short;
950 }
951 else if (regno > PC_REGNUM && regno < P4_REGNUM)
952 {
953 /* P0, P1, P2, P3 */
954 return builtin_type_unsigned_char;
955 }
956 else
957 {
958 /* Invalid register. */
959 return builtin_type_void;
960 }
961 }
962
963 /* Stores a function return value of type type, where valbuf is the address
964 of the value to be stored. */
965
966 /* In the original CRIS ABI, R10 is used to store return values. */
967
968 static void
969 cris_abi_original_store_return_value (struct type *type, char *valbuf)
970 {
971 int len = TYPE_LENGTH (type);
972
973 if (len <= DEPRECATED_REGISTER_SIZE)
974 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (RET_REGNUM), valbuf, len);
975 else
976 internal_error (__FILE__, __LINE__, "cris_abi_original_store_return_value: type length too large.");
977 }
978
979 /* In the CRIS ABI V2, R10 and R11 are used to store return values. */
980
981 static void
982 cris_abi_v2_store_return_value (struct type *type, char *valbuf)
983 {
984 int len = TYPE_LENGTH (type);
985
986 if (len <= 2 * DEPRECATED_REGISTER_SIZE)
987 {
988 /* Note that this works since R10 and R11 are consecutive registers. */
989 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (RET_REGNUM),
990 valbuf, len);
991 }
992 else
993 internal_error (__FILE__, __LINE__, "cris_abi_v2_store_return_value: type length too large.");
994 }
995
996 /* Return the name of register regno as a string. Return NULL for an invalid or
997 unimplemented register. */
998
999 static const char *
1000 cris_register_name (int regno)
1001 {
1002 static char *cris_genreg_names[] =
1003 { "r0", "r1", "r2", "r3", \
1004 "r4", "r5", "r6", "r7", \
1005 "r8", "r9", "r10", "r11", \
1006 "r12", "r13", "sp", "pc" };
1007
1008 int i;
1009 int spec_regno;
1010
1011 if (regno >= 0 && regno < NUM_GENREGS)
1012 {
1013 /* General register. */
1014 return cris_genreg_names[regno];
1015 }
1016 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
1017 {
1018 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1019 Adjust regno accordingly. */
1020 spec_regno = regno - NUM_GENREGS;
1021
1022 /* The entries in cris_spec_regs are stored in register number order,
1023 which means we can shortcut into the array when searching it. */
1024 for (i = spec_regno; cris_spec_regs[i].name != NULL; i++)
1025 {
1026 if (cris_spec_regs[i].number == spec_regno
1027 && cris_spec_reg_applicable (cris_spec_regs[i]))
1028 /* Go with the first applicable register. */
1029 return cris_spec_regs[i].name;
1030 }
1031 /* Special register not applicable to this CRIS version. */
1032 return NULL;
1033 }
1034 else
1035 {
1036 /* Invalid register. */
1037 return NULL;
1038 }
1039 }
1040
1041 static int
1042 cris_register_bytes_ok (long bytes)
1043 {
1044 return (bytes == DEPRECATED_REGISTER_BYTES);
1045 }
1046
1047 /* Extract from an array regbuf containing the raw register state a function
1048 return value of type type, and copy that, in virtual format, into
1049 valbuf. */
1050
1051 /* In the original CRIS ABI, R10 is used to return values. */
1052
1053 static void
1054 cris_abi_original_extract_return_value (struct type *type, char *regbuf,
1055 char *valbuf)
1056 {
1057 int len = TYPE_LENGTH (type);
1058
1059 if (len <= DEPRECATED_REGISTER_SIZE)
1060 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (RET_REGNUM), len);
1061 else
1062 internal_error (__FILE__, __LINE__, "cris_abi_original_extract_return_value: type length too large");
1063 }
1064
1065 /* In the CRIS ABI V2, R10 and R11 are used to store return values. */
1066
1067 static void
1068 cris_abi_v2_extract_return_value (struct type *type, char *regbuf,
1069 char *valbuf)
1070 {
1071 int len = TYPE_LENGTH (type);
1072
1073 if (len <= 2 * DEPRECATED_REGISTER_SIZE)
1074 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (RET_REGNUM), len);
1075 else
1076 internal_error (__FILE__, __LINE__, "cris_abi_v2_extract_return_value: type length too large");
1077 }
1078
1079 /* Store the address of the place in which to copy the structure the
1080 subroutine will return. In the CRIS ABI, R9 is used in order to
1081 pass the address of the allocated area where a structure return
1082 value must be stored. */
1083
1084 static void
1085 cris_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1086 {
1087 write_register (STR_REGNUM, addr);
1088 }
1089
1090 /* Returns 1 if the given type will be passed by pointer rather than
1091 directly. */
1092
1093 /* In the original CRIS ABI, arguments shorter than or equal to 32 bits are
1094 passed by value. */
1095
1096 static int
1097 cris_abi_original_reg_struct_has_addr (int gcc_p, struct type *type)
1098 {
1099 return (TYPE_LENGTH (type) > 4);
1100 }
1101
1102 /* In the CRIS ABI V2, arguments shorter than or equal to 64 bits are passed
1103 by value. */
1104
1105 static int
1106 cris_abi_v2_reg_struct_has_addr (int gcc_p, struct type *type)
1107 {
1108 return (TYPE_LENGTH (type) > 8);
1109 }
1110
1111 /* Returns 1 if the function invocation represented by fi does not have a
1112 stack frame associated with it. Otherwise return 0. */
1113
1114 static int
1115 cris_frameless_function_invocation (struct frame_info *fi)
1116 {
1117 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1118 return 0;
1119 else
1120 return frameless_look_for_prologue (fi);
1121 }
1122
1123 /* See frame.h. Determines the address of all registers in the
1124 current stack frame storing each in frame->saved_regs. Space for
1125 frame->saved_regs shall be allocated by
1126 DEPRECATED_FRAME_INIT_SAVED_REGS using frame_saved_regs_zalloc. */
1127
1128 static void
1129 cris_frame_init_saved_regs (struct frame_info *fi)
1130 {
1131 CORE_ADDR ip;
1132 struct symtab_and_line sal;
1133 int best_limit;
1134 char *dummy_regs = deprecated_generic_find_dummy_frame (get_frame_pc (fi),
1135 get_frame_base (fi));
1136
1137 /* Examine the entire prologue. */
1138 int frameless_p = 0;
1139
1140 /* Has this frame's registers already been initialized? */
1141 if (deprecated_get_frame_saved_regs (fi))
1142 return;
1143
1144 frame_saved_regs_zalloc (fi);
1145
1146 if (dummy_regs)
1147 {
1148 /* I don't see this ever happening, considering the context in which
1149 cris_frame_init_saved_regs is called (always when we're not in
1150 a dummy frame). */
1151 memcpy (deprecated_get_frame_saved_regs (fi), dummy_regs, SIZEOF_FRAME_SAVED_REGS);
1152 }
1153 else
1154 {
1155 ip = get_frame_func (fi);
1156 sal = find_pc_line (ip, 0);
1157
1158 /* If there is no symbol information then sal.end == 0, and we end up
1159 examining only the first instruction in the function prologue.
1160 Exaggerating the limit seems to be harmless. */
1161 if (sal.end > 0)
1162 best_limit = sal.end;
1163 else
1164 best_limit = ip + 100;
1165
1166 cris_examine (ip, best_limit, fi, frameless_p);
1167 }
1168 }
1169
1170 /* Initialises the extra frame information at the creation of a new frame.
1171 The inparameter fromleaf is 0 when the call is from create_new_frame.
1172 When the call is from get_prev_frame_info, fromleaf is determined by
1173 cris_frameless_function_invocation. */
1174
1175 static void
1176 cris_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1177 {
1178 if (get_next_frame (fi))
1179 {
1180 /* Called from get_prev_frame. */
1181 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
1182 }
1183
1184 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
1185
1186 get_frame_extra_info (fi)->return_pc = 0;
1187 get_frame_extra_info (fi)->leaf_function = 0;
1188
1189 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1190 get_frame_base (fi),
1191 get_frame_base (fi)))
1192 {
1193 /* We need to setup fi->frame here because call_function_by_hand
1194 gets it wrong by assuming it's always FP. */
1195 deprecated_update_frame_base_hack (fi, deprecated_read_register_dummy (get_frame_pc (fi), get_frame_base (fi), SP_REGNUM));
1196 get_frame_extra_info (fi)->return_pc =
1197 deprecated_read_register_dummy (get_frame_pc (fi),
1198 get_frame_base (fi), PC_REGNUM);
1199
1200 /* FIXME: Is this necessarily true? */
1201 get_frame_extra_info (fi)->leaf_function = 0;
1202 }
1203 else
1204 {
1205 cris_frame_init_saved_regs (fi);
1206
1207 /* Check fromleaf/frameless_function_invocation. (FIXME) */
1208
1209 if (deprecated_get_frame_saved_regs (fi)[SRP_REGNUM] != 0)
1210 {
1211 /* SRP was saved on the stack; non-leaf function. */
1212 get_frame_extra_info (fi)->return_pc =
1213 read_memory_integer (deprecated_get_frame_saved_regs (fi)[SRP_REGNUM],
1214 DEPRECATED_REGISTER_RAW_SIZE (SRP_REGNUM));
1215 }
1216 else
1217 {
1218 /* SRP is still in a register; leaf function. */
1219 get_frame_extra_info (fi)->return_pc = read_register (SRP_REGNUM);
1220 /* FIXME: Should leaf_function be set to 1 here? */
1221 get_frame_extra_info (fi)->leaf_function = 1;
1222 }
1223 }
1224 }
1225
1226 /* Return the content of the frame pointer in the present frame. In other
1227 words, determine the address of the calling function's frame. */
1228
1229 static CORE_ADDR
1230 cris_frame_chain (struct frame_info *fi)
1231 {
1232 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1233 get_frame_base (fi),
1234 get_frame_base (fi)))
1235 {
1236 return get_frame_base (fi);
1237 }
1238 else if (!deprecated_inside_entry_file (get_frame_pc (fi)))
1239 {
1240 return read_memory_unsigned_integer (get_frame_base (fi), 4);
1241 }
1242 else
1243 {
1244 return 0;
1245 }
1246 }
1247
1248 /* Return the saved PC (which equals the return address) of this frame. */
1249
1250 static CORE_ADDR
1251 cris_frame_saved_pc (struct frame_info *fi)
1252 {
1253 return get_frame_extra_info (fi)->return_pc;
1254 }
1255
1256 /* Setup the function arguments for calling a function in the inferior. */
1257
1258 static CORE_ADDR
1259 cris_abi_original_push_arguments (int nargs, struct value **args,
1260 CORE_ADDR sp, int struct_return,
1261 CORE_ADDR struct_addr)
1262 {
1263 int stack_alloc;
1264 int stack_offset;
1265 int argreg;
1266 int argnum;
1267 struct type *type;
1268 int len;
1269 CORE_ADDR regval;
1270 char *val;
1271
1272 /* Data and parameters reside in different areas on the stack.
1273 Both frame pointers grow toward higher addresses. */
1274 CORE_ADDR fp_params;
1275 CORE_ADDR fp_data;
1276
1277 /* Are we returning a value using a structure return or a normal value
1278 return? struct_addr is the address of the reserved space for the return
1279 structure to be written on the stack. */
1280 if (struct_return)
1281 {
1282 write_register (STR_REGNUM, struct_addr);
1283 }
1284
1285 /* Make sure there's space on the stack. Allocate space for data and a
1286 parameter to refer to that data. */
1287 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1288 stack_alloc += (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + DEPRECATED_REGISTER_SIZE);
1289 sp -= stack_alloc;
1290 /* We may over-allocate a little here, but that won't hurt anything. */
1291
1292 /* Initialize stack frame pointers. */
1293 fp_params = sp;
1294 fp_data = sp + (nargs * DEPRECATED_REGISTER_SIZE);
1295
1296 /* Now load as many as possible of the first arguments into
1297 registers, and push the rest onto the stack. */
1298 argreg = ARG1_REGNUM;
1299 stack_offset = 0;
1300
1301 for (argnum = 0; argnum < nargs; argnum++)
1302 {
1303 type = VALUE_TYPE (args[argnum]);
1304 len = TYPE_LENGTH (type);
1305 val = (char *) VALUE_CONTENTS (args[argnum]);
1306
1307 if (len <= DEPRECATED_REGISTER_SIZE && argreg <= ARG4_REGNUM)
1308 {
1309 /* Data fits in a register; put it in the first available
1310 register. */
1311 write_register (argreg, *(unsigned long *) val);
1312 argreg++;
1313 }
1314 else if (len > DEPRECATED_REGISTER_SIZE && argreg <= ARG4_REGNUM)
1315 {
1316 /* Data does not fit in register; pass it on the stack and
1317 put its address in the first available register. */
1318 write_memory (fp_data, val, len);
1319 write_register (argreg, fp_data);
1320 fp_data += len;
1321 argreg++;
1322 }
1323 else if (len > DEPRECATED_REGISTER_SIZE)
1324 {
1325 /* Data does not fit in register; put both data and
1326 parameter on the stack. */
1327 write_memory (fp_data, val, len);
1328 write_memory (fp_params, (char *) (&fp_data), DEPRECATED_REGISTER_SIZE);
1329 fp_data += len;
1330 fp_params += DEPRECATED_REGISTER_SIZE;
1331 }
1332 else
1333 {
1334 /* Data fits in a register, but we are out of registers;
1335 put the parameter on the stack. */
1336 write_memory (fp_params, val, DEPRECATED_REGISTER_SIZE);
1337 fp_params += DEPRECATED_REGISTER_SIZE;
1338 }
1339 }
1340
1341 return sp;
1342 }
1343
1344 static CORE_ADDR
1345 cris_abi_v2_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1346 int struct_return, CORE_ADDR struct_addr)
1347 {
1348 int stack_alloc;
1349 int stack_offset;
1350 int argreg;
1351 int argnum;
1352
1353 CORE_ADDR regval;
1354
1355 /* The function's arguments and memory allocated by gdb for the arguments to
1356 point at reside in separate areas on the stack.
1357 Both frame pointers grow toward higher addresses. */
1358 CORE_ADDR fp_arg;
1359 CORE_ADDR fp_mem;
1360
1361 /* Are we returning a value using a structure return or a normal value
1362 return? struct_addr is the address of the reserved space for the return
1363 structure to be written on the stack. */
1364 if (struct_return)
1365 {
1366 write_register (STR_REGNUM, struct_addr);
1367 }
1368
1369 /* Allocate enough to keep things word-aligned on both parts of the
1370 stack. */
1371 stack_alloc = 0;
1372 for (argnum = 0; argnum < nargs; argnum++)
1373 {
1374 int len;
1375 int reg_demand;
1376
1377 len = TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1378 reg_demand = (len / DEPRECATED_REGISTER_SIZE) + (len % DEPRECATED_REGISTER_SIZE != 0 ? 1 : 0);
1379
1380 /* reg_demand * DEPRECATED_REGISTER_SIZE is the amount of memory
1381 we might need to allocate for this argument. 2 *
1382 DEPRECATED_REGISTER_SIZE is the amount of stack space we
1383 might need to pass the argument itself (either by value or by
1384 reference). */
1385 stack_alloc += (reg_demand * DEPRECATED_REGISTER_SIZE + 2 * DEPRECATED_REGISTER_SIZE);
1386 }
1387 sp -= stack_alloc;
1388 /* We may over-allocate a little here, but that won't hurt anything. */
1389
1390 /* Initialize frame pointers. */
1391 fp_arg = sp;
1392 fp_mem = sp + (nargs * (2 * DEPRECATED_REGISTER_SIZE));
1393
1394 /* Now load as many as possible of the first arguments into registers,
1395 and push the rest onto the stack. */
1396 argreg = ARG1_REGNUM;
1397 stack_offset = 0;
1398
1399 for (argnum = 0; argnum < nargs; argnum++)
1400 {
1401 int len;
1402 char *val;
1403 int reg_demand;
1404 int i;
1405
1406 len = TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1407 val = (char *) VALUE_CONTENTS (args[argnum]);
1408
1409 /* How may registers worth of storage do we need for this argument? */
1410 reg_demand = (len / DEPRECATED_REGISTER_SIZE) + (len % DEPRECATED_REGISTER_SIZE != 0 ? 1 : 0);
1411
1412 if (len <= (2 * DEPRECATED_REGISTER_SIZE)
1413 && (argreg + reg_demand - 1 <= ARG4_REGNUM))
1414 {
1415 /* Data passed by value. Fits in available register(s). */
1416 for (i = 0; i < reg_demand; i++)
1417 {
1418 write_register (argreg, *(unsigned long *) val);
1419 argreg++;
1420 val += DEPRECATED_REGISTER_SIZE;
1421 }
1422 }
1423 else if (len <= (2 * DEPRECATED_REGISTER_SIZE) && argreg <= ARG4_REGNUM)
1424 {
1425 /* Data passed by value. Does not fit in available register(s).
1426 Use the register(s) first, then the stack. */
1427 for (i = 0; i < reg_demand; i++)
1428 {
1429 if (argreg <= ARG4_REGNUM)
1430 {
1431 write_register (argreg, *(unsigned long *) val);
1432 argreg++;
1433 val += DEPRECATED_REGISTER_SIZE;
1434 }
1435 else
1436 {
1437 /* I guess this memory write could write the
1438 remaining data all at once instead of in
1439 DEPRECATED_REGISTER_SIZE chunks. */
1440 write_memory (fp_arg, val, DEPRECATED_REGISTER_SIZE);
1441 fp_arg += DEPRECATED_REGISTER_SIZE;
1442 val += DEPRECATED_REGISTER_SIZE;
1443 }
1444 }
1445 }
1446 else if (len > (2 * DEPRECATED_REGISTER_SIZE))
1447 {
1448 /* Data passed by reference. Put it on the stack. */
1449 write_memory (fp_mem, val, len);
1450 write_memory (fp_arg, (char *) (&fp_mem), DEPRECATED_REGISTER_SIZE);
1451
1452 /* fp_mem need not be word-aligned since it's just a chunk of
1453 memory being pointed at. That is, += len would do. */
1454 fp_mem += reg_demand * DEPRECATED_REGISTER_SIZE;
1455 fp_arg += DEPRECATED_REGISTER_SIZE;
1456 }
1457 else
1458 {
1459 /* Data passed by value. No available registers. Put it on
1460 the stack. */
1461 write_memory (fp_arg, val, len);
1462
1463 /* fp_arg must be word-aligned (i.e., don't += len) to match
1464 the function prologue. */
1465 fp_arg += reg_demand * DEPRECATED_REGISTER_SIZE;
1466 }
1467 }
1468
1469 return sp;
1470 }
1471
1472 /* Never put the return address on the stack. The register SRP is pushed
1473 by the called function unless it is a leaf-function. Due to the BRP
1474 register the PC will change when continue is sent. */
1475
1476 static CORE_ADDR
1477 cris_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1478 {
1479 write_register (SRP_REGNUM, entry_point_address ());
1480 return sp;
1481 }
1482
1483 /* Restore the machine to the state it had before the current frame
1484 was created. Discard the innermost frame from the stack and restore
1485 all saved registers. */
1486
1487 static void
1488 cris_pop_frame (void)
1489 {
1490 struct frame_info *fi = get_current_frame ();
1491 int regno;
1492 int stack_offset = 0;
1493
1494 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1495 get_frame_base (fi),
1496 get_frame_base (fi)))
1497 {
1498 /* This happens when we hit a breakpoint set at the entry point,
1499 when returning from a dummy frame. */
1500 generic_pop_dummy_frame ();
1501 }
1502 else
1503 {
1504 cris_frame_init_saved_regs (fi);
1505
1506 /* For each register, the address of where it was saved on entry to
1507 the frame now lies in fi->saved_regs[regno], or zero if it was not
1508 saved. This includes special registers such as PC and FP saved in
1509 special ways in the stack frame. The SP_REGNUM is even more
1510 special, the address here is the SP for the next frame, not the
1511 address where the SP was saved. */
1512
1513 /* Restore general registers R0 - R7. They were pushed on the stack
1514 after SP was saved. */
1515 for (regno = 0; regno < DEPRECATED_FP_REGNUM; regno++)
1516 {
1517 if (deprecated_get_frame_saved_regs (fi)[regno])
1518 {
1519 write_register (regno,
1520 read_memory_integer (deprecated_get_frame_saved_regs (fi)[regno], 4));
1521 }
1522 }
1523
1524 if (deprecated_get_frame_saved_regs (fi)[DEPRECATED_FP_REGNUM])
1525 {
1526 /* Pop the frame pointer (R8). It was pushed before SP
1527 was saved. */
1528 write_register (DEPRECATED_FP_REGNUM,
1529 read_memory_integer (deprecated_get_frame_saved_regs (fi)[DEPRECATED_FP_REGNUM], 4));
1530 stack_offset += 4;
1531
1532 /* Not a leaf function. */
1533 if (deprecated_get_frame_saved_regs (fi)[SRP_REGNUM])
1534 {
1535 /* SRP was pushed before SP was saved. */
1536 stack_offset += 4;
1537 }
1538
1539 /* Restore the SP and adjust for R8 and (possibly) SRP. */
1540 write_register (SP_REGNUM, deprecated_get_frame_saved_regs (fi)[DEPRECATED_FP_REGNUM] + stack_offset);
1541 }
1542 else
1543 {
1544 /* Currently, we can't get the correct info into fi->saved_regs
1545 without a frame pointer. */
1546 }
1547
1548 /* Restore the PC. */
1549 write_register (PC_REGNUM, get_frame_extra_info (fi)->return_pc);
1550 }
1551 flush_cached_frames ();
1552 }
1553
1554 /* Calculates a value that measures how good inst_args constraints an
1555 instruction. It stems from cris_constraint, found in cris-dis.c. */
1556
1557 static int
1558 constraint (unsigned int insn, const signed char *inst_args,
1559 inst_env_type *inst_env)
1560 {
1561 int retval = 0;
1562 int tmp, i;
1563
1564 const char *s = inst_args;
1565
1566 for (; *s; s++)
1567 switch (*s)
1568 {
1569 case 'm':
1570 if ((insn & 0x30) == 0x30)
1571 return -1;
1572 break;
1573
1574 case 'S':
1575 /* A prefix operand. */
1576 if (inst_env->prefix_found)
1577 break;
1578 else
1579 return -1;
1580
1581 case 'B':
1582 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1583 valid "push" size. In case of special register, it may be != 4. */
1584 if (inst_env->prefix_found)
1585 break;
1586 else
1587 return -1;
1588
1589 case 'D':
1590 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1591 if (!retval)
1592 return -1;
1593 else
1594 retval += 4;
1595 break;
1596
1597 case 'P':
1598 tmp = (insn >> 0xC) & 0xF;
1599
1600 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1601 {
1602 /* Since we match four bits, we will give a value of
1603 4 - 1 = 3 in a match. If there is a corresponding
1604 exact match of a special register in another pattern, it
1605 will get a value of 4, which will be higher. This should
1606 be correct in that an exact pattern would match better that
1607 a general pattern.
1608 Note that there is a reason for not returning zero; the
1609 pattern for "clear" is partly matched in the bit-pattern
1610 (the two lower bits must be zero), while the bit-pattern
1611 for a move from a special register is matched in the
1612 register constraint.
1613 This also means we will will have a race condition if
1614 there is a partly match in three bits in the bit pattern. */
1615 if (tmp == cris_spec_regs[i].number)
1616 {
1617 retval += 3;
1618 break;
1619 }
1620 }
1621
1622 if (cris_spec_regs[i].name == NULL)
1623 return -1;
1624 break;
1625 }
1626 return retval;
1627 }
1628
1629 /* Returns the number of bits set in the variable value. */
1630
1631 static int
1632 number_of_bits (unsigned int value)
1633 {
1634 int number_of_bits = 0;
1635
1636 while (value != 0)
1637 {
1638 number_of_bits += 1;
1639 value &= (value - 1);
1640 }
1641 return number_of_bits;
1642 }
1643
1644 /* Finds the address that should contain the single step breakpoint(s).
1645 It stems from code in cris-dis.c. */
1646
1647 static int
1648 find_cris_op (unsigned short insn, inst_env_type *inst_env)
1649 {
1650 int i;
1651 int max_level_of_match = -1;
1652 int max_matched = -1;
1653 int level_of_match;
1654
1655 for (i = 0; cris_opcodes[i].name != NULL; i++)
1656 {
1657 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
1658 && ((cris_opcodes[i].lose & insn) == 0))
1659 {
1660 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1661 if (level_of_match >= 0)
1662 {
1663 level_of_match +=
1664 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1665 if (level_of_match > max_level_of_match)
1666 {
1667 max_matched = i;
1668 max_level_of_match = level_of_match;
1669 if (level_of_match == 16)
1670 {
1671 /* All bits matched, cannot find better. */
1672 break;
1673 }
1674 }
1675 }
1676 }
1677 }
1678 return max_matched;
1679 }
1680
1681 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
1682 actually an internal error. */
1683
1684 static int
1685 find_step_target (inst_env_type *inst_env)
1686 {
1687 int i;
1688 int offset;
1689 unsigned short insn;
1690
1691 /* Create a local register image and set the initial state. */
1692 for (i = 0; i < NUM_GENREGS; i++)
1693 {
1694 inst_env->reg[i] = (unsigned long) read_register (i);
1695 }
1696 offset = NUM_GENREGS;
1697 for (i = 0; i < NUM_SPECREGS; i++)
1698 {
1699 inst_env->preg[i] = (unsigned long) read_register (offset + i);
1700 }
1701 inst_env->branch_found = 0;
1702 inst_env->slot_needed = 0;
1703 inst_env->delay_slot_pc_active = 0;
1704 inst_env->prefix_found = 0;
1705 inst_env->invalid = 0;
1706 inst_env->xflag_found = 0;
1707 inst_env->disable_interrupt = 0;
1708
1709 /* Look for a step target. */
1710 do
1711 {
1712 /* Read an instruction from the client. */
1713 insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2);
1714
1715 /* If the instruction is not in a delay slot the new content of the
1716 PC is [PC] + 2. If the instruction is in a delay slot it is not
1717 that simple. Since a instruction in a delay slot cannot change
1718 the content of the PC, it does not matter what value PC will have.
1719 Just make sure it is a valid instruction. */
1720 if (!inst_env->delay_slot_pc_active)
1721 {
1722 inst_env->reg[PC_REGNUM] += 2;
1723 }
1724 else
1725 {
1726 inst_env->delay_slot_pc_active = 0;
1727 inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc;
1728 }
1729 /* Analyse the present instruction. */
1730 i = find_cris_op (insn, inst_env);
1731 if (i == -1)
1732 {
1733 inst_env->invalid = 1;
1734 }
1735 else
1736 {
1737 cris_gdb_func (cris_opcodes[i].op, insn, inst_env);
1738 }
1739 } while (!inst_env->invalid
1740 && (inst_env->prefix_found || inst_env->xflag_found
1741 || inst_env->slot_needed));
1742 return i;
1743 }
1744
1745 /* There is no hardware single-step support. The function find_step_target
1746 digs through the opcodes in order to find all possible targets.
1747 Either one ordinary target or two targets for branches may be found. */
1748
1749 static void
1750 cris_software_single_step (enum target_signal ignore, int insert_breakpoints)
1751 {
1752 inst_env_type inst_env;
1753
1754 if (insert_breakpoints)
1755 {
1756 /* Analyse the present instruction environment and insert
1757 breakpoints. */
1758 int status = find_step_target (&inst_env);
1759 if (status == -1)
1760 {
1761 /* Could not find a target. FIXME: Should do something. */
1762 }
1763 else
1764 {
1765 /* Insert at most two breakpoints. One for the next PC content
1766 and possibly another one for a branch, jump, etc. */
1767 next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM];
1768 target_insert_breakpoint (next_pc, break_mem[0]);
1769 if (inst_env.branch_found
1770 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
1771 {
1772 branch_target_address =
1773 (CORE_ADDR) inst_env.branch_break_address;
1774 target_insert_breakpoint (branch_target_address, break_mem[1]);
1775 branch_break_inserted = 1;
1776 }
1777 }
1778 }
1779 else
1780 {
1781 /* Remove breakpoints. */
1782 target_remove_breakpoint (next_pc, break_mem[0]);
1783 if (branch_break_inserted)
1784 {
1785 target_remove_breakpoint (branch_target_address, break_mem[1]);
1786 branch_break_inserted = 0;
1787 }
1788 }
1789 }
1790
1791 /* Calculates the prefix value for quick offset addressing mode. */
1792
1793 static void
1794 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
1795 {
1796 /* It's invalid to be in a delay slot. You can't have a prefix to this
1797 instruction (not 100% sure). */
1798 if (inst_env->slot_needed || inst_env->prefix_found)
1799 {
1800 inst_env->invalid = 1;
1801 return;
1802 }
1803
1804 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
1805 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
1806
1807 /* A prefix doesn't change the xflag_found. But the rest of the flags
1808 need updating. */
1809 inst_env->slot_needed = 0;
1810 inst_env->prefix_found = 1;
1811 }
1812
1813 /* Updates the autoincrement register. The size of the increment is derived
1814 from the size of the operation. The PC is always kept aligned on even
1815 word addresses. */
1816
1817 static void
1818 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
1819 {
1820 if (size == INST_BYTE_SIZE)
1821 {
1822 inst_env->reg[cris_get_operand1 (inst)] += 1;
1823
1824 /* The PC must be word aligned, so increase the PC with one
1825 word even if the size is byte. */
1826 if (cris_get_operand1 (inst) == REG_PC)
1827 {
1828 inst_env->reg[REG_PC] += 1;
1829 }
1830 }
1831 else if (size == INST_WORD_SIZE)
1832 {
1833 inst_env->reg[cris_get_operand1 (inst)] += 2;
1834 }
1835 else if (size == INST_DWORD_SIZE)
1836 {
1837 inst_env->reg[cris_get_operand1 (inst)] += 4;
1838 }
1839 else
1840 {
1841 /* Invalid size. */
1842 inst_env->invalid = 1;
1843 }
1844 }
1845
1846 /* Just a forward declaration. */
1847
1848 static unsigned long get_data_from_address (unsigned short *inst,
1849 CORE_ADDR address);
1850
1851 /* Calculates the prefix value for the general case of offset addressing
1852 mode. */
1853
1854 static void
1855 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
1856 {
1857
1858 long offset;
1859
1860 /* It's invalid to be in a delay slot. */
1861 if (inst_env->slot_needed || inst_env->prefix_found)
1862 {
1863 inst_env->invalid = 1;
1864 return;
1865 }
1866
1867 /* The calculation of prefix_value used to be after process_autoincrement,
1868 but that fails for an instruction such as jsr [$r0+12] which is encoded
1869 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
1870 mustn't be incremented until we have read it and what it points at. */
1871 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
1872
1873 /* The offset is an indirection of the contents of the operand1 register. */
1874 inst_env->prefix_value +=
1875 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
1876
1877 if (cris_get_mode (inst) == AUTOINC_MODE)
1878 {
1879 process_autoincrement (cris_get_size (inst), inst, inst_env);
1880 }
1881
1882 /* A prefix doesn't change the xflag_found. But the rest of the flags
1883 need updating. */
1884 inst_env->slot_needed = 0;
1885 inst_env->prefix_found = 1;
1886 }
1887
1888 /* Calculates the prefix value for the index addressing mode. */
1889
1890 static void
1891 biap_prefix (unsigned short inst, inst_env_type *inst_env)
1892 {
1893 /* It's invalid to be in a delay slot. I can't see that it's possible to
1894 have a prefix to this instruction. So I will treat this as invalid. */
1895 if (inst_env->slot_needed || inst_env->prefix_found)
1896 {
1897 inst_env->invalid = 1;
1898 return;
1899 }
1900
1901 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
1902
1903 /* The offset is the operand2 value shifted the size of the instruction
1904 to the left. */
1905 inst_env->prefix_value +=
1906 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
1907
1908 /* If the PC is operand1 (base) the address used is the address after
1909 the main instruction, i.e. address + 2 (the PC is already compensated
1910 for the prefix operation). */
1911 if (cris_get_operand1 (inst) == REG_PC)
1912 {
1913 inst_env->prefix_value += 2;
1914 }
1915
1916 /* A prefix doesn't change the xflag_found. But the rest of the flags
1917 need updating. */
1918 inst_env->slot_needed = 0;
1919 inst_env->xflag_found = 0;
1920 inst_env->prefix_found = 1;
1921 }
1922
1923 /* Calculates the prefix value for the double indirect addressing mode. */
1924
1925 static void
1926 dip_prefix (unsigned short inst, inst_env_type *inst_env)
1927 {
1928
1929 CORE_ADDR address;
1930
1931 /* It's invalid to be in a delay slot. */
1932 if (inst_env->slot_needed || inst_env->prefix_found)
1933 {
1934 inst_env->invalid = 1;
1935 return;
1936 }
1937
1938 /* The prefix value is one dereference of the contents of the operand1
1939 register. */
1940 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
1941 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
1942
1943 /* Check if the mode is autoincrement. */
1944 if (cris_get_mode (inst) == AUTOINC_MODE)
1945 {
1946 inst_env->reg[cris_get_operand1 (inst)] += 4;
1947 }
1948
1949 /* A prefix doesn't change the xflag_found. But the rest of the flags
1950 need updating. */
1951 inst_env->slot_needed = 0;
1952 inst_env->xflag_found = 0;
1953 inst_env->prefix_found = 1;
1954 }
1955
1956 /* Finds the destination for a branch with 8-bits offset. */
1957
1958 static void
1959 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
1960 {
1961
1962 short offset;
1963
1964 /* If we have a prefix or are in a delay slot it's bad. */
1965 if (inst_env->slot_needed || inst_env->prefix_found)
1966 {
1967 inst_env->invalid = 1;
1968 return;
1969 }
1970
1971 /* We have a branch, find out where the branch will land. */
1972 offset = cris_get_branch_short_offset (inst);
1973
1974 /* Check if the offset is signed. */
1975 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
1976 {
1977 offset |= 0xFF00;
1978 }
1979
1980 /* The offset ends with the sign bit, set it to zero. The address
1981 should always be word aligned. */
1982 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
1983
1984 inst_env->branch_found = 1;
1985 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
1986
1987 inst_env->slot_needed = 1;
1988 inst_env->prefix_found = 0;
1989 inst_env->xflag_found = 0;
1990 inst_env->disable_interrupt = 1;
1991 }
1992
1993 /* Finds the destination for a branch with 16-bits offset. */
1994
1995 static void
1996 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
1997 {
1998 short offset;
1999
2000 /* If we have a prefix or is in a delay slot it's bad. */
2001 if (inst_env->slot_needed || inst_env->prefix_found)
2002 {
2003 inst_env->invalid = 1;
2004 return;
2005 }
2006
2007 /* We have a branch, find out the offset for the branch. */
2008 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2009
2010 /* The instruction is one word longer than normal, so add one word
2011 to the PC. */
2012 inst_env->reg[REG_PC] += 2;
2013
2014 inst_env->branch_found = 1;
2015 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2016
2017
2018 inst_env->slot_needed = 1;
2019 inst_env->prefix_found = 0;
2020 inst_env->xflag_found = 0;
2021 inst_env->disable_interrupt = 1;
2022 }
2023
2024 /* Handles the ABS instruction. */
2025
2026 static void
2027 abs_op (unsigned short inst, inst_env_type *inst_env)
2028 {
2029
2030 long value;
2031
2032 /* ABS can't have a prefix, so it's bad if it does. */
2033 if (inst_env->prefix_found)
2034 {
2035 inst_env->invalid = 1;
2036 return;
2037 }
2038
2039 /* Check if the operation affects the PC. */
2040 if (cris_get_operand2 (inst) == REG_PC)
2041 {
2042
2043 /* It's invalid to change to the PC if we are in a delay slot. */
2044 if (inst_env->slot_needed)
2045 {
2046 inst_env->invalid = 1;
2047 return;
2048 }
2049
2050 value = (long) inst_env->reg[REG_PC];
2051
2052 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2053 if (value != SIGNED_DWORD_MASK)
2054 {
2055 value = -value;
2056 inst_env->reg[REG_PC] = (long) value;
2057 }
2058 }
2059
2060 inst_env->slot_needed = 0;
2061 inst_env->prefix_found = 0;
2062 inst_env->xflag_found = 0;
2063 inst_env->disable_interrupt = 0;
2064 }
2065
2066 /* Handles the ADDI instruction. */
2067
2068 static void
2069 addi_op (unsigned short inst, inst_env_type *inst_env)
2070 {
2071 /* It's invalid to have the PC as base register. And ADDI can't have
2072 a prefix. */
2073 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2074 {
2075 inst_env->invalid = 1;
2076 return;
2077 }
2078
2079 inst_env->slot_needed = 0;
2080 inst_env->prefix_found = 0;
2081 inst_env->xflag_found = 0;
2082 inst_env->disable_interrupt = 0;
2083 }
2084
2085 /* Handles the ASR instruction. */
2086
2087 static void
2088 asr_op (unsigned short inst, inst_env_type *inst_env)
2089 {
2090 int shift_steps;
2091 unsigned long value;
2092 unsigned long signed_extend_mask = 0;
2093
2094 /* ASR can't have a prefix, so check that it doesn't. */
2095 if (inst_env->prefix_found)
2096 {
2097 inst_env->invalid = 1;
2098 return;
2099 }
2100
2101 /* Check if the PC is the target register. */
2102 if (cris_get_operand2 (inst) == REG_PC)
2103 {
2104 /* It's invalid to change the PC in a delay slot. */
2105 if (inst_env->slot_needed)
2106 {
2107 inst_env->invalid = 1;
2108 return;
2109 }
2110 /* Get the number of bits to shift. */
2111 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2112 value = inst_env->reg[REG_PC];
2113
2114 /* Find out how many bits the operation should apply to. */
2115 if (cris_get_size (inst) == INST_BYTE_SIZE)
2116 {
2117 if (value & SIGNED_BYTE_MASK)
2118 {
2119 signed_extend_mask = 0xFF;
2120 signed_extend_mask = signed_extend_mask >> shift_steps;
2121 signed_extend_mask = ~signed_extend_mask;
2122 }
2123 value = value >> shift_steps;
2124 value |= signed_extend_mask;
2125 value &= 0xFF;
2126 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2127 inst_env->reg[REG_PC] |= value;
2128 }
2129 else if (cris_get_size (inst) == INST_WORD_SIZE)
2130 {
2131 if (value & SIGNED_WORD_MASK)
2132 {
2133 signed_extend_mask = 0xFFFF;
2134 signed_extend_mask = signed_extend_mask >> shift_steps;
2135 signed_extend_mask = ~signed_extend_mask;
2136 }
2137 value = value >> shift_steps;
2138 value |= signed_extend_mask;
2139 value &= 0xFFFF;
2140 inst_env->reg[REG_PC] &= 0xFFFF0000;
2141 inst_env->reg[REG_PC] |= value;
2142 }
2143 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2144 {
2145 if (value & SIGNED_DWORD_MASK)
2146 {
2147 signed_extend_mask = 0xFFFFFFFF;
2148 signed_extend_mask = signed_extend_mask >> shift_steps;
2149 signed_extend_mask = ~signed_extend_mask;
2150 }
2151 value = value >> shift_steps;
2152 value |= signed_extend_mask;
2153 inst_env->reg[REG_PC] = value;
2154 }
2155 }
2156 inst_env->slot_needed = 0;
2157 inst_env->prefix_found = 0;
2158 inst_env->xflag_found = 0;
2159 inst_env->disable_interrupt = 0;
2160 }
2161
2162 /* Handles the ASRQ instruction. */
2163
2164 static void
2165 asrq_op (unsigned short inst, inst_env_type *inst_env)
2166 {
2167
2168 int shift_steps;
2169 unsigned long value;
2170 unsigned long signed_extend_mask = 0;
2171
2172 /* ASRQ can't have a prefix, so check that it doesn't. */
2173 if (inst_env->prefix_found)
2174 {
2175 inst_env->invalid = 1;
2176 return;
2177 }
2178
2179 /* Check if the PC is the target register. */
2180 if (cris_get_operand2 (inst) == REG_PC)
2181 {
2182
2183 /* It's invalid to change the PC in a delay slot. */
2184 if (inst_env->slot_needed)
2185 {
2186 inst_env->invalid = 1;
2187 return;
2188 }
2189 /* The shift size is given as a 5 bit quick value, i.e. we don't
2190 want the the sign bit of the quick value. */
2191 shift_steps = cris_get_asr_shift_steps (inst);
2192 value = inst_env->reg[REG_PC];
2193 if (value & SIGNED_DWORD_MASK)
2194 {
2195 signed_extend_mask = 0xFFFFFFFF;
2196 signed_extend_mask = signed_extend_mask >> shift_steps;
2197 signed_extend_mask = ~signed_extend_mask;
2198 }
2199 value = value >> shift_steps;
2200 value |= signed_extend_mask;
2201 inst_env->reg[REG_PC] = value;
2202 }
2203 inst_env->slot_needed = 0;
2204 inst_env->prefix_found = 0;
2205 inst_env->xflag_found = 0;
2206 inst_env->disable_interrupt = 0;
2207 }
2208
2209 /* Handles the AX, EI and SETF instruction. */
2210
2211 static void
2212 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2213 {
2214 if (inst_env->prefix_found)
2215 {
2216 inst_env->invalid = 1;
2217 return;
2218 }
2219 /* Check if the instruction is setting the X flag. */
2220 if (cris_is_xflag_bit_on (inst))
2221 {
2222 inst_env->xflag_found = 1;
2223 }
2224 else
2225 {
2226 inst_env->xflag_found = 0;
2227 }
2228 inst_env->slot_needed = 0;
2229 inst_env->prefix_found = 0;
2230 inst_env->disable_interrupt = 1;
2231 }
2232
2233 /* Checks if the instruction is in assign mode. If so, it updates the assign
2234 register. Note that check_assign assumes that the caller has checked that
2235 there is a prefix to this instruction. The mode check depends on this. */
2236
2237 static void
2238 check_assign (unsigned short inst, inst_env_type *inst_env)
2239 {
2240 /* Check if it's an assign addressing mode. */
2241 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2242 {
2243 /* Assign the prefix value to operand 1. */
2244 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2245 }
2246 }
2247
2248 /* Handles the 2-operand BOUND instruction. */
2249
2250 static void
2251 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2252 {
2253 /* It's invalid to have the PC as the index operand. */
2254 if (cris_get_operand2 (inst) == REG_PC)
2255 {
2256 inst_env->invalid = 1;
2257 return;
2258 }
2259 /* Check if we have a prefix. */
2260 if (inst_env->prefix_found)
2261 {
2262 check_assign (inst, inst_env);
2263 }
2264 /* Check if this is an autoincrement mode. */
2265 else if (cris_get_mode (inst) == AUTOINC_MODE)
2266 {
2267 /* It's invalid to change the PC in a delay slot. */
2268 if (inst_env->slot_needed)
2269 {
2270 inst_env->invalid = 1;
2271 return;
2272 }
2273 process_autoincrement (cris_get_size (inst), inst, inst_env);
2274 }
2275 inst_env->slot_needed = 0;
2276 inst_env->prefix_found = 0;
2277 inst_env->xflag_found = 0;
2278 inst_env->disable_interrupt = 0;
2279 }
2280
2281 /* Handles the 3-operand BOUND instruction. */
2282
2283 static void
2284 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2285 {
2286 /* It's an error if we haven't got a prefix. And it's also an error
2287 if the PC is the destination register. */
2288 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2289 {
2290 inst_env->invalid = 1;
2291 return;
2292 }
2293 inst_env->slot_needed = 0;
2294 inst_env->prefix_found = 0;
2295 inst_env->xflag_found = 0;
2296 inst_env->disable_interrupt = 0;
2297 }
2298
2299 /* Clears the status flags in inst_env. */
2300
2301 static void
2302 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2303 {
2304 /* It's an error if we have got a prefix. */
2305 if (inst_env->prefix_found)
2306 {
2307 inst_env->invalid = 1;
2308 return;
2309 }
2310
2311 inst_env->slot_needed = 0;
2312 inst_env->prefix_found = 0;
2313 inst_env->xflag_found = 0;
2314 inst_env->disable_interrupt = 0;
2315 }
2316
2317 /* Clears the status flags in inst_env. */
2318
2319 static void
2320 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2321 {
2322 /* It's an error if we have got a prefix. */
2323 if (inst_env->prefix_found)
2324 {
2325 inst_env->invalid = 1;
2326 return;
2327 }
2328
2329 inst_env->slot_needed = 0;
2330 inst_env->prefix_found = 0;
2331 inst_env->xflag_found = 0;
2332 inst_env->disable_interrupt = 1;
2333 }
2334
2335 /* Handles the CLEAR instruction if it's in register mode. */
2336
2337 static void
2338 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2339 {
2340 /* Check if the target is the PC. */
2341 if (cris_get_operand2 (inst) == REG_PC)
2342 {
2343 /* The instruction will clear the instruction's size bits. */
2344 int clear_size = cris_get_clear_size (inst);
2345 if (clear_size == INST_BYTE_SIZE)
2346 {
2347 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2348 }
2349 if (clear_size == INST_WORD_SIZE)
2350 {
2351 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2352 }
2353 if (clear_size == INST_DWORD_SIZE)
2354 {
2355 inst_env->delay_slot_pc = 0x0;
2356 }
2357 /* The jump will be delayed with one delay slot. So we need a delay
2358 slot. */
2359 inst_env->slot_needed = 1;
2360 inst_env->delay_slot_pc_active = 1;
2361 }
2362 else
2363 {
2364 /* The PC will not change => no delay slot. */
2365 inst_env->slot_needed = 0;
2366 }
2367 inst_env->prefix_found = 0;
2368 inst_env->xflag_found = 0;
2369 inst_env->disable_interrupt = 0;
2370 }
2371
2372 /* Handles the TEST instruction if it's in register mode. */
2373
2374 static void
2375 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2376 {
2377 /* It's an error if we have got a prefix. */
2378 if (inst_env->prefix_found)
2379 {
2380 inst_env->invalid = 1;
2381 return;
2382 }
2383 inst_env->slot_needed = 0;
2384 inst_env->prefix_found = 0;
2385 inst_env->xflag_found = 0;
2386 inst_env->disable_interrupt = 0;
2387
2388 }
2389
2390 /* Handles the CLEAR and TEST instruction if the instruction isn't
2391 in register mode. */
2392
2393 static void
2394 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2395 {
2396 /* Check if we are in a prefix mode. */
2397 if (inst_env->prefix_found)
2398 {
2399 /* The only way the PC can change is if this instruction is in
2400 assign addressing mode. */
2401 check_assign (inst, inst_env);
2402 }
2403 /* Indirect mode can't change the PC so just check if the mode is
2404 autoincrement. */
2405 else if (cris_get_mode (inst) == AUTOINC_MODE)
2406 {
2407 process_autoincrement (cris_get_size (inst), inst, inst_env);
2408 }
2409 inst_env->slot_needed = 0;
2410 inst_env->prefix_found = 0;
2411 inst_env->xflag_found = 0;
2412 inst_env->disable_interrupt = 0;
2413 }
2414
2415 /* Checks that the PC isn't the destination register or the instructions has
2416 a prefix. */
2417
2418 static void
2419 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2420 {
2421 /* It's invalid to have the PC as the destination. The instruction can't
2422 have a prefix. */
2423 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2424 {
2425 inst_env->invalid = 1;
2426 return;
2427 }
2428
2429 inst_env->slot_needed = 0;
2430 inst_env->prefix_found = 0;
2431 inst_env->xflag_found = 0;
2432 inst_env->disable_interrupt = 0;
2433 }
2434
2435 /* Checks that the instruction doesn't have a prefix. */
2436
2437 static void
2438 break_op (unsigned short inst, inst_env_type *inst_env)
2439 {
2440 /* The instruction can't have a prefix. */
2441 if (inst_env->prefix_found)
2442 {
2443 inst_env->invalid = 1;
2444 return;
2445 }
2446
2447 inst_env->slot_needed = 0;
2448 inst_env->prefix_found = 0;
2449 inst_env->xflag_found = 0;
2450 inst_env->disable_interrupt = 1;
2451 }
2452
2453 /* Checks that the PC isn't the destination register and that the instruction
2454 doesn't have a prefix. */
2455
2456 static void
2457 scc_op (unsigned short inst, inst_env_type *inst_env)
2458 {
2459 /* It's invalid to have the PC as the destination. The instruction can't
2460 have a prefix. */
2461 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2462 {
2463 inst_env->invalid = 1;
2464 return;
2465 }
2466
2467 inst_env->slot_needed = 0;
2468 inst_env->prefix_found = 0;
2469 inst_env->xflag_found = 0;
2470 inst_env->disable_interrupt = 1;
2471 }
2472
2473 /* Handles the register mode JUMP instruction. */
2474
2475 static void
2476 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2477 {
2478 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2479 you can't have a prefix. */
2480 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2481 {
2482 inst_env->invalid = 1;
2483 return;
2484 }
2485
2486 /* Just change the PC. */
2487 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2488 inst_env->slot_needed = 0;
2489 inst_env->prefix_found = 0;
2490 inst_env->xflag_found = 0;
2491 inst_env->disable_interrupt = 1;
2492 }
2493
2494 /* Handles the JUMP instruction for all modes except register. */
2495
2496 static void
2497 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2498 {
2499 unsigned long newpc;
2500 CORE_ADDR address;
2501
2502 /* It's invalid to do a JUMP in a delay slot. */
2503 if (inst_env->slot_needed)
2504 {
2505 inst_env->invalid = 1;
2506 }
2507 else
2508 {
2509 /* Check if we have a prefix. */
2510 if (inst_env->prefix_found)
2511 {
2512 check_assign (inst, inst_env);
2513
2514 /* Get the new value for the the PC. */
2515 newpc =
2516 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2517 4);
2518 }
2519 else
2520 {
2521 /* Get the new value for the PC. */
2522 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2523 newpc = read_memory_unsigned_integer (address, 4);
2524
2525 /* Check if we should increment a register. */
2526 if (cris_get_mode (inst) == AUTOINC_MODE)
2527 {
2528 inst_env->reg[cris_get_operand1 (inst)] += 4;
2529 }
2530 }
2531 inst_env->reg[REG_PC] = newpc;
2532 }
2533 inst_env->slot_needed = 0;
2534 inst_env->prefix_found = 0;
2535 inst_env->xflag_found = 0;
2536 inst_env->disable_interrupt = 1;
2537 }
2538
2539 /* Handles moves to special registers (aka P-register) for all modes. */
2540
2541 static void
2542 move_to_preg_op (unsigned short inst, inst_env_type *inst_env)
2543 {
2544 if (inst_env->prefix_found)
2545 {
2546 /* The instruction has a prefix that means we are only interested if
2547 the instruction is in assign mode. */
2548 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2549 {
2550 /* The prefix handles the problem if we are in a delay slot. */
2551 if (cris_get_operand1 (inst) == REG_PC)
2552 {
2553 /* Just take care of the assign. */
2554 check_assign (inst, inst_env);
2555 }
2556 }
2557 }
2558 else if (cris_get_mode (inst) == AUTOINC_MODE)
2559 {
2560 /* The instruction doesn't have a prefix, the only case left that we
2561 are interested in is the autoincrement mode. */
2562 if (cris_get_operand1 (inst) == REG_PC)
2563 {
2564 /* If the PC is to be incremented it's invalid to be in a
2565 delay slot. */
2566 if (inst_env->slot_needed)
2567 {
2568 inst_env->invalid = 1;
2569 return;
2570 }
2571
2572 /* The increment depends on the size of the special register. */
2573 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2574 {
2575 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2576 }
2577 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2578 {
2579 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2580 }
2581 else
2582 {
2583 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2584 }
2585 }
2586 }
2587 inst_env->slot_needed = 0;
2588 inst_env->prefix_found = 0;
2589 inst_env->xflag_found = 0;
2590 inst_env->disable_interrupt = 1;
2591 }
2592
2593 /* Handles moves from special registers (aka P-register) for all modes
2594 except register. */
2595
2596 static void
2597 none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2598 {
2599 if (inst_env->prefix_found)
2600 {
2601 /* The instruction has a prefix that means we are only interested if
2602 the instruction is in assign mode. */
2603 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2604 {
2605 /* The prefix handles the problem if we are in a delay slot. */
2606 if (cris_get_operand1 (inst) == REG_PC)
2607 {
2608 /* Just take care of the assign. */
2609 check_assign (inst, inst_env);
2610 }
2611 }
2612 }
2613 /* The instruction doesn't have a prefix, the only case left that we
2614 are interested in is the autoincrement mode. */
2615 else if (cris_get_mode (inst) == AUTOINC_MODE)
2616 {
2617 if (cris_get_operand1 (inst) == REG_PC)
2618 {
2619 /* If the PC is to be incremented it's invalid to be in a
2620 delay slot. */
2621 if (inst_env->slot_needed)
2622 {
2623 inst_env->invalid = 1;
2624 return;
2625 }
2626
2627 /* The increment depends on the size of the special register. */
2628 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2629 {
2630 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2631 }
2632 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2633 {
2634 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2635 }
2636 else
2637 {
2638 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2639 }
2640 }
2641 }
2642 inst_env->slot_needed = 0;
2643 inst_env->prefix_found = 0;
2644 inst_env->xflag_found = 0;
2645 inst_env->disable_interrupt = 1;
2646 }
2647
2648 /* Handles moves from special registers (aka P-register) when the mode
2649 is register. */
2650
2651 static void
2652 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2653 {
2654 /* Register mode move from special register can't have a prefix. */
2655 if (inst_env->prefix_found)
2656 {
2657 inst_env->invalid = 1;
2658 return;
2659 }
2660
2661 if (cris_get_operand1 (inst) == REG_PC)
2662 {
2663 /* It's invalid to change the PC in a delay slot. */
2664 if (inst_env->slot_needed)
2665 {
2666 inst_env->invalid = 1;
2667 return;
2668 }
2669 /* The destination is the PC, the jump will have a delay slot. */
2670 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
2671 inst_env->slot_needed = 1;
2672 inst_env->delay_slot_pc_active = 1;
2673 }
2674 else
2675 {
2676 /* If the destination isn't PC, there will be no jump. */
2677 inst_env->slot_needed = 0;
2678 }
2679 inst_env->prefix_found = 0;
2680 inst_env->xflag_found = 0;
2681 inst_env->disable_interrupt = 1;
2682 }
2683
2684 /* Handles the MOVEM from memory to general register instruction. */
2685
2686 static void
2687 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
2688 {
2689 if (inst_env->prefix_found)
2690 {
2691 /* The prefix handles the problem if we are in a delay slot. Is the
2692 MOVEM instruction going to change the PC? */
2693 if (cris_get_operand2 (inst) >= REG_PC)
2694 {
2695 inst_env->reg[REG_PC] =
2696 read_memory_unsigned_integer (inst_env->prefix_value, 4);
2697 }
2698 /* The assign value is the value after the increment. Normally, the
2699 assign value is the value before the increment. */
2700 if ((cris_get_operand1 (inst) == REG_PC)
2701 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2702 {
2703 inst_env->reg[REG_PC] = inst_env->prefix_value;
2704 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2705 }
2706 }
2707 else
2708 {
2709 /* Is the MOVEM instruction going to change the PC? */
2710 if (cris_get_operand2 (inst) == REG_PC)
2711 {
2712 /* It's invalid to change the PC in a delay slot. */
2713 if (inst_env->slot_needed)
2714 {
2715 inst_env->invalid = 1;
2716 return;
2717 }
2718 inst_env->reg[REG_PC] =
2719 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
2720 4);
2721 }
2722 /* The increment is not depending on the size, instead it's depending
2723 on the number of registers loaded from memory. */
2724 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
2725 {
2726 /* It's invalid to change the PC in a delay slot. */
2727 if (inst_env->slot_needed)
2728 {
2729 inst_env->invalid = 1;
2730 return;
2731 }
2732 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2733 }
2734 }
2735 inst_env->slot_needed = 0;
2736 inst_env->prefix_found = 0;
2737 inst_env->xflag_found = 0;
2738 inst_env->disable_interrupt = 0;
2739 }
2740
2741 /* Handles the MOVEM to memory from general register instruction. */
2742
2743 static void
2744 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
2745 {
2746 if (inst_env->prefix_found)
2747 {
2748 /* The assign value is the value after the increment. Normally, the
2749 assign value is the value before the increment. */
2750 if ((cris_get_operand1 (inst) == REG_PC) &&
2751 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2752 {
2753 /* The prefix handles the problem if we are in a delay slot. */
2754 inst_env->reg[REG_PC] = inst_env->prefix_value;
2755 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2756 }
2757 }
2758 else
2759 {
2760 /* The increment is not depending on the size, instead it's depending
2761 on the number of registers loaded to memory. */
2762 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
2763 {
2764 /* It's invalid to change the PC in a delay slot. */
2765 if (inst_env->slot_needed)
2766 {
2767 inst_env->invalid = 1;
2768 return;
2769 }
2770 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2771 }
2772 }
2773 inst_env->slot_needed = 0;
2774 inst_env->prefix_found = 0;
2775 inst_env->xflag_found = 0;
2776 inst_env->disable_interrupt = 0;
2777 }
2778
2779 /* Handles the pop instruction to a general register.
2780 POP is a assembler macro for MOVE.D [SP+], Rd. */
2781
2782 static void
2783 reg_pop_op (unsigned short inst, inst_env_type *inst_env)
2784 {
2785 /* POP can't have a prefix. */
2786 if (inst_env->prefix_found)
2787 {
2788 inst_env->invalid = 1;
2789 return;
2790 }
2791 if (cris_get_operand2 (inst) == REG_PC)
2792 {
2793 /* It's invalid to change the PC in a delay slot. */
2794 if (inst_env->slot_needed)
2795 {
2796 inst_env->invalid = 1;
2797 return;
2798 }
2799 inst_env->reg[REG_PC] =
2800 read_memory_unsigned_integer (inst_env->reg[REG_SP], 4);
2801 }
2802 inst_env->slot_needed = 0;
2803 inst_env->prefix_found = 0;
2804 inst_env->xflag_found = 0;
2805 inst_env->disable_interrupt = 0;
2806 }
2807
2808 /* Handles moves from register to memory. */
2809
2810 static void
2811 move_reg_to_mem_index_inc_op (unsigned short inst, inst_env_type *inst_env)
2812 {
2813 /* Check if we have a prefix. */
2814 if (inst_env->prefix_found)
2815 {
2816 /* The only thing that can change the PC is an assign. */
2817 check_assign (inst, inst_env);
2818 }
2819 else if ((cris_get_operand1 (inst) == REG_PC)
2820 && (cris_get_mode (inst) == AUTOINC_MODE))
2821 {
2822 /* It's invalid to change the PC in a delay slot. */
2823 if (inst_env->slot_needed)
2824 {
2825 inst_env->invalid = 1;
2826 return;
2827 }
2828 process_autoincrement (cris_get_size (inst), inst, inst_env);
2829 }
2830 inst_env->slot_needed = 0;
2831 inst_env->prefix_found = 0;
2832 inst_env->xflag_found = 0;
2833 inst_env->disable_interrupt = 0;
2834 }
2835
2836 /* Handles the intructions that's not yet implemented, by setting
2837 inst_env->invalid to true. */
2838
2839 static void
2840 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
2841 {
2842 inst_env->invalid = 1;
2843 }
2844
2845 /* Handles the XOR instruction. */
2846
2847 static void
2848 xor_op (unsigned short inst, inst_env_type *inst_env)
2849 {
2850 /* XOR can't have a prefix. */
2851 if (inst_env->prefix_found)
2852 {
2853 inst_env->invalid = 1;
2854 return;
2855 }
2856
2857 /* Check if the PC is the target. */
2858 if (cris_get_operand2 (inst) == REG_PC)
2859 {
2860 /* It's invalid to change the PC in a delay slot. */
2861 if (inst_env->slot_needed)
2862 {
2863 inst_env->invalid = 1;
2864 return;
2865 }
2866 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
2867 }
2868 inst_env->slot_needed = 0;
2869 inst_env->prefix_found = 0;
2870 inst_env->xflag_found = 0;
2871 inst_env->disable_interrupt = 0;
2872 }
2873
2874 /* Handles the MULS instruction. */
2875
2876 static void
2877 muls_op (unsigned short inst, inst_env_type *inst_env)
2878 {
2879 /* MULS/U can't have a prefix. */
2880 if (inst_env->prefix_found)
2881 {
2882 inst_env->invalid = 1;
2883 return;
2884 }
2885
2886 /* Consider it invalid if the PC is the target. */
2887 if (cris_get_operand2 (inst) == REG_PC)
2888 {
2889 inst_env->invalid = 1;
2890 return;
2891 }
2892 inst_env->slot_needed = 0;
2893 inst_env->prefix_found = 0;
2894 inst_env->xflag_found = 0;
2895 inst_env->disable_interrupt = 0;
2896 }
2897
2898 /* Handles the MULU instruction. */
2899
2900 static void
2901 mulu_op (unsigned short inst, inst_env_type *inst_env)
2902 {
2903 /* MULS/U can't have a prefix. */
2904 if (inst_env->prefix_found)
2905 {
2906 inst_env->invalid = 1;
2907 return;
2908 }
2909
2910 /* Consider it invalid if the PC is the target. */
2911 if (cris_get_operand2 (inst) == REG_PC)
2912 {
2913 inst_env->invalid = 1;
2914 return;
2915 }
2916 inst_env->slot_needed = 0;
2917 inst_env->prefix_found = 0;
2918 inst_env->xflag_found = 0;
2919 inst_env->disable_interrupt = 0;
2920 }
2921
2922 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
2923 The MOVE instruction is the move from source to register. */
2924
2925 static void
2926 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
2927 unsigned long source1, unsigned long source2)
2928 {
2929 unsigned long pc_mask;
2930 unsigned long operation_mask;
2931
2932 /* Find out how many bits the operation should apply to. */
2933 if (cris_get_size (inst) == INST_BYTE_SIZE)
2934 {
2935 pc_mask = 0xFFFFFF00;
2936 operation_mask = 0xFF;
2937 }
2938 else if (cris_get_size (inst) == INST_WORD_SIZE)
2939 {
2940 pc_mask = 0xFFFF0000;
2941 operation_mask = 0xFFFF;
2942 }
2943 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2944 {
2945 pc_mask = 0x0;
2946 operation_mask = 0xFFFFFFFF;
2947 }
2948 else
2949 {
2950 /* The size is out of range. */
2951 inst_env->invalid = 1;
2952 return;
2953 }
2954
2955 /* The instruction just works on uw_operation_mask bits. */
2956 source2 &= operation_mask;
2957 source1 &= operation_mask;
2958
2959 /* Now calculate the result. The opcode's 3 first bits separates
2960 the different actions. */
2961 switch (cris_get_opcode (inst) & 7)
2962 {
2963 case 0: /* add */
2964 source1 += source2;
2965 break;
2966
2967 case 1: /* move */
2968 source1 = source2;
2969 break;
2970
2971 case 2: /* subtract */
2972 source1 -= source2;
2973 break;
2974
2975 case 3: /* compare */
2976 break;
2977
2978 case 4: /* and */
2979 source1 &= source2;
2980 break;
2981
2982 case 5: /* or */
2983 source1 |= source2;
2984 break;
2985
2986 default:
2987 inst_env->invalid = 1;
2988 return;
2989
2990 break;
2991 }
2992
2993 /* Make sure that the result doesn't contain more than the instruction
2994 size bits. */
2995 source2 &= operation_mask;
2996
2997 /* Calculate the new breakpoint address. */
2998 inst_env->reg[REG_PC] &= pc_mask;
2999 inst_env->reg[REG_PC] |= source1;
3000
3001 }
3002
3003 /* Extends the value from either byte or word size to a dword. If the mode
3004 is zero extend then the value is extended with zero. If instead the mode
3005 is signed extend the sign bit of the value is taken into consideration. */
3006
3007 static unsigned long
3008 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3009 {
3010 /* The size can be either byte or word, check which one it is.
3011 Don't check the highest bit, it's indicating if it's a zero
3012 or sign extend. */
3013 if (cris_get_size (*inst) & INST_WORD_SIZE)
3014 {
3015 /* Word size. */
3016 value &= 0xFFFF;
3017
3018 /* Check if the instruction is signed extend. If so, check if value has
3019 the sign bit on. */
3020 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3021 {
3022 value |= SIGNED_WORD_EXTEND_MASK;
3023 }
3024 }
3025 else
3026 {
3027 /* Byte size. */
3028 value &= 0xFF;
3029
3030 /* Check if the instruction is signed extend. If so, check if value has
3031 the sign bit on. */
3032 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3033 {
3034 value |= SIGNED_BYTE_EXTEND_MASK;
3035 }
3036 }
3037 /* The size should now be dword. */
3038 cris_set_size_to_dword (inst);
3039 return value;
3040 }
3041
3042 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3043 instruction. The MOVE instruction is the move from source to register. */
3044
3045 static void
3046 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3047 inst_env_type *inst_env)
3048 {
3049 unsigned long operand1;
3050 unsigned long operand2;
3051
3052 /* It's invalid to have a prefix to the instruction. This is a register
3053 mode instruction and can't have a prefix. */
3054 if (inst_env->prefix_found)
3055 {
3056 inst_env->invalid = 1;
3057 return;
3058 }
3059 /* Check if the instruction has PC as its target. */
3060 if (cris_get_operand2 (inst) == REG_PC)
3061 {
3062 if (inst_env->slot_needed)
3063 {
3064 inst_env->invalid = 1;
3065 return;
3066 }
3067 /* The instruction has the PC as its target register. */
3068 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3069 operand2 = inst_env->reg[REG_PC];
3070
3071 /* Check if it's a extend, signed or zero instruction. */
3072 if (cris_get_opcode (inst) < 4)
3073 {
3074 operand1 = do_sign_or_zero_extend (operand1, &inst);
3075 }
3076 /* Calculate the PC value after the instruction, i.e. where the
3077 breakpoint should be. The order of the udw_operands is vital. */
3078 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3079 }
3080 inst_env->slot_needed = 0;
3081 inst_env->prefix_found = 0;
3082 inst_env->xflag_found = 0;
3083 inst_env->disable_interrupt = 0;
3084 }
3085
3086 /* Returns the data contained at address. The size of the data is derived from
3087 the size of the operation. If the instruction is a zero or signed
3088 extend instruction, the size field is changed in instruction. */
3089
3090 static unsigned long
3091 get_data_from_address (unsigned short *inst, CORE_ADDR address)
3092 {
3093 int size = cris_get_size (*inst);
3094 unsigned long value;
3095
3096 /* If it's an extend instruction we don't want the signed extend bit,
3097 because it influences the size. */
3098 if (cris_get_opcode (*inst) < 4)
3099 {
3100 size &= ~SIGNED_EXTEND_BIT_MASK;
3101 }
3102 /* Is there a need for checking the size? Size should contain the number of
3103 bytes to read. */
3104 size = 1 << size;
3105 value = read_memory_unsigned_integer (address, size);
3106
3107 /* Check if it's an extend, signed or zero instruction. */
3108 if (cris_get_opcode (*inst) < 4)
3109 {
3110 value = do_sign_or_zero_extend (value, inst);
3111 }
3112 return value;
3113 }
3114
3115 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3116 instructions. The MOVE instruction is the move from source to register. */
3117
3118 static void
3119 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3120 inst_env_type *inst_env)
3121 {
3122 unsigned long operand2;
3123 unsigned long operand3;
3124
3125 check_assign (inst, inst_env);
3126 if (cris_get_operand2 (inst) == REG_PC)
3127 {
3128 operand2 = inst_env->reg[REG_PC];
3129
3130 /* Get the value of the third operand. */
3131 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3132
3133 /* Calculate the PC value after the instruction, i.e. where the
3134 breakpoint should be. The order of the udw_operands is vital. */
3135 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3136 }
3137 inst_env->slot_needed = 0;
3138 inst_env->prefix_found = 0;
3139 inst_env->xflag_found = 0;
3140 inst_env->disable_interrupt = 0;
3141 }
3142
3143 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3144 OR instructions. Note that for this to work as expected, the calling
3145 function must have made sure that there is a prefix to this instruction. */
3146
3147 static void
3148 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3149 inst_env_type *inst_env)
3150 {
3151 unsigned long operand2;
3152 unsigned long operand3;
3153
3154 if (cris_get_operand1 (inst) == REG_PC)
3155 {
3156 /* The PC will be changed by the instruction. */
3157 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3158
3159 /* Get the value of the third operand. */
3160 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3161
3162 /* Calculate the PC value after the instruction, i.e. where the
3163 breakpoint should be. */
3164 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3165 }
3166 inst_env->slot_needed = 0;
3167 inst_env->prefix_found = 0;
3168 inst_env->xflag_found = 0;
3169 inst_env->disable_interrupt = 0;
3170 }
3171
3172 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3173 instructions. The MOVE instruction is the move from source to register. */
3174
3175 static void
3176 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3177 inst_env_type *inst_env)
3178 {
3179 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3180 {
3181 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3182 SUB, AND or OR something weird is going on (if everything works these
3183 instructions should end up in the three operand version). */
3184 inst_env->invalid = 1;
3185 return;
3186 }
3187 else
3188 {
3189 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3190 so use it. */
3191 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3192 }
3193 inst_env->slot_needed = 0;
3194 inst_env->prefix_found = 0;
3195 inst_env->xflag_found = 0;
3196 inst_env->disable_interrupt = 0;
3197 }
3198
3199 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3200 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3201 source to register. */
3202
3203 static void
3204 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3205 inst_env_type *inst_env)
3206 {
3207 unsigned long operand1;
3208 unsigned long operand2;
3209 unsigned long operand3;
3210 int size;
3211
3212 /* The instruction is either an indirect or autoincrement addressing mode.
3213 Check if the destination register is the PC. */
3214 if (cris_get_operand2 (inst) == REG_PC)
3215 {
3216 /* Must be done here, get_data_from_address may change the size
3217 field. */
3218 size = cris_get_size (inst);
3219 operand2 = inst_env->reg[REG_PC];
3220
3221 /* Get the value of the third operand, i.e. the indirect operand. */
3222 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3223 operand3 = get_data_from_address (&inst, operand1);
3224
3225 /* Calculate the PC value after the instruction, i.e. where the
3226 breakpoint should be. The order of the udw_operands is vital. */
3227 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3228 }
3229 /* If this is an autoincrement addressing mode, check if the increment
3230 changes the PC. */
3231 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3232 {
3233 /* Get the size field. */
3234 size = cris_get_size (inst);
3235
3236 /* If it's an extend instruction we don't want the signed extend bit,
3237 because it influences the size. */
3238 if (cris_get_opcode (inst) < 4)
3239 {
3240 size &= ~SIGNED_EXTEND_BIT_MASK;
3241 }
3242 process_autoincrement (size, inst, inst_env);
3243 }
3244 inst_env->slot_needed = 0;
3245 inst_env->prefix_found = 0;
3246 inst_env->xflag_found = 0;
3247 inst_env->disable_interrupt = 0;
3248 }
3249
3250 /* Handles the two-operand addressing mode, all modes except register, for
3251 the ADD, SUB CMP, AND and OR instruction. */
3252
3253 static void
3254 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3255 inst_env_type *inst_env)
3256 {
3257 if (inst_env->prefix_found)
3258 {
3259 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3260 {
3261 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3262 }
3263 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3264 {
3265 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3266 }
3267 else
3268 {
3269 /* The mode is invalid for a prefixed base instruction. */
3270 inst_env->invalid = 1;
3271 return;
3272 }
3273 }
3274 else
3275 {
3276 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3277 }
3278 }
3279
3280 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3281
3282 static void
3283 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3284 {
3285 unsigned long operand1;
3286 unsigned long operand2;
3287
3288 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3289 instruction and can't have a prefix. */
3290 if (inst_env->prefix_found)
3291 {
3292 inst_env->invalid = 1;
3293 return;
3294 }
3295
3296 /* Check if the instruction has PC as its target. */
3297 if (cris_get_operand2 (inst) == REG_PC)
3298 {
3299 if (inst_env->slot_needed)
3300 {
3301 inst_env->invalid = 1;
3302 return;
3303 }
3304 operand1 = cris_get_quick_value (inst);
3305 operand2 = inst_env->reg[REG_PC];
3306
3307 /* The size should now be dword. */
3308 cris_set_size_to_dword (&inst);
3309
3310 /* Calculate the PC value after the instruction, i.e. where the
3311 breakpoint should be. */
3312 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3313 }
3314 inst_env->slot_needed = 0;
3315 inst_env->prefix_found = 0;
3316 inst_env->xflag_found = 0;
3317 inst_env->disable_interrupt = 0;
3318 }
3319
3320 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3321
3322 static void
3323 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3324 {
3325 unsigned long operand1;
3326 unsigned long operand2;
3327
3328 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3329 instruction and can't have a prefix. */
3330 if (inst_env->prefix_found)
3331 {
3332 inst_env->invalid = 1;
3333 return;
3334 }
3335 /* Check if the instruction has PC as its target. */
3336 if (cris_get_operand2 (inst) == REG_PC)
3337 {
3338 if (inst_env->slot_needed)
3339 {
3340 inst_env->invalid = 1;
3341 return;
3342 }
3343 /* The instruction has the PC as its target register. */
3344 operand1 = cris_get_quick_value (inst);
3345 operand2 = inst_env->reg[REG_PC];
3346
3347 /* The quick value is signed, so check if we must do a signed extend. */
3348 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3349 {
3350 /* sign extend */
3351 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3352 }
3353 /* The size should now be dword. */
3354 cris_set_size_to_dword (&inst);
3355
3356 /* Calculate the PC value after the instruction, i.e. where the
3357 breakpoint should be. */
3358 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3359 }
3360 inst_env->slot_needed = 0;
3361 inst_env->prefix_found = 0;
3362 inst_env->xflag_found = 0;
3363 inst_env->disable_interrupt = 0;
3364 }
3365
3366 /* Translate op_type to a function and call it. */
3367
3368 static void
3369 cris_gdb_func (enum cris_op_type op_type, unsigned short inst,
3370 inst_env_type *inst_env)
3371 {
3372 switch (op_type)
3373 {
3374 case cris_not_implemented_op:
3375 not_implemented_op (inst, inst_env);
3376 break;
3377
3378 case cris_abs_op:
3379 abs_op (inst, inst_env);
3380 break;
3381
3382 case cris_addi_op:
3383 addi_op (inst, inst_env);
3384 break;
3385
3386 case cris_asr_op:
3387 asr_op (inst, inst_env);
3388 break;
3389
3390 case cris_asrq_op:
3391 asrq_op (inst, inst_env);
3392 break;
3393
3394 case cris_ax_ei_setf_op:
3395 ax_ei_setf_op (inst, inst_env);
3396 break;
3397
3398 case cris_bdap_prefix:
3399 bdap_prefix (inst, inst_env);
3400 break;
3401
3402 case cris_biap_prefix:
3403 biap_prefix (inst, inst_env);
3404 break;
3405
3406 case cris_break_op:
3407 break_op (inst, inst_env);
3408 break;
3409
3410 case cris_btst_nop_op:
3411 btst_nop_op (inst, inst_env);
3412 break;
3413
3414 case cris_clearf_di_op:
3415 clearf_di_op (inst, inst_env);
3416 break;
3417
3418 case cris_dip_prefix:
3419 dip_prefix (inst, inst_env);
3420 break;
3421
3422 case cris_dstep_logshift_mstep_neg_not_op:
3423 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3424 break;
3425
3426 case cris_eight_bit_offset_branch_op:
3427 eight_bit_offset_branch_op (inst, inst_env);
3428 break;
3429
3430 case cris_move_mem_to_reg_movem_op:
3431 move_mem_to_reg_movem_op (inst, inst_env);
3432 break;
3433
3434 case cris_move_reg_to_mem_movem_op:
3435 move_reg_to_mem_movem_op (inst, inst_env);
3436 break;
3437
3438 case cris_move_to_preg_op:
3439 move_to_preg_op (inst, inst_env);
3440 break;
3441
3442 case cris_muls_op:
3443 muls_op (inst, inst_env);
3444 break;
3445
3446 case cris_mulu_op:
3447 mulu_op (inst, inst_env);
3448 break;
3449
3450 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3451 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3452 break;
3453
3454 case cris_none_reg_mode_clear_test_op:
3455 none_reg_mode_clear_test_op (inst, inst_env);
3456 break;
3457
3458 case cris_none_reg_mode_jump_op:
3459 none_reg_mode_jump_op (inst, inst_env);
3460 break;
3461
3462 case cris_none_reg_mode_move_from_preg_op:
3463 none_reg_mode_move_from_preg_op (inst, inst_env);
3464 break;
3465
3466 case cris_quick_mode_add_sub_op:
3467 quick_mode_add_sub_op (inst, inst_env);
3468 break;
3469
3470 case cris_quick_mode_and_cmp_move_or_op:
3471 quick_mode_and_cmp_move_or_op (inst, inst_env);
3472 break;
3473
3474 case cris_quick_mode_bdap_prefix:
3475 quick_mode_bdap_prefix (inst, inst_env);
3476 break;
3477
3478 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3479 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3480 break;
3481
3482 case cris_reg_mode_clear_op:
3483 reg_mode_clear_op (inst, inst_env);
3484 break;
3485
3486 case cris_reg_mode_jump_op:
3487 reg_mode_jump_op (inst, inst_env);
3488 break;
3489
3490 case cris_reg_mode_move_from_preg_op:
3491 reg_mode_move_from_preg_op (inst, inst_env);
3492 break;
3493
3494 case cris_reg_mode_test_op:
3495 reg_mode_test_op (inst, inst_env);
3496 break;
3497
3498 case cris_scc_op:
3499 scc_op (inst, inst_env);
3500 break;
3501
3502 case cris_sixteen_bit_offset_branch_op:
3503 sixteen_bit_offset_branch_op (inst, inst_env);
3504 break;
3505
3506 case cris_three_operand_add_sub_cmp_and_or_op:
3507 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3508 break;
3509
3510 case cris_three_operand_bound_op:
3511 three_operand_bound_op (inst, inst_env);
3512 break;
3513
3514 case cris_two_operand_bound_op:
3515 two_operand_bound_op (inst, inst_env);
3516 break;
3517
3518 case cris_xor_op:
3519 xor_op (inst, inst_env);
3520 break;
3521 }
3522 }
3523
3524 /* This wrapper is to avoid cris_get_assembler being called before
3525 exec_bfd has been set. */
3526
3527 static int
3528 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3529 {
3530 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3531 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3532 disassembler, even when there is no BFD. Does something like
3533 "gdb; target remote; disassmeble *0x123" work? */
3534 gdb_assert (exec_bfd != NULL);
3535 print_insn = cris_get_disassembler (exec_bfd);
3536 gdb_assert (print_insn != NULL);
3537 return print_insn (addr, info);
3538 }
3539
3540 /* Copied from <asm/elf.h>. */
3541 typedef unsigned long elf_greg_t;
3542
3543 /* Same as user_regs_struct struct in <asm/user.h>. */
3544 typedef elf_greg_t elf_gregset_t[35];
3545
3546 /* Unpack an elf_gregset_t into GDB's register cache. */
3547
3548 static void
3549 supply_gregset (elf_gregset_t *gregsetp)
3550 {
3551 int i;
3552 elf_greg_t *regp = *gregsetp;
3553 static char zerobuf[4] = {0};
3554
3555 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3556 knows about the actual size of each register so that's no problem. */
3557 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3558 {
3559 supply_register (i, (char *)&regp[i]);
3560 }
3561 }
3562
3563 /* Use a local version of this function to get the correct types for
3564 regsets, until multi-arch core support is ready. */
3565
3566 static void
3567 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
3568 int which, CORE_ADDR reg_addr)
3569 {
3570 elf_gregset_t gregset;
3571
3572 switch (which)
3573 {
3574 case 0:
3575 if (core_reg_size != sizeof (gregset))
3576 {
3577 warning ("wrong size gregset struct in core file");
3578 }
3579 else
3580 {
3581 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3582 supply_gregset (&gregset);
3583 }
3584
3585 default:
3586 /* We've covered all the kinds of registers we know about here,
3587 so this must be something we wouldn't know what to do with
3588 anyway. Just ignore it. */
3589 break;
3590 }
3591 }
3592
3593 static struct core_fns cris_elf_core_fns =
3594 {
3595 bfd_target_elf_flavour, /* core_flavour */
3596 default_check_format, /* check_format */
3597 default_core_sniffer, /* core_sniffer */
3598 fetch_core_registers, /* core_read_registers */
3599 NULL /* next */
3600 };
3601
3602 /* Fetch (and possibly build) an appropriate link_map_offsets
3603 structure for native GNU/Linux CRIS targets using the struct
3604 offsets defined in link.h (but without actual reference to that
3605 file).
3606
3607 This makes it possible to access GNU/Linux CRIS shared libraries
3608 from a GDB that was not built on an GNU/Linux CRIS host (for cross
3609 debugging).
3610
3611 See gdb/solib-svr4.h for an explanation of these fields. */
3612
3613 static struct link_map_offsets *
3614 cris_linux_svr4_fetch_link_map_offsets (void)
3615 {
3616 static struct link_map_offsets lmo;
3617 static struct link_map_offsets *lmp = NULL;
3618
3619 if (lmp == NULL)
3620 {
3621 lmp = &lmo;
3622
3623 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
3624 this is all we need. */
3625 lmo.r_map_offset = 4;
3626 lmo.r_map_size = 4;
3627
3628 lmo.link_map_size = 20;
3629
3630 lmo.l_addr_offset = 0;
3631 lmo.l_addr_size = 4;
3632
3633 lmo.l_name_offset = 4;
3634 lmo.l_name_size = 4;
3635
3636 lmo.l_next_offset = 12;
3637 lmo.l_next_size = 4;
3638
3639 lmo.l_prev_offset = 16;
3640 lmo.l_prev_size = 4;
3641 }
3642
3643 return lmp;
3644 }
3645
3646 static void
3647 cris_fpless_backtrace (char *noargs, int from_tty)
3648 {
3649 /* Points at the instruction after the jsr (except when in innermost frame
3650 where it points at the original pc). */
3651 CORE_ADDR pc = 0;
3652
3653 /* Temporary variable, used for parsing from the start of the function that
3654 the pc is in, up to the pc. */
3655 CORE_ADDR tmp_pc = 0;
3656 CORE_ADDR sp = 0;
3657
3658 /* Information about current frame. */
3659 struct symtab_and_line sal;
3660 char* func_name;
3661
3662 /* Present instruction. */
3663 unsigned short insn;
3664
3665 /* Next instruction, lookahead. */
3666 unsigned short insn_next;
3667
3668 /* This is to store the offset between sp at start of function and until we
3669 reach push srp (if any). */
3670 int sp_add_later = 0;
3671 int push_srp_found = 0;
3672
3673 int val = 0;
3674
3675 /* Frame counter. */
3676 int frame = 0;
3677
3678 /* For the innermost frame, we want to look at srp in case it's a leaf
3679 function (since there's no push srp in that case). */
3680 int innermost_frame = 1;
3681
3682 deprecated_read_register_gen (PC_REGNUM, (char *) &pc);
3683 deprecated_read_register_gen (SP_REGNUM, (char *) &sp);
3684
3685 /* We make an explicit return when we can't find an outer frame. */
3686 while (1)
3687 {
3688 /* Get file name and line number. */
3689 sal = find_pc_line (pc, 0);
3690
3691 /* Get function name. */
3692 find_pc_partial_function (pc, &func_name, (CORE_ADDR *) NULL,
3693 (CORE_ADDR *) NULL);
3694
3695 /* Print information about current frame. */
3696 printf_unfiltered ("#%i 0x%08lx in %s", frame++, pc, func_name);
3697 if (sal.symtab)
3698 {
3699 printf_unfiltered (" at %s:%i", sal.symtab->filename, sal.line);
3700 }
3701 printf_unfiltered ("\n");
3702
3703 /* Get the start address of this function. */
3704 tmp_pc = get_pc_function_start (pc);
3705
3706 /* Mini parser, only meant to find push sp and sub ...,sp from the start
3707 of the function, up to the pc. */
3708 while (tmp_pc < pc)
3709 {
3710 insn = read_memory_unsigned_integer (tmp_pc, sizeof (short));
3711 tmp_pc += sizeof (short);
3712 if (insn == 0xE1FC)
3713 {
3714 /* push <reg> 32 bit instruction */
3715 insn_next = read_memory_unsigned_integer (tmp_pc,
3716 sizeof (short));
3717 tmp_pc += sizeof (short);
3718
3719 /* Recognize srp. */
3720 if (insn_next == 0xBE7E)
3721 {
3722 /* For subsequent (not this one though) push or sub which
3723 affects sp, adjust sp immediately. */
3724 push_srp_found = 1;
3725
3726 /* Note: this will break if we ever encounter a
3727 push vr (1 byte) or push ccr (2 bytes). */
3728 sp_add_later += 4;
3729 }
3730 else
3731 {
3732 /* Some other register was pushed. */
3733 if (push_srp_found)
3734 {
3735 sp += 4;
3736 }
3737 else
3738 {
3739 sp_add_later += 4;
3740 }
3741 }
3742 }
3743 else if (cris_get_operand2 (insn) == SP_REGNUM
3744 && cris_get_mode (insn) == 0x0000
3745 && cris_get_opcode (insn) == 0x000A)
3746 {
3747 /* subq <val>,sp */
3748 val = cris_get_quick_value (insn);
3749
3750 if (push_srp_found)
3751 {
3752 sp += val;
3753 }
3754 else
3755 {
3756 sp_add_later += val;
3757 }
3758
3759 }
3760 else if (cris_get_operand2 (insn) == SP_REGNUM
3761 /* Autoincrement addressing mode. */
3762 && cris_get_mode (insn) == 0x0003
3763 /* Opcode. */
3764 && ((insn) & 0x03E0) >> 5 == 0x0004)
3765 {
3766 /* subu <val>,sp */
3767 val = get_data_from_address (&insn, tmp_pc);
3768
3769 if (push_srp_found)
3770 {
3771 sp += val;
3772 }
3773 else
3774 {
3775 sp_add_later += val;
3776 }
3777 }
3778 else if (cris_get_operand2 (insn) == SP_REGNUM
3779 && ((insn & 0x0F00) >> 8) == 0x0001
3780 && (cris_get_signed_offset (insn) < 0))
3781 {
3782 /* Immediate byte offset addressing prefix word with sp as base
3783 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
3784 is between 64 and 128.
3785 movem r<regsave>,[sp=sp-<val>] */
3786 val = -cris_get_signed_offset (insn);
3787 insn_next = read_memory_unsigned_integer (tmp_pc,
3788 sizeof (short));
3789 tmp_pc += sizeof (short);
3790
3791 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
3792 && cris_get_opcode (insn_next) == 0x000F
3793 && cris_get_size (insn_next) == 0x0003
3794 && cris_get_operand1 (insn_next) == SP_REGNUM)
3795 {
3796 if (push_srp_found)
3797 {
3798 sp += val;
3799 }
3800 else
3801 {
3802 sp_add_later += val;
3803 }
3804 }
3805 }
3806 }
3807
3808 if (push_srp_found)
3809 {
3810 /* Reset flag. */
3811 push_srp_found = 0;
3812
3813 /* sp should now point at where srp is stored on the stack. Update
3814 the pc to the srp. */
3815 pc = read_memory_unsigned_integer (sp, 4);
3816 }
3817 else if (innermost_frame)
3818 {
3819 /* We couldn't find a push srp in the prologue, so this must be
3820 a leaf function, and thus we use the srp register directly.
3821 This should happen at most once, for the innermost function. */
3822 deprecated_read_register_gen (SRP_REGNUM, (char *) &pc);
3823 }
3824 else
3825 {
3826 /* Couldn't find an outer frame. */
3827 return;
3828 }
3829
3830 /* Reset flag. (In case the innermost frame wasn't a leaf, we don't
3831 want to look at the srp register later either). */
3832 innermost_frame = 0;
3833
3834 /* Now, add the offset for everything up to, and including push srp,
3835 that was held back during the prologue parsing. */
3836 sp += sp_add_later;
3837 sp_add_later = 0;
3838 }
3839 }
3840
3841 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3842
3843 void
3844 _initialize_cris_tdep (void)
3845 {
3846 struct cmd_list_element *c;
3847
3848 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3849
3850 /* CRIS-specific user-commands. */
3851 c = add_set_cmd ("cris-version", class_support, var_integer,
3852 (char *) &usr_cmd_cris_version,
3853 "Set the current CRIS version.", &setlist);
3854 set_cmd_sfunc (c, cris_version_update);
3855 add_show_from_set (c, &showlist);
3856
3857 c = add_set_enum_cmd ("cris-mode", class_support, cris_mode_enums,
3858 &usr_cmd_cris_mode,
3859 "Set the current CRIS mode.", &setlist);
3860 set_cmd_sfunc (c, cris_mode_update);
3861 add_show_from_set (c, &showlist);
3862
3863 c = add_set_enum_cmd ("cris-abi", class_support, cris_abi_enums,
3864 &usr_cmd_cris_abi,
3865 "Set the current CRIS ABI version.", &setlist);
3866 set_cmd_sfunc (c, cris_abi_update);
3867 add_show_from_set (c, &showlist);
3868
3869 c = add_cmd ("cris-fpless-backtrace", class_support, cris_fpless_backtrace,
3870 "Display call chain using the subroutine return pointer.\n"
3871 "Note that this displays the address after the jump to the "
3872 "subroutine.", &cmdlist);
3873
3874 add_core_fns (&cris_elf_core_fns);
3875
3876 }
3877
3878 /* Prints out all target specific values. */
3879
3880 static void
3881 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3882 {
3883 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3884 if (tdep != NULL)
3885 {
3886 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3887 tdep->cris_version);
3888 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3889 tdep->cris_mode);
3890 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_abi = %s\n",
3891 tdep->cris_abi);
3892
3893 }
3894 }
3895
3896 static void
3897 cris_version_update (char *ignore_args, int from_tty,
3898 struct cmd_list_element *c)
3899 {
3900 struct gdbarch_info info;
3901
3902 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3903 the set command passed as a parameter. The clone operation will
3904 include (BUG?) any ``set'' command callback, if present.
3905 Commands like ``info set'' call all the ``show'' command
3906 callbacks. Unfortunately, for ``show'' commands cloned from
3907 ``set'', this includes callbacks belonging to ``set'' commands.
3908 Making this worse, this only occures if add_show_from_set() is
3909 called after add_cmd_sfunc() (BUG?). */
3910
3911 /* From here on, trust the user's CRIS version setting. */
3912 if (cmd_type (c) == set_cmd)
3913 {
3914 usr_cmd_cris_version_valid = 1;
3915
3916 /* Update the current architecture, if needed. */
3917 gdbarch_info_init (&info);
3918 if (!gdbarch_update_p (info))
3919 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3920 }
3921 }
3922
3923 static void
3924 cris_mode_update (char *ignore_args, int from_tty,
3925 struct cmd_list_element *c)
3926 {
3927 struct gdbarch_info info;
3928
3929 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3930 the set command passed as a parameter. The clone operation will
3931 include (BUG?) any ``set'' command callback, if present.
3932 Commands like ``info set'' call all the ``show'' command
3933 callbacks. Unfortunately, for ``show'' commands cloned from
3934 ``set'', this includes callbacks belonging to ``set'' commands.
3935 Making this worse, this only occures if add_show_from_set() is
3936 called after add_cmd_sfunc() (BUG?). */
3937
3938 /* From here on, trust the user's CRIS mode setting. */
3939 if (cmd_type (c) == set_cmd)
3940 {
3941 usr_cmd_cris_mode_valid = 1;
3942
3943 /* Update the current architecture, if needed. */
3944 gdbarch_info_init (&info);
3945 if (!gdbarch_update_p (info))
3946 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3947 }
3948 }
3949
3950 static void
3951 cris_abi_update (char *ignore_args, int from_tty,
3952 struct cmd_list_element *c)
3953 {
3954 struct gdbarch_info info;
3955
3956 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3957 the set command passed as a parameter. The clone operation will
3958 include (BUG?) any ``set'' command callback, if present.
3959 Commands like ``info set'' call all the ``show'' command
3960 callbacks. Unfortunately, for ``show'' commands cloned from
3961 ``set'', this includes callbacks belonging to ``set'' commands.
3962 Making this worse, this only occures if add_show_from_set() is
3963 called after add_cmd_sfunc() (BUG?). */
3964
3965 /* From here on, trust the user's CRIS ABI setting. */
3966 if (cmd_type (c) == set_cmd)
3967 {
3968 usr_cmd_cris_abi_valid = 1;
3969
3970 /* Update the current architecture, if needed. */
3971 gdbarch_info_init (&info);
3972 if (!gdbarch_update_p (info))
3973 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3974 }
3975 }
3976
3977 /* Copied from pa64solib.c, with a couple of minor changes. */
3978
3979 static CORE_ADDR
3980 bfd_lookup_symbol (bfd *abfd, const char *symname)
3981 {
3982 unsigned int storage_needed;
3983 asymbol *sym;
3984 asymbol **symbol_table;
3985 unsigned int number_of_symbols;
3986 unsigned int i;
3987 struct cleanup *back_to;
3988 CORE_ADDR symaddr = 0;
3989
3990 storage_needed = bfd_get_symtab_upper_bound (abfd);
3991
3992 if (storage_needed > 0)
3993 {
3994 symbol_table = (asymbol **) xmalloc (storage_needed);
3995 back_to = make_cleanup (free, symbol_table);
3996 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
3997
3998 for (i = 0; i < number_of_symbols; i++)
3999 {
4000 sym = *symbol_table++;
4001 if (!strcmp (sym->name, symname))
4002 {
4003 /* Bfd symbols are section relative. */
4004 symaddr = sym->value + sym->section->vma;
4005 break;
4006 }
4007 }
4008 do_cleanups (back_to);
4009 }
4010 return (symaddr);
4011 }
4012
4013 static struct gdbarch *
4014 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4015 {
4016 struct gdbarch *gdbarch;
4017 struct gdbarch_tdep *tdep;
4018 int cris_version;
4019 const char *cris_mode;
4020 const char *cris_abi;
4021 CORE_ADDR cris_abi_sym = 0;
4022 int register_bytes;
4023
4024 if (usr_cmd_cris_version_valid)
4025 {
4026 /* Trust the user's CRIS version setting. */
4027 cris_version = usr_cmd_cris_version;
4028 }
4029 else
4030 {
4031 /* Assume it's CRIS version 10. */
4032 cris_version = 10;
4033 }
4034
4035 if (usr_cmd_cris_mode_valid)
4036 {
4037 /* Trust the user's CRIS mode setting. */
4038 cris_mode = usr_cmd_cris_mode;
4039 }
4040 else if (cris_version == 10)
4041 {
4042 /* Assume CRIS version 10 is in user mode. */
4043 cris_mode = CRIS_MODE_USER;
4044 }
4045 else
4046 {
4047 /* Strictly speaking, older CRIS version don't have a supervisor mode,
4048 but we regard its only mode as supervisor mode. */
4049 cris_mode = CRIS_MODE_SUPERVISOR;
4050 }
4051
4052 if (usr_cmd_cris_abi_valid)
4053 {
4054 /* Trust the user's ABI setting. */
4055 cris_abi = usr_cmd_cris_abi;
4056 }
4057 else if (info.abfd)
4058 {
4059 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4060 {
4061 /* An elf target uses the new ABI. */
4062 cris_abi = CRIS_ABI_V2;
4063 }
4064 else if (bfd_get_flavour (info.abfd) == bfd_target_aout_flavour)
4065 {
4066 /* An a.out target may use either ABI. Look for hints in the
4067 symbol table. */
4068 cris_abi_sym = bfd_lookup_symbol (info.abfd, CRIS_ABI_SYMBOL);
4069 cris_abi = cris_abi_sym ? CRIS_ABI_V2 : CRIS_ABI_ORIGINAL;
4070 }
4071 else
4072 {
4073 /* Unknown bfd flavour. Assume it's the new ABI. */
4074 cris_abi = CRIS_ABI_V2;
4075 }
4076 }
4077 else if (arches != NULL)
4078 {
4079 /* No bfd available. Stick with the ABI from the most recently
4080 selected architecture of this same family (the head of arches
4081 always points to this). (This is to avoid changing the ABI
4082 when the user updates the architecture with the 'set
4083 cris-version' command.) */
4084 cris_abi = gdbarch_tdep (arches->gdbarch)->cris_abi;
4085 }
4086 else
4087 {
4088 /* No bfd, and no previously selected architecture available.
4089 Assume it's the new ABI. */
4090 cris_abi = CRIS_ABI_V2;
4091 }
4092
4093 /* Make the current settings visible to the user. */
4094 usr_cmd_cris_version = cris_version;
4095 usr_cmd_cris_mode = cris_mode;
4096 usr_cmd_cris_abi = cris_abi;
4097
4098 /* Find a candidate among the list of pre-declared architectures. Both
4099 CRIS version and ABI must match. */
4100 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4101 arches != NULL;
4102 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4103 {
4104 if ((gdbarch_tdep (arches->gdbarch)->cris_version == cris_version)
4105 && (gdbarch_tdep (arches->gdbarch)->cris_mode == cris_mode)
4106 && (gdbarch_tdep (arches->gdbarch)->cris_abi == cris_abi))
4107 return arches->gdbarch;
4108 }
4109
4110 /* No matching architecture was found. Create a new one. */
4111 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4112 gdbarch = gdbarch_alloc (&info, tdep);
4113
4114 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
4115 ready to unwind the PC first (see frame.c:get_prev_frame()). */
4116 set_gdbarch_deprecated_init_frame_pc (gdbarch, deprecated_init_frame_pc_default);
4117
4118 tdep->cris_version = cris_version;
4119 tdep->cris_mode = cris_mode;
4120 tdep->cris_abi = cris_abi;
4121
4122 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4123 switch (info.byte_order)
4124 {
4125 case BFD_ENDIAN_LITTLE:
4126 /* Ok. */
4127 break;
4128
4129 case BFD_ENDIAN_BIG:
4130 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: big endian byte order in info");
4131 break;
4132
4133 default:
4134 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown byte order in info");
4135 }
4136
4137 /* Initialize the ABI dependent things. */
4138 if (tdep->cris_abi == CRIS_ABI_ORIGINAL)
4139 {
4140 set_gdbarch_double_bit (gdbarch, 32);
4141 set_gdbarch_deprecated_push_arguments (gdbarch, cris_abi_original_push_arguments);
4142 set_gdbarch_deprecated_store_return_value (gdbarch,
4143 cris_abi_original_store_return_value);
4144 set_gdbarch_deprecated_extract_return_value
4145 (gdbarch, cris_abi_original_extract_return_value);
4146 set_gdbarch_deprecated_reg_struct_has_addr
4147 (gdbarch, cris_abi_original_reg_struct_has_addr);
4148 }
4149 else if (tdep->cris_abi == CRIS_ABI_V2)
4150 {
4151 set_gdbarch_double_bit (gdbarch, 64);
4152 set_gdbarch_deprecated_push_arguments (gdbarch, cris_abi_v2_push_arguments);
4153 set_gdbarch_deprecated_store_return_value (gdbarch, cris_abi_v2_store_return_value);
4154 set_gdbarch_deprecated_extract_return_value
4155 (gdbarch, cris_abi_v2_extract_return_value);
4156 set_gdbarch_deprecated_reg_struct_has_addr
4157 (gdbarch, cris_abi_v2_reg_struct_has_addr);
4158 }
4159 else
4160 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown CRIS ABI");
4161
4162 /* The default definition of a long double is 2 * TARGET_DOUBLE_BIT,
4163 which means we have to set this explicitly. */
4164 set_gdbarch_long_double_bit (gdbarch, 64);
4165
4166 /* There are 32 registers (some of which may not be implemented). */
4167 set_gdbarch_num_regs (gdbarch, 32);
4168 set_gdbarch_sp_regnum (gdbarch, 14);
4169 set_gdbarch_deprecated_fp_regnum (gdbarch, 8);
4170 set_gdbarch_pc_regnum (gdbarch, 15);
4171
4172 set_gdbarch_register_name (gdbarch, cris_register_name);
4173
4174 /* Length of ordinary registers used in push_word and a few other
4175 places. DEPRECATED_REGISTER_RAW_SIZE is the real way to know how
4176 big a register is. */
4177 set_gdbarch_deprecated_register_size (gdbarch, 4);
4178
4179 /* NEW */
4180 set_gdbarch_register_bytes_ok (gdbarch, cris_register_bytes_ok);
4181 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4182
4183
4184 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4185 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4186
4187
4188 /* The total amount of space needed to store (in an array called registers)
4189 GDB's copy of the machine's register state. Note: We can not use
4190 cris_register_size at this point, since it relies on current_gdbarch
4191 being set. */
4192 switch (tdep->cris_version)
4193 {
4194 case 0:
4195 case 1:
4196 case 2:
4197 case 3:
4198 /* Support for these may be added later. */
4199 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unsupported CRIS version");
4200 break;
4201
4202 case 8:
4203 case 9:
4204 /* CRIS v8 and v9, a.k.a. ETRAX 100. General registers R0 - R15
4205 (32 bits), special registers P0 - P1 (8 bits), P4 - P5 (16 bits),
4206 and P8 - P14 (32 bits). */
4207 register_bytes = (16 * 4) + (2 * 1) + (2 * 2) + (7 * 4);
4208 break;
4209
4210 case 10:
4211 case 11:
4212 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4213 P7 (32 bits), and P15 (32 bits) have been implemented. */
4214 register_bytes = (16 * 4) + (2 * 1) + (2 * 2) + (9 * 4);
4215 break;
4216
4217 default:
4218 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown CRIS version");
4219 }
4220
4221 set_gdbarch_deprecated_register_bytes (gdbarch, register_bytes);
4222
4223 /* Returns the register offset for the first byte of register regno's space
4224 in the saved register state. */
4225 set_gdbarch_deprecated_register_byte (gdbarch, cris_register_offset);
4226
4227 /* The length of the registers in the actual machine representation. */
4228 set_gdbarch_deprecated_register_raw_size (gdbarch, cris_register_size);
4229
4230 /* The largest value DEPRECATED_REGISTER_RAW_SIZE can have. */
4231 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 32);
4232
4233 /* The length of the registers in the program's representation. */
4234 set_gdbarch_deprecated_register_virtual_size (gdbarch, cris_register_size);
4235
4236 /* The largest value DEPRECATED_REGISTER_VIRTUAL_SIZE can have. */
4237 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 32);
4238
4239 set_gdbarch_deprecated_register_virtual_type (gdbarch, cris_register_virtual_type);
4240
4241 /* Use generic dummy frames. */
4242
4243 /* Read all about dummy frames in blockframe.c. */
4244 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
4245
4246 /* Defined to 1 to indicate that the target supports inferior function
4247 calls. */
4248 set_gdbarch_deprecated_call_dummy_words (gdbarch, 0);
4249 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, 0);
4250
4251 set_gdbarch_deprecated_get_saved_register (gdbarch, deprecated_generic_get_saved_register);
4252
4253 set_gdbarch_deprecated_push_return_address (gdbarch, cris_push_return_address);
4254 set_gdbarch_deprecated_pop_frame (gdbarch, cris_pop_frame);
4255
4256 set_gdbarch_deprecated_store_struct_return (gdbarch, cris_store_struct_return);
4257 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
4258
4259 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, cris_frame_init_saved_regs);
4260 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, cris_init_extra_frame_info);
4261 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4262 set_gdbarch_prologue_frameless_p (gdbarch, generic_prologue_frameless_p);
4263
4264 /* The stack grows downward. */
4265 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4266
4267 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4268
4269 /* The number of bytes at the start of arglist that are not really args,
4270 0 in the CRIS ABI. */
4271 set_gdbarch_frame_args_skip (gdbarch, 0);
4272 set_gdbarch_frameless_function_invocation
4273 (gdbarch, cris_frameless_function_invocation);
4274 set_gdbarch_deprecated_frame_chain (gdbarch, cris_frame_chain);
4275
4276 set_gdbarch_deprecated_frame_saved_pc (gdbarch, cris_frame_saved_pc);
4277 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, cris_saved_pc_after_call);
4278
4279 /* Helpful for backtracing and returning in a call dummy. */
4280 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
4281
4282 /* Should be using push_dummy_call. */
4283 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
4284
4285 /* Use target_specific function to define link map offsets. */
4286 set_solib_svr4_fetch_link_map_offsets
4287 (gdbarch, cris_linux_svr4_fetch_link_map_offsets);
4288
4289 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4290 disassembler, even when there is no BFD. Does something like
4291 "gdb; target remote; disassmeble *0x123" work? */
4292 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4293
4294 return gdbarch;
4295 }
This page took 0.142199 seconds and 4 git commands to generate.